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Abstract—Blockchain has revolutionized finance through de-
centralization, eliminating the need for traditional intermediaries.
However, security concerns remain a major barrier to adoption,
as DeFi platforms increasingly face targeted attacks. In this pa-
per, we present the first methodology for automatically assessing
and quantifying the risk of fund loss in DeFi projects due to
smart contract exploits. By analyzing on-chain behaviors that
signal potential malicious interactions, our approach assigns a
dynamic risk score to DeFi projects over time. Relying solely
on on-chain data ensures resistance to data manipulation and
enhances the integrity of the assessment.

We evaluated 220 compromised and 200 unaffected DeFi
projects on multiple EVM-compatible blockchains – including
Ethereum, BSC, Polygon, Arbitrum, Optimism, and Fantom –
and conducted a comparative risk assessment on these projects.
Our findings reveal statistically significant differences in risk
scores before attacks compared to a control group without
attacks. We anticipated potential threats to 86% of the projects
that were later attacked, one day before the incidents, with a
precision of 78%.

Index Terms—Ethereum, EVM, Decentralized Finance, Secu-
rity Risk Scoring.

I. INTRODUCTION

DeFi, short for Decentralized Finance, represents a signif-
icant shift in the financial landscape. It encompasses projects
that leverage blockchain technology to construct a new, open,
and permissionless financial ecosystem [46]. The rapid growth
and continual evolution of DeFi protocols over the past few
years suggest that this industry is becoming an increasingly
central component of the global financial system [43]. As
of May 25, 2025, the total value locked (TVL) in the DeFi
ecosystem is more than 150 billion USD and increasing [5].

The computational flexibility of blockchain platforms -
particularly the Ethereum Virtual Machine (EVM) - has en-
abled developers to design innovative decentralized financial
systems. These systems promise to reshape traditional finance,
but their rapid expansion brings significant risks. Many in-
vestors remain hesitant to participate in DeFi due to the
potential for asset loss. According to Zhou et al. [47], between
April 2018 and April 2022, security incidents in DeFi led to

losses of at least 3.24 billion USD, impacting users, liquidity
providers, speculators, and protocol developers. Despite the
emergence of numerous security tools for blockchain platforms
and extensive efforts to mitigate attacks, malicious actors
continue to target DeFi projects monthly. Such attacks do not
necessarily indicate shortcomings in existing security tools
themselves; but often stem from improper implementation
practices, insufficient adherence to secure development princi-
ples, or the lack of integrated defensive architecture. Although
several existing works focus on post-attack detection, our
goal is to examine a project’s systemic risk over time. This
distinction is crucial since our model produces early warning
signals that support strategic prioritization, such as identifying
which projects merit deeper audits, closer monitoring, or
adjusted insurance premiums. To achieve this objective, we
introduce a systematic framework that translates these security
insights into measurable, data-driven risk indicators.

Our methodology relies exclusively on blockchain data,
making it resistant to external manipulation and independent
of centralized reporting sources. By depending solely on
decentralized information, our system ensures objective and
consistent outputs—essential for a trustless environment. The
computed risk score captures abnormal user behaviors, struc-
tural weaknesses in the protocol, and other on-chain signals
that may precede malicious activity. We adopt the perspective
that cyberattacks do not occur spontaneously; rather, they are
preceded by subtle phases, including reconnaissance, probing,
vulnerability discovery, and strategic execution. Our system
identifies these early warning signs and assesses the likelihood
that a given DeFi project may become a target of attack. Based
on these capabilities, we next discuss how our framework fits
into the broader DeFi security ecosystem.

To the best of our knowledge, this work presents the first
fully automated risk-scoring methodology for DeFi projects
that relies exclusively on on-chain behavioral and structural
signals, without any off-chain input or manual data curation.
Investors may use the resulting risk score to decide whether
to invest in a specific DeFi project. Insurance companies and



intermediaries can rely on it to assess potential collaborations.
Project owners can use the score to assess their security
posture and take proactive measures to mitigate risks. As
such, our method complements existing tools and provides an
additional layer within the broader DeFi security stack.

Contributions: Our main contributions are as follows:
• Development of an Automated Security Risk Assess-

ment Methodology. We propose a novel methodology
to automatically assess DeFi security risks using only
on-chain data, reducing external manipulation and en-
suring consistent evaluation. By generating granular risk
scores, our approach equips investors, project owners, and
insurance firms with essential information for decision
making, bridging the gap between decentralized finance
and informed risk management.

• Introduction of Unique Risk Metrics. Our research
introduces four novel, interpretable risk metrics derived
from on-chain behavior, capturing indicators of both ma-
licious intent and structural vulnerabilities. These chain-
agnostic metrics can be dynamically computed without
external input, providing stakeholders with deeper insight
into project integrity and operational risk for proactive
management.

• Robust Statistical Validation of Risk Assessment. In
addition to our methodology and metrics, we conduct
an extensive empirical evaluation of the effectiveness
of our risk scoring system. Using a dataset of 220
security breaches across DeFi projects, we demonstrate
a clear distinction in risk scores between attacked and
non-attacked projects. Our analysis achieves an average
recall of 86.4% and precision of 78.5%, underscoring
the practical applicability of our risk assessments in real-
world scenarios.

II. BACKGROUND

In this section, we introduce the necessary background on
Ethereum, SCs, and decentralized finance.

A. Ethereum and EVM

Ethereum [44] is a popular blockchain platform that sup-
ports secure transactions and the development and execution
of SCs. The Ethereum Virtual Machine (EVM) is a decen-
tralized virtual machine that enables the execution of SCs on
the Ethereum blockchain. This robust and secure execution
environment has positioned Ethereum as a leading platform
for providing decentralized financial services.

