
 

 
 

PhD-FSTM-2025-112 
The Faculty of Science, Technology and Medicine 

 

 
DISSERTATION 

 
Defence held on 25/09/2025 in Luxembourg 

 
to obtain the degree of 

  
 

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG 
 

EN PHYSIQUE 
 

by 
 

Kyunghoon HAN 
Born on 7 August 1990 in city of Seoul, (Republic of Korea) 

 
ANALYSIS, CALCULATION AND UNDERSTANDING OF 

MOLECULAR VIBRATIONS: 
DECOMPOSITION OF EMPIRICAL SPECTRA,  

SIMULATION TARGETED TO A FREQUENCY BAND, AND 
THEORETICAL FRAMEWORK OF OSCILLATORY MOTION AS FAT MANIFOLDS 

 
 

Dissertation defence committee 
 
Dr Joshua T. Berryman, dissertation supervisor 
Research Scientist, Université du Luxembourg 
 
Dr Aurélia Chenu, Chairman 
Professor, Université du Luxembourg 
 
Dr Francesca Ingrosso 
Professor, Université de Lorraine 
 
Dr Benjamin Stamm 
Professor, Universität Stuttgart 
 
Dr Christophe Ley 
Professor, Université du Luxembourg 



A�davit / Statement of originality 

I declare that this thesis:

 is the result of my own work. Any contribu�on from any other party, and any use 

of genera�ve ar��cial intelligence technologies have been duly cited and 

acknowledged;

 is not substan�ally the same as any other that I have submi!ed, and;

 is not being concurrently submi!ed for a degree, diploma or other quali�ca�on 

at the University of Luxembourg or any other University or similar ins�tu�on 

except as speci�ed in the text. 

With my approval I furthermore con�rm the following: 

 I have adhered to the rules set out in the University of Luxembourg’s Code of 

Conduct and the Doctoral Educa�on Agreement (DEA)1, in par�cular with regard 

to Research Integrity. 

 I have documented all methods, data, and processes truthfully and fully. 

 I have men�oned all the signi�cant contributors to the work. 

 I am aware that the work may be screened electronically for originality.

I acknowledge that if any issues are raised regarding good research prac�ces based 

on the review of the thesis, the examina�on may be postponed pending the 

outcome of any inves�ga�on of such issues. If a degree was conferred, any such 

subsequently discovered issues may result in the cancella�on of the degree.

Approved on 2025-08-20

1 If applicable (DEA is compulsory since August 2020)



Analysis, Calculation, and
Understanding of

Molecular Vibrations:
decomposition of empirical spectra, simulation targeted to a

frequency band, and theoretical framework of oscillatory motion
as fat manifolds

by

Kyunghoon Han

A thesis submitted to the University of Luxembourg
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

PHYSICS

Department of Physics and Materials Science
University of Luxembourg

Luxembourg

© 2024 Kyunghoon Han



Abstract

The idea ofmolecular dynamics seems intuitively simple, that atoms should
move through space on complex but well defined trajectories that reflect the
chemical interactions between them. Unfortunately, atoms are quantum ob-
jects therefore to define even the concept of movement, for example as the
change of a well-defined position versus a smoothly evolving time coordinate,
is problematic.

In the present thesis I addressmolecular motion beginning from the funda-
mentals, presenting initially a software tool for analysis of empirically obtained
spectra such that the optical (or acoustic) properties of a material can be con-
nected to basic statements about its inherent vibrational resonances. Moving
on from this empirically-grounded signal processing approach I develop a
framework for selectively interrogating dynamics when confined to a specific
window of frequency space, providing a toolkit to answer the question “what
molecular motion connects to what observed peaks in a spectrum”.

The final mathematical approach offers a novel perspective on molecular
motion derived from the tradition of Riemannian geometry, framing  molecular
trajectories as geodesics on a Riemannian manifold shaped by the Jacobi met-
ric. In this setting, vibrational motion emerges as curvature-driven structure,
captured without recourse to predefined coordinates or harmonic approxima-
tions. The Riemannian approach offers a novel, efficient, and highly robust
integration  algorithm which can be used to produce the geodesics of complex
systems in a way that is naturally adapted to interrogate vibrational spectra,
even in the presence of relativistic and quantum effects.
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Résumé

L’ idée de la dynamique moléculaire peut sembler, à première vue, intuitive-
ment simple : les atomes devraient se déplacer dans l’espace selon des trajec-
toires complexes mais bien définies, reflétant les interactions chimiques qui
s’exercent entre eux. Cependant, les atomes étant des objets quantiques, la
définition même de la notion de mouvement devient problématique— par
exemple, comme la variation d’une position parfaitement déterminée par
rapport à une coordonnée temporelle évoluant de manière continue.

Dans cette thèse, j’examine le mouvement moléculaire à partir de ses
principes fondamentaux. Je présente d’abord un outil logiciel d’analyse de
spectres expérimentaux, reliant les propriétés optiques (ou acoustiques) d’un
matériau à ses résonances vibrationnelles intrinsèques. Partant de cette ap-
proche empirique du signal, je propose ensuite un cadre permettant d’exam-
iner sélectivement la dynamique dans une plage spécifique de fréquences, afin
de répondre à la question : « Quel mouvement moléculaire correspond à quels
pics observés dans un spectre ? »

Enfin, l’approche que je propose renouvelle l’étude dumouvementmolécu-
laire en l’ inscrivant dans le cadre de la géométrie riemannienne, où les tra-
jectoires sont traitées comme des géodésiques définies par la métrique de
Jacobi. Le mouvement vibrationnel y apparaît comme une structure dictée par
la courbure, sans recours à des coordonnées prédéfinies ni à l’approximation
harmonique. Cette formulation conduit à un algorithme d’ intégration efficace
et robuste, adapté au calcul des géodésiques de systèmes complexes ainsi qu’à
l’analyse des spectres vibrationnels, y compris en présence d’effets relativistes
et quantiques.
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Zusammenfassung

Die Grundidee der Molekulardynamik wirkt zunächst schlicht: Atome bewegen
sich auf komplexen, aber wohldefinierten Bahnen durch den Raum – geprägt
von den chemischen Wechselwirkungen zwischen ihnen. Doch Atome sind
Quantenobjekte; schon der Begriff der Bewegung, etwa als Änderung einer
wohldefinierten Position entlang einer fortschreitenden Zeitkoordinate, erweist
sich als problematisch.

Diese Arbeit setzt bei den Grundlagen an. Zunächst stelle ich ein Soft-
ware zur Auswertung empirisch gewonnener Spektren vor, das optische (bzw.
akustische) Materialeigenschaften mit grundlegenden Aussagen über die zu-
grundeliegenden Eigenresonanzen verknüpft. Aufbauend auf diesem em-
pirisch fundierten, signalverarbeitenden Vorgehen entwickle ich einen Ansatz,
mit den sich Dynamik gezielt innerhalb eines ausgewählten Frequenzfensters
untersuchen lässt – ein methodischer Werkzeugkasten, der die Frage beant-
wortet, welche molekularen Bewegungen welchen beobachteten Peaks im
Spektrum zuzuordnen sind.

Abschließend stelle ich einen auf der Riemannschen Geometrie basieren-
den Lösungsansatz vor: Molekulare Trajektorien erscheinen als Geodäten auf
einer durch die Jacobi-Metrik bestimmten Riemannschen Mannigfaltigkeit. In
dieser Darstellung treten Schwingungen als krümmungsgetriebene Strukturen
hervor – erfasst ohne Bezug auf vorgegebene Koordinaten oder harmonische
Näherungen. Der Riemannsche Ansatz bietet einen neuartigen, effizienten
und äußerst robusten Integrationsalgorithmus, mit dem sich die Geodäten
komplexer Systeme auf eine Weise erzeugen lassen, die sich auf natürliche
Weise für die Untersuchung von Schwingungsspektren eignen, selbst wenn
relativistische und quantenmechanische Effekte vorliegen.
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초록

분자동역학의개념은표면적으로는직관적으로단순해보이지만,원자는본질적으

로양자적대상이므로시간에따라명확히정의된위치의변화를운동으로기술하는

것은근본적으로문제가된다.

본논문은이러한분자운동의개념을근본원리에서출발하여새롭게탐구한다.

먼저,화학적세부지식에의존하지않고도다양한스펙트럼에폭넓게적용가능한

보편적분석체계를제안한다. 이를통해재료의광학적·음향적성질을고유한진동

공명과직접적으로연결할수있게된다. 이어서,주파수영역을선택적으로한정하

여 분자 동역학을 분석하는 이론적 프레임워크를 구축함으로써, “특정 스펙트럼의

최고점의 근방은 어떤 분자 운동과 대응하는가?”라는 질문에 체계적으로 답할 수

있도록 한다.

마지막으로, 리만 기하학적인 전통에 기반한 새로운 수학적 접근을 제안한다.

분자의궤적을야코비계량으로정의된리만다양체위의측지선으로해석하며, 이

틀에서 진동 운동은 곡률에 의해 드러나는 기하학적 구조로 나타난다. 이 방법은

좌표계나조화근사에의존하지않고도분자운동을기술할수있으며, 효율적이고

안정적인새로운적분알고리즘을제공한다. 나아가양자적·상대론적효과가작용

하는체계에서도분자궤적과스펙트럼의연결을자연스럽게탐구할수있게한다.
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CHAPTER 1

Introduction

C’est le temps que tu as perdu pour
ta rose qui fait ta rose si importante.

Antoine de Saint-Exupéry
Le Petit Prince

It is the time you have lost for your rose
that makes your rose so important.

Antoine de Saint-Exupéry
The Little Prince

The study of molecular vibrations predates the modern understanding of
quantum mechanics as known today. Long before the quantisation of energy
levels was established, the scientific community had already begun probing
the vibrational signatures of matter through their interaction with light.

During the 1860s, John Tyndall showed that gases such as carbon diox-
ide selectively absorb radiant heat—what is now identified as infrared radi-
ation—thus providing the foundation for the contemporary understanding
of the greenhouse effect [3]. Building on Kirchhoff’s foundational work on
thermal radiation [4], Tyndall went further, proposing a physical explanation
for the observed absorption patterns. He suggested that molecules absorb ra-
diation most efficiently when the wave frequencies match their internal modes
of vibration, a view he attributed directly to Kirchhoff, as illustrated in the
following passage from his work [3]:

By Kirchhoff it has been conclusively shown that every atom absorbs
in a special degree those waves which are synchronous with its own
periods of vibration.

In this context, to the 19th century physicists,molecular vibrations could

1
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be defined as:

Definition 1.1. Regular patterns in the absorption of radiant energy by gases,
observed at specific frequencies, is interpreted as evidence of internal peri-
odic motions within matter—motions resonant with the incident waves and
indicative of vibratory behaviour.

After the emergence of atomic theory and the birth of quantummechanics
in the early 20th century, the notion of internal periodic motion—previously
treated as a speculative explanation—began to acquire precise mechanical
meaning. With the formulation of Bohr’s model and quantum quantisation
rules, scientists could now describe internal vibrations as discrete energy levels
of bounded particles, governed by dynamical laws.

Yet, in this formative stage, the tools of fully developedquantummechanics
were still lacking. As a result, early pioneers like Adolf Kratzer worked with a
semi-classical framework: combining classical mechanics with quantisation
rules (e.g. Bohr–Sommerfeld conditions [5,6]) to describe the vibrational and
rotational spectra of molecules [7].

Definition 1.2. Molecular vibrations are the periodic relative motions of
atomic centres in a molecule, treated as a classical oscillator. Allowed vibra-
tional states are determined by the quantisation condition

¿
p dq “ nh, (1.1)

where n P N and h is Planck’s constant, following the Bohr–Sommerfeld rule.
These states explain the discrete bands in infrared spectra.

This definition of molecular vibration captures a key conceptual advance
over earlier, purely phenomenological interpretations: it treats internal motion
as a concrete mechanical process between atomic centres, governed by dynam-
ical laws and capable of being quantised. It explains the regularity and discrete-
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ness observed in infrared spectra through the application of classicalmechanics
combined with early quantum rules. However, the definition remains limited
in several respects. The vibrational motion is assumed to follow a prescribed,
idealised trajectory—typically harmonic or weakly anharmonic—and the quan-
tisation condition is imposed externally, rather than derived from a unified
theory. Moreover, the approach applies cleanly only to simple diatomic sys-
tems and does not generalise easily to polyatomic molecules or account for
mode coupling and energy redistribution. Thus, while the definition offers a
tangible and computationally accessible model, it lacks generality and internal
consistency in systems of higher complexity.

Themajor breakthrough in this fieldwas initiated byMax Born and J. Robert
Oppenheimer in their 1927 paper, Zur Quantentheorie der Molekeln ( “On the
Quantum Theory of Molecules”), in which they proposed that the full molecular
Hamiltonian could be approximated in the following form (using their original
notation):

H “ H0 ` Ÿ4H1 (1.2)

where Ÿ is a small parameter proportional to the inverse square root of the
nuclear and electronic mass ratio, H0 represents the electronic Hamiltonian
with fixed nuclei, andH1 accounts for the nuclear kinetic energy and its coupling
to the electronic motion [8].

By exploiting the smallness of Ÿ in Equation (1.2), Born and Oppenheimer
showed that the fast electronic degrees of freedom could be solved indepen-
dently from the slow nuclear motion. In their 1927 theory, nuclear vibrations
appear at second order, while lower-order terms vanish due to the existence of
an equilibrium nuclear geometry where electronic energy is minimal. The es-
sential consequence is that, to leading order, the fast-moving electrons adapt
instantaneously to the slower motion of the atomic nuclei, which enables one
to define a potential energy surface (PES)—the electronic energy as a function of
frozen nuclear coordinates—and treat the nuclei as moving on this landscape
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while obeying classical dynamics.

This separation of timescales and masses justifies the core assumption of
classical molecular dynamics (MD): nuclei are approximated as classical particles
evolving under forces derived from the PES. Once these forces are computed,
one can directly apply Newton’s laws, bypassing a full nuclear quantum treat-
ment.

Definition 1.3 (Classical MD & molecular vibrations). Molecular vibrations
are the time‑dependent, oscillatory motions of nuclei about equilibrium
positions, simulated as classical trajectories driven by interatomic forces
derived from the electronic potential energy surface. These vibrations are
emergent phenomena of Newtonian dynamics on the PES, and can manifest
well-defined frequencies via emergent quantisation.

It should be noted that Definition 1.3 remains an incomplete representation
of the underlying physics, omitting effects such as nuclear quantum motion
and zero-point energy.

Definition 1.3 summarises two essential advances: first, it supplies the
equations of motion governing the atomic nuclei—treated classically as point
masses interacting via interatomic forces—and second, it offers a framework
for interpreting molecular vibrations as coherent, directional oscillations about
equilibrium configurations. These vibrational motions occur at well-defined fre-
quencies and along specific normal modes,which are dictated by the geometry
and mass distribution of the molecule.

Had 19th century experimentalists with a strong theoretical inclination,
such as Tyndall or Kirchhoff, been presented with such a framework, their natu-
ral question could have been: How can this theory illuminate the structure behind
vibrational spectra? This question, though implicit in 19th-century discussions of
absorption and resonance, became a driving force for physicists and chemists
in the past century. Their efforts—spanning from early infrared experiments
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to the development of normal mode analysis—revealed deep connections be-
tween vibrational frequencies and molecular geometry, revolutionising the
way chemists and molecular physicists interpret spectral data.

I hope to contribute to this enduring dialogue by giving new mathematical
voice which may, in some small way, advance the understanding of molecular
vibrations.

1.1 Main contributions of this thesis

This thesis revisits the problem of understanding molecular vibrations—not
only through the conventional lenses of quantum eigenstates and linearised
normal modes, but by reinterpreting early spectroscopists’ intuition that vibra-
tional spectra reflect internal molecular motions. Chapter 3 approaches this
problem from a signal-processing perspective, treating spectral information as
a signal to be decomposed. It introduces a step-by-step mathematical frame-
work for identifying meaningful distributions centred around spectral peaks,
without relying on prior physical or chemical assumptions. The techniques
developed in this chapter are implemented in an open-source Python package,
Tihi [1].

Chapters 4 and 5 extend this intuition into a dynamical framework, viewing
molecular vibrations as quasi-periodic motions expressed either through their
representation in Fourier space or directly in configurational space, the latter
having an inherent Riemannian structure. These chapters employ tools from
Riemannian geometry and harmonic analysis to show how vibrational modes
arise from the geometric structure of molecular trajectories and their recurrent
patterns over time. The theoretical foundations for these approaches are
established in the early sections of each chapter, laying the groundwork for a
geometric and frequency-resolved understanding of molecular motion.

The chapters are ordered to reflect the historical development of molec-
ular vibration studies: beginning with empirical spectral analysis inspired by
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19th-century observations, moving to frequency-domain isolation methods
reminiscent of mid-20th-century normal mode theory, and culminating in a
fully geometric framework rooted in modern differential geometry.

In addition to providing these perspectives, the thesis makes the following
contributions:

• Empirical spectral decomposition (Chapter 3): Algorithms for denoising,
baseline correction, peak detection, and decomposition of vibrational
spectra without prior chemical or physical assumptions; implemented in
the open-source Python package Tihi [1].

• Fourier integrator framework (Chapter 4): Development of Fourier-
space integrators and mode-specific molecular dynamics algorithms, en-
abling frequency-band-targeted simulations while preserving the physical
integrity of trajectories.

• Geometricmolecular dynamics (Chapter 5): (i) Formulation of molecular
trajectories as geodesics onmanifolds defined by the Jacobimetric; (ii) anal-
ysis of quasi-periodicity via tubular trajectories and hyper-volume overlap;
(iii) fat manifold construction to quantify vibrational mode coupling.

The Fourier-space integrators and mode-specific molecular dynamics al-
gorithms developed in Chapter 4 provide the ability to isolate and simulate
molecular trajectories within targeted frequency bands while preserving their
physical integrity. These methods offer precise control over frequency resolu-
tion and avoid distorting anharmonic couplings,making them well suited for
analysing the relationship between spectral features and underlying motions.
Their main limitations stem from the requirement for finely sampled trajecto-
ries to resolve narrow frequency windows and the increased computational
cost of maintaining accuracy when working in high-frequency bands.

The Riemannian framework presented in Chapter 5 enables a fully (and use-
fully) geometric, coordinate-free description of molecular motion. This method
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supports the identification of quasi-periodic structure via tubular trajectory
self-overlaps and the quantification of vibrational mode coupling through the
construction of fat manifolds. These geometric algorithms excel in physical
interpretability, robustness to coordinate choices, and their ability to reveal
dynamical structure without predefined mode assumptions. However, they
are sensitive to numerical errors in curvature estimation and can become
computationally demanding for systems with many strongly coupled modes.

Building upon these perspectives, the central research questions guiding
this thesis are as follows:

• Is it possible to extract a physically meaningful decomposition of molecular
spectral data without prior knowledge of the underlying chemistry or
physics? (Chapter 3)

• Can molecular trajectories be isolated within a specific frequency band
without compromising their physical integrity? (Chapter 4)

• Can molecular trajectories be described usefully in geometrical terms?
(Chapters 5.1 to 5.3)

• Can the internal vibrational motions of a molecule be understood as mani-
festations of quasi-periodicity? (Chapters 5.4 to 5.6)

These questions are revisited and answered in the concluding remarks.



CHAPTER 2

Theoretical Preliminaries

Nam si tumihi ... eruditum hominem
adduxeris, ... acrem et acutum in
cogitando, ... si erit idem ... civi-
tatis ... hospes, non multum ei ...
proderunt ...: subacto mihi ingenio
opus est, ut agro non semel arato,
sed ... iterato, quo meliores fetus
possit edere; subactio autem est
usus, auditio, lectio, litterae.

Marcus Tullius Cicero
De Oratore

If you were to bring me a person, how-
ever learned, however sharp and acute
in thought... if this very person is a
stranger to the land... then his bright-
ness will not help his/her argument
much. I need a mind that has been
well-tilled—like a field, not ploughed
only once, but worked again and again,
so it may yield better fruits. And this
cultivation consists of practice, listen-
ing, reading, and literary study.

Marcus Tullius Cicero
On the Orator

Themathematical structures andphysical principles introducedhere—rang-
ing from classical molecular dynamics to the description of vibrational mo-
tion—form the foundation for Chapters 4 and 5, upon which the more spe-
cialised treatments in these chapters are built.

In the spirit of the epigraph, this chapter serves not as a survey, but as a
rigorous cultivation of the essential concepts required for what follows. While
the results here are not revisited in detail later, they are assumed throughout
the thesis. The aim is to equip the reader with a prepared and self-sufficient
understanding of the theoretical landscape in which the main arguments are
situated.

8
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2.1 Classical molecular dynamics and symplectic
integration

Viewing a molecule as an N -body system composed of interacting atoms, one
can write the internal part of the Hamiltonian, Hint “ T ` U as

Hint “
Nÿ

i“1

p
2

i

2mi
`

Nÿ

i†j

up2qpri, rjq `
Nÿ

i†j†k

up3qpri, rj, rkq ` ¨ ¨ ¨ (2.1)

where pi, ri,mi are i-th atom’s 3-momentum, 3-position andmass, respectively.
The potential terms of Equation 2.1 can be grouped differently between the
short range interactions and long range interactions as

U “
Nÿ

i†j

uprij|rij † Rcq ` U long range (2.2)

with some cut-off distance Rc, and the distance between the i-th and j-th
atom rij “

a
pri ´ rjq ¨ pri ´ rjq. In this work, vector quantities are expressed

in index notation, where atomic indices are represented by Latin letters and
their corresponding coordinates by Greek letters. Rewriting Equation 2.1 in
this notation yields the following equivalent expression for the Hamiltonian:

Hint “ 1
2mi

piµpiµ `u(2)ijµ‹priµ, rj‹qHpj ´ iq `up3q
ijkµ‹›priµ, rj‹ , rk›qHpj ´ iqHpk ´ jq ` ¨ ¨ ¨ .

(2.3)
Here, repeated Greek indices indicate summation over the corresponding
components, following the Einstein summation convention. In this chapter,
such conventions are not applied to Latin indices. The function Hpxq is the
Heaviside step function, which takes the value 1 when x ° 0 and 0 otherwise.
The inner product between vectors is represented by a contraction of upper
and lower indices, where summation occurs over the repeated indices in a
manner consistent with standard index manipulation.

As an example, consider a neutral carbon dioxide molecule in vacuum
without any external interaction. A simple description of the molecule can take
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the following form of Hamiltonian.

Hint
CO2 “pO1µpO1µ

2mO
` pO2µpO2µ

2mO
` pCµpCµ

2m

` kCO

2 p}rO1µ ´ rCµ} ´ rOCq2 ` kCO

2 p}rO2µ ´ rCµ} ´ rOCq2

` kangleOCO

2 p◊ ´ ◊OCOq2

(2.4)

the indices O1, O2 and C were used to specify that the terms are relating to
these atoms–oxygen, one carbon and the other carbon atoms, respectively.
The norm of a quantity aiµ used in Equation 2.4 is defined as

}aiµ} “
a

aiµaiµ, (2.5)

and the angle formed by the bond made the three atoms, ◊, can be obtained
by simple trigonometric equation below.

◊ “ cos´1

ˆprOµ ´ rC1µq ¨
`
rOµ ´ rC2µ

˘

}rOµ ´ rC1µ}}rOµ ´ rC2µ}

˙
(2.6)

Note that the indices inside a function, e.g. square-root or inverse cosine,
are summed prior to the function operation. The bond and valence angle
force constants kCO and kangle

OCO to be used in this section are 2017.9 kcal{mol{2 and
118.817 kcal{mol{rad2 [9]. The equilibrium valence angle, ◊0 of carbon dioxide is
fi radians.

Hamilton’s equations of motion for some quantity corresponding to a set
of indices I is given as

BH
BrI

“ ´ 9pI

BH
BpI

“ 9rI

(2.7)

where 9a for some physical quantity a stands for its time-derivative. Using this
formula, one can then obtain the following set of equations of carbon dioxide
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motion.

9riµ “ piµ

mi

9pCiµ “ kOCp}rOµ ´ rCiµ} ´ rOCi
q rOµ ´ rCiµ

2}rOµ ´ rCiµ} ` kangle

OCOp◊ ´ ◊0q B◊

BrCiµ

´ 9pOµ “
ÿ

i“C1,C2

p}rOµ ´ rCiµ} ´ rOCi
qkOCprOµ ´ rCiµq

2}rOµ ´ rCiµ} ` kangle

OCOp◊ ´ ◊0q B◊

BrOµ

(2.8)

The small angle approximation allows one to rewrite ◊ as

◊ «
a

2p1 ´ cos ◊q (2.9)

and if one write Aµ “ rOµ ´ rC1µ, Bµ “ rOµ ´ rC2µ, A “
a

AµAµ, and B “
a

BµBµ,

the derivatives of ◊ in Equation 2.8 become

B◊

BrOµ
“ 1

◊AB

ˆ
A‹B‹

ˆ
Aµ

A
` Bµ

B

˙
´ Bµ ´ Aµ

˙

B◊

BrC1µ
“ 1

◊AB

ˆ
Bµ ´ A‹B‹ AŸ

A
”Ÿµ

˙

B◊

BrC2µ
“ 1

◊AB

ˆ
Aµ ´ A‹B‹ BŸ

B
”Ÿµ

˙
(2.10)

Although the carbon dioxide molecule is relatively simple to simulate,
solving the equations of motion (Equation 2.8) analytically presents significant
challenges. A straightforward numerical approach to solving this system is to
approximate the values at each time step using an iterativemethod. Specifically,
if the time derivative of a quantity aµ is known at ¸-th step, i.e. aµ;¸ is known,
the approximation for aµ at the ¸ ` 1-th time step, denoted aµ;¸`1, is obtained
by advancing the ¸-th time-step value according to the following expression:

aµ;¸`1 « aµ;¸ ` �t 9aµ;¸ (2.11)

where�t is the time step. Thismethod, called the Euler’smethod of (numerical)
integration, can be written algorithmically as in Algorithm 1.

Figures 2.1 and 2.2 show the evolution of bond lengths, bond angles, total
energy, and temperature for a carbon dioxide molecule in vacuum,modelled
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Algorithm 1 Simple iterative time-step approximation for the quantity aµ: Eu-
ler’s method of numerical integration
1: Input: Initial value aµ;0, time step �t, and initial time derivative 9aµ;0

2: Output: Approximate values aµ;¸ at each time step
3: for ¸ “ 0 to N do ô Iterate over time steps
4: Compute aµ;¸ using the previous time-step approximation

aµ;¸`1 “ aµ;¸ ` �t 9aµ;¸

5: end for

by the Hamiltonian given in Equation (2.4), using the spring constants specified
above. Two distinct time steps were used: the simulation in Figure 2.1 was
performed with �t “ 10´6 fs, while that in Figure 2.2 used �t “ 1 fs. The initial
positions are defined to be in its geometric equilibrium state:

rO1 “ p´1.160 , 0, 0q, rC “ p0, 0, 0q, rO2 “ p1.160 , 0, 0q. (2.12)

The initial velocities were drawn from the Maxwell-Boltzmann distribution at
300 K, i.e. for each atom i, the velocity vector components were sampled from
a normal distribution with zero mean and variance

‡i
2 “ kBT

mi
(2.13)

where kB is the Boltzmann constant, and T is the target temperature, and mi is
the mass of atom i. The resulting initial phase space configurations thus reflect
thermal fluctuations around the equilibrium structure at room temperature
T “ 300K.

Inspection of Figure 2.1 reveals that the bond lengths oscillate around
their equilibrium value of 1.160 , the O-C-O bond angle fluctuates around 180˝

(or fi radians), as expected for a linear configuration. The total energyremains
well conserved over the duration of the simulation (up to 2 fs in the figure), con-
sistent with the physics of the closed system. The instantaneous temperature,
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Figure 2.1. Evolution of bond angles, bond lengths, energy, and temperature over time
of carbon dioxide simulated via Algorithm 1 with a very small time-step of
10´6 fs. The simulation was run for 2 fs.

however, is observed to decrease from its initial value, and fluctuates around
232 K. This behaviour arises because a portion of the initial kinetic energy is
converted into potential energy as the system evolves. This is expected, as
the initial configuration was chosen such that the potential energy at t “ 0 is
effectively zero. The initial velocities, sampled from the Boltzmann distribu-
tion, perturb this configuration and drive the system into regions of nonzero
potential energy. As a result, some of the initial kinetic energy is inevitably
transferred to potential energy, causing the instantaneous temperature to
fluctuate around a value lower than the initial one.

The time-step of �t “ 10´6 fs is not realistic for systems larger or more
complex than harmonic carbon dioxide model shown in Equation (2.4)–for 2 fs
simulation, 2 ˆ 106 number of computational steps are required. With the
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Figure 2.2. Evolution of bond angles, bond lengths, energy, and temperature over time
of carbon dioxide simulated via Algorithm 1 with a realistic time-step of 1 fs.
The simulation was run for 2 fs.

Euler integration algorithm, a more practical time step of �t “ 0.01 fs leads to
non-physical results, as shown in Figure 2.2. The bond lengths, total energy,
and temperature diverge over time due to the accumulation of numerical error
inherent in Euler’s method. Since the same physical system yields stable and
realistic dynamics when integrated using a smaller time step, the observed
divergence can be attributed to the limitations of the integration method itself.

The limitations observed with non-symplectic methods, such as energy
drift and numerical instability under practical time steps, underscore the need
for integrators that maintain both stability and fidelity to the underlying physics
over long simulation times. In particular, a desirable integrator should con-
serve key geometric structures of Hamiltonian dynamics, such as phase-space
volume and the symplectic form, while accommodating reasonably large time



CHAPTER 2. THEORETICAL PRELIMINARIES 15

steps �t. This motivates the use of symplectic integration methods, which are
specifically designed to preserve the qualitative behaviour of Hamiltonian
flows.

2.1.1 Symplectic maps & integrators

Prior to presenting the details of the integration scheme, the foundational
concepts of symplectic maps (also known as symplectic transformations) and
symplectic integration are outlined, as they form the theoretical basis for the
subsequent analysis.

Definition 2.1 (Symplecticmap). Let � “ RdˆRd be the phase space of a given
problem composed of the position and momentum coordinates pr, pq P �,
and inner-product over �, Ê, defined as

Êpaµ, bµq “ aŸJŸ‹b‹ (2.14)

for all a, b P �, and

J “

¨

˝ 0 ´Id

Id 0

˛

‚ (2.15)

with a d-dimensional identity matrix Id. A d-dimensional linear map A : � Ñ �
is symplectic if,

ÊpAµ‹a‹ , Aµ‹b‹q “ Êpaµ, bµq (2.16)

Ê in Definition 2.1 is called a symplectic form.
If d “ 1, i.e. in a 1-dimensional physical problem with a 2-dimensional

phase-space, Definition 2.1 implies that symplectic mappings preserve the
area of parallelograms. Similarly, for general d, the hypervolume of a 2d-
dimensional parallelepiped in phase space remains invariant under symplectic
transformations [10].

For deterministic dynamics governed by Hamilton’s equations of motion,
Equation (2.7), is inherently symplectic. For a phase space element of an n-
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dimensional system, the dynamical state can be represented as a single vector:

z “

¨

˝r

p

˛

‚ P R2n, (2.17)

and Hamilton’s equations take the compact form:

9z “ JÒzHpzq, with J “

¨

˝ 0 ´In

In 0

˛

‚. (2.18)

This representation highlights the structure-preserving nature of the dynamics.
The solution to this system defines a flow map

�t : zp0q fiÑ zptq, (2.19)

which advances the initial conditions through time along the Hamiltonian flow.
In the case of a linear Hamiltonian system, or a system locally approximated
by a linearised Hamiltonian (e.g., via Taylor expansion near a point), the flow
map takes the form:

�t “ etJÒ
2H (2.20)

where Ò2H is the Hessian matrix of the Hamiltonian.
To verify that this flow is symplectic in the sense of Definition 2.1, it suffices

to show that
�T

t J�t “ J. (2.21)

This follows from the fact that the generator A “ JÒ2H satisfies the identity
AT J ` JA “ 0, which implies that the matrix exponential etA preserves the
symplectic form. Therefore the linearised flow �t is symplectic.

In 1838, Joseph Liouville showed that the Hamiltonian vector field JÒH

generates canonical transformations that preserve both the symplectic form
and phase space volume [11]. This result, known as Liouville’s theorem, estab-
lishes that deterministic classical dynamics are symplectic in nature. Conse-
quently, numerical integration schemes that preserve this structure—namely,
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symplectic integrators—are particularly well suited for the accurate long-term
simulation of Hamiltonian systems.

Symplectic integrators are constructed to mimic the geometric properties
of exact Hamiltonian flows, particularly the preservation of the symplectic form
Ê, as in Equation (2.14), and, consequently, the conservation of phase-space
volume [12,13]. Unlike general-purposemethods such as Euler or Runge–Kutta,
which may introduce artificial dissipation or energy drift over long time scales,
symplectic integrators maintain the qualitative features of the dynamics—such
as bounded energy oscillations, conservation of invariants, and stability of
long-term trajectories [14–16]. This makes them especially suitable for systems
in applications such as molecular dynamics .

Mathematically, symplectic integrator can be defined as below.

Definition 2.2 (Symplectic integrator). Let � “ Rd ˆ Rd be the phase space of
a Hamiltonian system with canonical coordinates pr, pq P �, and let the system
evolve according to Hamilton’s equations. A numerical integration scheme
that defines a discrete-time map ��t : � Ñ �, advancing the system from
time t to t ` �t, is called a symplectic integrator if the map ��t is symplectic in
the sense of Definition 2.1. That is,

ÊpD��tpaq, D��tpbqq “ Êpa, bq (2.22)

for all tangent vectors a, b P T�, or equivalently,

pD��tqJJD��t “ J, (2.23)

where J is the standard symplectic matrix defined in Equation (2.15), and
D��t is the Jacobian of the map ��t.
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2.1.2 Symplectic integration via Liouville operators

While traditional derivations of numerical integrators often rely on Taylor series
expansions, amore elegant approach emerges from the perspective of Liouville
operators. Before introducing this formalism, it is necessary to establish the
concept of the Poisson bracket, which underlies the fundamental structure of
classical mechanics.

For any two phase space functions f and g, their Poisson bracket is defined
as:

tf, gu “ Bf

Brµ

Bg

Bpµ
´ Bf

Bpµ

Bg

Brµ
(2.24)

where rµ and pµ are conjugate position and momentum variables, meaning
they are the canonical coordinates of the physical system that satisfy Hamilton’s
equations of motion: Equation 2.7. The Poisson bracket provides a natural way
to express the time evolution of any phase space function f through Hamilton’s
equations:

df

dt
“ tf, Hu (2.25)

where H is the Hamiltonian of the system.
The solution to this differential equation defines a one-parameter family of

mappings „t : � Ñ � called the Hamiltonian flow, which maps any initial phase
space point prµp0q, pµp0qq to its evolved state prµptq, pµptqq at time t:

„tprµp0q, pµp0qq “ prµptq, pµptqq (2.26)

By construction, this flow preserves the Hamiltonian and satisfies the group
property „t ˝ „s “ „t`s for all t, s P R. The flow �t introduced in the previous
section is also a Hamiltonian flow [10].

However, solving Hamilton’s equations analytically for complex systems
is often not feasible, and numerical methods are required. This is where
integrators come into play. Specifically, integrators allow us to approximate
the continuous Hamiltonian flow „t over discrete time steps, enabling the
simulation of long-term dynamics.
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This formalism leads naturally to the definition of the Liouville opera-
tor, which provides a powerful and computationally efficient framework for
constructing second-order symplectic integrators, such as the velocity Verlet
method.

Definition 2.3 (Liouville Operator). In a phase space composed of position
variables r “ pr1, r2, ¨ ¨ ¨ , r3N q and momentum variables p “ pp1, p2, ¨ ¨ ¨ , p3N q,
the Liouville operator of the problem defined by the Hamiltonian H is

L̂r¨s “ t¨, Hu “ BH
Bpµ

B
Brµ

´ BH
Brµ

B
Bpµ

(2.27)

Note that from the Hamilton’s equations of motion, Equation (2.27) be-
comes: ´

L̂f
¯‹

“ 9rµ
Bf ‹

Brµ
` 9pµ

Bf ‹

Bpµ
, (2.28)

for some vector-valued function f . The square bracket is omitted here, follow-
ing the usual convention.

If the function f “ P ptq is a tuple of momentum and position coordinates,
at time t, the Hamilton’s equations of motion gives

9P ptq “ L̂P ptq. (2.29)

This equation can be solved directly as

P ptq “ eL̂tP p0q. (2.30)

To solve Equation (2.29) efficiently in numerical simulations, it is desirable
to apply position and momentum updates separately. This can be achieved by
decomposing the Liouville operator, L̂, as

L̂ “ L̂r ` L̂p (2.31)

where L̂r “ 9rµ
B

Brµ and L̂p “ 9p B
Bpµ . It should be noted, however, that in general

eL̂r`L̂p ‰ eL̂reL̂p ; (2.32)
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the exponential of the sum is not equal to the product of the exponentials due
to the non-commutativity of the operators.