Numerous blockchains leverage the EVM as their founda-
tional technology, facilitating the creation and execution of
SCs. In this paper, we consider Polygon [11], Arbitrum [2],
Binance Smart Chain or BSC [4], Optimism [10], Fantom [8],
and Base [3]. Ethereum accounts are uniquely identified by
hexadecimal addresses. Interactions occur through transactions
which act as messages sent between accounts and which
may include cryptocurrency as well as data. An essential
aspect of transactions is “gas”, which refers to the unit of

Fig. 1. Structure of a DeFi project and the interaction between deployer
EOAs, user EOAs, and SCs. Solid lines denote normal transactions; dotted
lines indicate internal transactions.

measurement that denotes the computational effort required to
execute operations, including transactions and SC executions.
Each transaction requires a certain amount of gas, and users
must pay for this gas in the form of the native cryptocurrency,
e.g., Ether (ETH) for Ethereum.

B. EOAs and SCs

Ethereum features two types of account: Externally Owned
Accounts (EOAs) and smart contracts(SCs). EOAs, controlled
by private keys, serve as the origin of all transactions on
the Ethereum blockchain. They can initiate transactions that
involve complex interactions with other accounts, such as
mathematical computations, transferring assets, and deploy-
ing SCs. Importantly, only EOAs can initiate transactions;
the account that triggers a transaction is referred to as the
transaction origin. SCs consist of executable code stored on
the blockchain that operates autonomously according to the
rules of the blockchain, independent of the EOA that has
implemented them. Although SC cannot independently initiate
transactions, it can perform internal operations as part of
a regular transaction. These internal transactions allow one
SC to request services from another or interact with EOAs.
This mechanism facilitates complex interactions within the
Ethereum ecosystem.

C. Decentralized Finance Projects

DeFi, short for Decentralized Finance, refers to blockchain-
based services that offer various financial products [15]. These
services provide blockchain users with access to financial
instruments, such as lending, borrowing, and crypto exchanges
[21]. These services are on-chain through SCs.

A DeFi project typically comprises multiple SCs, from
tokens to governance contracts, that interact via internal
transactions to deliver the intended financial services. Fig-
ure 1 illustrates the communication and interactions between
different actors in a DeFi project. The scope of a project
encompasses several SCs, all of which are deployed by a
set of EOAs serving as project deployers. The idea of using
deployer addresses to collect a project’s SCs is inspired by
the findings of [36], which show that the victims of a single



attack can often be identified as all SCs deployed by the
same deployer. End users interact with the project by initiating
a normal transaction to any of its SCs. If the transaction
meets the SC’s constraints, it will complete the process by
initiating internal transactions within other SCs of the project.
Since most DeFi projects are built on public blockchains, they
are transparent and open-source. This transparency benefits
users, as anyone can inspect the SC’s code before interacting.
However, it also presents many risks [18]. With full access
to the source code and deployed contracts, malicious actors
can identify vulnerabilities, exploit them, and potentially steal
funds. Given the decentralized nature of blockchains and the
lack of centralized authority to reverse transactions after a
hack, proactive security measures are essential. They help
mitigate risks and prevent potential misuse of DeFi platforms.

III. CHALLENGES

In this section, we examine the complexities of risk assess-
ment in DeFi projects, highlighting key challenges, especially
when compared to traditional financial systems.

Lack of Regulation and Standardization. One of the
biggest challenges in assessing risk in DeFi projects is the
lack of regulatory oversight and standardization [35], [14].
Unlike traditional financial systems, which operate under well-
established regulations enforced by government bodies, DeFi
works in a largely unregulated environment [38]. This lack of
oversight increases risk, as there are no uniform guidelines to
ensure the security and reliability of DeFi platforms. Another
critical issue is clear gateways and interoperability between
blockchain networks. In traditional finance, transactions and
communications typically go through regulated intermediaries
that provide oversight and trust. In contrast, DeFi operates in a
borderless digital landscape where protocols interact directly,
often without standardized interfaces. This lack of defined
gateways can lead to unexpected protocol interactions, further
increasing risk exposure.

Complexity of DeFi projects. DeFi projects rely on SCs,
often comprising multiple interdependent components [43].
The intricate nature of these SCs poses significant challenges
in risk assessment. In traditional finance, risk is typically
assessed using established financial instruments and method-
ologies. However, in the context of DeFi, the unique character-
istics of SCs complicate the auditing and verification process.
Manual code reviews are labor-intensive, and automated tools,
while useful, may fail to identify all potential vulnerabilities.

Open-Source Nature and Transparency. While
blockchains’ open-source nature is often praised as a
benefit, they also introduce significant challenges in risk
assessment. Although transparency allows users to audit SCs
and identify potential vulnerabilities, it also allows malicious
actors to easily access this information [39]. Cybercriminals
can scrutinize the code to pinpoint weaknesses, making
it easier for them to exploit vulnerabilities. Additionally,
the abundance of publicly accessible code increases the
likelihood that other projects may inadvertently replicate

flawed design choices, further compounding security risks
across the ecosystem.

IV. METHODOLOGY

This section outlines the proposed methodology to assess
and quantify the security risks associated with DeFi projects.
These metrics are derived from attacker behaviors and po-
tential vulnerabilities, representing the likelihood of risk. Our
approach is built to prevent exploits by attackers who operate
entirely on-chain, and interact with deployed SCs. We focus
on capturing this behavior through interpretable metrics, rather
than modeling off-chain threats such as phishing, private key
leaks, or insider fraud. The attackers typically carry out their
operations in the following sequence: First, they begin by
scanning SCs to discover potential vulnerabilities. Then, they
interact with the target project using newly created, anonymous
EOAs to probe possible weaknesses. Finally, they proceed to
develop and deploy a malicious payload and test it on the
project, attempting to penetrate different layers of the system
and gradually piece together the components of their attack
strategy. These operations carried out by the attackers often
leave observable traces in public blockchain data.

A. Pipeline Overview

As depicted in Figure 2, the risk calculation methodology
consists of calculating the risk score based on four different
risk metrics. The risk assessment begins with three key input
parameters:

• Project Name: The identifier of the DeFi project being
assessed.

• Date: The date of the risk assessment serves as a refer-
ence point for the analysis.

• Chain Name: The blockchain on which the project is
deployed (e.g. Ethereum, Polygon).

The pipeline has four distinct stages: data extraction, risk
metrics computation, normalization of these metrics, and their
subsequent aggregation. The output is a risk likelihood, a
numerical value between 0 and 1 indicating the likelihood that
the specified project is the victim of an attack on the given
date. Providing a threshold as an additional input maps the
resulting risk to a risk label, high-likelihood, or low-likelihood.

B. Data Extraction

Our risk assessment system begins by extracting data di-
rectly from the blockchain. First, it defines a five-day time
window that ends on a specified input date. Within this
window, data relevant to the DeFi project is extracted directly
from the blockchain using two primary channels. The first
channel consists of RPC endpoints on various blockchains,
while the second channel involves internet-based block ex-
plorers that process on-chain transactions and provide them
via API. For the RPC endpoints, we use QuickNode [12],
Alchemy [1], and Erigon [7]. A comprehensive list of block
explorers used in the data extraction process includes https:
//etherscan.io/ (Ethereum), https://bscscan.com/ (BSC), https:
//polygonscan.com/ (Polygon), https://arbiscan.io/ (Arbitrum),



Fig. 2. The Complete DeFi Security Risk Assessment Methodology Pipeline

https://ftmscan.com/ (Fantom), https://optimistic.etherscan.io/
(Optimism), and https://basescan.org/ (Base). For each day
within the time window, the system collects and analyzes two
types of data:

• Bytecode. The bytecode of all SCs deployed before the
end of that day.

• Transactions. Historical data, including normal and in-
ternal transactions involving the project’s SCs.

Choosing 24-hour time intervals aligns with attacker behav-
ior involving preparation phases over multiple hours or days,
not minutes. Short-term intervals lack adequate data and may
introduce noise, but daily granularity yields smoother, more
interpretable signals.

To extract the relevant data for each DeFi project, the system
begins by identifying the EOAs responsible for deploying
the project’s tokens, particularly governance tokens, using
information from blockchain explorers. For each identified
deployer, it collects all SCs they deployed up to the spec-
ified input date. The process then gathers both normal and
internal transactions involving any of these SCs, focusing on
the interactions where the SCs appear as either the sender
or the receiver. This is done within a predefined five-day
window ending on the input date, allowing for the analysis
of transactional activity leading up to potential attacks.

C. Computation of Risk Metrics

After extracting raw data, our methodology involves com-
puting risk metrics. To develop these metrics, we performed
an in-depth analysis of various on-chain data points, including
the volume of normal and internal transactions, the character-
istics and deployment timelines of SCs, their age, bytecode
complexity, and the types and features of tokens.

We avoided metrics that might introduce bias toward spe-
cific types of projects. For example, we deliberately excluded
metrics such as Total Value Locked (TVL) or balance, as these

Fig. 3. The pipeline represents the whole process of extracting vulnerability
risk score for a single DeFi project.

metrics indicate the impact of the attack rather than the likeli-
hood of its occurrence. To ensure cross-chain applicability, we
construct our metrics from generic on-chain signals available
across EVM-compatible ecosystems. These include behavioral
patterns (e.g., transaction failure rates) and code-level indica-
tors (e.g., vulnerability density). By avoiding project-specific
or financial metrics, we enable robust generalization across
different blockchain environments.

Based on this comprehensive analysis, we identified four
novel metrics that effectively capture and represent security
risks in DeFi projects, focusing on the behavioral patterns of
vulnerable projects and indicators of adversarial activity. The
following subsections introduce and explain these metrics in
detail.

1) Smooth Weighted Sum of Code Vulnerabilities: This
risk metric indicates the impact of vulnerabilities discovered in
the source code of SCs included in the project code. The risk is
directly proportional to the number and severity of vulnerabili-
ties. We used Slither [25], a static vulnerability assessment tool
to detect vulnerabilities and their severity. This tool discovers
potential vulnerabilities by examining the code and searching



Fig. 4. Timespan between a project’s last update and its attack; each bar
represents a 10-day interval.

Algorithm 1 Computation of Smooth Weighted Sum of Code
Vulnerabilities

1: procedure COMPUTEMETRIC1(SCs,Date)
2: ▷ SCs from Raw Data Extraction
3: weight← {“high′′ : 7, “medium′′ : 4, “low′′ : 0.1}
4: ▷ Weights of vulnerabilities’ severities.
5: metric← 0
6: for each sc in SCs do
7: dd← GETDEPLOYMENTDATE(sc)
8: sc age← Date− dd
9: bytecode← GETBYTECODE(sc)

10: source code← DECOMPILE(bytecode)
11: vulnerabilities← SCAN(source code)
12:
13: sc metric← 0
14: for each v in vulnerabilities do
15: severity ← v.severity
16: end for
17: sc risk ← sc metric/((sc age− 5)2 + 1)
18: risk metric 1 += sc risk
19: end for
20: return risk metric 1
21: end procedure

for specific vulnerability patterns. Although Slither is used
in our implementation, our methodology is scanner-agnostic.
The risk score module is adjusted to work with the output of
any vulnerability scanner and can seamlessly integrate more
advanced tools in future deployments.

As depicted in Figure 3, the calculation of this risk metric
begins with the bytecodes of the SCs of the project obtained in
the raw data extraction phase. We use Panoramix decompiler
[24] to retrieve the source code from these bytecodes, since it
is difficult to apply static analysis tools on bytecode than on
the source code [31]. However, if an SC has verified source
code available on any known trusted block explorers, we
prioritize using that verified code over the decompiled version.

Afterward, we analyze the extracted SCs using Slither. This
process generates a list of vulnerabilities for each contract,
complete with detailed descriptions and severity levels for each
vulnerability. Severity levels are classified as high, medium, or
low. To obtain a single metric for each contract, we compute
a weighted sum of the number of vulnerabilities.