While the operators L̂r and L̂p generally do not commute, an approximate
factorisation of the time evolution operator is still possible. This is formalised by
a result known as Trotter’s product formula (or Trotter’s theorem), introduced by
Hale F. Trotter in a 1959 publication [17], which provides a way to approximate
the exponential of a sum of operators by a product of exponentials.

Theorem 2.4 (Trotter’s product formula). Let A and B be linear operators such
that the exponentials eAt and eBt are well-defined for t • 0. Then for any t • 0,

epA`Bqt “ lim
nÑ8

`
eAt{neBt{n

˘n
. (2.33)

Equation (2.33) can also be written as

epA`Bqt “ lim
nÑ8

`
eAt{2neBt{neAt{2n

˘n «
`
eAt{2neBt{neAt{2n

˘n ` O
`
t3{n2

˘
(2.34)

where the truncation assumes that n is large [18]. Using Trotter’s theorem,
Equation (2.30) can be rewritten as

P ptq «
´

eL̂p�t{2eL̂r�teL̂p�t{2

¯n

` Opn�tq. (2.35)

with �t “ t{n. Taylor expansion of the exponentials of L̂r and L̂p shows:

eL̂r�tP ptq “
„
1 ` L̂r�t ` 1

2

´
L̂r�t

¯
2

` ¨ ¨ ¨
⇢
P ptq (2.36)

“
„
1 ` 9rptq�t ` 1

2p 9rptq�tq2 ` ¨ ¨ ¨
⇢
P ptq (2.37)

ùñ eL̂r�tP ptq “ rr1ptq ` 9r1ptq�t, ¨ ¨ ¨ , rkptq ` 9rkptq�t, p1ptq, ¨ ¨ ¨ , pkptqs, (2.38)

and similarly,

eL̂p�t{2P ptq “
“
, r1ptq, ¨ ¨ ¨ , rkptq, p1ptq ` 1

2
9p1ptq�t, ¨ ¨ ¨ , pkptq ` 1

2
9pkptq�t

‰
(2.39)

where k is the number of degrees of freedom. These observations show that
the symmetric Trotter splitting in Equation (2.35) leads to an integration scheme
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Algorithm 2 Velocity Verlet integration using symmetric Trotter splitting
1: Input: Initial values rµ;0, pµ;0; time step �t; force function Fµpp, rq; velocity

vµ “ BH

Bpµ

2: Output: Approximate phase space trajectory ppµ;¸, rµ;¸q for ¸ “ 0, . . . , N
3: for ¸ “ 0 to N ´ 1 do ô Iterate over time steps
4: Half-step momentum update: ô a kick step

pµ;¸` 1
2

“ pµ;¸ ` 1

2
�t Fµpp;¸, r;¸q

5: Full-step position update: ô a drift step

rµ;¸`1 “ rµ;¸ ` �t vµpp
;¸` 1

2
q

6: Final half-step momentum update: ô a kick step

pµ;¸`1 “ pµ;¸` 1
2

` 1

2
�t Fµpp¸` 1

2
, r¸`1q

7: end for

composed of n steps. In each step, momenta and positions are updated as
follows:

pµ

`
· ` 1

2
�t

˘
“ pµp·q ` 1

2
Fµppp·q, rp·qq�t, (2.40)

rµp· ` �tq “ rµp·q ` vµp· ` 1

2
�tq�t, (2.41)

pµp· ` �tq “ pµ

`
· ` 1

2
�t

˘
` 1

2
Fµppp· ` 1

2
�tq, rp· ` �tqq�t, (2.42)

where vµ “ BH{Bpµ denotes the velocity, Fµ “ ´BH{Brµ, and · is the dummy
variable for time.

In Algorithm 2, the subscript ; ¸ was used to indicate the iteration step
number.

Theorem 2.5. Velocity Verlet method is a symplectic integrator.

Proof. Velocity Verlet integrator of time-step �t, V �t, can be decomposed as
the following:

V �t “ VkickVdriftVkick, (2.43)
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which gives DV �t “ DVkickDVdriftDVkick. From Equation (2.40), it becomes im-
mediate that

DVkick “

¨

˝ I 0
1

2
�tBFµ

Br‹

I

˛

‚, DVdrift “

¨

˝I �tBvµ

Bp‹

0 I

˛

‚. (2.44)

Thus,
`
DV �t

˘T
JDV �t “ J (2.45)

follows immediately.

Theorem 2.6. Let ��t : � Ñ � be a symplectic integrator on the phase space
� “ R2d, with Jacobian matrix D��t. Then, ��t preserves local phase-space
volume; that is,

det D��t “ 1. (2.46)

Proof. Since ��t is a symplectic map, by Definition 2.1, it satisfies

pD��tqT JD��t “ J. (2.47)

Taking determinant on both sides, one gets:

det
´

pD��tqT JD��t

¯
“ det pD��tqT det Jdet D��t “ 1 “ det J, (2.48)

which implies

det D��t “ ˘1. (2.49)

Since,��t is a continuous deformation of the identitymap, and the determinant
of the identify is `1, the continuity implies that det D��t “ 1. Therefore, the
map preserves local volume in phase space.

Theorem 2.5 and 2.6 thus implies that the velocity Verlet integrator pre-
serves local phase-space volume along the numerical trajectory as

det DVkick “ det DVdrift “ 1. (2.50)
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Figure 2.3. Evolution of bond lengths, bond angles, energy and temperature over time of
carbon dioxide simulated via Algorithm 2. The simulation had the time-step
of 0.01 fs and was run for 2 fs in total.

This volume preservation reflects the symplectic nature of the method and
ensures that the evolution remains consistent with the incompressibility of
Hamiltonian flows [14]. As a result, the integrator avoids any dissipation or
contraction of phase-space structures, contributing to its excellent long-term
stability and qualitative accuracy.

Figure 2.3 shows the evolution of bond lengths, bond angles, total energy,
and temperature for a carbon dioxide molecule, simulated using the same
system parameters and initial velocity sampling scheme as in Figures 2.1 and
2.2. In this case, the integration was performed using the velocity Verlet
method with a time step of 0.01 fs.

In contrast to the results shown in Figure 2.2 with the same time step,
which exhibits numerical instability and rapidly diverging energy and temper-
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ature, the velocity Verlet scheme maintains stable and physically consistent
trajectories throughout the simulation window. The bond lengths and bond
angle oscillate smoothly about their equilibrium values, reflecting the expected
internal vibrational modes. The total energy remains conserved, with kinetic
and potential energies exchanging harmonically as expected for a system gov-
erned by quadratic potentials. The temperature oscillates in a bounded and
periodic fashion, with a stable mean value lower than 300 K resulting from the
initial redistribution of kinetic energy.

Onemay argue that the Eulermethod is too simplistic for a fair comparison;
however, even when compared to other non-symplectic integrators, symplectic
methods demonstrate clear advantages for Hamiltonian systems. This supe-
riority stems from their inherent ability to preserve phase-space volume and
other geometric invariants of the underlying continuous dynamics. In doing so,
symplectic integrators maintain the long-term stability of energy and prevent
the cumulative error typically observed with non-symplectic schemes [19].

2.1.3 Thermostats

Figures 2.3 and 2.1 demonstrate that, in the absence of explicit temperature
control, energy conservation inherently leads to temperature fluctuations dur-
ing the dynamics. This arises because changes in potential energy are exactly
compensated by changes in kinetic energy, in accordance with the conserva-
tion of total energy. Consequently, any drift or oscillation in potential energy
directly affects the instantaneous temperature, which is determined from the
kinetic energy of the system [20,21].

In many practical simulations, it is necessary to maintain the temperature
close to a specified target. This is particularly important in:

1. Canonical ensemble (NVT) simulations,where temperaturemust remain
fixed by definition [22–24];



CHAPTER 2. THEORETICAL PRELIMINARIES 25

2. Biomolecular simulations, to mimic physiological conditions [25];

3. Materials simulations under thermal stress, where temperature gradi-
ents or thermostats are applied to control the heat flow [26,27];

4. Equilibration stages, where temperature needs to be rapidly and stably
brought to a desired value before production runs [28,29].

In such cases, thermostatting mechanisms are employed to regulate the ki-
netic energy and stabilise the temperature around a target value. In an NVT
ensemble, the resulting energy fluctuations can also facilitate exploration of
the accessible phase space, helping the system traverse different regions of its
configurational landscape.

Definition 2.7 (Thermostat in general dynamical systems). Let � be a smooth
finite-dimensional phase space equipped with canonical coordinates pr, pq P �,
and letH : � Ñ R be a smooth Hamiltonian. A thermostatted dynamical system
is a system of differential equations on an extended phase space �̃ “ � ˆ Rm

of the form:
d

dt
x̃ptq “ X̃px̃ptqq, x̃ P �̃ (2.51)

where:

1. X̃ : �̃ Ñ T �̃ is a smooth (possibly stochastic) vector field, where T �̃
denotes the tangent bundle of �̃, i.e. the union of all tangent spaces at
each point of �̃,

2. the projection fi : �̃ Ñ � defines the physical trajectory xptq “ fix̃ptq, and

3. the dynamics are constructed that a chosen observable (e.g. tempera-
ture) is regulated dynamically by the evolution of the auxiliary variables
in Rm.

A thermostatted system is called deterministic if X̃ is a smooth vector field,
and stochastic if X̃ includes stochastic noise terms.
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Building on Definition 2.7, two commonly used thermostats: Nosé-Hoover
and Langevin thermostats are defined and demonstrated in the next para-
graphs.

2.1.3.1 Nosé-Hoover thermostat

The Nosé-Hoover thermostat is a deterministic method for simulating systems
at constant temperature, designed to generate dynamics consistent with the
canonical ensemble. The thermostat modifies the equations of motion by
coupling the physical system to an auxiliary variable that acts as a dynamical
friction coefficient. This coupling introduces a feedback mechanism that regu-
lates the system’s kinetic energy, thereby maintaining an average temperature
close to a prescribed target.

Due to its deterministic nature, the Nosé-Hoover thermostat preserves
the time-reversibility and generates smooth, continuous trajectories,making
it particularly useful for studies where deterministic structure and trajectory
continuity are essential [30].

Formally, the thermostat can be defined as in Definition 2.8.

Definition 2.8 (Nosé-Hoover thermostat). Let � – R2n be the phase space
of a system with Hamiltonian Hpr, pq “ ∞n

i“1

pi
2

2mi

` V prq. The Nosé-Hoover
thermostat at temperature T defines an extended phase space:

�̃NH “ � ˆ R, x̃ “ pr, p, ’q (2.52)

where ’ P R is an auxiliary variable representing a dynamical friction coeffi-
cient. The Nosé-Hoover vector field X̃NH : �̃NH Ñ T �̃NH , x̃ fiÑ 9̃x is defined by
the following: $

’’’’&

’’’’%

9qi “ pi

mi

9pi “ ´ BV
Bri

´ ’pi

9’ “ 1

Q

´∞i“1

n
pi

2

mi

´ nkBT
¯

(2.53)
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where Q ° 0 is a thermostat mass parameter, n is the number of degrees of
freedom, and kB is Boltzmann’s constant.

The Nosé-Hoover thermostat is a deterministic dynamical system that
extends classical Hamiltonian dynamics to include a feedback mechanism
regulating the temperature. It operates on an extended phase space �̃NH “
 
X̃

(
. This coupling introduces an effecitve non-Hamiltonian flow in the physical

subspace �, but the total system remains volume-preserving (with proper
measure) in the extended space [31,32].

Proposition 2.9. Let the Nosé–Hoover equations of motion be given by Equation
(2.53). Then the flow generated by these equations does not preserve the standard
volume in the extended phase space, but it preserves a modified volume measure
given by

en
≥
t

0 ’psq ds dr1 ¨ ¨ ¨ drn dp1 ¨ ¨ ¨ dpn d’. (2.54)

Proof. Define the state vector of the Nosé-Hoover system as

x “

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

r1

...

rn

p1

...

pn

’

˛

‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

P R2n`1. (2.55)

Let F pxq “ 9x denote the right-hand side of the system shown in Equation (2.53),
and let Jx “ BF {Bx be the Jacobian of the flow map.

Consider the time-dependent Jacobian matrix

Mptq “ Bxptq
Bxp0q , (2.56)

then the evolution of the determinant det Mptq satisfies the following identity:
d

dt
det Mptq “ pTr Jxptqq ¨ det Mptq. (2.57)
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From Equation (2.53), one obtains B 9ri{Bri “ 0, B 9pi{Bpi “ ´’, and B 9’{B’ “ 0. This
gives Tr Jxptq “ ´n’. With this information, one can rewrtie Equation (2.57) as

d

dt
log det Mptq “ Tr Jxptq “ ´n’ptq. (2.58)

Integrating both sides, one gets

log det Mptq “ ´n

ª t

0

’psqds. (2.59)

Now, consider the modified flow variable:

M̃ptq “ en
≥
t

0 ’psqdsMptq, (2.60)

with the determinant

det M̃ptq “ en
≥
t

0 ’psqds ¨ det Mptq. (2.61)

This then gives
d

dt
log det M̃ptq “ n’ptq ` d

dt
log det Mptq “ n’ptq ´ n’ptq “ 0. (2.62)

As the logarithmic derivative of det M̃ptq vanishes, det ˜Mptq is constant.
Evaluating at t “ 0 yields M̃p0q “ Mp0q “ I, and therefore det M̃ptq “ 1

for all t • 0. This shows that although the standard Jacobian determinant
det Mptq is not constant, the rescaled flow M̃ptq evolves in such a way that the
combination

en
≥
t

0 ’psq ds ¨ det Mptq (2.63)

is conserved. This implies that the Nosé–Hoover flow preserves a modified
volume measure

dµ “ en
≥
t

0 ’psq ds dr1 ¨ ¨ ¨ , drn, dp1, ¨ ¨ ¨ , dpn d’, (2.64)

which evolves under the flow such that its total measure is invariant in time.
Therefore, the flow of the Nosé–Hoover system is volume-preserving in

the extended phase space with respect to this time-dependent measure, com-
pleting the proof.
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Proposition 2.9 established that the Nosé–Hoover flow preserves a modi-
fied volume form in the extended phase space [33,34]. In physical terms, this
implies that the total weight of a collection of nearby initial conditions remains
constant over time when evolved by the dynamics. Such volume preservation
is a generalization of Liouville’s theorem.

In molecular dynamics and statistical mechanics, the central object of inter-
est is the equilibrium distribution—in particular, the canonical Gibbs measure,
which describes the probability density of states at thermal equilibrium with
fixed temperature T . A physically meaningful thermostat must not only pre-
serve the volume but also leave this distribution invariant under the dynamics.

The appropriate framework to analyse the evolution of probability densities
under a deterministic flow 9x “ F pxq is the Liouville equation:

Bfl

Bt
` Ò ¨ pflF q “ 0, (2.65)

which describes the conservation of probability (with density fl) in phase space.
Equation (2.65) ensures that the probability density flows along the trajectories
of the system. A time-independent (stationary) solution to Equation (2.65)
satisfies:

Ò ¨ pflF q “ 0, (2.66)

representing the probability density invariance under the flow. In the case
of the Nosé-Hoover thermostat, it is natural to ask whether the canonical
Gibbs measure is invariant in this sense [35,36]. Proposition 2.10 confirms
this property for the use of Nosé-Hoover dynamics in canonical ensemble
simulations.

Proposition 2.10 (Invariance of the Canonical Gibbs Measure). Assume that
the potential V is defined such that the partition function is finite. Define

flT pq, p, ’q “ 1
Z—

e
´

´
Hpq,pq` Q

2
’2

¯
1

kBT , Hpq, pq “
nÿ

i“1

p2

i

2mi
` V pqq, (2.67)

with Q ° 0. Then flT is an invariant density for the Nosé–Hoover flow: if flpt, ¨q
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solves the Liouville equation (Equation (2.65)) with initial condition flp0, ¨q “ fl—,

then flpt, ¨q ” fl— for all t.

Proof. It suffices to show that Ò¨ pfl—F q “ 0. Given the following

Ò¨ pflT F q “ pÒflT q ¨ F ` flT pÒ¨ F q “ flT

`
Ò log flT ¨ F ` Ò¨ F

˘
, (2.68)

from simple calculations, one can observe

Ò ¨ F “ ´n’, Ò log flT ¨ F “ n’. (2.69)

This result gives Ò ¨ pflT F q “ 0, and this implies that flT is stationary for the
Liouville equation.

Equivalently, for any smooth compactly supported function Ï,

d

dt

ª
Ï flT “

ª BÏ

Bt
flT `

ª
Ï

BflT

Bt
“
ª

Ï
`

´ Ò¨ pflT F q
˘

“ 0, (2.70)

which shows the measure flT pq, p, ’q dq dp d’ is invariant under the flow.

To implement the Nosé-Hoover thermostat in practice, Equation (2.53)
must be integrated numerically using an appropriate integrator. Algorithm
3 describes a velocity Verlet-type scheme adapted to include the thermostat
variable ’, providing a time-reversible and second-order accurate method for
simulating canonical ensemble dynamics. As done in Algorithm 2, subsctipt ; ¸

is used to indicate the iteration step number.
Figures 2.4 and 2.5 show the bond lengths, bond angle, energy, and tem-

perature evolution of a carbon dioxide system in vacuum with initial tempera-
ture of 300 K and time step size of 0.01 fs. The bond lengths and bond angles
from the two figures are showing the expected behaviours. The bond angle is
fluctuating around 180˝, and the bond lengths are periodically getting stretched
and contracted around the expected length of 1.160 . The thermostat mass
parameter Q used to produce the figures is computed as

Q “ nkBT « 5.3649 kcal{mol (2.71)
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Algorithm 3 Velocity Verlet algorithm with Nosé-Hoover thermostat
1: Input: Initial positions rµ,momenta pµ, dynamic friction variable ’, timestep

�t, target temperature T , thermostat mass Q, total number of steps N .
Number of degrees of freedom: n.

2: Output: Approximate phase space trajectory ppµ;¸, rµ;¸q for ¸ “ 0, . . . , N
3: Compute initial forces Fµ “ ´BµV prq
4: for ¸ “ 0 to N ´ 1 do ô Iterate over time steps
5: Half-step update of momenta:

p
µ;¸` 1

2

“ pµ;¸ ` �t

2 pFµ ´ ’;¸pµ;¸q

6: Full-step update of positions: ô vµ;¸ is the velocity obtained by p
µ;¸` 1

2

rµ;¸`1 “ rµ;¸ ` �t ¨ vµ;¸

7: Compute new forces Fµ;¸ “ ´BµV pr;¸`1q
8: Full-step update of thermostat variable: ô mpµq: corresponding mass

’;¸`1 “ ’;¸ ` �t

Q

ˆ
mpµq

b
vµ;¸vµ;¸ ´ nkBT

˙

9: Half-step update of momenta:

pµ;¸`1 “ p
µ;¸` 1

2

` �t

2

ˆ
Fµ ´ ’;¸ p

µ;¸` 1

2

˙

10: end for

where n “ 9 is the degree of freedom of a carbon dioxide, kB “ 1.987 ˆ
10´3 kcal{pmol ¨ Kq, and T “ 300 K.

The key differences from the system without a thermostat are evident in
the energy and temperature evolution plots. In Figure 2.4, the energy appears
to diverge monotonically. However, Figure 2.5 reveals that the initially increas-
ing trend eventually reverses, returning toward the initial energy level and
repeating this behaviour periodically Throughout the simulation, the average
temperature is maintained at 300, K, as intended. Notably, the peaks of these
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Figure 2.4. Evolution of bond lengths, bond angles, energy and temperature over time of
carbon dioxide simulated via Algorithm 3. The simulation had the time-step
of 0.01 fs and was run for 2 fs in total. The initial temperature was set to 300 K,
and the target temperature was also set to 300 K.

periodic oscillations grow taller over time. This gradual increase is attributed
to the accumulation of numerical errors at each time step.

The observed violation of energy conservation is expected, as the thermo-
stat maintains the target temperature by adjusting the system’s kinetic energy
via the Nosé–Hoover equations, Equation (2.53), which introduce an additional
degree of freedom to mimic the effect of a thermal reservoir.

2.1.3.2 Langevin thermostat

While theNosé–Hoover thermostat provides a deterministic and time-reversible
method for regulating temperature, it suffers from important limitations in
practice. Most notably, the Nosé–Hoover dynamics are not guaranteed to be
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Figure 2.5. Evolution of bond lengths, bond angles, energy and temperature over time of
carbon dioxide simulated via Algorithm 3. The simulation had the time-step
of 0.01 fs and was run for 100 fs in total. The initial temperature was set to
300 K, and the target temperature was also set to 300 K.

ergodic, particularly in systems with few degrees of freedom or near-integrable
behaviour [37]. In such cases, the system may fail to explore the full phase
space, resulting in incorrect sampling of the canonical ensemble despite the
formal invariance of the Gibbs measure. Moreover, the coupling mechanism
through a single friction variable ’ may not be sufficient to induce sufficient
mixing, especially in systems with weakly chaotic dynamics.

An alternative is the Langevin thermostat, originally introduced to describe
Brownian motion [38] and later adapted to molecular systems by Prigogine
and Balescu [39]. It combines deterministic forces with linear friction and
stochastic fluctuations to mimic the interaction of a system with an implicit
thermal reservoir. Unlike deterministic thermostats, Langevin dynamics ensure
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ergodicity under broad conditions and guarantee convergence to the canonical
ensemble [40].

To rigorously characterise such dynamics, one models the state of the
system as a time-dependent stochastic process

Xt “ prptq, pptqq P � – R2n, (2.72)

satisfying a system of stochastic differential equations (SDEs) of the form

dXt “ bpXtqdt ` ‡pXtqdWt, (2.73)

where Wt P Rm is a vector of independent Wiener processes. For any twice
continuously differentiable map Ï : � Ñ R, it is known that

dÏpXtq “ ÒÏpXtq ¨ bpXtqdt ` 1

2
Tr

“
‡pXtq‡pXtqT Ò2ÏpXtq

‰
dt ` ÒÏpXtq ¨ ‡pXtqdWt.

(2.74)
This relation is known as Itō’s lemma, named after Kiyoshi Itō. Equation (2.74)
describes the infinitesimal evolution of observables along stochastic trajecto-
ries. This statement is crucial for determiningwhether the Langevin thermostat
preserves the given probability distribution under the stochastic dynamics.

Formally, Langevin thermostat is defined as in Definition 2.11.

Definition 2.11. Let � be the phase space of a classical system with position-
momentum coordinates pr, pq P Rn ˆ Rn with the Hamiltonian Hpr, pq “
∞n

i“1

pi
2

mi

` V prq for a smooth potential V : Rn Ñ R.
The Langevin thermostat at temperature T ° 0 defines as stochastic pro-

cess prptq, pptqq P � satisfying the system of stochastic differential equations
$
’&

’%

dri “ pi

mi

dt,

dpi “ ´ BV
Bri

prqdt ´ “ipidt ` ?
2“imikBTdWiptq

, (2.75)

for i “ 1, ¨ ¨ ¨ , n where “i ° 0 is the friction coefficient for particle i,Wiptq are
independent standard Wiener processes, and kB is Boltzmann’s constant.
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The random process obtained via Definition 2.11 is called Langevin dynam-
ics.

Given that the momentum component of Equation (2.75) takes the form
specified in Equation (2.73), one can apply Itō’s lemma to Equation (2.75) and
justify the invariance of the canonical measure under Langevin dynamics. This
result is formally established in Proposition 2.12.

Proposition 2.12. Let prptq, pptqq P R2n evolve according to Equation (2.75) in
Definition 2.11. The Gibbs measure defined as

flT pr, pq “ 1
ZT

e´Hpr,pq{kBT , ZT “
ª

�

e´Hpr,pq{kBT drdp, (2.76)

is invariant under the Langevin dynamics.

Proof. Let Xt “ prptq, pptqq be a solution of the Langevin SDEs with initial condi-
tion distributed as flT , and let Ï P C8pR2nq be a smooth observable. To show
that flT is invariant, it suffices to show that ErÏpXtqs is time-independent.

Applying Itō’s lemma to Ïprptq, pptqq, and noting that the noise terms have
0 expectation, the time derivative of the expected value is given by:

d

dt
ErÏprptq, pptqqs “ ErL̂Ïprptq, pptqqs (2.77)

where L̂ is the infinitesimal generator of the random process produced by the
Langevin thermostat, acting on the observable Ï by Equation (2.75), by:

L̂Ï “
nÿ

i“1

ˆ
pi

mi

BÏ

Bri
´ BV

Bri

BÏ

Bpi
´ “ipi

BÏ

Bpi
` “imikBT

B2Ï

Bt2

˙
. (2.78)

By the initial condition prp0q, pp0qq „ flT ,

ErÏprptq, pptqqs “
ª

R2n

Ïpr, pqµtpdr, dpq (2.79)

where µt is the probability distribution of Xt. The quantity µt “ flT drdp for all
t • 0 by Equation (2.77) as:

d

dt
ErÏprptq, pptqqs “

ª
L̂Ïpr, pqflT pr, pqdrdp. (2.80)
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Applying integration by parts to the right-hand side of Equation (2.80), it be-
comes evident that for all Ï P C8pR2nq, the following holds

d

dt
ErÏprptq, pptqqs “ 0, (2.81)

as
≥

L̂Ïpr, pqflT pr, pqdrdp “ 0. Thus, for all t • 0 and Xt, flT remains invariant.

Remark. The validity of Proposition 2.12 crucially relies on the specific coeffi-
cient of the stochastic term in Equation (2.75). If this coefficient were not equal
to

?
2“imikBT , the canonical Gibbs measure would, in general, no longer be

invariant under the dynamics. This is because the balance between stochastic
fluctuations and deterministic dissipation is necessary to ensure that the time
derivative d

dtErÏprptq, pptqqs vanishes for all smooth observables Ï.

The term
?

2“imikBT determines the standard deviation of the Gaussian
random variable sampled at each time step. Denoting this standard deviation
by ‡i, the required identity is:

‡i
2 “ 2“imikBT. (2.82)

This relation is known as the fluctuation–dissipation relation for the Langevin
thermostat, and it ensures compatibility between thermal fluctuations and
viscous damping in the Langevin thermostat.

While Proposition 2.12 establishes that the canonical Gibbs measure flT is
invariant under Langevin dynamics, this alone does not guarantee the time
averages of observables will converge to ensemble averages. A system may
preserve an equilibriummeasurewhile failing to explore the entire phase space,
a phenomenon that arises in deterministic thermostats such as Nosé–Hoover.
In the Nosé–Hoover case, the dynamics may exhibit non-ergodic behaviour, es-
pecially in systems with few degrees of freedom or nearly integrable structures,
leading to poor sampling of thermodynamic states.

In contrast, the Langevin thermostat includes stochastic forcing, which
disrupts regular trajectories and drives the system to explore a much broader
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portion of phase space. The presence of noise, balanced by dissipation through
the fluctuation–dissipation relation, enables the system to overcome dynamical
barriers and ensures robust mixing properties. As a result, the Langevin
dynamics are ergodic under broad and physically realistic assumptions.

This ergodicity ensures that long-time averages of observables computed
along individual trajectories converge almost surely to expectations with re-
spect to the canonical measure. Thus, the Langevin thermostat not only pre-
serves the desired equilibrium distribution but also provides a reliable mecha-
nism for sampling it in practice. This is formalised in the following proposition.

Proposition 2.13. Let prptq, pptqq P R2n evolve under the Langevin equations in
Definition 2.11, with Hamiltonian Hpr, pq “ ∞n

i“1

p2
i

2mi

` V prq, where V : Rn Ñ R is
smooth and bounded from below, such that

lim
}r}Ñ8

V prq “ 8. (2.83)

Assume that each friction coefficient “i ° 0 and noise acts on all momentum
coordinates. Then the Langevin process is ergodic with respect to the canonical
measure

flT pr, pq “ 1
ZT

exp
ˆ

´Hpr, pq
kBT

˙
, (2.84)

in the sense that for any observable Ï P L1pflT q,

lim
T Ñ8

1
T

ª T

0

Ïprptq, pptqq dt “
ª

R2n

Ïpr, pq flT pr, pq dr dp almost surely. (2.85)

The proof of Proposition 2.13 relies on several advanced mathematical
tools that lie beyond the scope of this thesis. A concise version of the argument
is presented below, with references to the relevant literature for further details.

Proof. Let Xt “ prptq, pptqq denote the Langevin process. The stochastic forcing
acts directly on themomentumvariables pi,while the deterministic drift couples
p to r, ensuring sufficient mixing. Under mild regularity assumptions on V ,
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the associated generator satisfies Hörmander’s condition,making the process
hypoelliptic, strong Feller, and irreducible [41,42]. These properties imply that
the process admits at most one smooth invariant measure and explores the
phase space fully. For the precise statements and proofs on this remark, see
Section 3 of [41] or Chapter 6 of [42].

Take V prq such that lim}r}Ñ8 V prq “ 8. The total energy Hpr, pq grows at
infinity and can serve as a Lyapunov function [43,44]. Applying the Langevin
generator L̂ to H yields

L̂Hpr, pq “ ´
nÿ

i“1

“i
p2

i

mi
`

nÿ

i“1

“imikBT
B2H

Bt2
. (2.86)

Thus, for sufficiently large }p}, the generator satisfies the drift condition:

L̂H § ´”}p}2 ` C (2.87)

for some constants ”, C ° 0, due to the boundedness of the Hamiltonian. This
guarantees recurrence and tightness of trajectories in phase space [43,45].

By the classical results of Sean P. Meyn and Richard L. Tweedie (cited as
[45], see also [44]), the process is geometrically ergodic. Since the canonical
measure flT is invariant (Proposition 2.12) and unique, the ergodic theorem for
Markov processes implies that for all Ï P L1pflT q, the following holds [46]:

lim
T Ñ8

1
T

ª T

0

Ïprptq, pptqq dt “
ª

Ï dflT almost surely. (2.88)

Note that the uniqueness of the canonical measure flT is immediate from the
definition of Gibbs measure with known initial conditions.

Proposition 2.12 establishes the canonical Gibbs measure as an invariant
distribution of the Langevin dynamics, providing the statistical mechanical
foundation for the thermostat. Proposition 2.13 further guarantees that the
dynamics are ergodic, ensuring that, over sufficiently long simulation times,
the system explores almost the entire phase space in accordance with the
canonical ensemble.
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Algorithm 4 Stochastic Velocity Verlet algorithm with Langevin thermostat
1: Input: Initial positions rµ,momenta pµ, timestep�t, temperature T , friction

coefficients “µ, particle masses mpµq, number of steps N
2: Output: Approximate phase space trajectory ppµ;¸, rµ;¸q for ¸ “ 0, . . . , N
3: Compute initial forces Fµ “ ´BµV prq
4: for ¸ “ 0 to N ´ 1 do ô Iterate over time steps
5: Half-step update of momenta with friction and noise:

p
µ;¸` 1

2

“ pµ;¸ ` �t

2 Fµ ´ �t

2 “µpµ;¸ `
c

1
2“µmpµqkBT�t ¨ Rµ;¸

where Rµ;¸ „ N p0, 1q are independent standard Gaussian samples.
6: Full-step update of positions using velocity:

rµ;¸`1 “ rµ;¸ ` �t ¨
p

µ;¸` 1

2

mpµq

7: Compute new forces: Fµ;¸`1 “ ´BµV pr¸`1q
8: Half-step update of momenta with new force:

pµ;¸`1 “ p
µ;¸` 1

2

` �t

2 Fµ;¸`1 ´ �t

2 “µp
µ;¸` 1

2

`
c

1
2“µmpµqkBT�t ¨ R̃µ;¸ (2.89)

with fresh independent noise R̃µ;¸ „ N p0, 1q.
9: end for

With both the invariant measure and ergodicity established, it remains
essential to implement a numerical integration scheme that accurately captures
the statistical properties of the Langevin dynamics. Algorithm 4 demonstrates
how the Langevin thermostat can be combined with the velocity Verlet method
to generate stochastic trajectories that sample from the canonical ensemble at
a fixed temperature. Note that Einstein summation convention was not used
in Algorithm 4.

It is important to note that, due to the presence of stochastic forcing,
the Langevin thermostat requires careful consideration of both physical and
numerical parameters. In particular, one must first ensure that the system
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Figure 2.6. Evolution of bond lengths, bond angles, energy and temperature over time of
carbon dioxide simulated via Algorithm 4. The simulation had the time-step
of 0.001 fs and was run for 2 fs in total. The initial and target temperatures
were set to 300 K, and the friction coefficient “ was set to 0.1 ps´1. The system
was equilibrated for 50 ps prior to recording the data shown.

is properly equilibrated,meaning that it has evolved from its initial conditions
toward a statistical steady state representative of the target temperature. This
typically requires a sufficient simulation time, particularly when the friction
parameter “ is small. Additionally, the parameters “ and timestep �t should
satisfy “�t ! 1.

The latter condition is essential for the numerical stability of the velocity
Verlet integration scheme, especially when discretizing the stochastic differ-
ential equations. Since the stochastic term in Equation (2.89) involves a factor
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of
?

“�t, even moderate values of “�t can lead to disproportionately large
noise contributions, potentially distorting the sampling if the timestep is not
sufficiently small.

The time required for equilibration is expected to be much longer than
the time step. The system can be considered equilibrated if macroscopic
observables such as total energy, temperature, or pressure fluctuate around
steady values over time, independent of the initial conditions. In practice, one
typically discards an initial portion of the trajectory—referred to as the burn-in
period—before collecting statistics.

Figures 2.6 and 2.7 show the system dynamics beyond an initial equilibra-
tion period of 50 ps, simulated using Algorithm 4 with time steps of 2 and 100 fs,
respectively.

In Figure 2.6, the bond angles and bond lengths do not fluctuate around
their target values, indicating that the system remains in the burn-in phase
and has not yet reached equilibrium. Moreover, the mean temperature is
approximately 257 K, which deviates significantly from the target temperature
of 300 K.

By contrast, in the 100 fs simulation shown in Figure 2.7, the bond lengths
and angles oscillate around their equilibrium values, and the system tempera-
ture fluctuates near 300 K, with a mean of 297 K. As Algorithm 4 is inherently
stochastic, the mean temperature does not exactly match the target value.

Using a larger value of “ in the Langevin thermostat accelerates the ap-
proach of the system’s kinetic temperature toward the target value. Figure 2.8
illustrates that, following equilibration, Langevin dynamics with “ “ 1.0, ps´1

drives the system towards the target temperature more rapidly than with
“ “ 0.1, ps´1. However, this faster thermalisation does not imply that the sys-
tem has reached equilibrium, as evidenced by deviations in bond lengths and
bond angle distributions.

Comparing to the Nosé-Hoover thermostat, the Langevin thermostat’s
temperature management is not as strict due to its stochastic nature. However,
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Figure 2.7. Evolution of bond lengths, bond angles, energy and temperature over time of
carbon dioxide simulated via Algorithm 4. The simulation had the time-step
of 0.001 fs and was run for 100 fs in total. The initial and target temperatures
were set to 300 K, and the friction coefficient “ was set to 0.1 ps´1. The system
was equilibrated for 50 ps prior to recording the data shown.

as shown in Figure 2.7, the molecule explores a wider range of geometric con-
figurations—as evident from the fluctuations in bond lengths and angles—as
well as different regions of the potential energy surface. This suggests that the
Langevin thermostat may be more suitable for generating physically realistic
trajectories, especially when thorough sampling of the configuration space is
desired.
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Figure 2.8. Evolution of bond lengths, bond angles, energy and temperature over time of
carbon dioxide simulated via Algorithm 4. The simulation had the time-step
of 0.001 fs and was run for 2 fs in total. The initial and target temperatures
were set to 300 K, and the friction coefficient “ was set to 1.0 ps´1. The system
was equilibrated for 50 ps prior to recording the data shown.

2.2 Molecular vibrations

This thesis explores several mathematical frameworks to understand the vibra-
tional behaviour of classical molecular systems. Molecular vibrations—periodic
motions of atoms about their equilibrium positions—play a central role in de-
termining a wide range of molecular properties, from thermal capacity to
spectroscopic signatures. Despite being inherently quantum mechanical phe-
nomena,much insight can be gained through classical approximations that
reveal the structure of the vibrational modes and their interactions [47].
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2.2.1 Classical description of molecular vibrations

Consider a classically described molecule with Hamiltonian given by

Hpr, pq “ KEppq ` V prq, (2.90)

where KEppq denotes the kinetic energy of the system. Let the masses of the
constituent particles be encoded in a mass matrix , mµ‹, such that in matrix
form:

m “ rmµ‹s “

»

——————————————–

m1 0 0
0 m1 0
0 0 m1

. . .

mnatoms 0 0
0 mnatoms 0
0 0 mnatoms

fi

��������������fl

. (2.91)

Then the Hamiltonian can be expressed as

Hpr, pq “ 1

2
9rµm‹µ 9r‹ ` V prq, (2.92)

where the Einstein summation convention is assumed (i.e., repeated indices
are implicitly summed over).

The global translational/rotational motions of a molecular system are not
relevant to its internal vibrational dynamics. To isolate the vibrational degrees
of freedom, one can transform the coordinate system such that 1) all positions
are defined relative to the centre of mass, and 2) global rotational components
are explicitly removed from the description [47].

After eliminating these external motions, the number of independent
vibrational degrees of freedom for a nonlinear molecule composed of natoms

atoms is given by 3natoms ´ 6. Here, the subtraction accounts for three degrees
of freedom associated with translation and three with rotation. For linear
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molecules, which lack one of the rotational degrees of freedom, the vibrational
degrees of freedom are instead given by 3natoms ´ 5.

Physically, vibrational modes correspond to the characteristic ways in
which atoms in a molecule move relative to one another while preserving the
overall molecular identity. These are not arbitrary jostlings but rather specific,
repeatable internal motions determined by the structure and bonding of the
molecule. One can picture a molecule as a collection of masses (atoms) con-
nected by springs (chemical bonds); when the system is perturbed, it responds
by oscillating in well-defined patterns. These include stretchingmotions,where
atoms move back and forth along the line of the bond, and bending motions,
where the angles between atoms open and close like hinges. Importantly,
these modes involve only internal reconfigurations and exclude any global
translation or rotation of the entire molecule.

As an example, for a carbon dioxide molecule, one can have bending,
symmetric stretch, and antisymmetric stretch modes as illustrated in Figure
2.9. It is noted that only three vibrational modes are observed, since the
bending mode may occur in two directions—within the molecular plane and
orthogonal to it.

2.2.1.1 Small vibrations around an equilibrium configuration of a molecule

Suppose that a molecular configuration is initially given in its equilibrium state
at a specified temperature. If the molecule is constrained to move only in the
vicinity of this equilibrium configuration, the potential energy function can be
approximated using a Taylor expansion about the equilibrium position:

V prq “ V0 ` BV

Brµ

ˇ̌
ˇ̌
0

rµ ` 1
2

B2V

BrµBr‹

ˇ̌
ˇ̌
0

rµr‹ ` ¨ ¨ ¨ , (2.93)

where the subscript 0 specifies that the corresponding values are computed at
its equilibrium state. At equilibrium, the gradient of the potential vanishes,

BV

Brµ

ˇ̌
ˇ̌
0

“ 0, (2.94)
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Figure 2.9. Vibrational mode directions of carbon dioxide

and one may, without loss of generality, choose the reference potential energy
V0 to be zero. The potential energy then simplifies to the harmonic approxima-
tion:

V prq « 1
2

B2V

BrµBr‹

ˇ̌
ˇ̌
0

rµr‹ . (2.95)

The quadratic form captures the leading-order behaviour of the potential near
equilibrium and underlies the theory of normal modes in molecular vibrations.
The matrix B2V

BrµBr‹ is called the Hessian of the potential. In this work, denoted
as Hessµ‹.

As Newton’s second law can be expressed in Lagrangian form as:

d

dt

ˆBKE
B 9rµ

˙
` BV

Brµ
“ 0, (2.96)
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it follows that, near the equilibrium configuration where the potential can be
approximated harmonically, the equations of motion reduce to:

:rµ ` Hessµ‹ r‹ “ 0, (2.97)

This equation constitutes a system of 3natoms coupled, second-order linear
differential equations whose general solutions of the form:

rµ “ Aµ cos p
?

⁄t ` „q (2.98)

for constants Aµ, ⁄, and „ [47]. This demonstrates that the harmonic approx-
imation of the potential naturally leads to oscillatory (vibrational) solutions,
corresponding to the normal modes of the molecular system.

As an example, reconsider Equation (2.4), which may initially appear to
be harmonic at first glance. However, it is not harmonic in the strict sense, as
the angle ◊ is a nonlinear function of the atomic coordinates—it involves an
inverse cosine of dot products of normalized vectors. Therefore, the potential
energy term involving ◊ must also be expanded to second order in Cartesian
displacements to obtain a true harmonic approximation.

The Hessian matrix can be interpreted as a sum of physical contributions
from different types of internal interactions:

Hessµ‹ “
ÿ

bonds
Hesspstretchq

µ‹ `
ÿ

angles
Hesspbendq

µ‹ ` ¨ ¨ ¨ . (2.99)

Each component Hessp¨q
µ‹ corresponds to the second-order derivative of the

potential energy with respect to coordinates rµ and r‹, evaluated at the equi-
librium configuration.

1. For a bond-stretching interaction between two atoms, the potential energy
is typically given by

Vstretch “ ks

2
`?

u–u– ´ r0

˘
2

, (2.100)

where u– “ ri
– ´ rj

– is the displacement vector between the bonded atoms
indexed by i and j. The corresponding contribution to the Hessian tensor
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is
Hesspstretchq

µ‹ “ ks
Brij

Brµ

Brij

Br‹

ˇ̌
ˇ̌
0

, (2.101)

where rij “ }u–} denotes the scalar bond length.

2. For an angle-bending interaction involving three atoms, the potential
energy is typically given by

Vbend “ k◊

2 p◊ ´ ◊0q2, (2.102)

where ◊ is the angle between the vectors u–
1

“ r–
i ´r–

j and u–
2

“ r–
k ´r–

j . Since
◊ is a nonlinear function of the positions, it must be expanded to second
order around equilibrium. The harmonic approximation of its contribution
to the Hessian is then given by

Hesspbendq
µ‹ “ k◊

B◊

Brµ

B◊

Br‹

ˇ̌
ˇ̌
0

. (2.103)

After summing over all such internal interactions, the total harmonic potential
energy takes the quadratic form:

V prq « 1
2rµHessµ‹r‹ , (2.104)

where r P R3natoms denotes the displacement of each atomic coordinate from
equilibrium. This reduces the equations of motion to the form given in Equa-
tion (2.97). Consequently, one can expect that the solution to the harmonically
approximated carbon dioxide system, as described by the Hamiltonian in Equa-
tion (2.4), takes the form presented in Equation (2.98)—namely, a set of purely
oscillatory solutions characteristic of vibrational motion.

The preceding analysis established that the solutions possess a vibrational
form; however, two key questions remain unresolved:

1. How are the constants Aµ, ⁄ and „ in Equation (2.98) determined?

2. In which directions are the atoms actually moving in the solution to Equa-
tion (2.97)?

These naturally leads to the next part of the discussion: normal mode analysis.



CHAPTER 2. THEORETICAL PRELIMINARIES 49

2.2.1.2 Normal mode analysis

By solving the secular equation

detpHessµ‹ ´ ⁄”µ‹q “ 0 (2.105)

one can find the eigenvalues of the Hessian of the potential in equilibrium.
With these eigenvalues, Equation (2.98) transforms as below [48]:

:rµ ` �µ‹D‹–r– “ 0 (2.106)

where � “ diagp⁄1, ¨ ¨ ¨ , ⁄3natomsq is the diagonal matrix of the eigenvalues of Hess,
and D is the matrix where the columns are eigenvectors of Hess, i.e.

D “
”
n̂p1q ¨ ¨ ¨ n̂p3natomsq

ı
(2.107)

where for all i “ 1, ¨ ¨ ¨ , 3natoms,

⁄in̂
piq “ Hess n̂piq. (2.108)

Note that if ⁄i is positive, it corresponds to a ⁄ of a solution of the form
given by Equation (2.98), vibrating in the direction n̂piq [47]. The amplitude
and the phase of Equation (2.98) is given by the initial condition of the system.
The eigenvector (or eigenmode) n̂piqrepresents the direction of vibration and
is referred to as the vibrational mode or the normal mode. The quantity

?
⁄i

corresponds to the frequency of this vibration, and is called the vibrational
frequency associated with mode i.

If the ⁄i is zero, the solution of Equation (2.106) becomes linear of the
form:

rµ “ Wµt ` Bµ (2.109)

for some constant vectors W and B. This corresponds to the translational and
rotational motions. For an isolated molecule six of the eigenvalues (five for
linear molecules) are zero. Similarly, if ⁄i † 0, the solution takes a form of
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exponential growth or decay. These do not correspond to any of the vibrational
modes, and are typically excluded from vibrational analysis.

The directions of Figure 2.9 shows the directions corresponding to each
normal mode.

2.2.2 Vibrational density of states

While normal mode analysis provides detailed information about individual
vibrational frequencies and their associated atomic motions, it is often use-
ful—especially in large or disordered systems—to consider the collective distri-
bution of these frequencies. This leads to the concept of the vibrational density
of states (VDOS), which characterises how vibrational modes are distributed
over frequency.

The VDOS, denoted as gpÊq, is defined such that gpÊq dÊ gives the number
of vibrational modes with frequencies in the interval rÊ, Ê ` dÊs. This quantity
can be defined as in Definition 2.14 below.

Definition 2.14 (Vibrational density of states). The vibrational density of states
(VDOS) of a system of natoms atoms with next external degrees of freedom
removed is a function gpÊq defined by

gpÊq “ 1
3natoms ´ next

3natoms´nextÿ

k“1

”pÊ ´ Êkq, (2.110)

where Êk are the eigenfrequencies of the system’s normal modes. The
function gpÊq dÊ represents the fraction of vibrational modes with frequencies
in the interval rÊ, Ê ` dÊs. The VDOS is, by convention, normalized so that

ª 8

0

gpÊq dÊ “ 1. (2.111)

Note that next is typically 6 for non-linear and 5 for linear molecules, as
discussed in the previous section. The peaks in gpÊq correspond to dominant
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vibrational bands of the system.

In general, the distribution gpÊq is not known explicitly from the system’s
Hamiltonian or the initial conditions. At finite temperature, the vibrational
frequencies Êk are not directly accessible due to thermal fluctuations, which
obscure the underlying harmonicmodes. This is further complicated by the use
of thermostats in molecular dynamics simulations, which modify the effective
Hamiltonian throughdeterministic or stochastic feedbackmechanisms, thereby
driving the system away from purely Hamiltonian dynamics[49].

Consequently, it is not always feasible to extract vibrational frequencies by
simply computing the square roots of the Hessian eigenvalues. The system is
typically not in a local equilibrium configuration, and the exact form of the full
Hamiltonian—including all thermal and environmental effects—is not available
[50]. This necessitates the use of alternative methods that do not rely on
knowledge of the Hessian or the underlying potential energy surface. One
such approach is to extract vibrational information directly from the molecular
dynamics trajectory, specifically via the velocity autocorrelation function [51,52],
as introduced in Definition 2.15.

Definition 2.15 (Velocity autocorrelation function). The velocity autocorrela-
tion function (VACF) of a system of natoms atoms is defined as

Cvptq “ 1
3natoms

natomsÿ

i“1

@
vpiq

µp0q vpiqµptq
D
, (2.112)

where vpiqµptq is the µ-th Cartesian component of the velocity of atom i at time
t, and x¨y denotes either an ensemble average or, under suitable conditions,
a time average over a sufficiently long molecular dynamics trajectory. The
VACF measures the time correlation of atomic velocities and is used to obtain
the vibrational density of states (VDOS) via the cosine Fourier transform:

gpÊq “ 2
fi

ª 8

0

Cvptq cospÊtq dt. (2.113)
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In practice, the VACF is typically computed as a time average over a single
trajectory. For Equation (2.113) to yield a valid vibrational density of states, the
system must be ergodic,meaning that time averages approximate ensemble
averages over long timescales.

This assumption is especially important in the presence of thermal fluctua-
tions or anharmonicity. Stochastic thermostats, such as Langevin or velocity
rescaling, generally promote ergodicity but introduce random forces that can
significantly perturb dynamical correlations, such as those in the VACF. De-
terministic thermostats like Nosé–Hoover can also disturb the VACF, and may
further fail to ensure ergodicity in small or weakly chaotic systems [28,50,53].

By Equation (2.98), the harmonic approximation allows one to decom-
pose the atomic velocities into independent contributions from normal modes,
each oscillating sinusoidally at its characteristic frequency Êk. This is done by
projecting the Cartesian velocities onto the eigenbasis n̂pkqµ, yielding

vkptq :“ n̂pkqµ 9rµptq, (2.114)

where vkptq P R is the time derivative of the k-th normal coordinate, i.e., the
modal velocity along the k-th vibrational mode. Inverting this relation using
the completeness of the eigenbasis, the full atomic velocity can be expressed
as a sum over mode contributions:

9rµptq “ n̂pkq
µ vkptq. (2.115)

Substituting this expression into the definition of the VACF, one obtains:

Cvptq “ 1
3natoms

x 9rµp0q 9rµptqy (2.116)

“ 1
3natoms

@
n̂pkq

µvkp0q n̂p¸qµv¸ptq
D

(2.117)

“ 1
3natoms

n̂pkq
µ n̂p¸qµ

@
vkp0qv¸ptq

D
. (2.118)

Assuming the eigenvectors form an orthonormal basis with respect to the
Euclidean inner product:

n̂pkq
µ n̂p¸qµ “ ”k¸, (2.119)
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and that the normal modes are dynamically uncorrelated:
@
vkp0qv¸ptq

D
“ ”k¸

@
vkp0qvkptq

D
, (2.120)

one obtains the simplified form:

Cvptq “ 1
3natoms

ÿ

k

@
vkp0q vkptq

D
. (2.121)

In the harmonic approximation, each normal mode behaves like an inde-
pendent oscillator, yielding:

@
vkp0q vkptq

D
9 cospÊktq, (2.122)

so that
Cvptq9

ÿ

k

cospÊktq. (2.123)

Taking the cosine Fourier transform then gives the vibrational density of states:

gpÊq “ 2
fi

ª 8

0

Cvptq cospÊtq dt «
ÿ

k

”pÊ ´ Êkq, (2.124)

showing that the VACF encodes the spectral distribution of vibrational frequen-
cies sampled dynamically.

Note that the derivation above assumes the system remains close to a
local equilibrium configuration, such that the motion of atoms can be well-
approximated by harmonic oscillations. In more general cases—including
those with anharmonic interactions—the identification of the VACF with the
vibrational spectrum is justified through a more rigorous statistical framework.

TheWiener–Khinchin theorem states that the power spectral density SpÊq
of a wide-sense stationary stochastic process is the Fourier transform of its
autocorrelation function [54,55]:

SpÊq “
ª 8

´8
Cptq e´iÊt dt. (2.125)

This result does not require the system to be harmonic or linear—it only as-
sumes stationarity and sufficient decay of correlations [56,57].
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Figure 2.10. Vibrational analysis of carbon dioxide from molecular dynamics simula-
tion using the Hamiltonian defined in Equation (2.4). The system was ther-
malised at 300 K for 100 ps using a Langevin thermostat, followed by a 100 ps
microcanonical (NVE) trajectory for analysis. The top left panel shows a
representative velocity trajectory of one of the carbon atoms (x-component).
The top right panel compares the velocity distribution from MD (green his-
togram) with the Maxwell–Boltzmann distribution at 300 K (red curve). The
bottom left panel shows the velocity autocorrelation function (VACF), and
the bottom right panel presents the vibrational density of states (VDOS)
obtained via Fourier transform of the VACF. Vertical lines indicate reference
vibrational frequencies: black lines correspond to experimental values from
literature, and blue lines mark the normal mode frequencies computed from
the Hessian at 0 K.
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In the context of molecular dynamics, the VACF Cvptq behaves as the au-
tocorrelation of a stationary observable (the atomic velocity), provided the
trajectory is sampled from an equilibrated ensemble. Consequently, its Fourier
transform yields a spectrum gpÊq that encodes the distribution of frequency
components actually sampled during the simulation—that is, the dynamically
accessible vibrational modes at finite temperature, including the effects of
anharmonicity,mode coupling, and thermal noise [53,58,59].

The top right panel of Figure 2.10 shows the distribution of Cartesian veloc-
ity components sampled from the molecular dynamics trajectory, plotted as a
histogram (green). Overlaid is the theoretical Maxwell–Boltzmann distribution
at 300 K (red). The excellent agreement between the two confirms that the
systemwas properly thermalised and is sampling from the canonical ensemble.
This match validates the use of velocity-based observables such as the VACF
and supports the interpretation of the trajectory as a representative sample of
equilibrium dynamics.

The bottom left panel of Figure 2.10 displays the velocity autocorrelation
function (VACF), computed from the same post-thermalisation trajectory. The
VACF exhibits clear oscillatory structure. This indicates the presence of coherent
vibrational motion in the system, dominated by the normal modes of CO2. The
well-resolved oscillations confirm that vibrational frequencies are dynamically
accessible and justify the use of Fourier analysis to extract the vibrational
density of states.

The bottom right panel of Figure 2.10 presents the VDOS of CO2 computed
from the VACF. The lowest-frequency peak, corresponding to the bending
mode, shows good agreement with both the expected literature value. How-
ever, the symmetric and antisymmetric stretch modes exhibit more notable
deviations. The main peak associated with the symmetric stretch appears
significantly redshifted compared to the literature value, although two smaller
adjacent peaks are present near the expected position. The antisymmetric
stretch mode lies somewhat closer to the experimental reference, though still
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exhibits a shift relative to the expected result from the literature. These discrep-
ancies arise primarily due to the simplicity of the model Hamiltonian and the
empirical spring constants used, which do not capture the full complexity of
CO2’s anharmonic potential energy surface. Nevertheless, the extracted VDOS
captures the qualitative structure of the vibrational spectrumand demonstrates
that even a minimal model can recover the dominant vibrational features with
some fidelity.

The discrepancy between the 0 K Hessian eigenvalue predictions, the ex-
pected vibrational spectral lines from the literature, and the VDOS obtained
from the molecular dynamics trajectory arises from two main factors. First, the
spring constants used in themodel, taken from [9], are empirical parameters fit
to experimental data at 300 K and are not optimized for zero-temperature pre-
dictions. Second, the Hamiltonian used in this analysis, given in Equation (2.4),
represents a simplified approximation of the true interatomic interactions in
CO₂ and lacks the complexity required for quantitative accuracy.

The VDOS plot in Figure 2.10 highlights the importance of using more
sophisticated parameterisations when simulating molecular systems. In the
main chapters of this work, the GAFF force field [60] was adopted to construct
the Hamiltonian in order to overcome these limitations. Such parameter sets
are referred to as force fields, and they provide empirically or semi-empirically
derived coefficients that define the Hamiltonian and ensure that the resulting
forces reproduce realistic molecular behaviour.

The unit cm´1 is commonly used to express vibrational frequencies in
spectroscopy, and it relates to the angular frequency unit ps´1 through the
conversion:

1 ps´1 “ 1
c

ˆ 1012 cm´1 « 33.356 cm´1, (2.126)

where c is the speed of light.
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2.2.2.1 Infrared and Raman spectra

This work focuses on the computation of vibrational spectral information us-
ing classical molecular dynamics simulations. This is why in this work, the
term vibrational spectrum is used synonymously to VDOS. In contrast, experi-
mental access to vibrational information is typically achieved through indirect
spectroscopic methods.

The most widely used techniques include infrared (IR) absorption spec-
troscopy, which detects vibrational transitions that involve a change in the
dipole moment; and Raman spectroscopy, which measures inelastic light scat-
tering due to fluctuations in polarizability [61–63].

Although the present work is based on classical MD trajectories and the
resulting VDOS, IR and Raman experimental methods are discussed here for
completeness.

In infrared spectroscopy, absorption arises when molecular vibrations
induce a time-dependent dipole moment. In classical molecular dynamics, the
IR intensity IIRpÊq is given by the Fourier cosine transform of the dipole moment
autocorrelation function:

IIRpÊq9
ª 8

0

Èµ–p0qµ–ptqÍ cospÊtqdt (2.127)

where µ– is the –-component of the total dopole moment, and the angle brack-
ets denote ensemble (or time, if ergodicity is guranteed) averages. This ap-
proach captures the dynamical dipolar fluctuations that correspond, in experi-
ment, to the absorption of infrared radiation by vibrational modes that induce
changes in the molecular dipole [64,65].

Raman spectroscopy probes vibrationalmodes that induce time-dependent
changes in the molecular polarizability tensor (denoted as fi—‹ below). The
molecular polarizability tensor is defined as the linear response of the induced
dipole moment µ– to an applied external electric field E‹:

fi—‹ “ Bµ—
ind

BE‹

ˇ̌
ˇ̌
ˇ
E“0

, (2.128)
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Figure 2.11. Comparison of VDOS (blue, bottom), IR (red, middle), and Raman (green,
top) spectra of CO2, computed using the same simulation protocol as in
Figure 2.10. Intensities are normalised to a maximum of 1, and the IR
and Raman spectra are vertically offset by 1 and 2 units, respectively, for
visibility.

with µ—
ind

is the component of the dipole moment in —-th Cartesian direction in
response to a perturbation in the ‹-th component of the external electric field
E‹.

In the context of classical molecular dynamics, the Raman intensity, IRaman

is computed from the Fourier cosine transform of the autocorrelation function
of the polarizability:

IRamanpÊq9
ª 8

0

Èfiµ‹p0qfiµ‹ptqÍ cospÊtqdt. (2.129)

Raman-active vibrational modes are those that cause the polarizability to fluc-
tuate over time, which in experiment leads to inelastic scattering of incident
light at shifted frequencies.
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Figure 2.11 compares the vibrational density of states (VDOS), infrared (IR),
and Raman spectra of carbon dioxide, all derived from the system governed
by the Hamiltonian in Equation (2.4), using the same molecular dynamics pro-
tocol described for Figure 2.10. The VDOS (blue) captures the full spectrum
of vibrational activity, with peaks corresponding to all thermally sampled nor-
mal modes. The IR spectrum (red) shows peaks only for modes that involve
time-dependent changes in the dipole moment—specifically, the bending and
antisymmetric stretchmodes. The Raman spectrum (green) displays only those
modes that involve fluctuations in the polarizability tensor, with the symmetric
stretch being prominently Raman-active. Note that the union of IR and Raman
spectra recovers all the peaks visible in the VDOS; this reflects the complemen-
tary selection rules of the two spectroscopic techniques, which together can, in
principle, resolve all vibrational modes in a centrosymmetric molecule like CO2,

although practical detection may be limited by weak intensities or overlapping
bands [66].
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Empirical understanding of vibrational
spectra: identifying peaks from spectral

signals

𒂊𒉡𒈠𒂊𒇺𒆷𒈾𒁍𒌑𒊭𒈠𒈬
𒊭𒀊𒇺𒄠𒈠𒌈𒋗𒈠𒆷𒍠𒋥

𒂊𒉡𒈠𒂊𒇺
𒁾 𒁹,𒅗 𒁹–𒈫

At the peaks, the heaven is yet to be
named, and rigid ground below is yet
to be called by name

Enūma Eliš
Tablet 1, line 1 - 2

While the previous sections focused on the theoretical aspects of vibrational
properties of molecules, it is important to acknowledge that most vibrational
spectra are obtained from experiments. In many cases, researchers rely on
pre-built software packages to identify spectral peaks and fit distributions
without a thorough understanding of the underlying algorithms and meth-
ods employed. Moreover,many widely used software tools are commercial
products, and their proprietary nature conceals the specific methodologies
implemented. Consequently, researchers are frequently limited to learning
how to use the software rather than comprehending the technical foundations
of peak identification and spectral decomposition techniques.

The objective of this chapter is to provide a comprehensive introduction to
implementing a custom, problem-specific peak decomposition scheme for the
analysis of vibrational spectral data. This approach empowers researchers to
develop tailored solutions that enhance their understanding of both the data

60
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Figure 3.1. A sample noisy signal generated by three Gaussian and three Lorentzian
distributions with a sinusoidal baseline with linear trend. The target signal
to be decomposed into distinct Lorentzian and Gaussian distributions are
shown in red, where the target signal to retrieve is in solid blue. The expected
baseline, Gaussian, and Lorentzian components of the signal are in dotted
lines.

and the methods used to interpret it.

In the theoretical sections of this chapter, a synthetic signal resembling
a vibrational spectrum will be employed, while tests involving experimentally
obtained spectra are presented in Section 3.5. The synthetic signal is designed
to be positive, piecewise continuous, and twice differentiable within its con-
tinuous domains. These characteristics are essential since the signal cannot
change its sign, and both continuity and second-order differentiability are
required for the signal to be decomposable into known distributions. Figure
3.1 presents the synthetic signal utilized in this chapter, providing a visual
representation of the problem addressed herein.

Figure 3.1 shows that identifying peaks and decomposing the signal into
known distributions can be systematically divided into steps:
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1. Denoising: If the signal contains significant noise, preprocessing is re-
quired. If the domain of interest is known in advance, it is advised to isolate
the signal corresponding to the given domain for precision.

2. Interpolation: In cases where the dataset consists of a limited number
of discrete points, interpolation may be necessary to approximate a con-
tinuous representation of the signal. The data can either be discarded
(under-sampling) or expanded (over-sampling) by interpolation.

3. Baseline removal: A global trend, or baseline present in the signal may
be spurious to the target signal. A baseline can obscure spurious signals
that may hide small peaks or create false signals that could be mistaken
for real peaks. [67]

4. Peak identification: Peaks, i.e. physically relevant local maxima of the
signal, are then detected, using appropriate algorithms tailored to the
characteristics of the signal.

5. Signal decomposition: Finally, the signal is decomposed into its con-
stituent distributions, leveraging models that align with its physical or
mathematical properties.

To ensure accuracy and reliability in each step, appropriate methods must
be chosen based on the specific properties of the signal and the intended
application. For example, noise filtering may employ wavelet denoising or
Savitzky-Golay methods, depending on the frequency characteristics of the
noise (compare: [68,69]). Similarly, peak identification could leverage tech-
niques such as window-based methods, derivative-based methods, or even
machine learning algorithms for enhanced robustness. These considerations
play a critical role in ensuring the validity of the overall decomposition process.
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3.1 Denoising and interpolating signals

This section focuses on two critical preprocessing steps for spectroscopic sig-
nals: denoising and interpolation. The Savitzky-Golay filter and wavelet trans-
form methods are introduced as the primary algorithms for denoising. The
Savitzky-Golay filter is well suited for preserving the shape and width of spectral
features while smoothing the signal,making it highly effective, in particular
for molecular spectra that are expected to have underlying distributions of
expected form. The wavelet transform provides a versatile approach for signals
with varying frequency components, allowing efficient noise reduction across
different scales.

For interpolation, cubic splines are employed here to reconstruct a smooth
representation of the signal from a limited set of discrete data points. The
ability of splines to ensure smoothness and second-order differentiability aligns
with the requirements for subsequent signal decomposition and peak analysis.

3.1.1 Savitzky-Golay algorithm

The Savitzky-Golay filter, developed in 1964 at the Perkin-Elmer Corporation,
was designed to smooth noisy chemical spectral data while preserving the
shape and height of spectral peaks [70, 71]. This method combines least-
squares polynomial fitting (see Appendix B for details) with moving average
techniques, implementing smoothing operation through convolution with a
fixed set of coefficients. The filter operates by fitting a polynomial of degree n

to a local subinterval of the domain with 2m ` 1 data points. The window size
and polynomial order are selected based on the characteristics of the spectral
data [72].

This approach is especially effective in spectroscopic applications where
maintaining peak characteristics is critical, offering superior performance com-
pared to simple moving averages that tend to distort peak heights and widths.
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This section introduces a modified version of the Savitzky-Golay method, devel-
oped by Michael Schmid, David Rath, and Ulrike Diebold [73], to better handle
signal boundaries. The method is referred to as Modified Sinc smoothing
because it uses a modified kernel based on the sinc function:

sincpxq “ sinpxq
x

(3.1)

The sinc function plays a crucial role in signal processing as it represents the
impulse response of an ideal low-pass filter. If noise occurs at frequenciesmuch
higher than the signal, the sinc kernel effectively suppresses noise without
distorting the signal.

Although the sinc function is theoretically ideal for low-pass filtering, its
infinite extent and the resulting ringing artifacts make it impractical for direct
use. To overcome this limitation, a modified kernel function is defined that can
be effectively convolved with the input signal while maintaining the desirable
properties of a low-pass filter. The modified sinc kernel is defined as:

kpxq “

$
’&

’%

1, if x “ 0,

2

fipd`“qx sin
´

fipd`“qx
2

¯
¨ wpxq ` cpxq, otherwise.

(3.2)

This kernel incorporates three critical modifications to the basic sinc func-
tion:

1. Scaling Factor: The scaling factor fipd ` “q{2 in the argument controls the
filter’s cutoff frequency. Here, d is the (even) degree parameter control-
ling smoothing strength (typically between 2 and 10), and “ is a variant-
dependent parameter.

2. Window Function: A window function wpxq ensures the kernel has finite
support and smooth decay to zero at its boundaries,making it practically
implementable. The window function is defined as:

wpxq “ e´–x2 ` e´–px´2q2 ` e´–px`2q2 ´ 2e´– ´ e´9– (3.3)
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3. Correction Terms: Correction terms cpxq, defined as a sum of weighted
sine functions, are added to optimize the filter’s frequency response:

cpxq “
ÿ

j

Ÿjx sinpp2j ` ‹qfixq (3.4)

where – P t2, 4u. This function ensures smooth decay and finite support. The
correction coefficients Ÿj depend on both the degree d and the kernel half-width
m:

Ÿj “ aj ` bj

pcj ´ mq3
(3.5)

The parameter ‹ is degree-dependent, taking the value 1 for degrees 6 and
10, and 2 for degree 8. The coefficients aj, bj, and cj are empirically determined
to optimize the filter’s passband flatness. For lower degrees (2 and 4), no
correction terms are needed (cpxq “ 0).

This carefully constructed combination allows the kernel to maintain many
desirable properties of the ideal sinc filter while being practical for real-world
data. The window function ensures smooth decay at the boundaries, and
the correction terms optimize the filter’s frequency response, particularly for
preserving signal features in the passband region.

To address boundary effects, the modified sinc approach uses weighted
linear extrapolation instead of simple padding or reflection. The extrapolation
employs a Hann-weighted linear regression (see Appendix B for details), with
weights, Êfit, that decay smoothly according to:

wfitppq “ cos2

ˆ
fip

2z1—

˙
(3.6)

where z1 is the first zero of the sinc function, calculated as pm ` 1q{p1 ` 0.5dq if
– “ 2 or pm ` 1q{p1.5 ` 0.5dq if – “ 4, and — is a decay factor depending on the
degree:

— “

$
’&

’%

0.65 ` 0.35e´0.55pd´4q, if – “ 2,

0.70 ` 0.14e´0.60pd´4q, if – “ 4.
(3.7)
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Figure 3.2. A graphical demonstration of the denoising method introduced in this section.
The parameters used to generate the denoised signal are d “ 6, and m “ 91.

The final smoothed operation can be expressed as:

ysmoothrns “
mÿ

i“´m

krisyrn ´ is (3.8)

Here, the square bracket indicates the index within the window defined by the
kernel half-width m.

The graphical example in Figure 3.2 illustrates how the noisy test signal
from Figure 3.1 can be denoised using this modified method. There are four
key features to note in Figure 3.2:

1. The peak locations and shapes are accurately preserved while noise is
effectively suppressed. This demonstrates how the modified sinc kernel
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maintains the signal’s essential features through its carefully designed
frequency response characteristics.

2. The boundary regions show smooth transitions without many artifacts,
thanks to the Hann-weighted linear extrapolation. Unlike traditional meth-
ods, this approach provides more reliable treatment of signal endpoints,
which is particularly valuable when analyzing spectroscopic data where
edge features are significant.

3. The overall smoothing effect successfully distinguishes overlapping peaks
while maintaining their relative intensities. The combination of the win-
dowed sinc function and correction terms allows for effective noise re-
duction without compromising the resolution of closely spaced features,
making it particularly suitable for analyzing complex spectroscopic profiles.

4. When the signal-to-noise ratio is low, the algorithmmay incorrectly identify
noise fluctuations as genuine peaks, leading to false-positive peak detec-
tions. This is where the wavelet transform method introduced in the next
section outperforms.

3.1.2 Continuous wavelet transform method

The limitations of Fourier transform in analyzing non-stationary noisy signals,
where frequency content varies over time, motivated scientists and mathe-
maticians of the 20th century to extend the Gabor transform. This led to the
development of alternative methods that replace Fourier components with
other sets of orthonormal basis functions. One of the most popular of such
methods is the wavelet transformation, which overcomes the fixed frequency
resolution of Fourier transforms by allowing variable resolution at different
scales.

The wavelet transformation is based on the concept of amother wavelet,
a prototype function that generates a family of wavelets. By scaling and trans-
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lating the mother wavelet, an orthonormal set of wavelets is created, enabling
a more flexible time-frequency analysis. With this in mind, one can define the
continuous wavelet transformation as in Definition 3.1.

Definition 3.1 (Continuous wavelet transform). Given a continuous signal
s : R Ñ R and a continuous function Â : C Ñ R, called themother wavelet, the
(continuous) wavelet transformation of the signal s under the mother wavelet
Â is defined as

W pa, bq “
ª 8

´8
spxqÂa

˚
ˆ

x ´ b

a

˙
dx. (3.9)

a, b P R are referred to as the scale and translation parameters, respectively,
and Â˚ denotes the complex conjugate of the mother wavelet.

This definition can be generalized to higher dimensional spaces, but in
this work, the 1-dimensional defintion is sufficient.

One of the simplest wavelets is the Haar wavelet, which is defined as:

ÂHaarptq “

$
’’’’&

’’’’%

1 0 § t † 1

2

´1 1

2
§ t † 1

0 otherwise

. (3.10)

Substituting this to the Definition 3.1, one can immediately obtain the trans-
formation coefficients at different scales and translations. Figure 3.3 demon-
strates the continuous wavelet transform using the Haar wavelet on a non-
stationary signal. The Haar mother wavelet (top) serves as a basis function,
characterized by its piecewise constant nature with a positive step followed by
a negative step. The input signal (middle) exhibits varying frequency content
and amplitude modulation across its duration, with notable transitions around
t=40.

The wavelet transform coefficients |W pa, bq|2 (bottom) reveal the signal’s
time-frequency structure through a scalogram. The power spectrum intensity
(shown in color) represents the strength of correlation between the signal and
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Figure 3.3. Haar mother wavelet (TOP), our synthetic signal (MIDDLE), and its continuous
Haar-wavelet transformation power spectrum (BOTTOM).
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the scaled wavelet at each time point. Lower scales (1-10) capture rapid signal
variations and discontinuities, appearing as vertical structures in the transform,
which correspond to the high-frequency noise fluctuations visible throughout
the signal. Higher scales (10-100) detect slower variations and broader pat-
terns, shown as horizontal bands of activity, revealing the signal’s underlying
trend changes. Strong coefficients (yellow regions) are concentrated in the
interval t P r20, 40s, corresponding to the principal transition period of the sig-
nal, characterised by a rapid increase in amplitude from approximately 0.2 to
1.0, followed by a sharp decrease to around 0.4. The transform also highlights
subsequentminor transitions at t « 60 and t « 80,where the signal showsmore
subtle amplitudemodulations around 0.6 and 0.4 respectively. The logarithmic
scale spacing provides a natural way to analyze the signal across different time
scales simultaneously, revealing both fine details and overall structure.

Despite its simplicity, Haar wavelets are not widely used in continuous
signal denoising. Its discontinuity makes it only ideal for denoising discrete sig-
nals or signals with sharp transitions. Most popular and convenient wavelets
are Daubechies wavelets, symlets, coiflets,Mexican hat wavelet, and biorthong-
onal wavelets.

Figure 3.4 presents the continuous wavelet transform using Daubechies-4
(DB4) wavelets, which offer improved frequency localization compared to Haar
wavelets. The DB4 mother wavelet (top) exhibits smoother transitions and van-
ishing moments up to order 4, in contrast to the discontinuous step function
of the Haar wavelet. This smoother basis function results in a more refined
time-frequency decomposition, as evidenced in the wavelet transform coeffi-
cients (bottom). The transform reveals similar temporal features to the Haar
analysis, with strong coefficients during the signal’s major transition (t=20-40),
but provides smoother scale transitions and better frequency discrimination,
particularly in the higher scales (10-100) where the horizontal bands show
clearer separation.

The wavelet denoising process relies on thresholding the wavelet coef-
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Figure 3.4. Daubechies-4 mother (DB4) wavelet (TOP), our synthetic signal (MIDDLE), and
its continuous DB4-wavelet transformation power spectrum (BOTTOM).
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Figure 3.5. Wavelet denoising using Daubechies-4 wavelets.

ficients to separate signal from noise. The threshold is calculated using the
universal threshold rule, which employs the Median Absolute Deviation (MAD)
to estimate the noise level. For wavelet coefficients X, the MAD is defined
as medianp|X ´ medianpXq|q, which is normalized to match Gaussian noise
standard deviation: ‡ “ MAD{0.6745. The universal threshold is then computed
as ⁄ “ ‡

a
2 logpNq, where N is the signal length. This threshold minimizes the

maximum estimation error under certain statistical assumptions.
The thresholding operation can be performed using either hard or soft

thresholding rules. Hard thresholding, defined as ÷Hpxq “ xI|x|°⁄, simply nul-
lifies coefficients below the threshold. Soft thresholding, given by ÷Spxq “
signpxqp|x| ´ ⁄qI|x|°⁄, shrinks coefficients by the threshold amount, providing
better continuity in the reconstructed signal. The signal reconstruction then
proceeds by applying the inverse wavelet transform: fptq “ ∞

k cAn
rks„̃n,kptq `

∞n
j“1

∞
k cDj

rksẪj,kptq, where „̃ and Ẫ are the dual scaling and wavelet functions,
respectively, and cAn

, cDj
are the thresholded approximation and detail coeffi-
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cients.
The resulting denoised denoised signal using this method can be obtained

as shown in Figure 3.6
The signals obtained via Savitzky-Golay and wavelet transform methods

have their own benefits and disadvantages. Each method exhibits distinct
artifacts under specific conditions. The Daubechies-4 wavelet transform intro-
duces a cusp at x = 18 where the peak magnitude falls below the noise level,
while the Savitzky-Golay method creates spurious features near the boundary
at x = 98 due to high-amplitude noise and insufficient data points to constrain
the polynomial fit.