Algorithm 1 presents the process for computing this risk
metric. The algorithm takes as input the SCs extracted in the
previous phase and the date for which we compute the metric.
It first initializes the weights for the vulnerabilities at different
severities (line 3). We map the weight of each severity to its
corresponding minimum risk score on the CVSS qualitative
severity rating scale [27]. Then, for each SC, it determines the
age of the SC (lines 7-8) and scans for its vulnerabilities (lines
10-11). A weighted sum of these vulnerabilities is calculated
(lines 13-18), incorporating the age of the contract. To smooth
volatility and prolong the impact of vulnerable contracts, the
algorithm uses

sc risk =
sc metric

(sc age− 5)2 + 1
(1)

in this calculation. This formula incorporates three key
adjustments. First, as shown in Figure 4, approximately half
of the attacks occur within the first ten days after the cre-
ation of new SCs. To align with this trend, we introduce a
temporal decay function centered on day 5 by subtracting 5
from the contract age. This ensures that the risk score peaks
five days after deployment and remains high throughout the
initial 10-day high-risk window. We apply a temporal decay
function, consistent with prior work modeling time-dependent
risk attenuation in security assessment [32]. Second, squaring
the term (sc age − 5) introduces a smooth decay, allowing
the impact of a vulnerable SC to persist over a longer period.
Third, adding 1 to the denominator is for preventing division-
by-zero errors when sc age = 5, ensuring numerical stability.

This metric can be evaluated using any state-of-the-art static
vulnerability analysis tool. Since assessing SC vulnerabilities
is still an open problem, we designed this methodology to
leverage existing tools for metric evaluation and mitigate the
impact of reported vulnerabilities that are more likely to be
false positives.

2) Failed Transaction Ratio: This risk metric refers to the
ratio of failed incoming transactions to the total submitted
incoming transactions within a project. Note that transaction
fees are not refunded for failed transactions. Therefore, le-
gitimate users naturally seek to avoid transaction failures.
Accordingly, a high rejection rate signals the need for a
thorough investigation to uncover root causes.

A high rate of failed transactions might be a sign of
malicious activities, such as attack attempts. Hackers, upon
discovering potential vulnerabilities, need to inspect their
exploitability and write malicious payloads to interact with the
vulnerable system and exploit its weaknesses. Compromising
a complex DeFi project is commonly a multi-step process
involving numerous interactions and function calls to both the
vulnerable SC and other related contracts within the project.



To successfully exploit the system, a significant number of
transactions must be executed and tested. Consequently, an
increase in the rejection rate could signal malicious activity
targeting the project. This requires executing numerous trans-
actions, and so an increase in the rate of failed transactions
could signal that attackers are trying to hack the system.

Even if a high rejection rate does not directly indicate
malicious activity, it still points to underlying flaws in the
system and how it handles user interactions. These weaknesses
might arise from inadequate constraint validation in SCs,
creating potential entry points for exploitation by hackers.
Therefore, a high failed transaction rate, regardless of its
explicit root cause, should always be considered a red flag
warranting immediate attention.

Given the two points mentioned above, we have defined a
metric for measuring the rate of failed transactions. This metric
is calculated by dividing the number of failed transactions in
a project within the defined time frame by the total number
of transactions in that project. To enhance the accuracy of this
metric, we have excluded transactions that failed due to “out of
gas” errors, which occur when the gas provided is insufficient
to complete the transaction. These failures are commonly
a result of the user’s unintentional mistakes in estimating
gas requirements and are not indicative of underlying system
issues. Therefore, including such transactions in the metric
could distort the metric, leading to misleading results. By
focusing on failures caused by logical issues, we can obtain a
more accurate and informative risk metric.

Algorithm 2 describes how we calculate this metric. We get
the transactions associated with the project within the defined
time frame from the raw data extraction phase. Then, the status
of each transaction is inspected. If a transaction’s status is not
failed, we skip it(lines 5-7). Otherwise, we check the error
message of the failed transaction. If the error does not indicate
an “out of gas” error (lines 8-10), we ignore it. Finally, the
ratio of failed transactions to total transactions is calculated.

Algorithm 2 Computation of Failed Transaction Ratio
1: procedure COMPUTEMETRIC2(TXs) ▷ Transactions

from Raw Data Extraction
2: txs count← GETLENGTH(TXs)
3: failed txs count← 0
4: for each tx in TXs do
5: if tx.status is not “failed” then
6: continue ▷ Skip to the next iteration
7: end if
8: if tx.error is not “out of gas” then
9: failed txs count += 1

10: end if
11: end for
12: risk metric 2← failed txs count/txs count
13: return risk metric 2
14: end procedure

3) Normalized Variation in the Number of Transactions:
This metric assumes that significant variations in user transac-
tion rates over consecutive days are signs of abnormal activity
and could indicate potential threats. Such variations may be
a result of malicious activities and an attacker’s interactions
with the DeFi service, or they could be attributed to changes in
the system or related systems, which could potentially attract
attackers’ attention to analyze the SCs of the project.

Algorithm 3 computes this metric. This algorithm gets the
total number of normal incoming transactions to the project
on days N and N − 1(lines 3-6). Then, it uses:

risk metric3 =
|l − l p|
l p+ 1

(2)

to compute a normalized variation in the number of trans-
actions. The numerator represents the absolute difference
between the numbers of transactions on days N and N−1. The
denominator represents the normalization factor. The “+1”
ensures that the denominator is never zero, which avoids
division by zero errors.

4) New Origins Transaction Ratio: To maintain anonymity
and evade forensic analysis, attackers often use newly created
EOAs for their malicious operations. These accounts are
typically involved not only in the attack itself but also during
earlier testing phases. Using new EOAs helps them to obscure
the link between their actions and true identities. According
to Study [37], attackers commonly use newly created EOAs
as their primary interface for malicious activities.