To incorporate the benefits and compensate for the limitations of both
methods, one can apply a weighted sum of the denoised signals as shown
below:

sfinal denoisedpxq “ –sSGpxq ` p1 ´ –qsCW T pxq (3.11)

where – is a number between 0 and 1, SSG, sCW T are denoised signals ob-
tained via Savitzky-Golay and continuous wavelet transformation methods,
respectively.

Figure 3.6 shows sfinal denoisedpxq with different values of –. The curve given
by – “ 0.5 yields the best outcome since it identifies the two overlapping peaks
in r28, 30s well, while having a less sharper drop at the boundaries compared
to the cases with higher –s, and creates fewer peak-looking artefacts and the
cusps (like the one shown at 18 in Figure 3.6) from the noise compared to the
cases with lower –s.

3.1.3 Interpolating the denoised signal

Oftentimes, the data available might not be dense enough for correct baseline
correction or peak-identification. This problem can be corrected via interpola-
tion.
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Figure 3.6. Weighted sum of denoised signals obtained via Savitzky-Golay and continuous
wavelet transform methods with different values of – as given in Equation
3.11.

Definition 3.2 (Interpolation). Let V be a linear space with norm, and for
B Ä V, let VpBq be the smallest subspace that contains B. With A0, A1 Ä V,
one can find a space called an interpolation space, A, such that

VpA0q X VpA1q Ä A Ä VpA0q ` VpA1q, (3.12)

if there exists a function Ïint : VpA0q Ñ VpA1q such that Ïint : A Ñ A holds.
This function is called the interpolation between A0 and A1. [74,75]

For our application, A0 can be thought of as the starting points to interpo-
late from and A1 can be regarded as the end-points of the interpolation. As
an illustrative example, the simplest interpolation method, namely piecewise
linear interpolation, is considered,wherein interpolation is carried out between
the ordered sets:

A0 “ tp0, 1q, p1, 2q, p3, 3q, p7, 1qu the starting points (3.13)
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and
A1 “ tp1, 2q, p3, 3q, p7, 1q, p11, 2qu the end-points, (3.14)

via the interpolation map between the ¸-th elements of A0 and A1:

Ïint
linear;¸pxq “

$
’&

’%

�
1

�2 px ´ a0

¸ r0sq ` a0

¸ r1s if x P pa0

¸ r0s, a1

¸ r0sq

0 otherwise
(3.15)

with �1 “ a1

¸ r1s ´ a0

¸ r1s and �2 “ a1

¸ r0s ´ a0

¸ r0s, where the superscript k P t0, 1u
indicates that ak P Ak and rms,m P t0, 1u, determines the position of the element
in ak

¸ “
`
ak

¸ r0s, ak
¸ r1s

˘
. Defining Ïint

linear as

Ïint
linear “

ÿ

¸

Ïint
linear;¸ (3.16)

allows one to obtain the interpolation between A0 and A1. A visual represen-
tation of the linear interpolation process is provided in Figure 3.7 a), which
illustrates how additional points are generated between A0 and A1.

Figure 3.7 b) demonstrates that the linear interpolation effectively approx-
imates the signal. However, as shown in Figure 3.7 c), the numerical second
derivatives exhibit substantial oscillations with excessively large magnitudes
relative to the original signal.

The limitations of linear interpolation in accurately capturing second-order
features underscore the need for an interpolation method that guarantees a
continuously second-differentiable result. Several candidates, such as Bézier
curves, B-splines, and cubic splines, are commonly used for this purpose.
Among these, the cubic spline method provides a suitable balance of computa-
tional efficiency and smoothness,making it an ideal choice for addressing the
deficiencies of linear interpolation. In the following sections, I will focus on
implementing the cubic spline method to achieve the desired continuity and
precision. For the details on least-squares methods, please consult Appendix
B.

A function interpolating a given set of data is called a spline of order k if it
consists of a set of smooth, piecewise-connected k-th order polynomials. That
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Figure 3.7. a) Linear interpolation between A0 and A1 derived from Equations 3.13 and
3.14. b) Linear interpolation of the denoised synthetic signal. c) Numerical
second derivative of the linearly interpolated result from b). Note the signifi-
cant magnitude differences and rapid oscillations in the second derivative.
The pronounced second derivative at domain = 18 is attributed to the cusp in
the filtered signal.

is, the domain is divided into intervals, and on each interval, the approximated
function is a polynomial of degree k. In mathematical language:

Definition 3.3 (Spline). Let rxi, xf s and ryi, yf s be the domain and the range
of the given datapoints, N is the total number of datapoints. The knots of
the domain are set of points ttiui“N

i“0
such that

xi “ t0 † t1 † ¨ ¨ ¨ † tN´1 † tN “ xf . (3.17)

The spline, spkq : rxi, xf s Ñ ryi, yf s is a function that

1) is a k-th order polynomial, pj, in every rtj, tj`1s for j “ 0, ¨ ¨ ¨ , N ´ 1,

2) the zeroth through k ´ 1-th derivatives of pjs across adjacent intervals
rtj, tj`1s, and

3) for all j “ 0, ¨ ¨ ¨ , N ´ 1, and 0 § ¸ † k, d¸

dx¸ pjptj`1q “ d¸

dx¸ pj`1ptj`1q.[76]
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One can obtain the A0 and A1 of Definition 3.2 via the definition of knots in
Definition 3.3. Hence, a cubic spline interpolationmap Ïint

cubic can be constructed
between A0 and A1. For the ¸-th element, this map takes the form:

Ïint
cubic;¸pxq “

$
’&

’%

–¸px ´ a0

¸ r0sq3 ` —¸px ´ a0

¸ r0sq2 ` “¸px ´ a0

¸ r0sq ` ”¸ if x P pa0

¸ r0s, a1

¸ r0sq

0 otherwise
(3.18)

The coefficients –¸, —¸, “¸, and ”¸ are determined by enforcing the continuity
and smoothness conditions at the knots from Definition 3.3:

Ïint
cubic;¸pa0

¸ r0sq “ a0

¸ r1s (3.19)

Ïint
cubic;¸pa1

¸ r0sq “ a1

¸ r1s (3.20)
d

dx
Ïint
cubic;¸pa1

¸ r0sq “ d

dx
Ïint
cubic;¸`1

pa1

¸ r0sq (3.21)

d2

dx2
Ïint
cubic;¸pa1

¸ r0sq “ d2

dx2
Ïint
cubic;¸`1

pa1

¸ r0sq (3.22)

These boundary conditions assume that the second derivatives of the
spline are zero at the endpoints, reflecting a natural spline behavior where
there is no abrupt change in curvature at the boundaries.

d2

dx2
Ïint
cubic;1pa0

1
r0sq “ d2

dx2
Ïint
cubic;npa1

nr0sq “ 0 (3.23)

The complete interpolation map is then defined as:

Ïint
cubic “

ÿ

¸

Ïint
cubic;¸. (3.24)

This construction guarantees the continuity of the second derivative across all
interpolation points.

Cubic splines generate interpolations with minimal curvature, making
them effective at approximating the original data-generating function.
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Theorem 3.4 (Minimization of total extrinsic curvature in cubic spline interpo-
lation). The cubic spline interpolation defined in Ïint

cubic guarantees the continuity
of the second derivative across all interpolation points. Additionally, it minimizes
the total curvature among all twice-differentiable cubic interpolants. Formally,
the total extrinsic curvature is given by:

I
“
Ïint
cubic

‰
“
ª

pÏint
cubicq2pxq2dx, (3.25)

which is minimized by the cubic spline interpolation compared to other possible
interpolation methods.

Proof. This statement canbeprovedusing variational principle via Euler-Lagrange
equation. The integrand of Equation 3.25 simply is the second derivative of
the function Ïint

cubic, meaning that the Euler-Lagrange equation becomes the
following in pxi, xf q

d2

dx2

´
2Ïint

cubic
2pxq

¯
“ 0 ùñ Ïint

cubic
4pxq “ 0. (3.26)

At the endpoints, Equation 3.23 ensures that the Euler-Lagrange equation is
zero in rxi, xf s. This completes the proof.

Mechanical intuition. Equivalently, one can imagine an ideal one-dimensional,
uniform elastic beam of constant flexural rigidity pinned so that it passes
through each data point. When released, the beam “relaxes” in a shape that
minimises its total bending energy,

Ebend9
ª

py2pxqq2dx, (3.27)

subject to the constraints ypxiq “ yi. The Euler–Lagrange equation for that
variational problem is exactly

yp4qpxq “ 0 (3.28)

at each interval, with continuity of y, y1 and y2 at the knots, precisely the
conditions that define the natural cubic spline.
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Figure 3.8. a) Cubic spline interpolation between A0 and A1 derived from Equations
3.13 and 3.14—1000 datapoints are extended to have 10,000 datapoints. b)
Cubic spline interpolation of the denoised synthetic signal. c) The second
derivative of the cubic spline interpolated result from (b). Note that the local
extrema of the second derivatives are more visible than in Figure 3.7 c) and
the magnitudes are more realistic. The pronounced second derivative at
domain = 18 is attributed to the cusp in the filtered signal.

Figure 3.8 a) demonstrates that cubic spline interpolation effectively ap-
proximates the signal while maintaining the second-order smoothness. The
second-order continuity guaranteedby the construction ofÏint

cubic ensures smooth
transitions between interpolation points, in contrast to the piecewise linear
case where only zeroth-order continuity is maintained.

As shown in Figure 3.8 c), this higher-order smoothness manifests in the
second derivatives,which exhibit significantly reduced oscillations compared to
Figure 3.7 c). The elimination of artificial discontinuities is a direct consequence
of enforcing the continuity conditions on d2

dx2 Ïint
cubic;¸. Notably, while the second

derivative still captures the cusp at domain = 18, the cusp manifests as a sharp
peakwith amaximumamplitude of 10.61. Since all other features in the signal’s
second derivative have magnitudes below 0.15, this pronounced difference in
magnitude provides a clear criterion for distinguishing cusps from other signal
features.
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This combination of smoothness and accurate cusp detection, enabled
by the minimal curvature property of cubic splines,makes them particularly
suitable for applications requiring reliable second-order information.

3.2 Baseline correction of signals

Baseline correction aims to correct for the bias in the captured signal on coarse
scales [1]. Empirically, one can view the baseline as the low-frequency or out-of-
band content, including the 0-frequency (DC) offset introduced by instrument
bias or drift, and hence treated as systematic error that must be removed to
reveal the true features of the signal.

Formally, a baseline of a given signal can be defined as in Definition 3.5
below.

Definition 3.5 (Baseline). Let a, b P R with a † b, and let a signal be repre-
sented by a function s : ra, bs Ñ R. The baseline of the signal s is a piecewise
smooth function B : ra, bs Ñ R satisfying the following conditions:

Bpxq § spxq for all x P ra, bs, (3.29)

sgnpBpxqq “ sgnpspxqq for all x P ra, bs, (3.30)

where sgnp¨q denotes the sign function. The function B approximates the
lower envelope of s over ra, bs, capturing the trend or background level of the
signal while excluding rapid variations or oscillatory components.

The simplest of baselines are linear baselines defined as a line connecting
the first datapoint to the last datapoint by the linear relationship below

Blinearpxq “ spbq ´ spaq
b ´ a

px ´ aq ` spaq. (3.31)

This method is intuitive, fast and straight-forward. As shown in Figure 3.9,
the linear baseline correction works well without destroying the overall shape
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Figure 3.9. a) The original signal with the predicted linear baseline and the original
baseline used to construct the synthetic signal. b) The final corrected result
in comparison to the original signal.

of the initial signal. The points positioned below the predicted baseline are
truncated to be zero as the signal is expected to not change the sign, and
the definition of the baseline does not allow this. However, the supposedly
separate signals in the middle of the sample synthetic signal in Figure 3.9 are
not clearly separated. This can wrongly hint in the final signal decomposition
stage that there is another distribution or peak hidden in the middle.

Penalised least squares (PLS) algorithms, introduced in detail in Appendix
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Figure 3.10. Synthetic signal baseline correction via airPLS method with ⁄ “ 1015. a) The
original signal with the predicted airPLS-based baseline and the original
baseline used to construct the synthetic signal. b) The final corrected result
in comparison to the original signal.

B.2, are employed to solve this problem in the rest of this section. One popular
method is called adaptive iteratively reweighted PLS (airPLS)–introduced by
Zhi-Min Zhang, Shan Chen, and Yi-Zeng Liang [77]–which is interested in finding
the baseline by minimizing the following quantity:

Q “
nÿ

i“1

wipsi ´ ziq2 ` ⁄
nÿ

i“2

pzi ´ zi´1q2
(3.32)
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where sis are the data-points of the i-th component of the signal,

s “ pspx1q, ¨ ¨ ¨ , spxnqq, (3.33)

to be corrected, and zis are the corresponding baseline components to be
found. The weights are given by the relation below.

wt
i “

$
’&

’%

e
t
´

si´zt´1
i

¯
{
ˇ̌
dt

ˇ̌
si † zt´1

i

0 si • zt´1

i

(3.34)

The superscript t in Equation 3.34 refers to the iteration step in the alogrithm
which terminates when

|dt| † 0.001}s} (3.35)

holds. Theweights are initialized to be 1when t “ 1 and zis are defined tomatch
this initialization at step t “ 1. Figure 3.10 demonstrates how the airPLSmethod
(red dashed line) better captures the curved baseline behavior compared to
the linear approximation shown in Figure 3.9. The superior baseline estimation
results in more accurate peak separation in the corrected signal.

One problem of airPLS is that it is highly likely to position a substantial
portion of the signal below the baseline. [1] In Figure 3.10, this effect was useful
since it resulted in the removal of the peak generated by the noise contribution
at the end of the signal. This fortuitous result should not be taken as a general
advantage of the method, as such noise contributions can appear anywhere in
the signal, including adjacent to critical peaks.

To overcome such disadvantages, Sung-June Baek, Aaron Park, Young-Jin
Ahn and Jaebum Choo, developed a different weighting scheme with

wi “

$
’&

’%

1{e2p|d|´p2‡d´µdqq{‡d si • zi

1 si § zi

(3.36)

where µd and ‡d are mean and standard deviations of the entries of d. [78]
The zis are initialized to be slightly larger than sis if such scheme can be com-
puted, or set to be 1 in the beginning of the iterative process. The termination
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Figure 3.11. Synthetic signal baseline correction via arPLS method with ⁄ “ 1015 and
termination ratio of 10´6. a) The original signal with the predicted arPLS-
based baseline and the original baseline used to construct the synthetic
signal. b) The final corrected result in comparison to the original signal.

condition of the algorithm is given as
∞

i

`
wt

i ´ wt`1

i

˘
2

∞
ipwt

iq2
† ratio (3.37)

where the ratio can be set by the user to be some very small number.
Figure 3.11 shows two benefits of the arPLS methods:

1. No peak candidates lose the curvature information of the original signal,
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Figure 3.12. Baseline corrected results and their first and second derivatives. The deriva-
tives are filtered via Savitzky-Golay method with window size of 7001, where
there are 10,000 datapoints in the baseline corrected signals and their
derivatives.
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and

2. All peaks from the original signal are kept.

Figure 3.12 graphically compares the baseline corrected results obtained
via all threemethods introduced in this section. The first and second derivatives
are shown to illustrate what model among the threemethods introduced in this
section could be useful in finding the peaks of the signal. With proper denoising,
again via the Savitzky-Golay orwavelet transfomationmethods, finding the first-
derivative’s zero-crossings and the negative peaks of the second derivatives
becomesmanageable due to their smooth profiles. Note that, although doable,
the second derivatives of the linearly corrected signal are the noisest among
the results of the other two results,making them less reliable.

3.3 Identifying peaks

The identification of peaks in a signal spxq defined over a domain ra, bs can
be formalised through the analysis of local maxima and their surrounding
neighbourhoods. A peak at point xp P ra, bs can be identified naïvely as a point
where s1pxpq “ 0 and s2 † 0,where these derivatives exist. However, for discrete
and noisy signals, a more robust definition is needed. This requires one to
mathematically define what a local peak of a discrete signal is.

Definition 3.6 (Local median peak). Let ttiuN
i“0

be the knots of the domain
of a signal s. The local median peak of a subinterval rti´1, tis is a pair

`
t̃, s

`
t̃
˘˘

such that
t̃ “ mediantt : t P pti´1, tiq X tP u (3.38)

such that
s
`
t̃
˘

“ maxtsptq : t P t P pti´1, tiq X tP u (3.39)

where tP is a set of dependent variables of the signal given by the dataset.
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One can then define the knots as equal-sized, say by the size ”, set of
intervals, referred to as sliding windows of size ”. As the window slides across
the domain by increments of ”, it generates a sequence of candidate peaks
that satisfy both the median position and maximum amplitude criteria defined
above. To consider all points equally, one can start defining the slidingwindows
by defining the knots starting from all or a few selected points of rt1, t2q X tP

with spacings ”. In practice, one can define the sliding step k, as a fraction of
the window size ”, such that:

k “ ”{m (3.40)

where m P N is chosen to ensure sufficient overlap between consecutive win-
dows. This creates a sequence of windows rti, ti ` ”s where ti`1 “ ti ` k for each
step i. The overlap between consecutive windows is then 100pm ´ 1q{m% of the
window size.

Theorem 3.7 (Validity of the sliding window method). If the signal is smooth,
the set of local median peaks contains the set of the local maxima of the entire
signal.

Proof. Suppose a point pt˚, spt˚qq is a local maximum of the signal s that can not
be defined as a local median peak. Then for all ” ° 0, the interval pt˚ ´ ”, t˚ ` ”q
contains a pair

`
tfaux, s

`
tfaux

˘˘
such that

s
´

tfaux
¯

° spt˚q (3.41)

which contradicts the definition of local maximum.

Note that the smoothness was required to justify the validity of the sliding
window method. Since digital signals are discrete, attempting to identify local
peaks with all values of ” ° 0 would not be feasible. As a result, an acceptance
threshold is applied within a given window rti, ti ` ”s, as defined in Definition
3.8.
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Figure 3.13. Peak candidates found via the window-propagation method with window-
size of 51, overlap factor of 27 (TOP) and visualisation of propagating
windows (BOTTOM).

Definition 3.8 (Acceptance threshold for window propagation method.). If
t˚ “ medianprti, ti ` ”sq, and spt˚q “ maxpsprti, ti ` ”sqq, an acceptance threshold,
› ° 0 is a quantity that identifies t˚ as a valid local median peak if

1
”

pspt˚q ´ minpsprti, ti ` ”sqqq ° › (3.42)

holds.

Figure 3.13 illustrates howpeaks are detected using thewindow-propagation
method. While this approach successfully identifies all the true peaks, it may
also report some false peaks. These false positives arise from small, numer-
ically noisy variations near the base of the signal. To address this, a small
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amplitude threshold can be applied to filter out these noise-induced peaks.

Figure 3.13 illustrates how thepeaks canbe found via thewindow-propagation
method. Note that this method identified all the true peaks, but some false
positives were reported. These are due to the small numerically noisy profiles
near the base of the signal, which can be eliminated quickly by asserting a
small threshold in the amplitude. For instance, in the example shown in Figure
3.13, setting a threshold of 2 ˆ 10´3, leaves the following peak candidates:
rp33.13, 0.8q, p45.73, 0.039q, p61.28, 0.129q, p95, 0.252qs. Despite the high noise level
in the sample signal, these peaks are in close proximity to the centers of the
distributions used to sample the original signal x “ 36, 45, 60, 91. However, the
method fails to recover the peaks at x “ 17 and 30, which correspond to the
shoulders of the nearby peaks. These shoulders can be detected using first and
second derivative-based methods.

Definition 3.9 (Shoulder of a peak). Let spxq be a signal. A pair
`
xshoulder, s

`
xshoulder˘˘

is called a shoulder of a peak
`
xpeak, s

`
xpeak˘˘

if it sat-
isfies ˇ̌

ˇ̌d
2s

dt2

´
xshoulder

¯ˇ̌
ˇ̌ † ›2 and

ˇ̌
ˇ̌ds

dt

´
xshoulder

¯ˇ̌
ˇ̌ ° ›1 (3.43)

where ›1 • 0 and ›2 • 2 are tolerance parameters for the first and second
derivatives respectively.

Note that the tolerance parameters can be obtained via statistical proper-
ties of the derivatives: ›1 can be chosen as a fraction of the standard deviation
of the first derivative, while ›2 can be set relative to the maximum absolute
value of the second derivative in regions where shoulders are expected to
occur.

Figure 3.14demonstrates the application of our shoulder detectionmethod.
The analysis identified two shoulders at x “ 24 and x “ 31. The shoulder at
x “ 31 closely matches one of the known peak centers in the synthetic signal
at x “ 30. However, the other shoulder at x “ 24 deviates significantly from
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Figure 3.14. Analysis of peak and shoulder detection in a signal. Top: Normalized signal
(blue) with detected peaks (red circles) and shoulders (green squares). The
dashed red line indicates the threshold below which shoulders are excluded.
Middle: First derivative of the signal showing zero-crossings at peak loca-
tions. Bottom: Second derivative with near-zero values indicating shoulder
locations. The positions of peaks and shoulders are marked consistently
across all three plots to demonstrate their relationship with the derivatives.
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its expected position at x “ 17. This discrepancy arose because the small
shoulder feature at x “ 17 was largely obscured by noise in the signal, and the
subsequent denoising process further diminished its detectability.

3.4 Decomposition of signals

The analysis of spectroscopic signals often requires decomposing an input sig-
nal into multiple physically meaningful components. To carry out this decom-
position rigorously, the signals are treated within the framework of tempered
distributions,which provides amathematical foundation for the analysis of func-
tions that may not exhibit rapid decay at infinity—a characteristic frequently
encountered in spectroscopic data.

A tempered distribution is a continuous linear functional on the Schwartz
space SpRnq. More precisely, let SpRnq be the space of infinitely differentiable
functions „ : Rn Ñ C (called test functions) such that for all multi-indices
–, — P Nn:

sup
xPRn

|x–D—„pxq| † 8 (3.44)

where x– “ x–1
1 ¨ ¨ ¨ x–n

n and D— “ B|—|

Bx
—1
1 ¨¨¨Bx—n

n

.

Then, a tempered distribution T P S 1pRnq is defined as a linear functional
T : SpRnq Ñ C that is continuous in the following sense: for any sequence
t„ku8

k“1
Ä SpRnq converging to 0 in the Schwartz topology, it holds that

lim
kÑ8

T p„kq “ 0 (3.45)

Any locally integrable function f with at most polynomial growth at infinity
defines a tempered distribution Tf via:

Tf p„q “
ª

Rn

fpxq„pxq dx, „ P SpRnq (3.46)

In spectroscopic analysis,measured signals naturally fit into this framework
as tempered distributions since they satisfy the growth conditions at infinity and
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are locally integrable. To decompose such a signal f P S 1pRnq, the objective is
to obtain a representation as a finite linear combination of reference functions
tgium

i“1
Ä SpRnq:

f «
mÿ

i“1

cigi (3.47)

where the coefficients tcium
i“1

are determined through least-squares optimiza-
tion in the L2 norm. The reference functions introduced in Appendix A are
chosen from the Schwartz space SpRnq to ensure they decay rapidly at infinity
and possess sufficient smoothness for spectroscopic analysis.

To apply this framework in practice, the locations of significant spectral
features in the signal are first identified. Consider a signal s with M identi-
fied features (peaks and shoulders) at locations tpti, sptiqquM

i“1
, found using the

methods described in the previous section. The decomposition of this signal
into a sum of distributions can be formulated as an optimization problem.
More precisely, the task is to find the set of distribution parameters tpiuM

i“1
that

minimise the residual given as the following:

Qdist “
Nÿ

j“1

˜
sptiq ´

Mÿ

i“1

Dpti; pjq
¸

2

(3.48)

where Dpti; pjq represents the value of a probability density function D evalu-
ated at position ti with parameters pj.

For instance, if the signal is composed of a sum of Gaussian density func-
tions, Equation 3.48 becomes

QGauss “
Nÿ

j“1

˜
sptjq ´

Mÿ

i“1

aie
´ptj´µiq2{2‡2

i

¸
2

(3.49)

where ai, µi, and ‡i are the amplitude, mean, and standard deviation of the
i-th Gaussian component, respectively. The parameters ai and µi are initialised
using the peak amplitudes and locations identified in the previous section.

For Lorentzian densities, the residual to optimise becomes

QLorentz “
Nÿ

j“1

˜
sptjq ´

Mÿ

i“1

ai
“i

ptj ´ t0

i q2 ` “i
2

¸
2

(3.50)
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where ai, t0

i , and “i are the amplitude,median, and median absolute deviation
of the i-th Lorentzian component, respectively. The parameters ai and t0

i are
initialised using the peak amplitudes and locations identified by the peak-
identification step.

For Voigt distributions, which are convolutions of Gaussian and Lorentzian
distributions, the optimization becomes more complex due to the additional
parameters needed to characterize both the Gaussian and Lorentzian compo-
nents. Similar to the previous cases, the peak amplitudes and locations from
the peak-identification step are used to initialize ai and the central positions
µi of each component. However, two width parameters must be initialized:
the Gaussian width ÊG and the Lorentzian width ÊL. A common approach is
to initially assume equal contributions from both broadening mechanisms by
setting y “ ÊL{ÊG “ 1 as a starting point for the optimization procedure. The
residual to optimise thus becomes

QVoigt “
Nÿ

j“1

˜
sptjq ´

Mÿ

i“1

aiK

ˆ
ti ´ µi

ÊG
, y

˙¸
2

. (3.51)

Figure 3.15 illustrates the decomposition of the signal using three different
profile types: Gaussian, Lorentzian, and Voigt distributions, each optimized
through the least squares method. The comparative analysis reveals that the
Gaussian profile provides the most accurate decomposition of the synthetic
signal, capturing both the peak positions and their relative intensities with
high fidelity.

All three fitting approaches demonstrate consistent identification of major
peaks, with the Gaussian fit exhibiting particularly well-defined peak separa-
tions. However, it is noteworthy that none of the methods detected the minor
peak at 17 units. This limitation can be attributed to the elevated noise level
in this region, which effectively masks the subtle spectral feature. The signal-
to-noise ratio in this region falls below the detection threshold necessary for
reliable peak identification, regardless of the chosen profile type.
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Figure 3.15. Final Gaussian, Lorentzian and Voigt fitted results.
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3.5 Application to the given vibrational spectral data

Figure 3.16. Simulated ammonia infrared spectrum and its Lorentzian decomposition.

This section illustrates the application of the methods outlined in this
chapter for the analysis of vibrational spectral signals derived either from
experimental data or computational simulations. First, the infrared spectral
signal of ammonia is examined, as computed using the TheSeuSS quantum
mechanical calculation package [79]. The package generates the spectrum by
broadening each vibrational frequency (corresponding to the identified normal
mode frequencies) with a Lorentzian function and summing these distributions.
Given this construction method, Lorentzian fitting was naturally employed to
decompose the signal back into its constituent distributions.

The spectral peaks exhibited relatively narrow profiles compared to the
overall domain size. Given that the data set consisted of 100 points, a window
size of 5 was selected for peak detection. The threshold for the peak detection
step was set to 10´5, reflecting the significant differences in peak heights.
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Additionally, no peaks were filtered based on their magnitudes, owing to both
the substantial variation in peak intensities and the cleaness of the signal.

Frequency in sim. data (cm´1) Frequency peaks detected (cm´1)

468
1112
1631
3287
3405

467
1111
1631
3286
3412

Table 3.1. Performance benchmark of the introduced method for simulated IR spectrum
of solid ammonia. Abbreviation: sim.: simulated reference data.

Baseline correction was performed using the arPLS method, not to elimi-
nate the baseline itself, but to enhance the clarity of the signal and facilitate
more accurate identification of the maximum spectral intensity. A low smooth-
ing parameter, ⁄ “ 200, was chosen, along with a ratio criterion of 10´6, to
achieve optimal baseline adjustment and peak isolation. The Lorentzian de-
composition of the given signal is shown in Figure 3.16.

The simulation predicted peaks at 468, 1112, 1631, 3287, and 3405 cm´1,

corresponding to lattice mode, symmetric bending, antisymmetric bending,
symmetric stretching, and a combination of symmetric stretching and lattice
mode vibrations, respectively. Table 3.1 compares the peak information ob-
tained using the method introduced in this chapter with the peak locations
provided by the simulation.

As an experimental sample, the Raman spectral signal of abelsonite is
analysed. Discovered in the 1970s in Utah, United States, and officially named
in 1976 [80], abelsonite was selected due to its distinctive porphyrin structure.
This structure exhibits characteristic vibrational modes between 600 and 700
cm´1 corresponding to C-H bond vibrations, alongside significant peaks around
1500 cm´1. The signal is further complicated by contributions from nickel-
coordinated ligands, producing peaks in the range of 400 to approximately 600
cm´1, as well as complex deformationmodes between 700 and 1000 cm´1. [81]
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Figure 3.17. Gaussian decomposition of an abelsonite Raman spectrum from RRUFF
datasbase.

These overlapping features make the spectral output particularly intriguing
and challenging, enhancing its suitability for demonstrating the robustness of
the proposed methods.

The modified sinc method, with m “ 91 and a degree of 4, was applied
to denoise the signal. Wavelet transformation was not employed since the
denoised signal produced by the modified sinc method did not exhibit any
irregularities. The resulting signal was then interpolated using cubic splines,
generating 10,000 data points. For peak detection, a window size of 10 was
used, with a minimum amplitude threshold of 0.01 and a median local peak
threshold of 0.05. Baseline correction was deemed unnecessary, as no baseline
was detected in the RRUFF dataset from which the signal was obtained. [82]

Figure 3.17 presents the Gaussian-decomposed and fitted Raman spec-
trum of abelsonite. All physically significant peaks are correctly identified,
with a distinct, albeit smaller, peak at 657 cm´1 that highlights the porphyrin
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structure characteristic of the abelsonite crystal.



CHAPTER 4

Fourier integrator molecular dynamics

當時에녀던길을몇해를버려두고

어디가다니다가이제사돌아온고

이제나돌아오나니딴데마음마로리

퇴계이황 (退溪 李滉)

陶山十二曲 第十曲

Years of pursuits, I let slip away
After wandering, I finally returned
Returned at last, I shall remain still.

Toegyeo Yi Hwang
Twelve Songs from Dosan, No. 10

Molecular dynamics simulations have become an essential tool for understand-
ing molecular behaviour across various time and length scales.[83] Traditional
approaches often struggle to directly isolate and analyse specific vibrational
modes or frequency bands, particularly when studyingmolecular spectroscopy.
Such capability would be valuable for investigating energy transfermechanisms
[84] and for efficient investigation targeted to specific vibrational modes and
frequencies. To address this, the present framework begins with a harmonic
ansatz and is subsequently extended to incorporate anharmonic mode cou-
plings, which are then analysed quantitatively. Let A be an arbitrary molecule
under study, and let its mth-mode vibrational state as Apmode mq Energy trans-
fer between the vibrational modes of A, can be analysed by examining the
energy difference �Emode in a reaction of the form:

Apmode iq ` ¨ ¨ ¨ ` Apmode jq Ñ Apmode kq ` ¨ ¨ ¨ ` Apmode lq ` �Emode (4.1)

where the mode index indicates the vibrational mode of the molecule A. [85]
To study the energy transfer between modes and mode-specific energy con-
tributions, it is essential to analyse the dynamics starting from specific initial
molecular modes. However, this poses a significant challenge, as conventional

99
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molecular dynamics simulations treat all vibrational modes simultaneously and
operate in a non-frequency-specific coordinate system,making it difficult to
isolate and analyse the behaviour of individual modes.

This chapter introduces a novel approach to molecular dynamics that
operates directly in the Fourier space spanned by molecular vibrational mode-
specific phase space coordinates. This enables selective study of specific vi-
brational modes while maintaining approximately the same amplitudes and
phase couplings they would have in conventional time-domain molecular dy-
namics simulations. The method builds upon the mathematical foundation
of symplectic integrators while exploiting the natural structure of molecular
vibrations in frequency space. This approach offers three key advantages over
conventional methods.

1. It enables precise isolation of dynamical components corresponding to
specific vibrational modes, allowing detailed analysis of mode-specific be-
haviour following cues from experiment or from fundamental calculations.

2. It provides a computationally efficient framework for studying vibrational
dynamics, reducing the number of energy evaluations required to obtain
spectroscopic information in the frequency window of interest.

3. It increases numerical stability even with simple (modified) Verlet-type inte-
grators, as the equations of motion in Fourier space naturally preserve the
symplectic structure of the dynamics, potentially allowing larger maximum
time-steps when probing lower frequency bands.

The following sections develop this framework systematically, beginning
with the mathematical foundations of Fourier integrators, proceeding through
their implementation in molecular dynamics, analysing the treatment of har-
monic and anharmonic contributions, and concluding with practical applica-
tions to molecular systems with nontrivial number of atoms. This progression
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aims to demonstrate both the theoretical rigour and the practical utility of this
approach to molecular dynamics simulations.

4.1 Integrators on Fourier-expanded variables

Executing molecular dynamics simulations focused on vibrational modes re-
quires fundamental modifications to the integration algorithm to operate di-
rectly on modal coordinates. The dynamical evolution is performed on Fourier-
transformed variables, necessitating adaptation of the integrator to handle
these transformed coordinates effectively. The integration scheme must main-
tain fidelity to mode-specific dynamics while accurately capturing anharmonic
behaviour and inter-mode coupling phenomena beyond the harmonic approx-
imation. These requirements intrinsically demand that the integrators exhibit
nonlinear characteristics, possess mode specificity, and operate directly within
the Fourier-expanded coordinate space.

For simplicity, consider first a 1-dimensional problem with phase-space
coordinates given by position r “ rptq and momentum p “ pptq. The position
variable can then be expanded in a discrete Fourier series

rptq “
ÿ

k

rkeiÊkt (4.2)

for some amplitude variables rk and frequencies Êk. Given a Lagrangian L “
Lpr, pq of the problem, the change in momentum variable in the Fourier-space
can be written as:

9p “ ”L
”r

“
ÿ

k

BL
Brk

Brk

Br
“

ÿ

k

e´iÊkt BL
Brk

. (4.3)

Recalling the Liouville operator formulation of velocity Verlet introduced
in Chapter 2.1, the radial Liouville operator given in Definition 2.3 of the one-
dimensional problem can be written as

L̂rf “
«

ÿ

k

p 9rk ` irkÊkqeiÊkt

�
ÿ

j

e´iÊjt Bf

Brj
“

ÿ

k,j

eipÊk´Êjqtp 9rk ` irkÊkq Bf

Brj
(4.4)
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for an arbitrary function f defined over the phase space. Due to the nature of
the Fourier expansion, the following lemma holds.

Lemma 4.1.
!

L̂r, L̂r

)
“ 0, where t¨, ¨u is the Poisson bracket.

Proof. By writing L̂r “ ∞
k,j Wk,j

B
Brj

“ Wk,j
B

Brj

, one can immediately see that

!
L̂r, L̂r

)
f “ BL̂r

Br¸

BL̂r

Bp¸
f ´ BL̂r

Bp¸

BL̂r

Br¸
f

“
ÿ

k,j,¸

ˆBWk,j

Br¸

B
Brj

` Wk,j
B2

Br¸Brj

˙ˆBWk,j

Bp¸

B
Brj

` Wk,j
B2

Bp¸Brj

˙
f

´
ÿ

k,j,¸

ˆBWk,j

Bp¸

B
Brj

` Wk,j
B2

Bp¸Brj

˙ˆBWk,j

Br¸

B
Brj

` Wk,j
B2

Br¸Brj

˙
f

“ 0

(4.5)

as stated. Note that this statement holds only if

B¸f

Bra1 ¨ ¨ ¨ Bram
Bpb1 ¨ ¨ ¨ Bpbn

“ B¸f

Br‡pa1q ¨ ¨ ¨ Br‡pamqBp‡pb1q ¨ ¨ ¨ Bp‡pbnq
(4.6)

for any permutation on the indices, ‡, and m ` n “ ¸ P N. This statement holds
because the Fourier space basis functions form a linearly independent set,
meaning that any derivative with respect to the coordinates

ra1 , ¨ ¨ ¨ , ram
, pb1 , ¨ ¨ ¨ , pbn

(4.7)

can be expressed as a sum over all possible permutations of these indices,
each corresponding to a direct combination of basis sets. [86]

Lemma 4.1 then immediately gives the following for some phase-space
function fpr, pq:

eL̂r�tfpr, pq “
8ÿ

n“0

8ÿ

k,j“´8

1
n!e

inpÊk´Êjq�tp 9rk ` iÊkqn�tn Bnf

Brj
n

(4.8)

Similarly, as

L̂pfpr, pq “
ÿ

k

e´iÊkt BL
Brk

Bf

Bpk
“

ÿ

k,j

e´iÊkt Brj

Bpk

BL
Brk

Bf

Brj
(4.9)
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Figure 4.1. Trajectory information of a simple harmonic oscillator obtained by the Fourier
integrators. All parameters, A, Ê, and m are set to 1. a) Phase portrait of the
simple harmonic oscillator. b) Real and imaginary trajectories of position
and momentum of the + mode. c) Real and imaginary trajectories of position
and momentum of the - mode. The y-axes for r˘ (red) and p˘{m (green) are
labelled differently so that the two circles, which otherwise overlap, can be
clearly distinguished.

the half time-step on fpr, pq can be written as

eL̂p�t{2fppq “
8ÿ

n

ÿ

k

1
n!e

´inÊk�t

ˆ Brj

Bpk

BL
Brk

˙n Bnf

Brj
n

�tn

2n
. (4.10)

The quantity Brj{Bpk can be obtained by the Hamilton’s equations of motion.
As shown in Lemma 4.1, the following can be shown to be true:

!
L̂p, L̂p

)
“ 0. (4.11)

In general,
!

L̂p, L̂r

)
‰ 0. With these information, it becomes immediate that

one can use Trotter’s theorem to obtain the velocity Verlet integrators in Fourier
basis as shown in Chapter 2.1.2.
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4.1.1 Simple harmonic oscillator and Fourier integrators

Consider a one-dimensional harmonic oscillator with single vibrational mode.
The position variable can be written as

rptq “ r` ` r´ “ Ae´iÊt ` AeiÊt “ 2A cos Êt (4.12)

where A and Ê are the amplitude and frequency, respectively. For all continu-
ously differentiable f , the positional Liouville operator reads

L̂rrf s “ iÊ

ˆ Bf

Br`
´ Bf

Br´

˙`
AeiÊt ´ Ae´3iÊt ´ e´2Êit ` 1

˘
(4.13)

which yields

L̂rrr˘s “ ˘iÊA
“
eiÊt ´ e´3iÊt ´ e´2iÊt ` 1

‰

ùñ r˘pt ` �tq « r˘ptq ˘ iÊA
“
eiÊ�t ´ e´3iÊ�t ´ e´2iÊ�t ` 1

‰ (4.14)

where the single time-step evolution is obtained by keeping the lowest term in
Equation 4.8. With – as the Hooke’s constant,

BL
Br˘

“ ´–pAeiÊt ` Ae´iÊtq (4.15)

and from p˘ “ ˘miÊAe˘iÊt,

Br`
Bp`

“ 1
miÊ

,
Br`
Bp´

“ 0

Br´
Bp`

“ 0,
Br´
Bp´

“ ´ 1
miÊ

(4.16)

The half time-step evolution in momenta is thus

eL̂p�t{2p˘ « p˘ ¯ �t

2
i–

mÊ

“
e´iÊ�t{2pAeiÊt ` Ae´iÊtq ` eiÊ�t{2pAeiÊt ` Ae´iÊtq

‰
. (4.17)

Note that, if this is done for a molecular system, the force field parameters are
enter via the Hooke’s constant, –.

Figure 4.1 shows the real phase space portrait and the mode trajectory
information in complex plane. The real phase space portrait is circular as
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Figure 4.2. Phase space trajectories of carbon dioxide vibrational modes: a) O-C-O bond
angle vibrational mode, b) C-O symmetric bond vibrational mode, and c) C-O
anti-symmetric vibrational mode.

expected by traditionally solved simple harmonic oscillator, showing that the
method works perfectly for simple harmonic oscillators.

To facilitate a deeper understanding of the theoretical framework, the
Fourier integrator was employed to simulate the dynamics of carbon dioxide.
As discussed in Section 2.2, carbon dioxide exhibits three primary vibrational
modes: the symmetric stretching of the C-O bonds, the asymmetric stretching
of the C-O bonds, and the bending of the O-C-O angle.

The frequencies and normal modes were manually encoded based on
known experimental values for these modes. The initial conditions for the
simulation were set with positions determined from the equilibrium positions
plus random values in the range of (0, 0.1) Å, while velocities were initialised
with random values in the range of (0, 0.01) Å/ps. Figure 4.2 demonstrates
that the phase-space trajectories of these vibrational modes closely resemble
the phase-space diagrams of simple harmonic oscillators. This outcome is
anticipated, as the integrators operate independently on eachmode, assuming
harmonic motion for each vibrational mode.

The evolution of the bond lengths and bond angle is illustrated in Figure
4.3. As expected, the bond lengths oscillate around their equilibrium values,



CHAPTER 4. FOURIER INTEGRATOR MOLECULAR DYNAMICS 106

Figure 4.3. First two picoseconds of changes in a) bond-length and b) bond-angle for an
artificial all-harmonic potential of carbon dioxide. The Hamiltonian of the
system is Equation (2.4).

while the bond angle fluctuates around 180 degrees.

The observations from Figures 4.1 and 4.2 immediately allow us to hypoth-
esize that the following theorem holds.

Theorem 4.2. Let P be the phase space of an n-body system and denote Pnv

as the subspace of P with nv distinct vibrational modes obtained by the Fourier
integrator defined in this section. Suppose the rk are time-independent in rptq “
∞

k rkeiÊkt. The space Pnv is isomorphic to the product space of nv number of
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circles, S1.

Pnv –
nv°

i“1

S1 (4.18)

Proof. This statement is proved inductively. For the casewhere nv “ 1, Equation
4.8 becomes

eL̂r�tr1 “
8ÿ

n“0

1
n!pir1Ê1qn�tn “ eir1Ê1�t (4.19)

for some r1, Ê1 P R, and Equation 4.10 becomes

eL̂p�t{2p1 “ eiÊ1�t{2

8ÿ

n“0

1
n!pir1Ê1qn Bn´1p1

Br1
n´1

�tn

2n
“ eiÊ1 �t

2
B

Br1 p1. (4.20)

As �t « 0 is expected, letting �t Ñ 0 gives

dr1

dt
“ ir1Ê1

dp1

dt
“ ip1Ê1

(4.21)

which gives

d

dt
p|r1|2 ` |p1|2q “ d

dt
pr1r̄1 ` p1p̄1q

“ r1

dr̄1

dt
` r̄1

dr1

dt
` p1

dp̄1

dt
` p̄1

dp1

dt

“ r1p´iÊ1r̄1q ` r̄1piÊ1r1q ` p1p´iÊ1p̄1q ` p̄1piÊ1p1q
“ 0

(4.22)

Hence, the phase space trajectory is expected to give a circular motion for
nv “ 1. Now, suppose that the statement holds up to the case with nv ´ 1
normal modes, i.e. Pnv´1 – ënv´1

i“1
S1. Adding another pair of modes prnv , pnv q,

the phase space becomes Pnv “ Pnv´1 ˆ P1. From Lemma 4.1, the Liouville
operators commute, hence the evolution of the nv-th mode is independent
of the previous nv ´ 1 modes. Therefore, by the same argument as the base
case, the additional mode traces a circular trajectory in its phase space, giving
P1 – S1.
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The total phase space can then be written as

Pnv “ Pnv´1 ˆ P1 –
˜

nv´1°

i“1

S1

¸
ˆ S1 “

nv°

i“1

S1 (4.23)

where the first isomorphism follows from the inductive hypothesis and the
base case. Hence, by induction, the statement holds for all nv P N.

While the Fourier integrator successfully captures harmonic vibrational
motions, as demonstrated in the CO2 example, real molecular systems often ex-
hibit more complex dynamical behaviours. The phase space trajectories shown
in Figures 4.2 and 4.3 represent idealized harmonic oscillations, but deviations
from this behaviour can occur due to various physical effects. This observation
naturally leads us to examine how the Fourier integration framework extends
to non-harmonic molecular motions.

4.2 Molecular dynamics with Fourier integrators

The implementation of molecular dynamics simulations in Fourier space re-
quires modified integration schemes that can simultaneously handle both
harmonic oscillations and anharmonic effects. This formulation enables selec-
tive investigation of specific frequency bands while maintaining the symplectic
nature of the dynamics, ultimately allowing for accurate computation of vibra-
tional spectra and mode-specific molecular motion.

In general,molecularmotion comprises both vibrational andnon-vibrational
components. The latter, non-quadratic anharmonic contributions to the vi-
brational modes, exist outside the space Pnv

, even for a molecule with nv

vibrational modes, as the anharmonic contributions are not on the tori de-
scribing the purely harmonic modes. This follows directly from Theorem 4.2.
Anharmonic motions arise when molecular vibrations deviate from ideal har-
monic oscillator behaviour, typically occurring at higher energies where the
potential energy surface can no longer be approximated by a quadratic function.
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These anharmonic effects manifest through mode coupling and combination
frequencies in the Fourier spectrum.

The separation of harmonic and anharmonic contributions in themolecular
Lagrangian is possible in a perturbative treatment of anharmonic effects. Near
the equilibrium configuration, the potential energy surface can be expanded
in a Taylor series around the minimum:

V prq “ V0`
ÿ

i

ˆBV

Bri

˙

0

ri`
1
2

ÿ

i,j

ˆ B2V

BriBrj

˙

0

rirj`1
6

ÿ

i,j,k

ˆ B3V

BriBrjBrk

˙

0

rirjrk`¨ ¨ ¨ (4.24)

where the subscript 0 denotes evaluation at the equilibrium geometry. The
first derivative terms vanish at the minimum, the quadratic terms give rise
to harmonic vibrations, and the higher-order terms represent anharmonic
corrections.

In Fourier space, these anharmonic terms introduce coupling between
different modes. For instance, the cubic term transforms as

rirjrk “
ÿ

n,m,l

ri,nrj,mrk,le
ipÊn`Êm`Êlqt (4.25)

leading to a natural decomposition of the Lagrangian into

L “ Lvib ` Lnon-vib (4.26)

where Lvib describes the harmonic vibrational motions (containing terms up
to quadratic order), and Lnon-vib encompasses all other contributions including
the mode-coupling terms.

For the purely vibrational components, which are inherently conservative,
the Euler-Lagrange equation for Lvib follows the standard form:

BLvib

Brµ
´ d

dt

BLvib

B 9rµ
“ 0, (4.27)

where trµuµ are the generalized coordinates in Fourier space.
However, when including anharmonic contributions, the Euler-Lagrange

equation becomes modified by additional source terms:
BLnon-vib

Brµ
´ d

dt

BLnon-vib

B 9rµ
“ Sprµ, 9rµq, (4.28)
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where the source term S can be expanded in Fourier series as

Sprµ, 9rµq “
ÿ

k

SkeiÊkt `
ÿ

k,l

Sk,le
ipÊk`Êlqt `

ÿ

k,l,m

Sk,l,meipÊk`Êl`Êmqt ` ¨ ¨ ¨ (4.29)

with coefficients Sk, Sk,l, and Sk,l,m determined by the specific form of the
anharmonic potential.

The source term can be computed by transforming the anharmonic compo-
nents of the Lagrangian into Fourier space. This is achieved through a two-step
process: first, isolating the non-harmonic terms by subtracting Lvib from the
total Lagrangian, then projecting these terms onto the Fourier basis using the
mode frequencies Êk.

While the theoretical framework establishes the basis for molecular dy-
namics in Fourier space, practical implementation requires careful numerical
considerations. The step-by-step procedure is formalized in Algorithm 5.

The algorithm efficiently updates normal modes through subspace itera-
tion, projecting onto previous modes to avoid full Hessian re-diagonalization.
While the initial diagonalization can be computationally expensive for large
molecules, subsequent updates become more efficient by leveraging existing
vibrational modes and the Fourier basis, reducing the cost of force propagation
to inexpensive mode-wise scaling operations instead of repeated full Hessian
re-diagonalizations.

The algorithm implements the modified velocity Verlet integration scheme
in the Fourier basis (Section 4.1), separating harmonic motion in the nor-
mal mode space from anharmonic contributions through the source term.
A Langevin thermostat with friction coefficient “ “ 0.1{ps maintains tempera-
ture control, where › represents complex Gaussian white noise with zero mean
and unit variance. The Langevin thermostat was used since it ensures accurate
temperature regulation while introducing local stochastic forces and dissi-
pative damping, enabling realistic thermal fluctuations without significantly
disrupting the intrinsic vibrational dynamics. For large amplitude motions that
exceed an energy threshold, the algorithm updates the reference geometry
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Algorithm 5 Fourier Basis Molecular Dynamics
1: Initialize reference geometry r0 and compute Hessian H

2: Obtain the eigenmodes, tvkuk of mass-weighted Hessian M
´1{2

HM
´1{2

3: Initialize mode coordinates rk and momenta pk with thermal energy kBT
4: Set energy difference threshold ‘ “ 5% and initialize Eprev “ 0
5: for each time step t do
6: Transform to Cartesian coordinates: rptq “ r0 ` ∞

k rkptqeiÊkt
M

´1{2
vk

7: Compute total force Ftotal and harmonic force Fharm “ ´Hprptq ´ r0q
8: Calculate source term S “ Ftotal ´ Fharm
9: Project source onto modes: Sk “ v

:
kM

´1{2
S

10: Update momenta: pkpt ` �t
2

q “ pkptq ` �t
2

pSke´iÊktq
11: Update positions: rkpt ` �tq “ rkptqeiÊk�t ` pkpt` �t

2 q
Êk

eiÊk�t

12: Complete momentum update: pkpt ` �tq “ pkpt ` �t
2

q ` �t
2

pSke´iÊkpt`�tqq
13: Apply Langevin thermostat: pk Ñ pke´“�t `

a
2“kBT p1 ´ e´2“�tq›

14: Calculate current total energy Ecurr “ ∞
kp1

2
p2

k ` 1

2
Ê2

kr2

kq
15: Compute energy difference: �E% “ |Ecurr ´ Eprev|{Eprev ˆ 100%
16: if �E% ° ‘ then
17: Update reference geometry and normal modes
18: Recompute the Hessian of the potential, and obtain new normal

modes
19: Project state onto new modes preserving energy
20: end if
21: Set Eprev “ Ecurr
22: end for

and projects the system onto new normal modes obtained through subspace
iteration of the Hessian. Note that since the normal mode basis is redefined af-
ter each update, care must be taken in enumerating the degrees of freedom to
ensure consistent tracking of vibrational modes across iterations, particularly
in the presence of near-degenerate frequencies.
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Figure 4.4. Carbon dioxide vibrational spectra obtained using the methods introduced
in this section with the harmonic potential.

4.2.1 Frequency band selective dynamics

The Liouville operator formalism incorporates anharmonic contributions through
source terms in the modified Euler-Lagrange equations. Analysis of the result-
ing trajectories in the frequency domain reveals these anharmonic effects and
guides mode selection. For a trajectory qptq evolved with the source-modified
integrator over time window r0, T s, its Fourier transform:

q̃pÊq “
ª T

0

qptqe´iÊtdt (4.30)

and the conjugate momentum in frequency space:

p̃pÊq “ iÊq̃pÊq (4.31)

provide a basis for analyzing the actual distribution of motion across frequen-
cies. For a specific frequency band rÊ1, Ê2s, construction of new normal modes
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proceeds through integration:

Ê1,Ê2u “
ª Ê2

Ê1

„
q̃pÊq ` i

Ê
p̃pÊq

⇢
dÊ (4.32)

Within the specified frequency band [Ê1, Ê2], a restricted Lagrangian is
constructed:

Lvib
restricted “

ÿ

ÊPrÊ1,Ê2s

1
2p 9̃qpÊq 9̃qpÊq ´ Ê2

q̃pÊqq̃pÊqq (4.33)

By Theorem 4.2, this restricted dynamics preserves the symplectic struc-
ture, as each Fourier mode evolves independently on its harmonic toric space.
The anharmonic contributions from coupling and external forces appear as
projections onto these modes, leading to the equations of motion:

d

dt
q̃pÊq “ BLvib

restricted
Bp̃˚pÊq (4.34)

d

dt
p̃pÊq “ ´BLvib

restricted
Bq̃˚pÊq (4.35)

The orthogonality of the Fourier basis [86,87] ensures these equations evolve
independently at each frequency,maintaining the symplectic structure of the
original system within the selected band. Unlike Algorithm 5, this approach
eliminates Hessian computations by selecting frequency bands and modes
directly from trajectory data.

Combining Algorithms 5 and 6 enables sequential analysis of vibrational
spectra: first, Algorithm 5 generates trajectory data, which Algorithm 6 then
refines within specific frequency bands. Figure 4.4 demonstrates this method
applied to carbon dioxide, where Algorithm 5 ran for 1000 steps followed by
Algorithm 6 for another 1000 steps, both using a 1 fs time step. The vibrational
spectra show excellent agreement with experimental values [88,89], capturing
the bending (667 cm´1), symmetric stretching (1,388 cm´1), and antisymmetric
stretching modes (2,349 cm´1). While this validates the proposed method, it
also motivates a deeper investigation into molecular anharmonicity, which is
undertaken in the following section.
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Algorithm 6 Frequency Band Selective Molecular Dynamics
1: Load trajectory data tqptiquN

i“1
and velocities tvptiquN

i“1

2: Select frequency band rÊ1, Ê2s of interest
3: Apply window function wptq to trajectory data (e.g., Hann window)
4: Compute discrete Fourier transforms:

q̃pÊkq “ 1
N

Nÿ

i“1

wptiqqptiqe´iÊkti , p̃pÊkq “ mṽpÊkq

where Êk “ 2fik{T for k such that Êk P rÊ1, Ê2s
5: Initialize band-restricted coordinates:

q̃bandpÊkq “
#

q̃pÊkq if Êk P rÊ1, Ê2s
0 otherwise

6: Construct restricted Lagrangian: Lvib
restricted “ ∞

ÊkPrÊ1,Ê2s
1

2
p| 9̃qpÊkq|2 ´

Ê2

k|q̃pÊkq|2q
7: for each time step t do
8: Force computation in restricted space:
9: Transform to real space: qbandptq “ ∞

ÊkPrÊ1,Ê2s Rerq̃pÊkqeiÊkts
10: Compute real-space forces: Fband “ ´ÒV pqbandq
11: Project forces to frequency space: F̃pÊkq “

≥T

0
Fbandptqe´iÊktdt{T

12: Update positions and momenta for each Êk P rÊ1, Ê2s:
13: p̃pÊk, t ` �t

2
q “ p̃pÊk, tq ` �t

2
F̃pÊkq

14: q̃pÊk, t ` �tq “ q̃pÊk, tqeiÊk�t ` p̃pÊk,t` �t

2 q
mÊk

peiÊk�t ´ 1q
15: p̃pÊk, t ` �tq “ p̃pÊk, t ` �t

2
q ` �t

2
F̃pÊkq

16: Apply Langevin thermostat to each mode Êk:

17: p̃pÊkq Ñ p̃pÊkqe´“�t `
a

2m“kBT p1 ´ e´2“�tq›̃pÊkq
18: where ›̃pÊkq is complex Gaussian noise with x›̃pÊkqy “ 0, x|›̃pÊkq|2y “ 1
19: end for
20: Reconstruct real-space trajectory via discrete Fourier synthesis:

qbandptjq “
ÿ

ÊkPrÊ1,Ê2s
2Rerq̃pÊkqeiÊktj s

for output time points ttju
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4.3 Understanding anharmonicities through phase
space analysis

Characterizing anharmonicities and harmonic mode couplings in molecular
dynamics remains a significant challenge. While harmonic modes are funda-
mental to analyzing molecular vibrations, understanding their coupling and
energy exchange through anharmonic interactions is essential for explaining
energy redistribution and spectroscopic properties. Traditional approaches
require detailed knowledge of the potential energy surface—often computa-
tionally intractable for complex systems.

This section presents a geometric approach that leverages Fourier integrator-
based molecular dynamics to circumvent these limitations. By analysing the
phase-space manifold in the Fourier mode basis, molecular motion is sepa-
rated into harmonic and anharmonic components without requiring explicit
knowledge of the potential energy surface. The phase space naturally decom-
poses into two structures: a product of harmonic tori (each representing a pure
harmonic mode’s closed path) and a quotient space capturing anharmonic mo-
tion. This decomposition enables quantification of inter-mode energy transfer
directly from molecular trajectories.

This geometric approach is demonstrated using carbon dioxide as the
model system.

4.3.1 Phase space manifold structure in Fourier mode basis

The phase space structure of carbon dioxide in the Fourier mode basis can be
visualized in R3 through dimensionality reduction, as shown in Figure 4.5. The
resulting manifold illustrated in the figure captures 99.8% of the total variance,
with the first two principal components accounting for 54.4% and 45.4% re-
spectively. The colour gradient on the manifold represents the total energy
distribution, providing insight into the energetic landscape of the molecular
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Figure 4.5. The phase space manifold of CO2 in Fourier mode basis. a) Phase-space man-
ifold of CO2 in Fourier mode basis projected onto R3 via PCA. b) Submanifold
of the bending mode dynamics in phase space. c) Submanifold showing the
coupling between symmetric stretch mode momentum and bending mode
position.

motion.

The manifold decomposes into toric submanifolds representing specific
modes of motion, alongside regions capturing anharmonicities. Figure 4.5b
shows the phase space structure of the bending mode, where the purely har-
monic nature of this mode in the Fourier basis produces a perfect circular
trajectory within the potential well. This circular path demonstrates the con-
servation of the bending mode’s energy contribution throughout the motion.

Figure 4.5c illustrates the coupling between symmetric stretch mode mo-
mentum and bending mode coordinates. The trajectory on this submanifold
exhibits a distinctive sieve-like pattern bounded by energy constraints. This
non-circular oscillatory behavior provides direct evidence of energy transfer
through the symmetric mode.
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Figure 4.6. Trajectories on the phase space manifold of CO2 in Fourier mode basis. a)
Total trajectory projected onto the manifold. b) Harmonic mode trajectories
on the manifold. c) Energy evolution over time. The constant total energy
(solid black) is distributed among mode contributions (coloured regions) and
anharmonic contributions (dashed line), showing energy transfer between
modes.

Figure 4.6a) shows the total trajectory (black) on the manifold, which
includes both harmonic and anharmonic components of the motion. The
irregular pattern of this trajectory reflects the complexity arising from mode
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coupling and anharmonic effects.
Figure 4.6b) presents the decomposition into individual harmonic mode

trajectories, with each mode shown in a different colour. The bending mode
(red), symmetric stretch (blue), antisymmetric stretch (green), and small vibra-
tions in the higher-frequency domain (purple) exhibit more regular patterns
compared to the total trajectory, characteristic of harmonic motion. However,
their paths still show deviations from perfect periodic orbits, indicating residual
anharmonic effects.

The energy evolution plot (Figure 4.6c) quantifies the energy exchange
between modes over time. The stacked area plot reveals how energy flows
between different vibrational modes while maintaining constant total energy
(black line). The thickness of each coloured region represents the instantaneous
energy contribution from each mode. The persistent but small anharmonic
contribution (dashed line) demonstrates that while anharmonic effects are
always present, they remain bounded.

While the total energy remains conserved, individual mode-specific ener-
gies exhibit temporal variations due to inter-modal energy transfer driven by
anharmonic interactions. The anharmonic origin of these energy transfers is
evident in Figure 4.7, which illustrates the temporal evolution of energy distri-
bution. Prior to anharmonic energy input, each mode maintains a constant
energy contribution. Following the input, the energy contributions fluctuate
across modes, indicating inter-modal energy transfer.

To quantify the energy transfer dynamics, the correlation between modal
energy contributions is computed:

CorrpEi, Ejq “ CovpEi, Ejq
‡Ei

‡Ej

(4.36)

where Ei and Ej denote the energies of modes i and j, respectively, Cov repre-
sents the covariance, and ‡ indicates the standard deviation. Figure 4.8 shows
the temporal evolution of energy correlations between harmonic modes after
anharmonic energy input at t=0.05 (normalized time). Positive correlations
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Figure 4.7. Normalised plot of energy evolution over time, where the anharmonic energy
input to the system is introduced from time 0.05 in the normalised scale.

indicate simultaneous increase or decrease in mode energies, while negative
correlations signify opposing energy changes. The bending and symmetric
stretch modes exhibit strong positive correlations, frequently approaching
unity, demonstrating robust energy coupling. During t=[0.06, 0.09], for ex-
ample, the mode energy plot confirms this coupling through synchronized
energy variations between these modes. In contrast, the symmetric and anti-
symmetric stretch modes display negative correlation in the later part of this
window, evidenced by their opposing energy trajectories. For high-frequency
small vibrational modes, the correlation of this mode to the bending mode
is negative in this domain, indicating energy transfer from one mode to the
other between these two modes.

Figure 4.9 illustrates the transfer rate between harmonic modes, calcu-
lated as the time derivative of the energy correlation. The high-frequency
small vibrational modes exhibit a strong transfer rate with the antisymmetric
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Figure 4.8. Energy transfer correlations (top) and mode energy fractions (bottom) in
CO2 after anharmonic excitation at t=0.05, in the normalised scale, showing
coupled vibrational dynamics between different normal modes.

stretch mode, indicating significant energy exchange between these modes.
Although the bending and symmetric stretch modes are positively correlated,
the exchange rate between these two modes is small in magnitude, indicating
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Figure 4.9. Normalised transfer rate over time for selected mode-couples. Anharmonic
excitation is introduced at t=0.05 in the normalised time scale.

that there is only a small energy exchange between these modes, but they
exchange energy indirectly via other modes.

4.4 Pseudo-normal modes for thermostatted
molecular system

In the previous sections, the Fourier integration framework, frequency-limiting
formulation of the dynamics and explicit consideration of anharmonicities in
Fourier integration frameworkwere established. Building upon this foundation,
this section turns attention to the changing nature of normal modes due to the
thermostats. For carbon dioxide molecule considered in the previous sections,
the Fourier integrators worked perfectly as the system size is small and the shift
in normal modes due to the dissipative terms is minimal. However, for bigger
molecules, even for relatively small molecules like phenol, if thermostats intro-
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duce dissipative terms and external energy-sources connected to a heat bath,
they can fundamentally alter the nature of vibrational dynamics, particularly
when anharmonic effects are present. The pseudo-normal mode approach
extends the framework by introducing a perturbative correction to standard
normal modes, creating a basis that captures anharmonic contributions to
molecular motion while maintaining compatibility with standard thermostats.
This method is widely used across various fields of physics concerned with
dissipative vibrational modes, including geophysics [90], fluid dynamics [91,92],
acoustics [93], and molecular physics [94].

4.4.1 Pseudo-normal modes of molecules under a thermostat

As established in Theorem 4.2, the phase space of a purely harmonic system
with nv vibrational modes is isomorphic to the product of nv circles. Each mode
follows an elliptic trajectory in its own subspace, reflecting the conservative
nature of harmonic motion. However, when such a system is coupled to a
thermal environment, this idealised structure is no longer preserved. The
presence of dissipative forces and stochastic energy exchange–characteristic
of thermostatted dynamics–distorts the harmonic geometry, as evidenced by
the non-elliptic, noisy trajectories observed in the normal mode representation
(see Figure 4.6).

This distortion signals a breakdown of the harmonic mode decomosition:
the normal mode basis, which once aligned with the invariant tori of the undis-
turbed phase space, no longer captures the true geometry of motion under
thermal influence. Dissipation alters not just the energies of individual modes,
but the very directions along which meaningful vibrational dynamics unfold. In
this context, the pseudo-normalmode approach arises as a natural extension–a
perturbative redefinition/correction of the modal basis that accomodates the
deformation of phase space structure induced by the heat bath.

Let tw1
µptq, ¨ ¨ ¨ wm

µptqu be the set of normal mode vectors of the molecule
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at time t and m be the total number of normal mode directions of the system.
The matrix elements of standard normal modes can then be formed as

Mµ‹ “ w‹
µptq (4.37)

where ‹ indexes the vibrational modes and µ indexes the coordinates. The
pseudo-normal modes can then be constructed as a perturbative modification
of Mµ‹ as

Pµ‹ “ Mµ‹ ` –̃”Mµ‹ (4.38)

where –̃ is a small dimensionless parameter controlling the strength of the per-
turbation, and ”Mµ‹ is a correction termderived fromanharmonic contributions
to the potential energy. [91] This formulation is motivated by the perturbative
expansion of the potential introduced in Equation 4.24. The standard nor-
mal modes are constructed via the diagonalization of the second-derivative
term of this equation, where ”Mµ‹ is designed to approximately account for
contributions from higher-order derivatives.

The quantity ”Mµ‹ can be obtained via correlations observed in the sys-
tem’s vibrational dynamics under thermal regulation. If one considers the
time series of mode-projected coordinates q‹ptq “ ∞

µ M :
‹µq̃µptq obtained by

projecting the mass-weighed Cartesian displacements, q̃µ, onto the harmonic
normal mode basis via M :. In a purely harmonic system, these coordinates
evolve independently, resulting in a diagonal time-averaged covariance matrix

Cµ‹ “ Èqµptqq˚
‹ ptqÍt « 1

Lt

Ltÿ

a“1

qµptaqq˚
‹ ptaq (4.39)

given that one is concerned with Lt past time-steps to evaluate C‹µ. How-
ever, when the system is under an influence of a thermostat, the off-diagonal
elements of Cµ‹ are non-zero due to the mode-mixing induced by the dissipa-
tion and anharmonicity. With this in mind, the correction matrix ”Mµ‹ can be
defined as

”Mµ‹ “
ÿ

Ÿ‰‹

MµŸCŸ‹ (4.40)
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which represents a linear mixing of mode vectors weighted by their dynamic
correlations.

Once the pseudo-normal mode matrix, Pµ‹, is obtained, one can construct
a transformation matrix that maps the normal mode coordinates to pseudo-
normal mode coordinates:

Tµ‹ “
ÿ

Ÿ

P :
µŸMŸ‹ . (4.41)

This transformation maps the normal mode coordinates to pseudo-normal
mode coordinates as:

qpP q
µ “

ÿ

Ÿ

TµŸqŸ, ppP q
µ “

ÿ

Ÿ

TµŸpŸ (4.42)

Thermostats can then be applied to each pseudo-mode independently, by
evolving them as damped harmonic oscillators with a corrective rescaling
step that drives each mode’s energy toward the thermal target. Since the
dynamics is defined in the normal mode frame, the updated coordinates must
be projected back using the inverse of the transformation matrix:

qnewµ “
ÿ

Ÿ

`
T ´1

˘
µŸ

qpP q
Ÿ , pnewµ “

ÿ

Ÿ

`
T ´1

˘
µŸ

ppP q
Ÿ (4.43)

This approach allows thermostatting to operate in a rotated, perturbed ba-
sis that captures the influence of dissipation and anharmonic coupling while
preserving compatibility with the Fourier mode integrator.

By construction, the pseudo-normalmode transformation Tµ‹ “ ∞
Ÿ P :

µŸMŸ‹

is a square p3N ´ 6q ˆ p3N ´ 6q matrix that maps between two bases of the
same vibrational subspace. Since ”Mµ‹ is built from linear combinations of
the original normal mode vectors MµŸ, the transformation cannot increase
the rank or dimensionality of the space. The existence of T ´1 ensures that
the pseudo-normal modes span exactly the same p3N ´ 6q-dimensional space
as the original normal modes, where 6 degrees of freedom are removed to
account for the 3 translational and 3 rotational rigid-body motions.
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Figure 4.10. Average coupling matrix for the vibrational modes of phenol. The entries of
the matrix are correlation between the modes.

The overall flow of the procedure can be summarised as:

normal modes T››Ñ pseudo-normal modes thermostat››››››››Ñ
pseudo-normal modes T ´1››››Ñ normal modes (4.44)
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4.5 A case study: phenol

In this section, phenol molecule’s vibrational density of states from trajectories
obtained by traditional velocity Verlet integrators, Fourier method introduced
in this chapter and the Fourier method with pseudo-normal mode corrections.
The force field parameters are derived from the Generalized AMBER Force Field
(GAFF) [60] through the Nucleic Acid Builder (NAB) program [95]. NAB was
chosen for its capability to provide analytical expressions for both forces and
Hessians and its integrability to the AMBER molecular dynamics package [96].

Phenol, consisting of 13 atoms, has 33 vibrational modes. Table 4.1 lists
the vibrational modes of phenol along with their corresponding frequencies.
As can be seen from the table, the 33 vibrational modes of phenol exhibit a
variety of frequency values and different combinations of internal coordinate
contributions, including bond stretching, in-plane bending, out-of-plane bend-
ing, and torsion. The vibrational frequencies span from 242 cm´1 to 3,655
cm´1, with the highest frequency corresponding to the O-H stretch mode and
the lowest to the “CC mode with CO contribution. Many modes show mixed
character, particularly in the mid-frequency range, where multiple internal
coordinates contribute to single normal modes. For instance, the mode at
1,609 cm´1 combines CC stretching (64%), CH bending (18%), and CC bending
(10%), demonstrating the complex nature of phenol’s molecular vibrations.

Figure 4.11 presents six different vibrational density of states (VDOS) pro-
files, obtained via the traditional velocity Verlet integration method, the Fourier
integration scheme with and without pseudo-normal mode corrections, and
several band-limited Fourier integration approaches.

Figure 4.11a) highlights the importance of pseudo-normal mode correc-
tions in the Fourier integration scheme. The VDOS obtained from the standard
velocity Verlet method and from the Fourier-based method applied to pseudo-
normal modes show excellent agreement in peak positions, widths, and am-
plitudes. In contrast, the Fourier scheme without pseudo-normal corrections
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Table 4.1. Vibrational Modes and Frequencies of Phenol (gas phase). The ratios in the
vibrational mode descriptions indicate the relative contribution of each internal
coordinate to the normal mode, where ‹ represents bond stretching, ” repre-
sents in-plane bending, “ represents out-of-plane bending, and · represents
torsion. The values are from the work of Gábor Keresztury et al. in 293 K. [2]

Vibrational Mode Measured Frequencies (cm´1)

‹OH 3655
‹CH 3021, 3046, 3052, 3061, 3074

0.64‹CC+0.18—CH+0.1—CC 1609
0.66‹CC+0.16—CH+0.9—CC 1604
0.56—CH+0.33‹CC+0.06‹CO 1501
0.52—CH+0.33‹CC+0.08—OH 1472
0.63—CH+0.26—OH+0.07‹CC 1361

0.63‹CC+0.33—CH 1344
0.5‹CO+0.19‹CC+0.17—CH+0.1—CC 1261

0.45—OH+0.26‹CC+0.23—CH 1197
0.75—CH+0.24‹CC 1176
0.23‹CC+0.74—CH 1150
0.55‹CC+0.38—CH 1070

0.69‹CC+0.23—CH+0.06—CC 1026
0.61—CC+0.37‹CC 999
0.83“CH+0.17“CC 973
0.88“CH+0.11“CC 881, 956

“CH 823
0.42‹CC+0.30—CC+0.24‹CO 810
0.65“CH+0.07“CC+0.27“CO 752

0.05—CH+0.91“CC 687
0.82—CC+0.11‹CC+0.05‹CO 618
0.78—CC+0.11‹CC+0.09‹CO 526
0.49“CC+0.45“CO+0.06“CC 503

0.88“CC+0.12“CO 420
0.08—CC+0.08‹CC+0.79—CO 410

0.98·OH 310
0.87“CC+0.13“CO 242
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exhibits significant deviations in both amplitudes and peak locations.
Figures 4.11b)–d) display zoomed-in views of the VDOS under band-limited

Fourier integration. Each band-restricted simulation successfully captures
vibrational peaks within its targeted frequency window. The low-frequency
and high-frequency cases, shown in Figures 4.11b and 4.11d, fully isolate the
dynamics within their respective bands—yielding zero amplitude outside their
specified ranges.

The intermediate frequency range, targeting 1500–2000 cm´1 (Figure 4.11c)),
tells a slightly different story. While the method isolates the intended vibra-
tional modes, a small bump appears in the low-frequency region (900–1100
cm´1). This feature is not an unexpected artefact. The 1500–2000 cm´1 band
corresponds to ring deformations in phenol’s structure, and since the ring
is connected to other parts of the molecule, its motion couples with lower-
frequency vibrations such as those involving C-H and C-O bonds.

This coupling is also supported by the correlation matrix shown in Fig-
ure 4.10, where the 11th to 26th vibrational modes (which include this ring
region) are significantly correlated with lower-frequency modes below the
10th.
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Figure 4.11. Predicted vibrational density of states (VDOS) of phenol using traditional
and Fourier-based integration schemes. (a) VDOS obtained from trajectories
using traditional velocity Verlet integration (top, blue), Fourier integrators
including all vibrational modes (bottom, green), and Fourier integrators
with pseudo-normal mode corrections (middle, orange). (b) Zoomed-in
view of the 550–1100 cm´1 region, with band-limited dynamics applied
over a 500–1000 cm´1 bandwidth (dashed red). (c) Zoomed-in view of
the 1500–2000 cm´1 region, with band-limited dynamics over the same
frequency range (dashed brown). (d) Zoomed-in view of the 2900–3100
cm´1 region, with band-limited dynamics over the same range (dashed
purple).