Algorithm 3 Computation of the Normalized Variation in the
Number of Transactions

1: procedure COMPUTEMETRIC3(Project,Date, TXs)
2: ▷ Transactions from Raw Data Extraction
3: prevDate← Date− 1
4: TXs p← EXTRACTTXS(Project, p Date)
5: l← GETLENGTH(TXs)
6: l p← GETLENGTH(TXs p)
7: risk metric 3← abs(l − l p)/(l p+ 1)
8: return risk metric 3
9: end procedure

Algorithm 4 Computation of New Origins Transaction Ratio
1: procedure COMPUTEMETRIC4(Date, TXs)
2: ▷ Transactions from Raw Data Extraction
3: new origin cnt← 0
4: for each tx in TXs do
5: if Date−CREATIONDATE(FIRSTTX(tx.from)) <

20 then
6: new origin cnt += 1
7: end if
8: end for
9: risk metric 4← new origin cnt/tx cnt

10: return risk metric 4
11: end procedure



Fig. 5. Correlation between risk metrics and label of expected outcome.

As explained in Section II-B, only EOAs can initi-
ate transactions on EVM-compatible blockchains and EOAs
are the sole origin of transactions within EVM-compatible
blockchains. The creation of a new EOA starts by generating a
new public-private key pair and initiating the first transaction
with the newly created private key on the blockchain. The age
of an EOA is determined by the time elapsed since its first
initiated transaction. We classify an EOA as “new” if its age
is less than 20 days, as this threshold safely covers almost all
known attack timelines. In the dataset of 181 real-world DeFi
incidents analyzed by Zhou et. al.[47], 180 cases occurred
within 20 days of the deployment of the malicious contract,
with only a single case exceeding this threshold; the maximum
observed interval was less than 25 days. We present a detailed
description of the calculation process for this measure in Algo-
rithm 4. To evaluate this metric, we analyzed all transactions
directed toward the project, identifying their origin EOAs and
determining whether they fell within our definition of “new”
(lines 5-9). We then calculated the proportion of transactions
initiated by new EOAs and compared it to the total transaction
volume (line 10).

D. Normalization of Risk Metrics

After extracting the metrics, the next step is normalization
and standardization of them. Our methodology first con-
siders applying smoothing techniques to reduce the impact
of fluctuations and noise over time. We apply the Moving
Averages smoothing technique [17]. This method involves
calculating the average of metrics over a defined time window.
This approach can minimize the impact of short-term spikes,
allowing the impact of high-risk behaviors to last longer. For
this purpose, the proposed methodology uses the five-day time
windows mentioned in Subsection IV-B.

Next, we scale the average to fit within the range of [0,
1] using a Min-Max scaler [34]. For metrics 2 and 4, which
are derived from transaction ratios, the Min-Max scaler works
well. However, metrics 1 and 3 lack upper bounds, which can
cause the Min-Max scaler to compress all values toward 0. To
effectively address outliers, we apply winsorization to the data
[23]. Unlike simple truncation, winsorization limits extreme
values while preserving the data distribution, an important
property since large spikes in DeFi activity may reflect genuine
behavior rather than noise. In this approach, we perform

a 90% winsorization before applying Min-Max scaling to
ensure that extreme outliers do not influence the normalization
process. In metric 1, the original data range from 0 to 4474.17.
After winsorization, the adjusted range is reduced to 0-10.56.
Similarly, in metric 3, the original data span from 0 to 774.73,
while the range of winsorized data is from 0 to 1.0.

E. Aggregation of Normalized Risk Metrics

Finally, we need a unified score to assess the risk likelihood
of the project on the specified date. The risk likelihood is
evaluated using the following formula.

risk likelihood = 1−
4∏

i=1

(1− risk metrici) (3)

This formula inputs normalized risk metrics and computes

the risk likelihood. It is derived from evaluating the impact
of independent risk metrics in CVSS v4.0 [27] and calculates
the probability of at least one high metric when considering
multiple independent metrics. The formula ensures that the
final risk metric is constrained between the lower and upper
limits of 0 and 1. Given the inherent transparency and acces-
sibility of DeFi projects, the risk impact structure differs from
that of traditional systems. The risk metrics presented in this
paper are autonomous and independent. A high value in any
of these metrics indicates a high overall risk of the system.
This formula provides a realistic and nuanced assessment of
potential harmful behaviors considering the synergistic effects
of the proposed risk metrics. The formula ensures that a
high value for any metric can increase the likelihood of risk
without being diminished by other metrics. By considering
the aggregated impact of the proposed metrics, the formula
can recognize high-risk scenarios that might be overlooked by
individual metric analysis.

F. Analysis of Risk Metrics’ Sensitivity

Before assessing the final risk criterion, we first evaluate the
likelihood and impact of each defined metric in identifying
projects at risk. To accomplish this, we use a heatmap that
visualizes both inter-metric correlations and their relationship
with the label indicating whether a project was targeted by an
attack. As shown in figure 5, metrics 3 and 4 demonstrate a
notably stronger correlation —over 40%— with the desired
outcome, in contrast to metrics 1 and 2. However, despite
their lower correlation, metrics 1 and 2 remain essential due to
their greater independence from the other metrics, supporting
a more balanced and comprehensive risk assessment. The
final four metrics were selected from a larger set developed
in this investigation, based on their strong correlation with
the likelihood of a project falling victim to an attack, while
ensuring diversity in predictive factors.

V. VALIDATION AND EVALUATION

We conducted a comprehensive validation to assess the
effectiveness of our proposed methodology in estimating the



likelihood of security risks in DeFi projects. During the
validation phase, we determined the optimal threshold for risk
classification. The validation process involved comparing the
risk likelihoods generated by our metrics for both attacked and
non-attacked projects.

For each attacked project, we gathered historical data from
a five-day window before the attack and comparable data
from five randomly selected consecutive days for non-attacked
projects. For each attacked project within a specific quarter,
a comparable non-attacked project from the same chain and
the same quarter was selected (baseline). This ensures that the
projects are matched based on categories and evaluated under
similar market conditions, with a consistent five-day window
for comparison. Then, we implemented our methodology and
computed the risk likelihood for each window, resulting in two
datasets of risk likelihoods for the attacks and the baseline.