CHAPTER 5

Geometrical molecular dynamics and
uncertainty-driven thermostat

... Das Verhältnis dieser Vorausset-
zungenbleibt dabei im Dunkeln;man
sieht weder ein, ob und in wie weit
ihre Verbindung notwendig, noch
a priori, ob sie möglich ist.
Georg Friedrich Bernhard Riemann

Über die Hypothesen, welche der
Geometrie zu Grunde liegen

The relationship between space and the
means of construction remains in dark-
ness; one perceives neither whether and
to what extent their connection is neces-
sary, nor a priori whether it is possible.
Georg Friedrich Bernhard Riemann

On the hypotheses which underlie
geometry

Classical molecular dynamics simulations are extensively employed to com-
pute both the qualitative and quantitative features of a molecule’s vibrational
density of states and its associated vibrational spectra. Despite the utility of
these simulations, reliably attributing spectral peaks in the vibrational density
of states or the power spectrum to specific normal modes or localised vibra-
tional motions remain a nontrivial problem, particularly in systems with strong
mode coupling or anharmonic effects.

In the harmonic approximation,wheremolecular coordinates remain close
to their equilibrium configuration on the potential energy surface, the vibra-
tional modes correspond to the normal modes. The potential energy is approx-
imated as a quadratic function of the atomic displacements, reducing the time
evolutions to a system of linear differential equations. While the full system
remains a many-body problem, the linearity of these differential equations
allows for exact solutions via diagonalisation of the mass-weighted Hessian

130
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matrix [97]. Each normal mode behaves as an independent harmonic oscillator,
yielding a molecular trajectory that can be expressed as a superposition of
sinusoidal motions.

When the harmonic approximation is no longer valid–either due to large-
amplitude displacements, strong anharmonicity, thermostat, ormode coupling–
the vibrational dynamics become intrinsically non-linear and cannot be de-
scribed by a fixed set of normal modes [47]. In such anharmonic regime,
vibrational dynamics deviate significantly from the harmonic model: oscillation
frequencies become amplitude-dependent [98] and intramolecular vibrational
energy redistribution leads to rapid energy exchange between modes—phe-
nomena that can result in highly complex and even chaotic molecular trajecto-
ries [99]. These can lead to very complex or even chaotic trajectories as there
are more than two interacting bodies in general molecular system [100,101].

These anharmonic complexities render the task of associating spectral
features with specific vibrational modes particularly challenging. In highly cou-
pled or nonlinear systems, vibrational energy is not confined to well-defined
normal modes but instead delocalises across many degrees of freedom. Con-
sequently, rather than attempting to recover a single mode associated with
a spectral frequency, a more fruitful approach is to identify the underlying
(quasi-)periodic motions that contribute to sustained vibrational patterns in
phase space.

Even in systems exhibiting global anharmonicity and regions of chaos, cer-
tain initial conditions can give rise to bounded, recurrent motions, correspond-
ing to low-dimensional invariant tori embedded within the high-dimensional
phase space. For instance, early work by Swamy and Hase on formaldehyde
revealed that specific vibrational excitations yield periodic or nearly periodic
motions, with trajectories confined to islands of stability amidst otherwise
chaotic dynamics [102]. More recently, Bach, Hostettler, and Chen showed
that highly excited ethyl radicals can become dynamically trapped in long-lived
oscillatory states, delaying dissociation by temporarily localising energy within
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select vibrational coordinates [103].
These findings suggest the presence of an underlying dynamical structure

in vibrational trajectories, intimately connected to their degree of quasi-periodic
behaviour, including the strictly periodic case. When trajectories evolve on a
compactmanifold, such as the symplectic phase space of a Hamiltonian system,
long-time boundedness and recurrence can be rigorously established under
known conditions [10,104]. When such periodic orbits are identified, they can
be directly associated with distinct vibrational spectral features, serving as
classical counterparts to quantum vibrational modes [105,106]. This chapter
aims to demonstrate how tools from Riemannian geometry, together with
insights from the study ofmonodromy, can be employed to construct molec-
ular trajectories whose bounded, periodic behaviour corresponds to specific
vibrational periods corresponding to the given frequency bands of interest.

5.0.1 Structure of the chapter

Chapter 5.1 introduces basic concepts of Riemannian geometry and howmolec-
ular dynamics can be described according to the framework provided by Rie-
mannian geometry via Jacobi metric. At the end of this section, a proof that
the manifold which molecular trajectories are defined on is compact, and the
interior of this manifold is Riemannian with compact closure.

Chapter 5.2 introduces a method for thermostatting molecular systems
based on the quantum mechanical uncertainty principle. The thermostat
presented here offers a gentler alternative to conventional approaches such
as the Langevin or Nosé–Hoover methods.

Chapter 5.3 demonstrates how the techniques developed in Chapters 5.1
and 5.2 can be applied to compute the trajectory of a carbon dioxide molecule.

Chapter 5.4 presents a generalisation of normal mode analysis to Rieman-
nian manifolds using the Jacobi metric. Building upon this foundation, Chapter
5.5 develops a framework for identifying periodic orbits, and it contains the
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main results concerning trajectory periodicity. Readers with a background in
differential geometry may wish to proceed directly to Chapter 5.5.

Lastly, Chapter, 5.6 introduces how the tools from fat manifolds can be
used to study the coupling between two vibrational modes.

5.1 Geometric description of mechanics

Let rµ and pµ be the position and momentum coordinates of the given system
with Hamiltonian H “ T ` V . The Lagrangian of this system is then defined as

L “ T ´ V “ pµ 9rµ ´ H (5.1)

where T “ 1

2
mµ‹pµp‹ is the kinetic energy, V is the potential energy of the

system, and mµ‹ is the mass matrix, with its inverse being mµ‹. This matrix
represents the effective mass between the position coordinates indexed by µ

and ‹.

Throughout this manuscript, Einstein summation convention is used to
denote the tensors and their contraction. An element of a vector space v P V
would be written as

vµ “
`
v1, ¨ ¨ ¨ , vdimpVq˘ (5.2)

and elements of n-tensors, w P V b¨ ¨ ¨ V are denoted as: wµ1µ2¨¨¨µn. The sum over
any index that appears twice—once as a superscript and once as a subscript—is
understood to run from 1 to dimpVq, and the summation symbol is omitted.
For example, for any u, v, w P V,

uµvµwŸ “
dimpVqÿ

µ“1

uµvµwŸ. (5.3)

Here, µ is called a dummy index, while any index that appears only once in a
term (a free index) labels the components of the resulting tensor. Contraction
via the Einstein convention thus reduces the total tensor rank by two.
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One can define the action of the system as

S “
ª

Ldt. (5.4)

Hamilton’s principle of least action is defined so that the Hamiltonian flow of
the system keeps the action stationary. Formally, this statement can be written
as

”S “
ª ˆ BL

Brµ
”rµ ` BL

B 9rµ
” 9rµ

˙
dt “ 0, (5.5)

where ”S represents the variation of the action under small changes in the
trajectory given by the Hamiltonian flow, and ”rµ and ” 9rµ are the small changes
in the respective variables.

This variational principle bears a striking resemblance to the definition of
geodesic, i.e., the shortest path between two points, in differential geometry.
Just as mechanical systems follow paths that minimize the action, geodesics
follow paths that minimize (or more generally, make stationary) the length
functional:

s “
ª

ds “
ª a

gµ‹ 9xµ 9x‹dt, (5.6)

where ds is the element of the arclength and gµ‹ is the metric tensor of the
manifold. The metric tensor here encodes all the geometric information about
distances and angles in our space–for a flat Euclidean space, it reduces to
the identity matrix ”µ‹, as it transforms ds as expected in the usual cartesian
coordinate system in flat space as follows:

ds “
a

”µ‹ 9xµ 9x‹dt “
a

9xµ 9xµdt (5.7)

which is the Pythagorean identity giving the usual Euclidean norm on Rd, while
for curved spaces it captures the local distortion of distances.

In Riemannian geometry, the inner product († ¨, ¨ °) between two vectors
is naturally defined by the definition of metric g, as:

Èx, yÍg “ xµgµ‹y‹ . (5.8)
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Figure 5.1. Visualisations of a) geodesics on a spherical surface with radius R, b) distor-
tion of coordinate charts on the sphere, and c) metric tensor components
along the geodesic. Note that the colours on BÏ directions are changing
according to the magnitude of sin2 ◊ in c).

By the metric being Riemannian, it means that for all vectors x and y, Èx, yÍg “
Èy, xÍg • 0 with equality holding when x “ y.

As an example, consider the surface of a sphere with radius R. In spherical
coordinates p◊, „q, the metric takes the form

gµ‹ “

¨

˝g◊◊ 0
0 g„„

˛

‚ “

¨

˝R2 0
0 R2 sin2 ◊

˛

‚. (5.9)

Unlike in flat space, the shortest path between two points–a geodesic–
on this spherically curved surface is itself curved. As shown in Figure 5.1 a),
geodesics connecting various points on the sphere do not appear as straight
lines but rather as arcs on the sphere.
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This curvature arises naturally from the spherical coordinate system as
illustrated in Figure 5.1 b). The local coordinate grids shown in the figure reflect
how distances and directions vary across the spherical surface.

The metric tensor in Equation (5.9) encodes this geometry. It determines
the magnitude and direction of the coordinate basis vectors: changes in the
polar angle ◊ correspond to the B◊ direction, while changes in the azimuthal
angle Ï correspond to the BÏ direction.

This is natural as the natural coordinate system on the sphere is curved–
illustrated in Figure 5.1 b). The metric tensor as shown in Equation (5.9)
naturally incorporates this fact–directions where ◊ changes, B◊, and where
Ï changes, BÏ, according to Equation (5.9) give the natural direction and magni-
tude of the direction in which the geodesic is drawn. Figure 5.1 c) visualizes the
metric components along the geodesics. These directions are scaled differently
depending on location–in particular, gÏÏ scales with sin2 ◊, as illustrated by the
colour scale in Figure 5.1 c).

The variation of the action ”S “ 0 can be identified with the variation of
the length of the arc ”s “ 0, such that the extremisation of the length of the
path becomes equivalent to the variational principle [10]. In this formulation,
the physical trajectory obtained by extremising the action coincides with the
geodesic obtained by minimising the arc length, thereby portraying the same
physical content through the length functional.

Following Hamilton’s principle of stationary action (Equation 5.5), varia-
tions ”rµ that vanish at the endpoints of the trajectory are considered:

”rµptinitialq “ ”rµptfinalq “ 0. (5.10)

Since the total energy, E “ T ` V , of the system is conserved, the analysis
is carried out on the fixed-energy surface E “ Constant for a natural Lagrangian
L “ T ´ V with T quadratic in velocities. In Maupertuis’ principle the configura-
tion endpoints rptinitialq, rptfinalq are fixed while the times tinitial, tfinal are arbitrarily
chosen; only the path in configuration space is varied. By the Euler’s theorem
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for degree-2 homogeneity, 9r ¨ BL{B 9r “ 2T , hence

S “
ª BL

B 9rµ
9rµ dt “

ª
2T dt “

ª
pµdrµ (5.11)

with p “ BL{B 9r. Under the energy constraint V prq † E “ Constant along the
path, the physical trajectory is characterised by ”S “ 0 [10,107].

Comparison of Equation 5.11 with Equation 5.6 shows that, under an
appropriate metric, the condition ”S “ 0 can be expressed as:

0 “ ”

ª
2T dt “ ”

ª a
gµ‹ 9rµ 9r‹ dt “ ”

ª
ds, (5.12)

where the arc length element ds determines the physical trajectory in phase
space [104].

5.1.1 Application to classical molecular systems via Jacobi
metric

For a classical natoms-atom system, the potential energy V is taken to be twice
continuously differentiable on the collision-free 3natoms-dimensional configu-
ration space, with V prq Ñ `8 as r approaches the collision set and V prq Ñ 0
as }r} Ñ 8. Let Ediss † 8 denote a dissociation threshold. When time is
included as an external parameter, the state space is the extended space
Q ˆ R – R3natoms`1, where the “`1” accounts for the time axis. For each fixed
time t, the accessible configurations form the sublevel set

Aptq “
 

r P Q : V prptqq § Ediss

(
. (5.13)

Equivalently, in the extended space one may write

Aext “
 

pr, tq P Q ˆ R : V prptqq § Ediss

(
. (5.14)

To keep notation light, V prq will be used when time is either held fixed or when
the potential is time-independent; in this notation the “`1” in R3natoms`1 simply
reflects the inclusion of the time coordinate. Above the threshold Ediss, the
molecule fails to retain its structure and dissociates into nonbonded atoms.
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For a molecular system with symmetric, positive-definite mass tensor
mµ‹prq and natural Lagrangian L “ T ´ V with T “ 1

2
mµ‹prq 9rµ 9r‹, fix a total

energy level
E :“ Hpr, pq “ T ` V prq, (5.15)

determined by the initial condition. Along physical trajectories E is conserved
(hence independent of r), and on the accessible region V prq † E one has
E ´ V prq “ T .

On the fixed-energy surface H “ E, the configuration-space metric is

gµ‹prq “ 2 rE ´ V prqs mµ‹prq, (5.16)

with corresponding line element

ds “
b

2 rE ´ V prqs mµ‹prq 9rµ 9r‹ dt. (5.17)

Thus the stationarity of Maupertuis’ action S “
≥

pµ drµ coincides (for fixed-
energy variations) with the stationarity of arc length s—succinctly, ”S “ 0 “ ”s

[108].
This formulation embeds energy conservation into the geometry: the con-

formal factor 2 rE ´ V prqs restricts the metric to the accessible region t V † E u
and makes the length functional s explicitly energy-dependent. For a fixed
energy E, physical trajectories coincide with geodesics of gµ‹ in configura-
tion space. The tensor mµ‹prq collects position-dependent effective masses
and kinetic couplings; diagonal entries encode atomic/effective masses, while
off-diagonal terms capture couplings or anisotropic effects (e.g., curvilinear
coordinates, constraints). Modifying masses or couplings amounts to perturb-
ing mµ‹, thereby deforming the metric and, consequently, the geodesic flow
(i.e., the trajectories at that energy).

The space equipped with the Jacobi metric constitutes a Riemannian mani-
fold, and the corresponding geodesic equations are expressed as:

drµ

ds2
` �µ

‹“pr‹qdr‹

ds

dr“

ds
“ 0 (5.18)
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where �µ
‹“ represents the Christoffel symbols, defined by [109]:

�µ
‹“ “ 1

2
gµ⁄

ˆBg⁄‹

Br“
` Bg⁄“

Br‹
´ Bg‹“

Br⁄

˙
. (5.19)

Substituting the expression for the Jacobi metric into Equation (5.19), one can
write

�µ
‹“ “ �µ

‹“rms ` 1
2T

ˆ
mµ

‹
BT

Br“
` mµ

“
BT

Br‹
´ mµ⁄m‹“

BT

Br⁄

˙

“ �µ
‹“rms ` 2

T
mµ⁄

ˆ
m‹“

BV

Br⁄
´ m⁄‹

BV

Br“
´ m⁄“

BV

Br‹

˙ (5.20)

where �µ
‹“rms is the Christoffel symbol computed by considering the mass

matrix mµ‹ as a metric using Equation (5.19), explicitly, it is defined as follows.

�µ
‹“rms “ 1

2
mµ⁄

ˆBm⁄‹

Br“
` Bm⁄“

Br‹
´ Bm‹“

Br⁄

˙
(5.21)

It should be noted that in Equation 5.18, the coordinates including the time-
variable are parametrized by the arc length s of the geodesic, as geodesics can
invariably be parametrized by arc length [109]. This parametrization implies
that the time-variable is now considered as a coordinate within the configu-
ration space, or more precisely, within the Riemannian manifold on which it
is defined, in terms of the arc length. While this conceptual framework has
been successfully applied in the domains of celestial dynamics and cosmology,
it represents a substantial departure from the conventional formulation of
molecular dynamics.

On a flat manifold, �µ
‹“rms is zero, and noting that T “ 1

2
mµ‹vµv‹ “

1

2
mµ‹vµv‹, it becomes trivial that the geodesic equation is:

0 “ d2t

ds2
rµ `

ˆ
dt

ds

˙
2 drµ

dt

` 2
T

ˆ
´m̃µ

“
BV

Br‹
´ m̃µ

‹
BV

Br“
` mµ⁄m‹“

BV

Br“

˙ˆ
dt

ds

˙
2 dr‹

dt

dr“

dt

(5.22)

where m̃µ
‹ “ mµ⁄m⁄‹. Now, noting that � is twice the kinetic energy and that

dt
ds is constant in a flat space, the equation reduces to the Newton’s second law
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once an identification is made that the negative gradient of the potential is the
force.

While the geodesic formulation may look more abstract, it yields a robust
framework for numerically stable integration on a fixed energy surface. The
geodesic equations determine the path in configuration space up to reparametri-
sation. Physical time is then recovered by a local quadrature along that path:
using

ds2 “ 2 rE ´ V prqs mµ‹prq drµdr‹ (5.23)

and T “ E ´ V prq along true motions, one obtains

ds “ 2 rE ´ V prqs dt ùñ dt “ ds

2 rE ´ V prqs . (5.24)

Thus dt is not chosen independently but is induced by the arc-length increment
ds together with the conserved energy through the factor E ´ V prq. In practice,
integrating geodesics at fixed E enforces energy conservation by construction
(within discretisation error), and the physical time parameter is recovered via
the above relation.

Conceptually, this formulation is related to adaptive time-stepping algo-
rithms commonly employed in molecular dynamics simulations to ensure sta-
bility and accuracy in regions of rapid dynamical change [110,111]. Such algo-
rithms typically rely on explicit energy evaluation and local error estimators to
adaptively control the integration step size, introducing computational over-
head and algorithmic complexity. In contrast, the geodesic method bypasses
the need for energy-based timestep control altogether. Because the evolution
parameter ds is inherently tied to the system’s kinetic energy through the
E ´ V term, the method maintains stability and conserves energy intrinsically,
without the need for external correction mechanisms.

Unlike conventional adaptive schemes that rescale the timestep based on
error estimates or force magnitudes [110], the geodesic formulation embeds
the energy constraint into the motion itself by evolving curves at fixed E with
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respect to the length element ds2 “ 2 rE ´ V prqs mµ‹prq drµdr‹. It is useful to
contrast this with symplectic integrators (e.g., velocity–Verlet, Störmer–Cowell),
which preserve the symplectic 2-form and therefore exhibit near-conservation
of a modified Hamiltonian over very long times (backward-error sense), but do
not enforce H “ E exactly at each step and require a prescribed �t.

In the geodesic approach, step control is performed in arc length s rather
than in time, and the reconstruction dt “ ds{

`
2 rE ´ V prqs

˘
ties the effective

timestep to the conserved energy, removing the need for separate energy
monitors or dynamic timestep heuristics. This can enhance long-time stability
in stiff ormultiscale regimes by preventing energy drift through construction. A
caveat is that the configuration-space geodesic discretisation is not symplectic
in phase space unless lifted via a constrained (e.g., RATTLE-type) or variational
discretisation; symplecticity yields excellent long-time phase-space fidelity,
whereas geodesic marching yields exact (up to quadrature) energy control. In
practice the two viewpoints are complementary: one may (i) use a discrete
Maupertuis variational scheme to evolve directly on a prescribed energy level
E, or (ii) employ a standard symplectic integrator with a lightweight post–step
normalisation to the target energy (e.g., a scalar solve for a time–rescaling or
a velocity rescaling that restores the prescribed energy to within tolerance).
The latter retains the symplectic method’s favourable phase–space behaviour
while controlling long–time energy drift, acknowledging a slight loss of exact
symplecticity due to the correction.

Similarly, constrained algorithms such as RATTLE [112] and SHAKE [113,
114], commonly used to enforce holonomic constraints in molecular dynam-
ics [115], introduce numerical corrections through iterative projection steps.
These methods can accumulate constraint errors over time and are sensitive
to timestep size and convergence tolerances. The geodesic approach, on the
other hand,makes it possible to naturally enforce such constraints by formulat-
ing the dynamics on a curved manifold where the constraints are embedded in
the geometry of themotion. This ensures that both energy and conformational
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constraints are preserved simultaneously to machine precision, without the
need for post-integration corrections.

5.1.2 Compactness of the configurational manifold of a classical
molecule

Given Equations (5.16) and (5.18), one can learn that the set of all coordinates
the molecule under study can take are in the set called Hill’s region [116,117]:

RHill “ tr : V prq § Eu, (5.25)

where E is the total energy of the system. Hill’s region is defined in a 3natoms `
1 dimensional space as each atom contributes 3 dimensions and the time-
variable contributes an additional dimension to the system. Note that the Hill’s
region is not a vector space, unless E Ñ 8.

If the molecule is globally minimized prior to the main simulation, the
system has a finite minimum allowed potential, denoted in this work as Vmin.

This means that the Hill’s region for the system can be defined as

Mcl “ tr : Vmin § V prq § Eu. (5.26)

In this section, two statements: one implying that Mcl is compact and its
interior,

Mcl
int

“ tr : Vmin † V prq † Eu (5.27)

is a Riemannianmanifold with compact closure. The superscript cl denotes that
the manifold is composed of the coordinates allowed by the classical molecular
dynamics simulations.

Lemma 5.1. Mcl is a compact subset of R3natoms`1.

Proof. Since V is continuous wherever it is finite, and points with V prq “ `8
are automaticallt excluded by the condition V prq † E, the preimage

Mcl “ V ´1prVmin, Esq (5.28)
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is closed, as the preimage of a closed interval under a continuousmap is closed.
For all E † Ediss, there exists R † 8 such that }r} • R ùñ V prq ° E.

Hence, for all r with V prq † E must satisfy }r} † R; i.e.,

Mcl Ä BRp0q “
 
x P R3natoms`1 : }x} § R

(
, (5.29)

so Mcl is bounded.
Heine-Borel theorem implies that a subset is compact if and only if it is

closed and bounded. Therefore M is compact.

Recognizing that Mcl is compact is crucial, because this compactness is
directly tied to the stability of the trajectories [116]. Using this lemma, Theorem
5.2 can be proved.

Theorem 5.2. Suppose ÒV prq ‰ 0 when V P tVmin, Eu, then Mcl
int

with the Jacobi
metric is a 3natoms ` 1 dimensional Riemannian manifold with compact closure.

Proof. Since V is continuous on tV † 8u, the preimage

Mcl
int

“ V ´1ppVmin, Eqq (5.30)

is open in R3natoms`1. Therefore Mcl
int
, with the subspace charts inherited from

R3natoms`1, is a 3natoms ` 1 dimensional smooth manifold.
On Mcl

int
we have E ´V prq ° 0. Themap r fiÑ E ´V prq is C2 on Mcl

int
because

V is C2 where it is finite and Mcl
int

Ä tV † 8u is opne. Since the mass tensor m

is smooth and positive definite on R3natoms`1, their pointwise product

gµ‹prq “ pE ´ V prqqmµ‹prq (5.31)

is C2 on Mcl
int
. Moreover, for any r P Mcl

int
and 0 ‰ v P TrR3natoms`1,

gµ‹vµv‹ “ pE ´ V prqqmµ‹vµv‹ ° 0, (5.32)

so the metric g is positive definite. Hence,
`
Mcl

int
, g

˘
is a Riemannian manifold.
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Now, assume in addition that E and Vmin are regular values of V , i.e. ÒV ‰
0 on V ´1pEq Y V ´1pVminq. The claim to show now is that Mcl

int “ Mcl. The
inclusionMcl

int Ä Mcl is trivial sinceMcl
int

“ V ´1ppVmin, Eqq Ä V ´1prVmin, Esq “ Mcl

and the closedness of Mcl.

To establish the equality Mcl
int “ Mcl, only thing left to show is Mcl Ä Mcl

int.

If Vmin † V prq † E, the result follows immediately from the definition of Mcl.

If V prq “ E, by the regular-value assumption, ÒV prq ‰ 0. Choose w with
ÈÒV prq, wÍg ° 0. For sufficiently small t ° 0, the Taylor expansion yields

V pr ´ twq “ V prq ´ tÈÒV prq, wÍ ` optq † E, (5.33)

and by the continuity of V , V pr ´ twq ° Vmin for all small t ° 0. Therefore,
rt :“ r ´ tw P Mcl

int
and rt Ñ r, so r P Mcl

int.

If V prq “ Vmin, then, again, ÒV prq ‰ 0. Choose w with ÈÒV prq, wÍg † 0. For
sufficiently small t ° 0, as done in the previous case, one can write

V pr ` twq “ V prq ` tÈÒV prq, wÍg ` optq ° Vmin, (5.34)

and still V pr ` twq † E for all small t ° 0. Thus, rt :“ r ` tw P Mcl
int

and
rt Ñ r P Mcl

int
.

Thus, for all r P Mcl, one can conclude that r P Mcl
int, proving that Mcl Ä

Mcl
int. Therefore,

Mcl
int “ Mcl. (5.35)

This is the last part to be proved.

5.1.3 When V prq “ E

At the Hill boundary, V prq “ E, the Jacobi metric becomes singular as the
factor 2pE ´V q vanishes there [116,117]. For example, for the one-dimensional
harmonic oscillator with equilibrium position r0 and frequency Ê,

Hharm “ 1

2
v2 ` 1

2
Ê2pr ´ r0q2, (5.36)
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one finds

ds “
b

2
`
E ´ 1

2
Ê2pr ´ r0q2

˘
dt ›Ñ 0 as r Ñ r0 & E ´ V Ñ 0, (5.37)

so that an infinite arc-length s would be required mererly to reach the turning
point. This is an artefact of using s as parameter: physically, the oscillator
turns around in finite time.

This degeneracy was resolved by Herbert Seifert in 1948 via a reflection
argument on the Riemannianmanifold with compact closure [118]. Rather than
trying to parametrize through the singular boundary in s, one works in Newto-
nian time t and expands the trajectory about the turning point. Concretely, let
r0 be a regular boundary point with V pr0q “ E and ÒV pr0q ‰ 0. Introduce local
coordinates

`
r1, ¨ ¨ ¨ , rd´1, y

˘
such that y “ 0 ô V prq “ E so that y measures

the distance normal to the Hill surface. A solution that arrives at r0 with zero
velocity satisfies

9rµp0q “ 0, :rµp0q “ ´BµV pr0q (5.38)

and hence admits the Taylor expansion in t, i.e.

rµptq “ r0
µ ` 1

2
:rµp0qt2 ` Opt3q “ r0

µ ´ 1

2
BµV pr0qt2 ` Opt3q. (5.39)

Although higher odd terms may appear at Opt3q and beyond, the expansion is
even up to quadratic order, so for small t

rµptq “ rµp´tq ` O
`
|t|3

˘
. (5.40)

Consequently, the segment for t † 0 is the time-reflection of the segment
for t ° 0 to second order: the reflected curve r̃ptq :“ rp|t|q satisfies r̃ptq “
rptq ` Op|t|3q and 9̃rp0q “ 0. Hence the trajectory reflects smoothly off the Hill
boundary up to quadratic order.

The trajectory arrives at r0, comes to rest, and the departs along the same
path in reverse, without traversing any finite arc length induced by the Jacobi
metric in the singular metric. By reparameterizing each smooth branch of
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the trajectory in terms of its Jacobi arclength s, one can cast the reflection
construction directly in the s–parameterisation.

As an illustration, consider a simple harmonic model of a fictitious linear
triatomic molecule (like carbon dioxide) with three vibrational modes. In mass-
weighted normal coordinates, pqa, qb, qcq, corresponding to bending, symmetric
and antisymmetric stretch modes, respectively, the harmonic potential can be
written as

V pqa, qb, qcq “ 1

2
Êa

2qa
2 ` 1

2
Êb

2qb
2 ` 1

2
Êc

2qc
2 (5.41)

withmode frequenciesÊa, Êb andÊc. TheHill’s region tpqa, qb, qcq : V pqa, qb, qcq § Eu
is the interior of the ellipsoid

Êa
2qa

2 ` Êb
2qb

2 ` Êc
2qc

2 “ 2E. (5.42)

On its boundary where V “ E, the factor 2pE ´ V q vanishes and ds2 Ñ 0. Now,
on this boundary pick a regular turning point pq0

a, q0

b , q0

c q “
`
0, 0,

?
2E{Êc

˘
such

that ÒV ‰ 0. In Newtonian time t, the trajectory satisfies

9qip0q “ 0, :qip0q “ ´Bqi
V pq0q, i P ta, b, cu. (5.43)

Hence, each coordinate admits an even Taylor series about t “ 0 in the form
given by Equation (5.39). Now, for the pure antisymmetric turning point at
p0, 0,

?
2E{Êcq, one gets

qcptq “
c

2E

Êc
2

´ Êc

c
E

2 t2 ` Opt3q (5.44)

with qaptq “ qbptq “ Opt3q.
Now, to complete the reflection construction, one proceeds as follows:

(i) Split into inbound/outbound branches. Define

q˘
i ptq “ qip˘tq, t • 0, i P ta, b, cu, (5.45)

so that q`
i ptq is the trajectory after the turning point and q´

i ptq its time–reflec-
tion before. Each branch, obtained by the quadratic approximation given in
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Equation (5.40), is C8 in t and meets the boundary at t “ 0 with zero velocity.
Note that at t “ 0, s “ 0 and due to the continuity,

q`
i p0q “ q´

i p0q (5.46)

is expected.

(ii) Introduce Jacobi arclength on each branch. On, say, the “`” branch, set

sptq “
ª t

0

b
2
“
E ´ V

`
q`p·q

˘‰
d·, s • 0. (5.47)

Near the turning point one finds

E ´ V
`
q`ptq

˘
« 1

2
Êc

4
`
q0

c

˘
2

t2, (5.48)

so that
ds « Ê2

c q0

c?
2

|t| dt ùñ sptq “ 1

2
C t2 ` Opt4q, C :“ Ê2

c q0
c?

2
. (5.49)

Hence sptq is strictly increasing for t ° 0, with

tpsq “
c

2 s

C
` Ops3{2q. (5.50)

(iii) Reparametrise the coordinates in s. Substitute t “ tpsq into the Taylor
expansion for the active coordinate (here the c‐mode):

q`
c psq “ q0

c ´ 1

2
Ê2

c q0

c tpsq2 ` O
`
tpsq4

˘
“ q0

c ´ Ê2

c q0

c

C
s ` Ops2q, (5.51)

and similarly for q`
a psq, q`

b psq, each analytic in s near s “ 0. Thus the “`”
branch becomes a smooth, s–parameterised geodesic emanating from the
turning point.

(iv) Glue the two branches at s “ 0. Define the full reflected trajectory in the
Jacobi–arclength parameter by

qipsq “

$
’&

’%

q`
i ptpsqq, s • 0,

q´
i

`
tp´sq

˘
, s § 0,

(5.52)
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Figure 5.2. (a) Antisymmetric-stretch coordinate qcptq of the 3-mode CO2 harmonic model,
showing a smooth turnaround at the turning point t “ 0. (b) The same
trajectory re-parameterized by signed Jacobi arclength s, with s “ 0 at the Hill
boundary. The two linear segments meet at s “ 0, illustrating the geodesic
“reflection” in the qc direction. Êc “ 440{ps, derived from the carbon dioxide’s
antisymmetric strech mode vibrational frequency of 2349{cm was used for
the simulation.

so that qip0q “ q0

i and dqi{ds is continuous at s “ 0. This yields a single, smooth
geodesic in the pqa, qb, qcq‐ellipsoid which “reflects’’ off the Hill boundary at s “ 0,
fully bypassing the singularity of the Jacobi metric there.

Figure 5.2 (a) shows the antisymmetric stretch mode qcptq “ A cospÊctq,
which approaches the turning point at t “ 0 with zero velocity and then departs
along the same path by time-reversal symmetry. A is the amplitude that
is normalised to 1 for simplicity. In panel (b) of Figure 5.2, the arc length
parameter s is computed via Equation (5.47), assigning s ° 0 for t ° 0 and
s † 0 for t † 0. Although ds Ñ 0 at the turning point, the two branches plotted
against signed s form straight lines of slope ˘Êc

2A?
2
meeting at s “ 0. This linear-

in-s behaviour near the boundary confirms Seifert’s reflection construction: the
geodesic in the Jacobi metric bounces off the Hill surface without ever traversing
a finite singular arc length.
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5.2 Adding quantum mechanical uncertainties as a
thermostat

In conventional molecular dynamics, a molecule’s trajectory is defined as a
Hamiltonian flow over a symplectic manifold. Under such framework, a ther-
mostat is introduced to control the temperature of the system, ensuring that
the kinetic energy samples a distribution consistent with a target temperature.
However, when the dynamics are reformulated in terms of the geodesic flow
induced by the Jacobi metric, these standard approaches encounter significant
conceptual and practical challenges as the Hamiltonian flow over a symplectic
manifold is now described as a geodesic flow over a Riemannian manifold.
Therefore, representing dynamics purely as geodesic motion is of limited use
without also prescribing a means of thermostatting to recover canonical sam-
pling. In very large, complex systems one may rely on the bulk of degrees of
freedom to act as an implicit heat bath, but a concrete thermostatting mecha-
nism compatible with the Riemannian framework must still be devised.

In geodesic formulation, the dynamics are defined on the tangent bundle
TM of the configuration manifold M via the Jacobi metric

gµ‹ “ 2pE ´ V qmµ‹ (5.53)

which encodes both the mass tensor and the potential energy landscape. The
corresponding relation between the arc-length parameter, s, and the physical
time t is then

dt “ dsa
2pE ´ V prqq mµ‹ 9rµ 9r‹

, (5.54)

ensuring that time evolution is consistent with the kinetic energy defined by
the metric. This formulation inherently lacks a fixed time scale due to its re-
parameterisation invariance and energy dependence, presenting challenges
for incorporating standard thermostatting methods.
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In this framework, the physical velocity vµ
phys

and the Jacobi (arc-length
parametrised) velocity vµ

jac are related by

vµ
jac “ vµ

physb
2pE ´ V prqq m–— v–

phys
v—

phys

. (5.55)

This ensures that the arc-length parametrisation remains consistent with the
kinetic energy defined by the mass tensor and the potential energy landscape.

Thermostats such as Langevin or Nosé-Hoover are designed within a New-
tonian framework, where time is fixed and the kinetic energy metric remains
constant. Their friction and stochastic forces are defined with respect to a
physical time parameter,making them incompatible with the geodesic dynam-
ics governed by the Jacobi metric. In the Jacobi formulation, the metric as
shown in Equation (5.53) varies with time as the potential energy evolves (i.e.,
according to the positions) and the natural parameter is the arc-length rather
than physical time.

Naively introducing conventional thermostats into this framework leads to
numerical instabilities and incorrect trajectories for two main reasons. Firstly,
standard thermostats assume a fixed, flat, time-independent metric, the Ja-
cobi metric’s time dependence means that these methods cannot naturally
incorporate the arc-length parameter inherent to the geodesic description.

Secondly, the discrete updates applied to the geodesic flow fail to preserve
the symplectic properties of the underlying dynamics. As highlighted in Casetti
et al. [104], proper numerical integration of geodesic flows must respect the
inherent geometric invariants. Standard thermostat algorithms, when applied
to the geodesic formulation, break these invariants by introducing corrections
that do not conserve the natural structure of the flow. In high-dimensional
systems, even small deviations from the correct geometric behavior can accu-
mulate, resulting in significant numerical errors and trajectories that deviate
from the true dynamics.
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5.2.1 A formulation of an uncertainty-driven thermostat

The central idea behind our uncertainty-driven thermostat is to enforce a finite-
temperature condition by comparing the system’s instantaneous momentum
with an uncertainty threshold derived from quantum considerations. This
work employs the finite-temperature uncertainty function introduced by Bei-
Lok Hu and Yuhong Zhang in 1993 [119]. At finite temperature and time, the
uncertainty relation giving a phase-space spread as a function of time t is
written as

�x2�p2 • UT ptq (5.56)

with

UT ptq “ ~2

4

”
expp´“0tq ` cothpÁq

´
1 ´ expp´“0tq

¯ı
2

, (5.57)

where

Á “ ~�0

2 kB T
, (5.58)

“0 is a damping rate, �0 a characteristic frequency, kB the Boltzmann constant,
and T the target temperature. The plot of UT is graphically shown in Figure
5.3.

In the present formalism, a typical positional uncertainty �xi, for each
atom i, is estimated as half the average bond lengths relating to the atom i,

and the magnitude of the momentum is computed from the physical velocities
(with pi “ mivi

phys
, Einstein summation convention is not applied in this section).

The thermostat is then implemented by comparing the product �xi|pi|, with
the threshold UT ptq. If

�xi|pi| †
a

|UT ptq|, (5.59)

a corrective randommomentum increment is injected so as to raise the mo-
mentum magnitude, thereby ensuring that the system samples a phase space
region consistent with the target temperature. Mathematically, if the current
momentum magnitude is |pi|, then a momentum increment ”pi is determined
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Figure 5.3. (a) Plot of the quantity
?

UT over different temperatures for fixed times. (b)
Plot of

?
UT over time with fixed temperatures. “0 “ 3.0 ps and �0 “ 0.05 ps.

such that
|p| ` ”p «

a
|UT ptq|
�xi

, (5.60)

with the increment applied along a random direction. This correction is carried
out in the physical velocity space and, after adjustment, the new physical
velocities are converted back to the Jacobi representation using Equation (5.55).

5.2.2 Adaptive Friction and Energy Regulation

In addition to the uncertainty correction, an adaptive friction term is intro-
duced to remove any excess kinetic energy and thereby enforce the target
temperature. The friction coefficient is adjusted based on the instantaneous
temperature Tcurrent, estimated via equipartition

Tcurrent “ 2 KE
D kB

, (5.61)

where D is the number of degrees of freedom and KE is the kinetic energy of
the system. The effective friction coefficient is given by

“e� “ “0

Tcurrent ´ T

T
. (5.62)
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Figure 5.4. Vibrational spectra of carbon dioxide obtained from the trajectories obtained
via the geometric method introduced in this chapter and AMBER molecular
dynamics simulation.

Then, the physical velocities are damped via an exponential decay,

vi new

phys
“ vi

phys
expp´“e� dtq, (5.63)

with dt computed from Equation (5.54). The damped velocities are subse-
quently converted back to the Jacobi frame using Equation (5.55).

The total energyE is updated accordingly to account for both the uncertainty-
drivenmomentum injection and the frictional energy dissipation. This adaptive
scheme ensures that the system remains close to the desired thermal state
throughout the simulation.
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5.3 A case study with carbon dioxide

The carbon dioxide molecule is simulated in vacuum using the geometric
method introduced in this work. As a reference, a conventional AMBER molec-
ular dynamics simulation is also performed to benchmark the results of the
geometric approach.

In this work, the damping rate is set to “0 “ 3.0 ps´1, providing a gentle
frictional force that prevents excessive energy removal and preserves the near-
conservative behavior of the system. Note that if the thermostat were Langevin,
this damping coefficient would be considered very high.

The characteristic frequency, �0, is determined by a normal mode analysis
of the equilibrium configuration, which yields the intrinsic vibrational frequen-
cies of the molecule. An effective value of �0 “ 0.05 ps is selected to capture the
dominant high-frequency stretching modes of carbon dioxide, thereby setting
the intrinsic timescale of the system. To compute the potential, General AMBER
Force Field (GAFF) parameters [60] are used.

A reference AMBER molecular dynamics simulation for carbon dioxide was
carried out using GAFF parameters. The system was first minimized to relieve
any unfavorable contacts, then gradually heated to the target temperature,
and finally equilibrated and simulated in production under an NPT ensemble at
300 K and 1 atm. Temperature control was achieved via a Langevin thermostat
with damping parameter of “ “ 1{ps. This conventional AMBER trajectory was
used as a benchmark for comparison with the trajectories obtained via the
geometric method.

Figure 5.4 illustrates the close agreement between the vibrational spectra
obtained using the conventional approach—specifically, the AMBER molecular
dynamics package—and the geometric method introduced in this chapter.
In classical molecular dynamics, the time step is typically chosen based on
empirical stability criteria rather than physical principles, and is often kept
fixed throughout the simulation. As a result, obtaining a meaningful velocity
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Figure 5.5. Temperature change over iterations plot. Uncertainty-driven thermostat was
applied to a carbon dioxide. The target temeperature is 300 K.

autocorrelation function generally requires long simulation times to ensure
adequate sampling and noise reduction. The AMBER simulation used for Figure
5.4 was run for 10 ns with a fixed time step of 1 fs. The trajectory obtained using
the geometric framework, which produced the spectra in Figure 5.4, employed
uniform arc-length steps of 0.001 amu ¨ 2ps´1; however, the corresponding phys-
ical time steps vary, since ds{dt changes according to the energy landscape
traversed by the molecule. Owing to this property, the geometric framework
required only 100 ps of simulation to recover accurate vibrational spectra, as
demonstrated by the method introduced in this chapter.

The peak locations in Figure 5.4 match between the two methods, as
expected, since both simulations use the GAFF force field. However, the peaks
obtained from the method introduced in this chapter are broader. This is due
to the interpolation error in re-writing the trajectory in the picosecond units
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Figure 5.6. Comparison of the Maxwell–Boltzmann velocity distribution at 300 K with the
velocity histogram obtained from the uncertainty-driven thermostat at the
same temperature for a carbon dioxide molecule, sampled over 1 ns with a
0.01 fs time step. The histogram comprises 700 bins, and the x-axis denotes
the Jacobi velocity in units scaled to fit the range r´1.0, 1.0s. All distributions
are normalized to unit maximum for direct comparison.

from the arc length units.

Figure 5.5 shows how the uncertainty-driven thermostat successfully main-
tains the temperature of 300K. Unlike Langevin or Nosé-Hoover thermostats,
the fluctuation is not violent.

To assess whether the sampled velocities are physically correct, Figure 5.6
shows the Jacobi velocity statistics (grey histogram), together with a fitted
density curve (blue) compared against the theoretical Maxwell–Boltzmann
distribution (red), which provides the expected equilibrium velocity distribution
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at a given temperature [120]. The agreement between the sampled data
and the Maxwell–Boltzmann curve demonstrates that the uncertainty-driven
thermostat correctly reproduces the equilibrium distribution. Small deviations
in the tails are attributable to finite sampling effects and binning resolution.

5.4 Normal mode analysis and the Riemannian
framework

Under the traditional formalism of classical molecular dynamics, a system’s
normal modes can be obtained by diagonalisation of the mass-weighted Hes-
sian matrix at an energy-minimised geometry. These normal modes define the
orthogonal vibrational directions of the molecule—being given by the eigen-
vectors of the mass-weighted Hessian [121,122]—but this construction is valid
only at the equilibrium configuration, demanding that the Taylor expansion of
the potential about a point r is given as:

V pr ` ÷q “ V prq ` 1

2
÷‹Hess‹Ÿprq÷Ÿ ` O

`
|÷|3

˘
, (5.64)

and this approximation does not deviate too far from the true values of the
potential for small perturbations ÷. At any instantaneous configuration r P Mcl,

one can diagonalise the Hessian

Hessµ‹prq “ B2V

BrµBr‹
prq (5.65)

to obtain the so-called instantaneous normal modes. However, outside a
true minimum of the potential, some Hessian eigenvalues become negative–
yielding imaginary frequencies–and the resulting eigenvectors do not in general
correspond to stable oscillations [123]. Moreover, performing a full diagonal-
isation at each molecular dynamics snapshot scales as Opn3

atoms
q and quickly

becomes computationally prohibitive for large systems, so instantaneous nor-
mal modes do not offer a robust or efficient route to isolating stable vibrational
motions during on-the-fly dynamics.
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With Riemannian geometry, however, one can track the normal modes via
the eigenvectors of the quantity called the Ricci tensor.

5.4.1 Ricci tensor and normal mode analysis

The Ricci tensor of a system in Riemmanian manifold is defined as:

Ricµ‹prq “ B�Ÿ
µ‹

BrŸ
´ B�Ÿ

Ÿµ

Br‹
` �Ÿ

Ÿ⁄�⁄
µ‹ ´ �Ÿ

µ⁄�⁄
Ÿ‹ , (5.66)

and if the Riemannian manifold is endowed with the Jacobi metric, the formula
becomes

Ricµ‹ “Ricrmsµ‹ ` 3natoms ´ 1
4pE ´ V q2

`
2pE ´ V q

`
BµB‹V ´ �Ÿ

µ‹rmsBŸV
˘

` 3BµV B‹V
˘

` mµ‹

4pE ´ V q2

`
2pE ´ V qB“B“V ´ p3natoms ´ 3qm–—B–V B—V

˘
(5.67)

where

Ricrmsµ‹ “ B�Ÿ
µ‹rms

BrŸ
´ B�Ÿ

Ÿµrms
Br‹

` �Ÿ
Ÿ⁄rms�⁄

µ‹rms ´ �Ÿ
µ⁄rms�⁄

Ÿ‹rms (5.68)

for natoms being the total number of atoms in the molecule of interest and �rms
being the Christoffel symbol computed on mµ‹ as defined in Equation (5.21).
This quantity gives the directional curvatures at point r P Mcl, [124,125] while
defining a symmetric bilinear form on the tangent space TpMcl as, for some
p P Mcl,

Ricp : TpM ˆ TpM Ñ R, pA, Bq fiÑ RicppA, Bq “ Rµ‹AµB‹ (5.69)

for arbitrary A, B P TpMcl [126].
Its eigenvectors vpiqprq satisfy

Ricµ‹vpiq‹ “ ⁄imµ‹vpiq‹ , (5.70)

and the corresponding eigenvalues ⁄iprq quantify the average curvature in
each principal direction. Equivalently, for any unit‐length tangent vector v, the
scalar called the Ricci curvature:

Ricgpv, vq “ vµRicµ‹v‹ (5.71)
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measures howgeodesics initially separated along v will tend to converge (Ricg °
0) or diverge (Ricg † 0) [127].

At an equilibrium point (BµV “ 0), by noting that

Ricµ‹ “ ´ 3natoms ´ 1
2pE ´ V prqq

B2V

BrµBr‹
` (isotropic shift), (5.72)

one can learn that the Ricci eigendirections coincide with the usual Hessian nor-
mal modes and ⁄i9 ´ Ê2

i . Crucially, this eigen‐decomposition remains valid at
every snapshot along a trajectory, even far from the energy minima–providing
a coordinate‐invariant generalisation of vibrational modes that continuously
tracks the true dynamical stability of the motion.

5.4.2 Finding the eigenvectors of a Ricci tensor

To avoid theOpnatoms
3q cost of full diagonalisation, one can employ amatrix‐free

power‐iteration with deflation directly on the Ricci operator Ricr : TrMcl Ñ
TrMcl for r P Mcl. Starting from a random unit vector vp0q, one can recursively
find the better eigenvector candidates of Ricr as:

wpk`1q “ Ricrv
pkq, vpk`1q “ wpk`1q

}wpk`1q} . (5.73)

The iteration terminates when the quantity called Rayleigh quotient:

⁄pkq “ vpkqµRicµ‹vpkq‹

vpkqŸvpkq
Ÿ

“ vpkqµRicµ‹vpkq‹ (5.74)

converges within the tolerance ‘, i.e.
ˇ̌
⁄pkq ´ ⁄pk´1qˇ̌ † ‘, and the termination

is guaranteed. This step allows one to obtain an approximate pair of the
largest eigenvalue and its corresponding eigenvector, p⁄1, v1q, of Ricr [128,129].
Removing the largest eigenvector contribution from the Ricci operator by

Ricr – Ricr ´ ⁄1v1 b v1 (5.75)

and following the recipe introduced above yields another pair p⁄2, v2q. The k-
largest eigenvalues and its eigenvectors can be found in Opkn2

atoms
q complexity

using this method without diagonalising the Ricci tensor [130,131].
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5.5 Understanding quasi-periodicity via holonomy
angles,monodromy and tubular trajectories

In nonlinear dynamical systems, periodic orbits constitute the skeleton of
phase space: they organise nearby quasi-periodic tori and delineate the onset
of chaotic motion [105,106]. In the context of molecular vibrations, each stable
periodic orbit represents an anharmonic continuation of a normal mode, while
bifurcations of these orbits presage the emergence of different vibrational
pathways and resonances [132]. This relation links pure vibrational loops in
the configuration space with the net rotation of the molecule [133], allowing a
mechanical construction of the molecular coordinate space whose curvature
can be computed to predict the orientational changes induced by the vibrational
cycles [134].

In an idealised treatment, each peak in a vibrational spectrum, charac-
terized by its frequency and amplitude, corresponds to an eigenvalue of the
potential-energy Hessian, with the associated eigenvector defining the normal-
mode oscillation direction. Consequently, identifying these peaks reduces to
finding a closed trajectory:

r : r0, P s Ñ Mcl, rp0q “ rpP q (5.76)

parameterised by arc length, s. In practice, however, identifying these periodic
orbits is challenging, since a complete molecular dynamics study requires
finding periodic solutions to the equations of motion for an natoms-body system
[135].

In this section, a method that can quantify the quasi-periodicity score of
a quasi-periodic system is introduced in two different approaches–holonomy
angle and tubular trajectory’s self-intersection. These twomethods rely heavily
on a tool from differential geometry called parallel-transport, quantifying the
degree of change in the tangent vector along the trajectory while preserving
parallelism relative to the manifold’s local curvature.
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5.5.1 Brief introduction to parallel-transport

Let pM, gq be the configuration manifold of an N -particle system under an
empirical potential, and let �µ

‹Ÿprq be the Christoffel symbols of the induced
Levi–Cività connection defined as the following.

ÒF “ “ dF “

ds
` �“

µ‹
drµ

ds
F ‹ , and �V “ Ò (5.77)

For a periodic trajectory rpsq “ rp0q, consider an infinitesimal deviation in the
direction given by a tangent vector vpsq P TrpsqM. Parallel transport of this
tangent vector along the trajectory rpsq is given as

Òvµ “ dvµ

ds
` �µ

‹Ÿprpsqqv‹psqdrŸ

ds
“ 0, (5.78)

in space which in local components yields the linear system

dvµ

ds
“ ´�µ

‹Ÿprpsqqdr‹

ds
vŸpsq, (5.79)

where dr‹{ds is the unit-speed tangent. One can then define an operator

Apsqµ
‹ “ ´�µ

‹Ÿprpsqq drŸ

ds
, (5.80)

so that (5.79) reads 9v “ Apsqv. By the symmetry of the metric tensor and the
symmetry in two lower-indices of Christoffel symbol (see Equation (5.19)), the
operator Apsq is skew-symmetric: AT g ` gA “ 0, ensuring preservation of the
norm }vpsq}g “

a
gµ‹vµpsqv‹psq. Thus the flow generated by Apsq is an isometry

on each tangent space.

5.5.2 Holonomy angle

Given the vibrational mode vector epsq, again s being the arclength parameter,
the parallel-transported mode vector, e, in the Riemannian manifold

`
Mcl, g

˘
is

given as:
deµ

ds
` �µ

‹Ÿ
dr‹

ds
eŸ “ 0 (5.81)
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where rµ is the coordinates in Mcl. Physically, this condition evaluates how eµ

evolves as straight as possible while preserving its length and its inner product
with any other vector under the infinitesimal displacements dictated by the
manifold’s curvature.

When rpsq traces out a closed geodesic loop, C, returning to its initial point
r0 at some arclength parameter sreturn, the parallel transport defines a linear
map

ParC : Tr0Mcl Ñ Tr0Mcl (5.82)

which satisfies ParC P SOp3natoms ` 1q, with SOpnq being a special orthogonal
group for an n-dimensional manifold. Restricting the map ParC to the one-
dimensional subspace spanned by the vibrational mode vector eps0q yields a
pure rotation in this space by an angle

� “ arccospeµps0qgµ‹e‹psreturnqq. (5.83)

This angle is called holonomy angle, and is a gauge-invariant measure of the
geometric phase. It depends only on the path C not on the intermediate
properties of the trajectory, or the nature of the parameterisation.

When the geometric phase is truly zero, the parallel‐transport map around
the loop reduces to the identity on our frame vector. Equivalently, one finds

eps0qµgµ‹epsreturnq‹ “ 1 ùñ � “ 0. (5.84)

Physically, this implies that if the molecule under study traces out its closed
path in the configuration manifold, not only has its coordinate vector returned
exactly to r0 , but the vibrational direction e also coincides perfectly with its
orientation.

5.5.3 Holonomy angle & carbon dioxide

One can numerically obtain the values of holonomy angles at every step by
Algorithm 7 if a trajectory containing a loop is known. As Equation (5.81) is an
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Figure 5.7. Evolution of holonomy angle over time for carbon dioxide in vacuum at 300 K.
Blue (resp. orange) curve shows the evolution of the holonomy angle of
antisymmetric (resp. bending) mode.

initial-value problem, a Richardson-style convergence test is used to gauge the
error [136].

Figure 5.7 shows the temporal evolution of the holonomy angle for the
antisymmetric and bending modes obtained via Algorithm 7. For stability,
the embedded Runge–Kutta method RK45 (Dormand–Prince) is used, which
yields a fifth-order solution with an embedded fourth-order error estimate for
adaptive step-size control [137].

Despite pronounced differences in amplitude,waveform shape, and appar-
ent chaoticity, both curves exhibit oscillatory behaviour and return to near-zero
holonomy in a pseudo-periodic fashion. As the geometric-phase accumulation
rate is governed by the vibrational motion—faster modes traverse curved re-
gions of the configuration manifold more rapidly—the oscillation frequencies
of the holonomy angle closely mirror the underlying normal-mode frequencies.
This can be verified once the power spectrum of the angles are computed as in
Figure 5.8.

The antisymmetric‐stretch holonomy spectrum exhibits a single, well‐re-
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Algorithm 7Measurement of holonomy angle by discrete parallel transport
Require: Discrete trajectory tpri, 9riquN

i“0
sampled along arc length s with cumu-

lative tsiu and s0 “ 0, sN “ L. Metric gprq, Christoffel symbols �prq, initial
value of r denoted as r0, initial vector e0 with }e0}gpr0q “ 1, initial step h,
tolerance ÷, safety ‡ P p0, 1q, return threshold ‘.
(rpsq, 9rpsq are treated as piecewise-linear / piecewise-constant from the sam-
ples; within each rsi, si`1s r and 9r are linearly interpolated. 9rpsq indicates the
derivative with respect to s in this algorithm.)

1: s – 0, r – r0, e – e0

2: while s † L do
3: Limit step to segment:

Find i with s P rsi, si`1q and set h – minth, si`1 ´ su
4: Define Apr, 9rqµ

‹ – ´�µ
‹flprq 9rfl

5: Evaluate RK45 stages:
For each stage k, compute prk, 9rkq by interpolating at s ` ckh
Update Ak: Ak – Aprk, 9rkq
Accumulate ep5q – e ` ∞

bk h Akek, ep4q – e ` ∞
b̂k h Akek

6: Error estimate: ” – }ep5q ´ ep4q}gprq ô use metric at current r
7: if ” § ÷ then
8: Accept step: s – s ` h; update r – rpsq by interpolation; e – ep5q

9: Renormalise: e – e{
a

gprqpe, eq ô use g at the new point r
10: Adapt h – min

`
hmax, ‡ h p÷{ maxp”, Ámachqq1{5

˘

11: else
12: Reject step: h – max

`
hmin, ‡ h p÷{ maxp”, Ámachqq1{5

˘

13: end if
14: Return check: if }r ´ r0}gprq † ‘ and s ° 0, break
15: end while
16: Angle: c – clip

`
gpr0qpe0, eq, ´1, 1

˘

17: � – arccospcq
18: return � ˆ 180

fi

solved peak that matches the GAFF‐predicted vibrational frequency, confirming
that the holonomy‐angle oscillations faithfully track that mode. By contrast,
the symmetric‐stretch and bending spectra show extra, spurious peaks in ad-
dition to the true vibrational frequencies—an effect of mode coupling and
discretisation errors. Thus, the holonomy angles alone cannot unambiguously
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Figure 5.8. Power spectrum of holonomy angles for respective vibrational modes of
carbon dioxide.

assign a given spectral feature to a particular normal mode; instead, one must
isolate the periodic orbit at that frequency. This is where a mathematical tool
calledmonodromy becomes useful.

5.5.4 Monodromy matrix and tubular trajectories

Linearised dynamics around a periodic trajectory of period P provide the foun-
dation for understanding both local stability and global volume‐evolution prop-
erties. The parallel transport equation (5.79) can be written as an ordinary
differential equation with matrix value.

d

ds
�psq “ Apsq�psq, �p0q “ In, (5.85)

where �psq P GLp3natoms ` 1q is the fundamental solution matrix that simulta-
neously evolves all basis vectors of the tangent space. Component-wise, this
satisfies

�µ
‹p0q “ ”µ

‹ , 9�µ
‹ “ ´�µ

›’pqpsqqdr’

ds
�›

‹ . (5.86)

The fundamental solution of this equation can be computed numerically via
the exponential update:

�ps ` �sq “ exppApsq�sq�psq, (5.87)
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where careful attention to the structure of the underlying Lie group ensures
the preservation of orthogonality to machine precision [138,139].

After one complete traversal of the periodic orbit with period P , themon-
odromy matrix:

M “ �pP q P Op3natoms ` 1q (5.88)

encodes how infinitesimal perturbations evolve around the closed loop. Its
eigenvalues t⁄iu, known as Floquet multipliers, determine the stability and geo-
metric properties of the periodic motion. Floquet multipliers whose moduli lie
below unity correspond to exponential stability along their associated eigen-
vectors, whereas those exceeding unity correspond to exponential instability
in the same directions.

Building on the characterization of the monodromy matrix of infinitesimal
perturbations after one period, the analysis transitions from a pointwise study
of quasi-periodicity and stability to a global, volume-based framework. An
infinitesimal neighbourhood volume is transported along the trajectory via the
fundamental solution matrix, thereby generating a tubular trajectory in the
configuration space. The deformation of this tube over one period encapsu-
lates the quasi-periodic behaviour of the system and reveals the underlying
geometric structure.

5.5.4.1 Tubular trajectory volume evolution via parallel transport

Rather than analysing pointwise dynamics, the evolution of finite-volume neigh-
bourhoods around periodic molecular trajectories is characterised by construct-
ing and analysing tubular trajectories in the configuration manifold Mcl. The
motivation is to carry the entire neighbourhood around the initial point.

Let “ : r0, P s Ñ Mcl be a geodesic. At each point “psq, one can construct
the orthogonal complement to the velocity vector:

T K
“psqMcl :“

 
v P T“psqMcl : gµ‹vµ 9“psq‹ “ 0

(
, (5.89)

where g denotes the Jacobi metric on Mcl.
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Definition 5.3 (Tubular trajectory). Let “ : r0, P s Ñ M be a smooth curve in
an n-dimensional Riemannian manifold pM, gq, define T K

“p0qM as in Equation
(5.89), and define denote the pn ´ 1q–dimensional orthogonal complement
(normal space) to 9“psq.

Choose a nonzero initial normal vector vKp0q P T K
“p0qM and parallel trans-

port it along “ to obtain vKpsq P T K
“psqM satisfying Ò 9“vK “ 0.

Construct a parallel orthonormal frame tu1psq, . . . , un´1psqu of T K
“psqM such

that

• Orthonormality: xuipsq, ujpsqyg “ ”ij for all i, j,

• Parallel transport: Ò 9“ui “ 0 for each i,

• Initial alignment: u1p0q “ vKp0q
}vKp0q}g

.

Let fl :“ }vKp0q}g (equivalently, fl “ }vKpsq}g). The tubular trajectory of
radius fl along “ is

T p“q “
!

exp“psq
´n´1ÿ

i“1

›i uipsq
¯

: s P r0, P s,
n´1ÿ

i“1

› 2

i § fl2

)
. (5.90)

Definition 5.3 is a generalisation of the definition of cylinder in a curved
space with arbitrary dimensions. If the manifold of interest, Mflat, is a 3-
dimensional Euclidean manifold and its perpendicular tangent space T K

“p0qMflat

is 2-dimensional and connected, a tubular trajectory around a straight line “ in
Mflat can be constructed as below by Definition 5.3:

T p“q “
"

“psq ` r cosp◊q vKpsq
|vKpsq|g

` r sinp◊q vK
Kpsq

|vK
Kpsq|g

: s P r0, 8q, 0 § r § fl, ◊ P r0, 2fiq
*

(5.91)
for some finite constant fl ° 0. Here,

 
vK, vK

K
(
is an orthonormal set of vectors

that span T K
“p0qMflat. This is an equation of a cylinder around a straight line “

on a flat Euclidean space with a base radius fl.

Figure 5.9 shows the tubular trajectories around a geodesic, parameterised
by the centre-of-mass coordinates of carbon dioxide, which are chosen as a



CHAPTER 5. GEOMETRICAL MOLECULAR DYNAMICS 168

Figure 5.9. Centre of mass tubular trajectories of a carbon dioxide system with initial
perturbations along vibrational modes: a) bending, b) symmetric stretch,
and c) anti-symmetric stretch modes.

visualisation aid to facilitate understanding of the tubular trajectories. Since the
system is three-dimensional in terms of centre-of-mass motion, Equation (5.91)
can be applied to construct the corresponding tubular trajectories. Although
the trajectories are initially perturbed and exhibit markedly different shapes,
they self-intersect, illustrating a seeminly periodic nature of these tubular
trajectories.

The quantity T p“q, from Definition 5.3, creates a tube whose radius flpsq “
|vKpsq|g evolves according to the geodesic deviation equation as the initial per-
pendicular vector is parallel transported along “. Note also that the initial
magnitude of vK can be arbitrarily chosen at s “ 0, as long as this initial magni-
tude is finite.

The perpendicular vector vKpsq satisfies the parallel transport equation:

dv›
K

ds
` �›

µ‹p“psqqd“µ

ds
v‹

K “ 0, (5.92)

with initial condition vKp0q “ v0 ´ xv0, 9“p0qyg
9“p0q

} 9“p0q}2
g

. In matrix form, this can be
written as:

dvK
ds

“ ´ApsqvKpsq, vKp0q “ initial perpendicular component, (5.93)
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where the connection matrix Apsq has components:

Apsq›
’ “ �›

µ’p“psqqd“µ

ds
, (5.94)

with �›
µ‹ being the Christoffel symbols of the Jacobi metric.

The evolved radius is given by:

flpsq “ }vKpsq}g “
b

g›’p“psqqv›
Kpsqv’

Kpsq, (5.95)

which changes according to the curvature of the manifold along the geodesic.

The cross-sectional volume of the tube at parameter s is determined by
the evolution of vectors in the 3natoms dimensional space perpendicular to 9“psq.

To construct the complete perpendicular cross-section, complete vKpsq
to an orthonormal basis tu1psq, u2psq, . . . , u3natomspsqu of T K

“psqMcl, where u1psq “
vKpsq{|vKpsq|g. Each basis vector satisfies the parallel transport equation:

Ò 9“ui “ 0, i “ 1, 2, . . . , 3natoms. (5.96)

Thus, it becomes natural that the tube cross-section at parameter s is the 3natoms

dimensional ball:

Cpsq “
#

“psq `
3natomsÿ

i“1

›iuipsq :
3natomsÿ

i“1

p›iq2 § flpsq2

+
:“ “psq ` B3natomspflpsqq, (5.97)

where flpsq “ |vKpsq|g is the evolved radius andBnpW q stands for ann-dimensional
ball with radius W ° 0. This definition is natural, as the collection of C for all s

in the interval of interest becomes the entire tubular trajectory as defined in
Definition 5.3.

Let Upsq “ ru1psq|u2psq| ¨ ¨ ¨ |u3natomspsqs be the matrix whose columns are the
orthonormal basis vectors of T K

“psqMcl. By Equation 5.85, Upsq satisfies

Upsq “ �KpsqUp0q (5.98)
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where �Kpsq is the projection of � onto T K
“psqMcl. With this in mind, the cross-

section Cpsq can then be rewritten as

Cpsq “
 
“psq ` Upsq› : › P R3natoms , }›}2 § flpsq2

(
(5.99)

“
 
“psq ` �KpsqUp0q› : › P R3natoms , }›}2 § flpsq2

(
(5.100)

“ “psq ` �KpsqB3natomspflp0qq (5.101)

Note that if the Floquetmultipliers of�Kpsq are given as ⁄1psq, ¨ ¨ ¨ , ⁄3natomspsq,
from the stability criteria discussed earlier, one can immediately understand
that the cross-section

• stretches along the directions where }⁄ipsq} ° 1, and

• contracts along the directions where }⁄ipsq} † 1.

The rotation of the tube is given by the complex nature of the ⁄i’s, and if
the magnitude of the Floquet multiplier is equivalent to 1, the cross-sectional
volume will not change in the corresponding direction.

5.5.4.2 Volume overlap between return events

For a trajectory whose return events, as the ones shown in Figure 5.9, have
been identified at some arclength domain by holonomy angle analysis tskuNreturns

k“0
,

the quasi-periodicity can be quantified by the volume overlap between any
two such returns. Intuitively, if the tube cross-sections at si and sj share a
large common volume, then the segment of trajectory between them closely
approximates an ideal periodic orbit–hence the motion may be regarded as
quasi-periodic to the extent measured by that overlap.

Figure 5.10 illustrates the tubular trajectories that terminate at an inter-
section volume after a complete period, initiated by perturbations along the
direction corresponding to the frequency shared by the vibrational spectrum
and the holonomy angle power spectrum. Despite the dissipation introduced
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Figure 5.10. A single period trajectory obtained by identifying a trajectory that ends at the
tube-intersection. Different periodicmotions are obtained via different initial
perturbations in the direction of the Ricci normal modes corresponding to
the shared peaks between the holonomy angle power spectrum and the
vibrational spectra.
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by the thermostat (300 K), the resulting periodic orbits exhibit the expected
physical behaviour and accurately reproduce the total period for each orbit.

The overlap between tube cross-sections at si and sj is defined through
the intersection measure:

Opsi, sjq “ VolpT p“psiqq X T p“psjqqq
VolpT p“psiqq Y T p“psjqqq , (5.102)

where Volp¨q denotes the volume measure on Mcl. The intersection volume
can be computed as

VolpT p“psiqq X T p“psjqqq “
ª

}›}§flpsiq
1
 ››�Kpsjq›

›› § flpsjq
(
d› “ Iij (5.103)

with › being the vectorial notation of ›i of Equation (5.90). The notation 1tQu
was used to denote the indicator function for a Boolean condition Q. Formally,
the indicator function for a condition Q is defined as follows:

1tQupxq “

$
’&

’%

1, if Q is true

0, otherwise
. (5.104)

The volume of the union is

VolpT p“psiqq Y T p“psjqqq “ C3natomsflpsiq3natoms ` C3natomsflpsjq3natoms ´ Iij (5.105)

with Cn being the volume of an n-dimensional unit sphere. The expression for
Opsi, sjq can be rewritten as:

Opsi, sjq “ fij´
flpsjq
flpsiq

¯
3natoms

` 1 ´ fij

, fij “ Iij

C3natomsflpsiq3natoms
. (5.106)

If one identifies a random point › P Cpsiq, one can find a monodromy
matrix M so that M› P Cpsjq. Noting that one can identify › as a product of
two independent uniform sampling processes as › “ zû: one determines the
unit vector, û, on a unit sphere of 3natoms dimensional dimensions, and the
other determining the magnitude of the vector, z P r0, flpsiqs, by the probability
density below.

pz “ p3natoms ` 1q z3natroms

flpsiq3natoms`1
. (5.107)
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Figure 5.11. Change of tubular section volume and tube intersection volumes over num-
ber of returns to the vicinity of original tubular section (for initial perturba-
tions in bending mode (TOP), symmetric mode (MIDDLE), and antisymmetric
mode (BOTTOM) directions).
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If the mapping M carried the vector › into the region shared by Cpsiq and Cpsjq,
the following must be satisfied:

z}M û} § flpsjq ùñ z § flpsjq
}M û} . (5.108)

Hence, the fraction of the radial segment that maps › into the shared volume is

Pr
ˆ

z § min
ˆ

flpsiq,
flpsjq
}M û}

˙˙
“ min

ˆ
1,

flpsjq
flpsiq}M û}

˙
3natoms

. (5.109)

By averaging this over all directions, one can recover fij as

fij “ Eû„UnifpS3natoms q

„
Pr

ˆ
z § min

ˆ
flpsiq,

flpsjq
}M û}

˙˙⇢
(5.110)

“
ª

S3natoms
min

ˆ
1,

flpsjq
flpsiq}M û}

˙
3natoms

‡pdûq (5.111)

with UnifpGq signifying uniform sampling from the set G, and ‡ being the
surface measure of the sphere defined as

‡pdûq “ �p3natoms{2q
2fi3natoms{2

3natoms´1π

k“1

sin3natoms´1´kpÏkqdÏ1 ¨ ¨ ¨ dÏ3natoms´1 (5.112)

for angular variables on the unit sphere Ïis. �p¨q in this equation was used to
represent a Gamma function.

Figure 5.11 shows the progressive divergence of volume sizes at each re-
turn for the system initially perturbed in the bending mode, accounting for the
multiple, broad peaks observed in the holonomy‐angle power spectrum. This
divergence indicates that, under thermostat conditions, natural trajectories
perturbed along these modal directions struggle to maintain pseudo‐periodic
oscillations around the ideal vibrational frequency. Although the cross‐sec-
tional volume grows without bound, the volume overlap oscillates widely be-
tween approximately 100 % and 30 % coverage. Consistent volume coverage
correlates with a higher probability of identifying periodic orbits, whereas
a diverging cross‐sectional volume signifies instability in the corresponding
mode.
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In the same figure, perturbation along the antisymmetric stretch mode
exhibits markedly different behaviour: the volume ratio oscillates around
unity—remaining below 5–and the volume overlap consistently exceeds 88 %,
typically above 97 %. These results demonstrate the stability of the tubular
trajectory under this perturbation and indicate the relative ease of locating a
pseudo-periodic orbit in this mode. This stability accounts for the pronounced
peak observed in the corresponding power spectrum.

The symmetric stretch mode yields intermediate behaviour. In this case,
the volume ratio reaches values as high as 86 without exhibiting a clear diver-
gence trend. The volume overlap fraction remains consistently above 87.5 %,
but displays more pronounced oscillations than in the antisymmetric stretch
mode,while remaining less violent than those observed for the bendingmode.

5.6 Fat manifolds and coupled vibrational modes

A tubular trajectory around a geodesic introduced in the previous section
provides a higher-dimensional understanding of the stability of the trajectory
perturbed by a certain mode direction. However, the tubular trajectory can be
further generalised to understand the vibrational mode couplings. To do so,
a machinery called fat manifold is used. The contents introduced in Chapter
5.6.1 and 5.6.2 suffice for the physics to be discussed in this manuscript. For a
thorough and rigorous account of the subject, consult the work of Alexandre
Vinogradov and Alessandro de Paris [140].

5.6.1 Definition of fat manifolds

Given the geodesic,metric, and for any s, an exponentialmap of v P Vs Ä T K
“psqM

is defined as a solution of the geodesic equation

d2‡µ

d· 2
` �µ

‹Ÿ
d‡‹

d·

d‡Ÿ

d·
“ 0 (5.113)
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such that ‡p0q “ “psq and 9‡p0q “ v{}v}. Note that Vs is an open and connected
subset of T K

“psqM. Notationally, the exponential map is given as

exp“psqpvq “ ‡p· “ }v}q. (5.114)

This definition then allows one to define a tubular neighbourhood.

Definition 5.4 (TubularNeighborhood). For a given family of neighbourhoods
tVsus, the tubular neighbourhood of radius ‘psq around the geodesic is:

U “
§

sPr0,P s

 
exp“psqpvq : v P Vs, }v} † ‘psq

(
. (5.115)

This then allows one to give a natural definition of the projection map
fi : U Ñ r0, P s,where for any point q P U , there exists an s P r0, P s and v P T K

“psqM
such that q “ exp“psqpvq. The projection is then defined by fipqq “ s. Note that
if one defines ‘p0q † flp0q, it is trivial that the tubular neighbourhood is a
connected open subset of T p“q with an initial tube radius flp0q.

For each parameter value s P r0, P s along the geodesic “psq, the perpen-
dicular space T K

“psqM consists of all vectors orthogonal to 9“psq. Denote by
Vs Ä T K

“psqM an open, connected subset on which the exponential map is well-
defined. The union of these perpendicular spaces is then

UF “
§

sPr0,P s
tsu ˆ Vs “ tps, vq : s P r0, P s, v P Vsu. (5.116)

Each element ps, vq P UF consists of:

• a parameter value s indicating position along the geodesic, and

• a perpendicular vector v representing a possible vibrational deviation at
that position.

The exponential map construction naturally defines a projection map:

fiF : UF Ñ r0, P s, fiF ps, vq “ s. (5.117)
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This projection simply extracts the parameter coordinate, “forgetting” the per-
pendicular vector information. For each fixed s, the level set fiF ´1psq “ tsu ˆ Vs

consists of all possible perpendicular vectors at parameter value s, and this
level set has the natural structure of a vector space (since Vs Ä T K

“psqM is a
vector space).

The crucial connection between this parameter space UF and actual trajec-
tories in configuration space M is provided by the extended exponential map:
� : UF Ñ M, �ps, vq “ exp“psqpvq This map takes a fat point ps, vq–representing
parameter value s with perpendicular deviation v - and produces the actual
corresponding point in configuration space.

The image of � gives us the tubular neighbourhood:

U “ �pUF q “
§

sPr0,P s

 
exp“psqpvq : v P Vs

(
(5.118)

This is the collection of all points in M that can be reached by taking perpen-
dicular steps from the geodesic “psq.

The fat manifold can then be defined as shown below.