A. Data Collection and Experimental Design

We identified 220 known security breaches in 207 projects
in 7 different EVM-compatible blockchains (Ethereum, Poly-
gon, Arbitrum, BSC, Optimistic, Fantom, and Base) covering
various categories, e.g., lending, yield aggregation, and de-
centralized exchanges (DEX). We collected information from
different sources, such as DefiYield rekt db [20], rekt news
[13], defiLlama’s hack monitoring panel [9], and ChainSec’s
hack list [6]. They contain different attack types, e.g., code vul-
nerabilities, flash loans, and reentrancy, all exploiting on-chain
vulnerabilities. These categories are detailed in TABLE I.
The distribution of projects and attacks across the different
blockchains is shown in TABLE II. We also identified 200
projects that have never been known as attacked. All of these
projects are recorded as known DeFi projects in [5]. To ensure
a fair comparison, these non-attacked projects were selected
to match the attacked ones in terms of analysis date, project
type, and TVL distributions.

B. Statistical Analysis

To assess the significance of differences in risk likelihoods
between the two datasets, we formulate our null and alternative
hypotheses:

• Null Hypothesis (H0). There is no significant difference
in the risk likelihood between attacked and non-attacked
DeFi projects.

• Alternative Hypothesis (H1). There is a significant
difference in the risk likelihood between attacked and
non-attacked DeFi projects.

The descriptive statistics indicated a pronounced discrep-
ancy in the risk likelihoods. The average risk likelihood for at-
tacked projects was approximately 0.633 (SD = 0.287), while
for non-attacked projects, the mean was 0.256 (SD = 0.171).
Additionally, the median risk likelihood exhibited a similar
pattern, with attacked projects scoring a median of 0.643 com-
pared to 0.237 for non-attacked projects. To further explore the
distribution of these scores, we executed the Shapiro-Wilk test,
revealing significant deviations from normality for both groups
(p < 0.001). Given this non-normal distribution, we applied

TABLE I
NUMBER OF ATTACKS BY CATEGORIES OF ATTACKED PROJECTS AND

TYPES OF ATTACKS. *The “Others” attacked projects’ category includes
Launchpad, DAO, Hedge Fund, AMM, Decentralized Mortgage, Betting

Platform, Liquid Restaking, Gambling, Liquidity Protocol, Staking, Portfolio
Management, and Token Vesting.
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Yield Aggregator 19 17 1 1 3 2 5 48
DEX 20 13 0 0 2 0 4 39
Token 12 17 0 0 0 1 0 30

Lending 12 6 0 0 8 1 1 28
Stablecoin 3 4 0 3 0 0 1 11

Bridge 8 1 0 1 0 0 0 10
NFT 8 1 0 0 0 1 0 10

Gaming 2 3 0 0 0 0 1 6
Others* 20 10 0 4 0 1 3 38

Total 104 72 1 9 13 6 15 220

Fig. 6. ROC curve (left) and Precision-Recall curve (right) at various threshold
settings. The red point marks the selected threshold in each plot.

the Mann-Whitney U Test, which confirmed a statistically
significant difference (U = 38976.500, p < 0.001) with an
effect size of 0.854, indicating a large effect.

C. Classification Performance Metrics

We treated the likelihood of risk as a binary classification
problem to evaluate the effectiveness of our proposed risk-
scoring methodology. The Receiver-operating characteristic
curve (ROC curve) and the precision-recall curve in Fig. 6
visualize the trade-offs available between true positive rates
and false positive rates across a spectrum of threshold val-
ues. The ROC Area under the curve (AUC) score of 0.887
signifies that the model distinguishes between attacked and
non-attacked projects well. A value close to 1 indicates that
our risk scoring model is effective in its predictive capacity.
We selected the threshold that maximized the F1 score on
the evaluation dataset, resulting in a value of 0.364. The
F1 score, defined as the harmonic mean of precision and
recall, provides a balanced measure that accounts for both
false positives and false negatives and reflects the model’s
optimal performance trade-off to distinguish high-risk projects.
We computed various performance metrics summarized in
TABLE III based on this threshold.



TABLE II
BREAKDOWN OF ATTACKED PROJECT CATEGORIES AND ATTACK TYPES BY CHAIN

Ethereum Polygon Arbitrum BSC Optimism Fantom Base

Projects 95 11 11 77 6 6 1
Attacks 101 12 11 82 6 7 1

TABLE III
CLASSIFICATION PERFORMANCE METRICS CALCULATED USING THE

THRESHOLD AT THE THIRD QUARTILE.

Metric Value Metric Value

True Positive (TP) 0.864 Precision 0.785
False Negative (FN) 0.136 Recall 0.864
False Positive (FP) 0.261 F1 Score 0.822
True Negative (TN) 0.739 ROC AUC 0.887

The results show that our risk scoring system achieves a
recall of 0.864, indicating that approximately 86% of the actual
attacked projects were correctly identified as high-likelihood.
The false negative rate of 14% highlights areas for potential
improvement, suggesting that some attacked projects were not
flagged above the threshold, which could lead to a false sense
of security for stakeholders. With an F1 Score of 0.822, we
achieve a balanced measure that considers both precision and
recall, indicating satisfactory model performance.

D. Analysis of Risk likelihood Threshold

The selected threshold of 0.364 guarantees that our model
emphasizes high precision at the expense of some recall.
By setting this threshold, we assert that the identified high-
likelihood projects will likely represent credible threats while
minimizing the number of false positives. To validate the
stability of our threshold selection, we computed the F1-
optimal threshold over progressively larger, chronologically
sorted subsets of the dataset. Figure 7 illustrates the pro-
gressive evaluation of thresholds in various subsets of data.
The plot shows that the selected threshold quickly converges
around 0.364, demonstrating robustness to the dataset size.
Similarly, Figure 8 shows that the corresponding F1 score also
converges, indicating consistent model performance. Together,
these results confirm that the classification boundary and
predictive quality of the model remain stable as the dataset
grows. Identifying an optimal threshold for specific user needs
(i.e., prioritizing false negatives or false positives) can guide
stakeholders in making well-informed decisions in the DeFi
risk landscape.