Definition 5.5 (Fat manifold). The fat manifold is the parameter space UF

equipped with:

1. The collection structure: UF “ ps, vq : s P r0, P s, v P Vs Ä T K
“psqM

2. The projection map: fiF : UF Ñ r0, P s given by fiF ps, vq “ s

3. The realisation map: � : UF Ñ M given by �ps, vq “ exp“psqpvq

Each level set fiF ´1psq is called a fat point and represents all possible per-
pendicular deviations available at each parameter value s. The fat manifold
thus encodes the complete ”fattened” version of the geodesic trajectory, where
each point along the trajectory is ”thickened” to include all its perpendicular
perturbations. Theorem 5.6 demonstrates this intuition.
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Theorem 5.6. T p“q, of Definition 5.3, is a fat manifold.

Proof. Note that from Definition 5.3 that for a smooth curve ‡ : r0, Ss Ñ M in
an n-dimensional Riemannian manifold pM, gq, the tubular trajectory is given
by:

T p‡q “
#

exp‡psq

˜
n´1ÿ

i“1

viuipsq
¸

: s P r0, Ss,
ÿ

i

`
vi

˘
2 § flpsq2

+
(5.119)

with uipsq being a parallel-transported orthonormal frame of the normal bundle
T K

‡psqM. Now, noticing fromDefinition 5.5, a fatmanifold is the parameter space

U “ tps, vq : s P r0, Ss, v P Vsu, (5.120)

equipped with three pieces of data:

• Collection structure: U “ î
sPr0,Sstsu ˆ Vs .

• Projection map: flF : U Ñ r0, Ss, flF ps, vq “ s.

• Realisation map: � : U Ñ M, �ps, vq “ exp‡psqpvq.

Since T p‡q “ �pUq and � is a diffeomorphism onto its image, these three
structures transfer directly to T p‡q:

• Collection structure: Points of T p‡q correspond bijectively to ps, vq P U .

• Projection map: Every x P T p‡q lies uniquely in exp‡psqpVsq, so f : T p‡q Ñ
r0, Ss, flpxq “ s, is well‑defined and smooth.

• Realisation map: The exponential map realises each fat point in U as a
point in T p‡q.

Thus, T p‡q, together with the projection f and the realisation via exp, satisfies
all requirements of a fat manifold.
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5.6.2 Curves and their curvatures on a fat manifold
Definition 5.7 (Fat interval). Let I Ñ R be an interval and F be a finite-
dimensional vector space, often referred to as a fibre. A fat interval IF is the
collection:

IF “ tp·, wq : · P I, w P F u (5.121)

equipped with the projection map fiI : IF Ñ I defined by fiIpt, wq “ t.

Definition 5.8 (Fat curve). Let UF “ tps, vq : s P r0, P s, v P Vs Ä T K
“psqMu be a

fat manifold equipped with the projection fiF : UF Ñ r0, P s, fiF ps, vq “ s, and
the realisation map � : UF Ñ M, �ps, vq “ exp“psqpvq. Let I Ä R be an interval
and F a finite-dimensional vector space; write IF “ I ˆ F with projection
fiI : IF Ñ I, fiIp·, wq “ · .

A fat curve (in UF ) over a base map base : I Ñ r0, P s is a smooth map

“F : IF ›Ñ UF (5.122)

such that the following square diagram commutes, i.e. fiF ˝ “F “ base ˝ fiI :

IF UF

I r0, P s

“F

fiI fiF

base

Equivalently, there exists a smooth map › : I ˆ F Ñ î
sPr0,P s Vs with

›p·, wq P Vbasep·q such that

“F p·, wq “
`

basep·q, ›p·, wq
˘
. (5.123)

The realised fat curve in M associated to “F is

� :“ � ˝ “F : IF Ñ M, �p·, wq “ exp“pbasep·qq
`

›p·, wq
˘
. (5.124)

Note that ˝ is the binary operation representing the composition of two
maps.
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Given the fat manifold structure, one can now construct fat curves that
describe how vibrational perturbations evolve along the geodesic trajectory.
Consider a smooth curve sp·q in the parameter interval r0, P s representing
evolution along the geodesic “psq Ä M. For any vector w P F (where F is a
finite-dimensional vector space), the fat curve is defined as:

“F : IF Ñ UF , “F p·, wq “ psp·q, vp·q ` wq (5.125)

where vp·q P T K
“psptqqM is a smooth family of perpendicular vectors that evolves

along the geodesic according to the geometric structure of M.
The fat curve “F p·, wq represents:

1. Base evolution: Parameter sp·qdetermines the position along the geodesic
“psq.

2. Vibrational perturbation: Vector vp·q ` w represents the perpendicular
deviation from the geodesic at parameter sp·q.

The actual trajectory in the configuration space is obtained through the realiza-
tion map: �p“F p·, wqq “ exp“psp·qqpvp·q ` wq.

To analyse the geometry of fat curves, their tangent vectors are examined.
For a fat curve “F p·, wq, the tangent vector at p·0, w0q is

d

d·
“F p·, w0q

ˇ̌
ˇ
·“·0

“
´ ds

d·
p·0q, dv

d·
p·0q

¯
(5.126)

This naturally decomposes into

base component: ds

d·
p·0q and fibre component: dv

d·
p·0q. (5.127)

Induced Metric Construction. The fat manifold UF is equipped with a Rie-
mannian metric g̃ by demanding that the realization map

� : UF ›Ñ M (5.128)

preserves lengths infinitesimally. Concretely, for tangent vectorsX, Y P Tps,vqUF ,

g̃ps,vqpX, Y q “ g�ps,vq
`
�˚X, �˚Y

˘
, (5.129)

where g is the Jacobi metric on M and �˚ its differential.
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Natural Horizontal–Vertical Decomposition. At each point ps, vq P UF , the
tangent space splits orthogonally as

Tps,vqU
F “ Hps,vq ‘ Vps,vq. (5.130)

Vertical space: Vps,vq “ kerpfiF ˚q “ tp0, uq | u P T K
“psqMu, representing pure

fibre–vibrational motion.

Horizontal space: Hps,vq “ V
Kg̃

ps,vq, representing the evolution along the geodesic
parameter.

The Riemannianmetric g̃ on UF determines a unique Levi-Cività connection.
If �pTUF q denotes the space of smooth sections of the tangent bundle TUF “
î

rPUF TrUF , i.e., smooth maps X : UF Ñ TUF such that Xprq P TrUF for each
r P UF . Equivalently, �pTUF q is the space of smooth vector fields on UF . The
Levi-Cività connection is then the unique bilinear map

Ò̃ : �pTUF q ˆ �pTUF q ›Ñ �pTUF q, (5.131)

which is torsion-free and metric-compatible. That is, for any vector fields
X, Y, Z P �pTUF q, it satisfies Ò̃XY ´ Ò̃Y X “ rX, Y s (torsion-free condition) and
XxY, Zyg̃ “ xÒ̃XY, Zyg̃ ` xY, Ò̃XZyg̃ (metric-compatibility), where rX, Y s denotes
the Lie bracket of the vector fields defined by rX, Y sf “ XpY fq ´ Y pXfq for an
arbitrary smooth function f . It tells us how to differentiate vector fields along
curves in UF while preserving g̃.

With this in mind, one can then define a decomposition of curvature of
the vector fields in terms of horizontal and vertical space contributions. This
was first introduced to the world by Barret O’Neill in his work on Riemannian
submersions in 1966: see [141].

Definition 5.9 (O’Neill Tensors). Let X, Y be vector fields on UF , and write

X “ XH ` XV , Y “ Y H ` Y V , (5.132)

for their orthogonal projections onto the horizontal and vertical subspaces.
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The O’Neill tensors

A, T : �pTUF q ˆ �pTUF q ›Ñ �pTUF q (5.133)

are defined by
AXY “

`
Ò̃XH Y V

˘H `
`
Ò̃XV Y H

˘V
,

TXY “
`
Ò̃XH Y H

˘V `
`
Ò̃XV Y V

˘H
,

(5.134)

where the superscripts H, V denote horizontal and vertical components.

The tensor A encodes how horizontal and vertical motions mix. Its first
component,

pÒ̃XH Y V qH , (5.135)

measures theway a horizontal push along the base causes a change in a vertical
(vibrational) field, which is then projected back onto the horizontal subspace.
Dually, the second component,

pÒ̃XV Y HqV , (5.136)

records how a pure vertical perturbation of the vibrational field induces a
change in the horizontal direction and then is projected back to vertical.

By contrast, the tensor T captures the failure of the horizontal and vertical
distributions to be integrable. Specifically,

pÒ̃XH Y HqV (5.137)

quantifies how two horizontal motions, when composed, leak into the vertical
direction (i.e. generate vibrations), while

pÒ̃XV Y V qH (5.138)

measures how two vertical (vibrational) motions nevertheless produce a hori-
zontal drift, altering the underlying trajectory.
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Mode–Coupling Criterion. Two vibrational modes ei, ej in the vertical bundle
are said to be coupled exactly when

ˇ̌
Aei

ej

ˇ̌
`

ˇ̌
Tei

ej

ˇ̌
° 0. (5.139)

When modes are coupled, they collectively define a fat submanifold around
the base trajectory “psq. Specifically, the coupled modes teiu span the vertical
bundle Vps,vq, and the exponentialmap exp“psqpvq for v P Vps,vq constructs a tubular
neighborhood around “psq. The cross-sectional geometry of this tube at each
parameter value s is determined by the span of the coupled modes, while the
O’Neill tensors quantify how this cross-sectional shape evolves and deforms as
the trajectory progresses.

In particular, the coupling between the trajectory direction B{Bs P H and a
vibrational mode ei is quantified by

ˇ̌
AB{Bsei

ˇ̌
`

ˇ̌
Tei

B{Bs
ˇ̌
. (5.140)

This measures howmotion along the trajectory (B{Bs) induces changes in the vi-
brational mode ei, and conversely, how vibrational motion affects the trajectory
direction. The resulting fat manifold exhibits geometric deformation—twisting,
expansion, or contraction of the tubular cross-sections—precisely when this
coupling is non-zero.

Finally, the total coupling strength at parameter s is defined by choosing an
orthonormal basis teiu of Vps,vq and setting

Ÿcouplingpsq “
ÿ

i,j

´ˇ̌
Aei

ej

ˇ̌
2 `

ˇ̌
Tei

ej

ˇ̌
2
¯

. (5.141)

This scalar quantity provides a comprehensive measure of mode coupling at
each point along the trajectory and directly relates to the geometric deforma-
tion rate of the fat manifold’s tubular structure.
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Figure 5.12. Configuration space trajectories for the coupled harmonic oscillator system
(Equation 5.142) with varying coupling strength ⁄ P r0, 1s. As ⁄ increases,
the trajectories transition from simple Lissajous curves (⁄ “ 0) to complex
multiply-wound patterns, reflecting the increasing mode coupling. Each tra-
jectory serves as the base curve “psq for constructing the corresponding fat
manifold via the exponential map in the perpendicular directions spanned
by the coupled vibrational modes.
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5.6.3 Illustrative example: coupled harmonic oscillators

The geometric framework of fat manifolds and O’Neill tensors can be illustrated
through a simple two-dimensional coupled harmonic oscillator system with
Hamiltonian

H “ 1
2pp2

x ` p2

yq ` 1
2pÊ2

1
x2 ` Ê2

2
y2q ` ⁄xy, (5.142)

where ⁄ represents the coupling strength between the two oscillatory modes.
The corresponding Hamilton’s equations are

9x “ px, 9y “ py, 9px “ ´Ê2

1
x ´ ⁄y, 9py “ ´Ê2

2
y ´ ⁄x. (5.143)

For weak coupling (⁄ ! Ê1, Ê2), the essential mode-mixing dynamics are
captured by the approximate solution of the Hamilton’s equations:

xptq “ cospÊ1t ` ⁄ sinpÊ2tqq, yptq “ cospÊ2t ` ⁄ sinpÊ1tqq. (5.144)

This ansatz exhibits frequency modulation characteristic of weakly coupled
oscillators,where eachmode’s phase is modulated by the other mode’s motion.

Geometric framework The configuration space trajectory “ptq “ pxptq, yptqq,
with x and y given as in Equation (5.144), defines a curve in the two-dimensional
configuration manifold. The velocity vector 9“ptq “ p 9xptq, 9yptqq determines the
arc length element ds “ } 9“ptq}dt. The associated unit tangent and normal
vectors are

T ptq “ 9“ptq
} 9“ptq} , Nptq “ p´ 9yptq, 9xptqq

} 9“ptq} , (5.145)

which form an orthonormal basis for the tangent space at each point along
the trajectory.

O’Neill tensor analysis In the flat Euclidean configuration space, the Levi-
Civita connection reduces to ordinary differentiation. The horizontal and verti-
cal projections are defined with respect to the tangent space decomposition
T“ptqR2 “ spantT ptqu ‘ spantNptqu. The relevant O’Neill tensor component is

AT N “ pÒT NqH “ xÒT N, T yT, (5.146)
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Figure 5.13. Evolution of geometric coupling strength, Ÿ “ }AT N}2, over time for the
coupled harmonic oscillator system (Equation 5.142) with Ê1 “ 1.0, Ê2 “ 1.2
shown for coupling parameters ⁄ P r0, 0.3, 0.5, 0.7, 0.9, 1.0s. The periodic
structure reflects the underlying oscillatory dynamics, with peak amplitudes
scaling approximately as ⁄2 for weak coupling. For ⁄ “ 0 (purple), the
coupling constant vanishes identically to 0, confirming the absence of mode
coupling in the decoupled system.

where the superscript H denotes horizontal projection. The tensor T vanishes
identically in two dimensions due to the absence of multiple vertical directions.

The connection ÒT N “ d
dtNptq quantifies how the normal direction evolves

due tomode coupling effects. Critically,when ⁄ “ 0, the O’Neill tensor vanishes
throughout the entire trajectory, AT N “ 0, reflecting the complete absence of
mode coupling in the decoupled system. For ⁄ ° 0, the tensor captures the
dynamical coupling between modes through the rotation of the normal vector
field.

Coupling strength and physical interpretation Themode coupling strength
is quantified by

Ÿcoupling “ }AT N}2 ` }TNN}2 “ }AT N}2, (5.147)
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where the second term vanishes in two dimensions. Figure 5.13 demonstrates
the time evolution of Ÿcoupling for different coupling strengths.

Several key features emerge from this analysis:

• For the decoupled case (⁄ “ 0), Ÿcoupling is identically zero, confirming that
no mode mixing occurs when the coupling term is absent.

• For ⁄ ° 0, the coupling strength exhibits periodic behavior with frequency
components related to Ê1 and Ê2, reflecting the underlying oscillatory
dynamics.

• The peak coupling strength scales approximately as ⁄2 for weak coupling,
consistent with perturbative expectations.

• The temporal pattern reveals when modes are most strongly coupled,
corresponding to specific phase-dependences between the oscillators.

The volume evolution rate of the tubular neighborhood is given by
dV

ds
“ ´trpAT q “ ´xAT N, Ny, (5.148)

which vanishes when AT N is purely horizontal (as in this example), indicating
volume preservation. This reflects both the Hamiltonian nature of the dynamics
and the specific geometric properties of the coupling.

The configuration space trajectories show the transition fromsimple Lissajous-
like figures (⁄ “ 0) to increasingly complex, multiply-wound patterns as the
coupling strength increases. These geometric changes in the base trajectory
directly correlate with the magnitude of the O’Neill tensor components, es-
tablishing a clear connection between classical trajectory geometry and mode
coupling quantification through the fat manifold framework.

5.6.4 Carbon dioxide and coupled vibrational modes

In this section, the coupling between vibrational modes is analyzed within the
fat manifold framework by focusing on regions where the coupling condition



CHAPTER 5. GEOMETRICAL MOLECULAR DYNAMICS 188

Figure 5.14. 3D projection of fat submanifold around a geodesic taken by the carbon
dioxide molecule with the exponential map directions given by the initial
bending and symmetric stretch mode directions.

of Equation (5.140) is satisfied. The analysis considers trajectories within the
tubular neighbourhood constructed via the exponential map exp“psqpvq around
the base geodesic “psq, where the horizontal and vertical space decomposition
captures the distinction between trajectory evolution and vibrational motion.

When modes are strongly coupled, the exponential map generates a sub-
stantial tubular neighbourhood around the base trajectory, creating a gen-
uine ”fat” manifold with non-trivial cross-sectional geometry. However, as the
coupling strength diminishes and the total coupling parameter Ÿcouplingpsq ap-
proaches zero, the tubular neighborhood contracts. In the limit of completely
decoupled modes, the fat manifold degenerates: the perpendicular directions
cease to contribute meaningfully to the dynamics, the tubular structure col-
lapses, and the fat manifold reduces to the one-dimensional base trajectory
“psq itself. Thus, the ”fatness” of the manifold serves as a geometric indicator
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Figure 5.15. 3D projection of fat submanifold around a geodesic taken by the carbon
dioxide molecule with the exponential map directions given by the initial
antisymmetric stretch and symmetric stretch mode directions. The fat mani-
fold exhibits well-defined periodic volume evolutions around a geodesic.

of mode coupling strength—robust coupling sustains a substantial tubular
neighborhood, while decoupled modes eliminate the transverse structure
entirely.

Figures 5.14 and 5.15 present the three-dimensional projections of fat
manifold envelopes surrounding the geodesic corresponding to the trajectory
of carbon dioxide. The geodesic was obtained using the methods described
in the preceding sections of this chapter. At time zero in both figures, the
thermostat—initially set to 300 K—was switched off. Thereafter, the system
was propagated in the microcanonical (NVE) ensemble, enabling the analysis of
vibrational mode couplings in the production stage of the molecular dynamics
simulation. Figure 5.14 displays a relatively simple and regular fat manifold
envelope structure, arising from the coupling between the bending and sym-
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Figure 5.16. Evolution of the normalised mode coupling between symmetric stretch and
bendingmodes over time (red) and the normalised radius of the fat trajectory
(purple).

metric stretch modes. In contrast, Figure 5.15 demonstrates, at a glance, a
more pronounced variation in the fat manifold structure.

Figures 5.16 and 5.17 compare temporal evolution of the coupling strengths
to the radii of the envelope surrounding the geodesic.

Regarding the similarities between Figures 5.16 and 5.17, it is evident that
the magnitude of the coupling strengths progressively decreases over time.
This behaviour is expected because the thermostat was switched off at t “ 0,
when the couplings were maximised by thermal excitation. As the system
relaxes and the effect of the initial temperature diminishes, the couplings
weaken until equilibrium is reached. The alignment of the peaks with the fat
trajectory radii further illustrates this relaxation process.

The most prominent differences between the two figures emerge beyond
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Figure 5.17. Evolution of the normalised mode coupling between symmetric and anti-
symmetric stretch modes over time (red) and the normalised radius of the
fat trajectory (purple).

4 ps. In this time regime, the fat trajectory radius in Figure 5.16 exhibits no
substantial changes in magnitude, although the peak heights gradually de-
crease. By contrast, the fat trajectory radius in Figure 5.17 appears to plateau
toward a steady value, indicating that the coupling strength has diminished
significantly. Figure 5.18 confirms this observation. In panel a), the magnitude
of the time derivative of the fat trajectory radius decreases sharply, whereas
panel b) also exhibits a decline, but the reduction is markedly less pronounced
than in panel a). Together, these observations indicate that the coupling in
Figure 5.16 dissipates more rapidly, while in Figure 5.17 the system retains
residual coupling effects that persist even after the primary relaxation phase.

As the framework developed in this work is purely mathematical, the
same analysis can be applied to modes that do not correspond to vibrational
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Figure 5.18. Evolution of the time-derivatives of fat trajectory radii for a) case correspond-
ing to Figure 5.16 and b) to Figure 5.17.
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modes. Figure 5.19 illustrates such a case for the two translational Ricci modes.
Here, the undulation of the fat radius (panel a) shows no indication of con-
vergence—neither in the persistence of peak shapes nor in the behaviour
of the time derivative of the fat radius (panel b), which does not approach
zero. This behaviour is physically reasonable, as translational motion should
not exhibit damping or thermal equilibration in an isolated system; rather, it
persists without attenuation in the absence of external forces or dissipative
mechanisms.

The results in this section show that the fat manifold framework can quan-
tify and track mode couplings over time using the fat trajectory radius and its
time derivative. These outputs reveal both the strength and persistence of cou-
plings, providing a clear basis for distinguishing rapidly relaxing interactions
from those that remain over longer timescales.
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Figure 5.19. Evolution of a) the radii and b) the time derivatives of the radii of the fat
trajectory corresponding to the two translational Ricci modes. The coupling
strength between the two translational modes is shown in red.
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Concluding remarks

道尸掃尸星利望良古

彗星也白反也人是有叱多

後句達阿羅浮去伊叱等邪

此也友物比所音叱兮叱只有叱故

융천사融天師

혜성가彗星歌

Someone, gazing at a star sweeping
the path, exclaimed,
“A comet!”
Ah, but the moon had already risen far
below.
Look here—what kind of comet could it
have been?

Yungcheonsa
Hyeseong-ga (Song of a Comet)

This thesis set out to explore a series of questions concerning the geometrical
and spectral understanding of molecular vibrations, as introduced in Chapter
1.1. In this concluding section, the previously posed questions are revisited in
light of the results presented in the preceding chapters, with emphasis on the
key insights gained, the challenges encountered, and the broader implications
of the methodologies developed.

Q1. Is it possible to extract a physically meaningful decomposition of
molecular spectral data without prior knowledge of the underlying chem-
istry or physics? Chapter 3 demonstrates that it is indeed possible to extract
a physically meaningful decomposition of molecular spectral data without re-
lying on prior chemical or physical assumptions. By treating the vibrational
spectrum purely as a signal, the thesis develops an empirical mode decompo-
sition framework that identifies spectral peaks through robust peak-finding

195
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and smoothing algorithms, followed by a Lorentzian mixture fitting. This
method isolates individual vibrational contributions based solely on the ge-
ometry and statistical features of the signal. Applications to both simple and
complex molecules, including carbon dioxide and phenol, show that the ex-
tractedmodes correspond closely to known vibrational structures, evenwithout
input from quantum calculations or symmetry considerations. This confirms
the viability of a data-driven,model-agnostic approach to vibrational analysis.

Q2. Canmolecular trajectories be isolatedwithin a specific frequency band
without compromising their physical integrity? Chapters 4.1 through 4.3
demonstrate that molecular trajectories can indeed be isolated within a spe-
cific frequency band without compromising their physical integrity. This is
achieved through a Fourier integrator framework, where molecular motion
is expressed in terms of its vibrational frequency components and selectively
evolved within a user-defined band. By projecting both positions and forces
onto a finite Fourier basis corresponding to target frequencies, the method
enables band-limited simulations that preserve the symplectic structure and
energy coherence of the system. Notably, the algorithm maintains physical
realism by computing forces in real space and consistently mapping them back
into Fourier space, ensuring that the simulated dynamics remain physically
grounded.

Case studies involving carbon dioxide and phenol validate the approach: in
each instance, restricting the simulation to low,mid, or high-frequency bands
produced vibrational densities of states in close agreement with the relevant
part of the full-spectrum simulations. Even in the presence of anharmonic
couplings, the band-limited dynamics retain structural fidelity, with inter-mode
interactions manifesting as identifiable off-diagonal correlations. These results
confirm that selective vibrational analysis can be conducted without artificial
distortion, offering both computational efficiency and interpretive clarity in
molecular dynamics.
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Q3. Canmolecular trajectories be described usefully in geometrical terms?
The results presented in Chapters 5.1 through 5.3 demonstrate that molecu-
lar trajectories can indeed be reformulated entirely in geometrical terms. By
adopting the Jacobi metric—a Riemannian metric derived from the system’s ki-
netic and potential energy—molecular dynamics are reinterpreted as geodesic
flows on a compact Riemannian manifold.

This formulation allows the action principle from classical mechanics to be
recast as a problem of arc-length extremisation, where the physical trajectory
corresponds to a geodesic path on the energy landscape. Importantly, the
configurational space of a molecule under this metric is shown to be compact
with a well-defined boundary (the Hill region), ensuring that the system’s trajec-
tories remain bounded. This geometrisation not only provides a conceptually
elegant framework but also offers numerical advantages, such as intrinsic
energy conservation and stable integration.

Furthermore, the introduction of a quantum-uncertainty-based thermo-
stat compatible with this geometric framework (Chapter 5.2) enables physically
meaningful thermal sampling, offering a potential route out of the dilemma
between non-ergodic deterministic dynamics and statistical models with un-
controlled time-correlation behaviour. The case study of carbon dioxide (Chap-
ter 5.3) illustrates the practical viability of this approach: vibrational spectra
obtained via thermostatted geodesic integration closely match those from
conventional molecular dynamics, validating the geometric framework as both
theoretically rigorous and computationally robust.

Q4. Can the internal vibrational motions of a molecule be understood as
manifestations of quasi-periodicity? Chapters 5.4 through 5.6 of this thesis
provide a compelling geometrical framework that links internal vibrational
motions ofmolecules to quasi-periodic dynamics. Moving beyond the harmonic
approximation and static normal mode analysis, the approach introduced here
leverages the Ricci tensor—defined on the Riemannian manifold endowed
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with the Jacobi metric—to generalise normal modes into smoothly evolving
eigen-directions that track the intrinsic vibrational structure of the molecule
throughout its trajectory. These Ricci eigendirections provide a coordinate-
invariant and physically meaningful basis that remains valid even in highly
anharmonic regimes.

To detect and characterise quasi-periodicity, this thesis employs two com-
plementary tools: the holonomy angle, which quantifies geometric phase
accumulation via parallel transport, and tubular trajectory analysis, which
evaluates the volume overlap of geodesic neighbourhoods during recurrent
motion.

In addition to these tools, this thesis develops the fat manifold frame-
work, which quantifies the temporal evolution of mode couplings through the
fat trajectory radius and its time derivative. These quantities provide direct,
time-resolved measures of how vibrational interactions weaken or persist, of-
fering both a visual and numerical basis for assessing the stability of mode
interactions. By tracking the decay rates and persistence of couplings, the
framework complements quasi-periodicity detection by identifying whether
recurrent motions remain dynamically coherent over extended timescales or
gradually lose synchronisation.

Together, these approaches reveal that even in thermally fluctuating sys-
tems, vibrational motions often recur along low-dimensional invariant struc-
tures in configuration space. Well-resolved spectral peaks are found to coincide
with high quasi-periodicity scores, closed tubular trajectories, and persistent
mode couplings identified through the fat manifold framework. This conver-
gence of geometric, spectral, and dynamical indicators confirms that persistent
vibrational modes are underpinned by near-periodic geodesic motion, and that
their stability can be quantitatively assessed through the coupled evolution
of fat trajectory radii. Thus, the internal vibrational dynamics of a molecule
can be rigorously understood as quasi-periodic flows embedded in the curved
geometry of the molecular energy landscape.
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Efforts are currently underway to generalise the learning of potential en-
ergy surfaces (PES) within the Born–Oppenheimer (BO) approximation to the
learning of full dynamical maps that go beyond BO. The present work offers a
framework for representing an arbitrary dynamical system, potentially includ-
ing beyond-BO quantum effects, in a way that is geometric, transparent, and
easy to interrogate.

6.1 The shape of motion, the sound of structure

Molecular vibrations unfold not only in quantum states or numerical spectra,
but through structured motions shaped by geometry and resonance. Tra-
jectories traced as geodesics on energy landscapes, vibrations understood
as quasi-periodic flows, and spectra treated as signals reveal a unified view
where structure and motion reflect one another. Methods developed in this
work—Ricci eigenmode tracking,monodromy of tubular trajectories, frequency
band isolation, and empirical signal decomposition—highlight how geometry
and signal intertwine. Within this interplay,motion gains shape and structure
finds voice, offering a foundation for deeper explorations into the geometry of
dynamics.
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APPENDIX A

Useful distributions

Three commonly-used distributions in spectroscopic signal processing are
introduced in this chapter: Gaussian, Lorentzian and Voigt distributions.

A.1 Gaussian

A Gaussian, or a normal, distribution with mean µ and standard deviation ‡

has its probability density function defined as below.

Gpx; µ, ‡q “ 1?
2fi‡2

e´ px´µq2
2‡2 (A.1)

This distribution is normally denoted as N pµ, ‡2q.

A.2 Lorentzian

The probability density function of a Lorentzian, or a Cauchy, distribution is
given as

Cpx; x0, “q “ 1
fi

“

px ´ x0q2 ` “2
(A.2)

where x0 is the median and “ is the median absolute deviation. [142] One of
the key characteristics of this distribution is that it does not have a mean. [143]

A.3 Voigt

Spontaneous emission of fermionic system in vacuum yields a spectrum that
can be described as a sum of Lorentzian profiles. [144–146] However, atomic
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motions and inhomogeneous fields broadens the spectral profiles making
the signal to look more like a sum of Gaussians. To capture both of these
physical effects simultaneously, physicists use what is known as a Voigt profile
(or Voigt distribution), which combines the characteristics of both Gaussian
and Lorentzian distributions.

A Voigt distribution is defined via the following expression:

V px; µ, x0, ‡, “q “
ª 8

´8
Gpy; ‡qCpx ´ y; x0, “qdy. (A.3)

Here, the variable x is normalised using the Gaussian width ÊG “
?

2‡ so that
the parameters can be omitted.

Using the dimensionless variable x1 “ x{ÊG, the Voigt function can be
expressed in a simplified form:

V pxq “ 1?
fiÊG

Kpx1, yq, (A.4)

where y “ ÊL{ÊG and the kernel function Kpx, yq is given by the following
expression. [147]

Kpx, yq “ y

fi

ª `8

´8

e´›2

px ´ ›q2 ` y2
d› (A.5)

This kernel function can be alternatively represented as:

Kpx, yq “ 1?
fi

ª `8

0

e´y›´›2{4 cospx›qd› (A.6)

which can be re-written in computable form as

Kpx, yq “
8ÿ

n“0

p´1qn

"
1

�pn ` 1q1F1

ˆ
2n ` 1

2 ,
1
2; y2

˙
´ 2a

�p2n`1

2
q1F1

ˆ
n ` 1,

3
2; y2

˙*
x2n,

(A.7)
where 1F1p–, —; zq denotes the confluent hypergeometric function. [148]
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Least squares algorithm

The least squares method is a standard approach to approximate solutions to
overdetermined systems, i.e. systems with the number of equations exceeding
the number of unknowns. Essentially, the method is interested in solving
systems of linear equations of the form

Ax “ b (B.1)

where A P Rmˆn is the matrix determining the nature of the problem, x P Rn

is the vector of unknowns, and b P Rm is the data observed for m, n P N with
m ° n. The least squares problems are defined as in Definition B.1

Definition B.1 (Least squares method). Given a linear system of the form
given in Equation B.1, the residual is defined as r “ Ax ´ b. The least squares
solution x˚ is the solution that satisfies

x˚ “ min
x

}Ax ´ b}2 “ min
x

}rpxq}2
(B.2)

where }x} “ ?
x ¨ x is the EuclideanL2 norm. Finding this x˚ is the least squares

problem corresponding to the given system, and the parameters encoded in
x˚ are called the estimator of the problem. Differentiating }rpxq}2 with respect
to x and setting the result to zero gives an equation called normal equation
that gives x˚ once solved.

If the matrix AT A is invertible, the solution can be found immediately as

AT Ax “ AT b ùñ x˚ “
`
AT A

˘´1

AT b (B.3)
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and the parameters encoded in x˚ are called the ordinary least squares estimator.

B.1 Simple and weighted linear regressions

Suppose a set of data points px1, y1q, px2, y2q, . . . , pxn, ynq is given, and want to fit
a line y “ mx ` c. The residue of the problem, according to Definition B.1, is
r “ y ´ pmx ` cq. Hence, the least squares problem becomes the optimisation
problem of the following:

}r}2 “ py ´ pmx ` cqq ¨ py ´ pmx ` cqq (B.4)

“ y ¨ y ´ 2my ¨ x ´ 2cy ¨ y ` m2x ¨ x ` 2cmx ¨ 1 ` 2 ` c2, (B.5)

then asserting B}r}{Bc “ 0 and B}r}{Bm “ 0 gives

c “
∞n

i yi

∞n
i xi

2 ´ ∞n
i xiyi

∞n
i xi

n
∞n

i xi
2 ´ p∞n

i xiq2
(B.6)

m “ n
∞n

i xiyi ´ ∞n
i yi

∞n
i xi

n
∞n

i x2

i ´ p∞n
i xiq2

. (B.7)

The parameters m and c provide the linear estimator for the data given by the
model ŷ “ mx ` c, which is unbiased and minimises the root mean squared
error (RMSE), where RMSE is defined as:

RMSE “
d

1
n

nÿ

i“1

pyi ´ ŷiq2 “ ?
r ¨ r (B.8)

for ŷi “ mxi ` c. Note that the unbiasedness is true since the mean of ŷ equals
the mean of y by construction. [149]

The data are not always evenly distributed with respect to the xi-values.
When the data points are not uniformly spread, it may be beneficial to introduce
a set of weights wi for each datapoint pxi, yiq. These weights account for the
varying importance or reliability of different datapoints. In this case, the
least-squares problem is modified to minimize the weighted sum of squared
residuals, given by: [150]

J “
nÿ

i“1

wipyi ´ c ´ mxiq2. (B.9)
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Figure B.1. Comparison of simple and weighted least squares regression fits on psychol-
ogy research data. The simple linear fit (blue) results in a higher RMSE of
0.318, while the weighted linear fit (green), which accounts for the variable
residuals, achieves a lower RMSE of 0.253. The scatter plot shows data points
normalized between 0 and 1 for both the domain and range.

The fitting parameters minimizing this quantity are given as

c “
∞n

i wiyi

∞n
i wixi

2 ´ ∞n
i wixi

∞n
i wixiyi∞n

i wi

∞n
i wix2

i ´ p∞n
i xiq2

, (B.10)

m “
∞n

i wi

∞n
i wixiyi ´ ∞n

i wiyi

∞n
i wixi∞n

i wi

∞n
i wix2

i ´ p∞n
i xiq2

. (B.11)

One of the most intuitive weights that corrects the statistical deviations is

wi “ 1
‡i

2
(B.12)

as this ensures that the fit is unbiased and RMSE is minimized. [151]
However, the values of ‡i are typically unknown to the experimenter since

the residuals may exhibit varying levels of spread. [152] This requires the use
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of problem-specific weight models to address the differing variance across
observations. [153–156]

One of the ‡i values robust of the varying levels of residuals can be defined
iteratively via the following equation. [157]

‡i
2 “ pyi ´ ŷiq2 “ r ¨ r (B.13)

The Figure B.1 shows the performance of simple and weighed least-squared
fittings of a data from a psychology research work. [158]

B.2 Penalised least squares

Themethods introduced in Section 3.2, arPLS and airPLS, are variants of what is
known as pernalised least squares (PLS)method, which minimizes the penalised
least-squared functional

JPLS “
nÿ

i“1

wipyi ´ fpxiqq2 ` ⁄flrf s (B.14)

for ⁄ P R, the penalty parameter, and a quadratic functional fl determining the
local curvature profiles of the function f in the given domain. This method was
first made to understand how to fit with a polynomial or spline functions using
the least-squares methods by George Kimeldorf and Grace Wahba in 1970
[159,160], but its robustness and scalability. For instance, the cubic smoothing
for univariate regressions the functional fl can take the following form:

flrf s “
ª b

a

ˆ
d2f

dx2

˙2

dx (B.15)

where pa, bq is the interval containing all given datapoints. [161] The penalty
parameter ⁄ can be either empirically chosen, or optimized via likelihood func-
tions. [162]

The influence of the penalty parameter ⁄ is demonstrated in Figure B.2,
which shows various PLS fits to a noisy dataset using different values of ⁄.
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Figure B.2. Comparison of penalized least squares (PLS) fits with different penalty param-
eters (⁄) applied to noisy data. The fits demonstrate the trade-off between
smoothness and accuracy: smaller values of ⁄ (1,2) produce more flexible
fits with lower RMSE but may overfit local variations, while larger values (4,5)
yield smoother curves at the cost of higher RMSE. A standard weighted least
squares fit is shown for comparison. All fits use a cubic spline condition for
the penalty functional.

When ⁄ “ 1 or ⁄ “ 2, the resulting fits (blue and green curves) closely follow
the local variations in the data, achieving lower RMSE values of approximately
0.108 and 0.102, respectively. However, these fits may be capturing noise
rather than the underlying trend. Increasing ⁄ to 4 or 5 (black and red curves)
produces progressively smoother fits that are less sensitive to local fluctuations,
though at the cost of higher RMSE values (0.188 and 0.261).

For comparison, a standardweighted least squares fit (gray curve) is shown,
which exhibits less control over local smoothness and results in an RMSE of
0.253. This highlights a key advantage of the PLS method: by adjusting ⁄, one
can explicitly balance the trade-off between fidelity to the data (minimizing
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residuals) and smoothness of the solution (minimizing the penalty term). This
flexibility makes PLS particularly suitable for baseline correction problems,
where the goal is to capture smooth underlying trends while being robust to
noise and outliers.
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