E. Analysis of High-likelihood Labels by Attack and Project
Categories

We further analyzed the distribution of high-likelihood
labels among attack and project categories. The results are
summarized in TABLE IV, showing the percentage of attacks
labeled as high-likelihood across various categories of attacked
projects and types of attacks.

Fig. 7. Progressive evaluation of thresholds on data subsets sorted by
date. The plot shows threshold changes as data size grows.

Fig. 8. Progressive evaluation of F1 scores across data subsets sorted
by date. This figure evaluates thresholds shown in figure 7.

The data shows that certain project categories exhibit a
higher prevalence of high-likelihood label assignments. No-
tably, Lendings and NFTs demonstrated substantial percent-
ages of attacks classified as high-likelihood, with 96.4% and
100.0%, respectively. This suggests that, despite their critical
roles in the DeFi ecosystem, these projects are easier to be
labeled as high-likelihood when an attack is imminent. When
examining the types of attacks, Code Vulnerabilities and Price
Manipulation breaches consistently resulted in high-likelihood
designation across most project categories.

F. Evaluation Results

In this section, we evaluate the proposed risk assessment
methodology on 17 projects that got attacked between Novem-
ber 2024 and March 2025 and compare it with other 15
projects that never got attacked, in the same period of time.
Our goal is to determine whether the risks of these projects
could have been assessed and predicted before their occur-
rence. All of these attacks took place after those introduced in
section V-A, making them a suitable benchmark for validating



TABLE IV
PERCENTAGE OF HIGH-LIKELIHOOD LABELED ATTACKS BY PROJECT
CATEGORIES AND ATTACK TYPES. *The “Others” attacked projects’

category includes Launchpad, DAO, Hedge Fund, AMM, Decentralized
Mortgage, Betting Platform, Liquid Restaking, Gambling, Liquidity

Protocol, Staking, Portfolio Management, and Token Vesting.
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Yield Aggregator 94.7 70.6 100.0 100.0 100.0 100.0 100.0 87.5
DEX 85.0 92.3 NaN 100.0 50.0 NaN 50.0 82.1
Token 75.0 94.1 NaN NaN NaN 00.0 NaN 83.3

Lending 100.0 83.3 NaN NaN 100.0 100.0 100.0 96.4
Stablecoin 100.0 100.0 NaN 66.7 NaN NaN 100.0 90.9

Bridge 71.43 NaN NaN 100.0 NaN NaN NaN 70.0
NFT 100.0 100.0 NaN 100.0 NaN NaN NaN 100.0

Gaming 50.0 100.0 NaN NaN NaN NaN 100.0 83.3
Others* 85.0 90.0 NaN 75.0 NaN 100.0 66.7 84.2

Total 87.5 86.1 100.0 77.8 92.3 83.3 80.0 86.4

TABLE V
RESULTS OF THE EVALUATION AND VALIDATION OF THE RISK SCORING

METHODOLOGY ON 17 ATTACKED PROJECTS AND 15 NON-ATTACKED
PROJECTS BETWEEN 2024/11/01 TO 2025/03/30.

Attacked Non-Attacked

High Risk 12 (70.59%) 1 (6.67%)
Low Risk 5 (29.41%) 14 (93.33%)

Total 17 (100.00%) 15 (100.00%)

our methodology. The results of this evaluation are shown in
Table V, indicating that 12 of the 17 analyzed projects were
identified as high-risk before the attack, while 5 were classified
as low-risk. Meanwhile, among 15 non-attacked projects, only
one was labeled as risky, while the other 14 projects were
identified as not risky.

Figure 9 shows the average risk likelihood for these 17
attacked projects over 30 days preceding the attack, compared
to non-attacked projects during the same period. For attacked
projects, the average risk score increases as the attack date
approaches. Examining the changes in average risk over time,
we find that from one month to 15 days before the attack, the
risk levels of attacked and non-attacked projects were gener-
ally the same. However, as the attack date approached, the
average risk for attacked projects increased and the difference
became more noticeable, exceeding the threshold three days
before the attack.

VI. DISCUSSION

This research opens a new path to advance the exploration
of DeFi security. The outcomes of our work can be valuable
not only for current DeFi projects and users but also serve as
a cornerstone for future studies focused on evaluating risks in
DeFi. In this section, we provide a detailed overview of the
practical applications of this research for the DeFi ecosystem
and discuss its current limitations.

Fig. 9. Average risk similarity over 30 days before attacks vs. non-attacked
projects, based on the evaluation dataset.

A. Practical Applications

We introduce a new class of proactive security mechanisms
in DeFi, based on predictive modeling of systemic vulnerabil-
ity rather than transaction-level detection. The findings of this
research can benefit DeFi projects, DeFi insurance providers,
as well as the users of these projects. The proposed method
complements existing tools, adding a distinct layer to the
broader DeFi security ecosystem.

B. Limitations

In this paper, we focus only on the likelihood of risk, exclud-
ing attack impact, which in DeFi may involve financial loss,
service disruption, or reputational damage. During the course
of our investigation, we attempted to quantify the impact of
attacks but were unsuccessful for two main reasons: 1. DeFi
projects experience significant short-term daily fluctuations in
metrics such as market cap or TVL, making it difficult to
distinguish attack-related changes from ordinary fluctuations.
In some projects, these metrics even surpass their pre-attack
levels within a short time after the incident. 2. More than
half of the attacked projects lack accurate historical data on
TVL and market cap. For example, of the 220 projects in our
dataset, only 95 had DefiLlama records before being attacked.
Calculating impact depends on knowing the value of a project
at the time of the incident, and the value of a project is
impossible without information on the assets it holds.

Another limitation of our system is that it calculates risk
based on 24-hour time intervals, from 00:00 UTC to 23:59
UTC. This limits its ability to assess risk for projects that
are launched or updated with exploitable vulnerabilities and
then attacked on the same day. Although such cases are
relatively rare, they account for a portion of the missed cases
in our results. This limitation results from the high volume
of transactions in some DeFi projects, making real-time risk
calculation infeasible. The issue mainly impacts chains with
low transaction fees and, consequently, high transaction fre-
quencies. However, we showed that the risk score noticeably
increases as the attack date approaches, and the average risk
score exceeds the threshold 3 days before the attack.

Additionally, the model is limited by the scarcity of com-
prehensive data on attacked DeFi projects. Although many



incidents include details such as the attacker’s address, victim,
and amount of stolen assets, the type of attack is often unclear,
and the available reports sometimes conflict. We manually
analyzed all reports on each attack and we did not incorporate
attacks in which there was ambiguity regarding the root
cause of the attack, as well as those stemming from off-
chain sources, such as phishing, private key leakage, and rug
pulls. However, while the size of the dataset is limited, its
diversity (chains, attack types, and project categories) makes
it representative of real-world DeFi risks.

VII. RELATED WORK

Most existing DeFi risk assessment frameworks, such as
Gauntlet [30] and Skynet [19] rely on off-chain data, manual
reviews, or curated security signals. Although these systems
offer valuable insights, they are fundamentally limited by their
dependence on centralized data sources and subjective inputs.
Weingärtner et al. [41] performed a comprehensive analysis
that delineates the principal risks in DeFi projects, distin-
guishing between systematic and unsystematic risks and in-
troducing risk wheel, a tool for navigating these complexities.
While these systems offer valuable insights, they depend on
centralized data sources, manual interpretation, or subjective
scoring. In contrast, our work presents the first fully automated
risk-scoring framework that operates exclusively on-chain,
using behavioral and structural signals derived from EVM-
compatible blockchains. This allows our system to provide
tamper-resistant real-time insights without relying on external
data or manual intervention.

Another approach to risk assessment in DeFi involves
identifying and analyzing potential vulnerabilities within DeFi
protocols. For instance, BLOCKEYE [40] is a real-time attack
detection system designed to identify potentially vulnerable
DeFi projects through an automatic security analysis process.
This system performs symbolic reasoning to analyze data
flows and assess whether critical service states, such as asset
prices, can be manipulated externally. Lanturn [16] uses adap-
tive learning to assess the economic security of SCs, focusing
on threats like frontrunning and value extraction. In contrast,
our approach targets software-based attacks and project-level
risk by analyzing interaction patterns over time. Other tools
such as Foray [42], Ægis [26], and MadMax [31] use static
analysis to uncover bugs such as price manipulation, out-of-
gas, reentrancy, and access control. However, these approaches
operate at the SC level and are typically reactive – identi-
fying specific vulnerabilities post-deployment – rather than
providing a predictive risk score. Our system complements
these tools, modeling risk at the project level by aggregating
behavioral and structural patterns across the blockchain.

Outside of blockchain, current risk-scoring systems method-
ologies emphasize a systematic approach to identifying, as-
sessing, and mitigating cybersecurity risks, integrating ad-
vanced technologies and frameworks tailored to specific in-
dustries and organizational needs. One of the key advances
in risk-scoring systems is the integration of quantitative risk
assessment techniques [33], [22], [28] These methodologies

are crucial for developing robust risk-scoring systems that can
adapt to the unique challenges faced by different sectors. Sys-
tems like the Common Vulnerability Scoring System (CVSS)
[27] leverage metrics like complexity, function count, and
coupling to evaluate code risk. Additionally, frameworks such
as the NIST Cybersecurity Framework [29] provide a struc-
tured approach to managing cybersecurity risks across various
sectors. The framework facilitates the identification of risks
and the implementation of appropriate controls, strengthening
organizational resilience against cyber threats. Furthermore,
Younis and Malaiya provide a comparative analysis of CVSS
and other rating systems, underscoring the importance of
quantifiable metrics in assessing software vulnerabilities [45].
These approaches rely on centralized control and trusted in-
frastructure, making them unsuitable for decentralized systems
such as DeFi. Our work adapts metric-based risk assessment
to the unique constraints of blockchain systems.

Despite the progress made by existing tools and frame-
works for assessing vulnerabilities in DeFi projects, most
current metrics emphasize singular aspects of project risk,
often neglecting the multifaceted and dynamic nature of DeFi
engagements. While tools like BLOCKEYE detect known
vulnerability patterns or attack conditions, they do not model
project-level risk or forecast future compromise. Our method
is complementary and offers early warning signals based
on behavioral trends. Using only on-chain data, our system
provides a tamper-proof risk metric and considers the complex
interactions and behaviors that precede attacks. It also offers a
more holistic view of a project’s security by incorporating indi-
cators of code weaknesses and user behavior analytics. To our
knowledge, no prior work offers a fully automated, on-chain-
only framework for dynamic, behavior-based risk scoring of
DeFi projects. Our system introduces this paradigm, enabling
proactive, data-driven prioritization for audits, insurance, and
security interventions across decentralized platforms.

VIII. CONCLUSION

This study introduces a novel methodology for automati-
cally assessing and quantifying the security risks associated
with DeFi projects. The key finding reveals that our risk
assessment model can effectively differentiate between at-
tacked and non-attacked projects, achieving an average recall
of approximately 86.4% and a precision of 78.5%. This capa-
bility has significant implications, offering investors, project
owners, and insurance companies actionable insights to make
informed decisions and manage risks in the fast-evolving DeFi
landscape.

However, this study has limitations. Relying exclusively on
on-chain data to evaluate risk likelihood while minimizing
external manipulation may overlook off-chain factors that
contribute to security vulnerabilities, such as phishing or
social engineering tactics. Furthermore, the performance of
the model may change with new types of attacks in the
future, suggesting that further evaluation is necessary under
diverse conditions. Future research should expand upon this
work by integrating off-chain data into the risk assessment



framework, enhancing the model’s robustness. Furthermore,
ongoing refinement of risk metrics, particularly in response to
emerging threats, will be essential to maintaining the relevance
and utility of the risk assessment methodology over time.
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