TACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 4, pp. 486-519. DOI:10.46586 /tches.v2025.i4.486-519

mid-pSquare: Leveraging the Strong Side-Channel
Security of Prime-Field Masking in Software

Brieuc Balon!, Lorenzo Grassi? ©, Pierrick Méaux® ®, Thorben Moos® @,
Francois-Xavier Standaert! ® and Matthias Johann Steiner?

! Crypto Group, ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium
firstname.lastnameQuclouvain.be
2 Eindhoven University of Technology, Eindhoven, The Netherlands
1l.grassi@tue.nl
3 Luxembourg University, Esch-sur-Alzette, Luxembourg
pierrick.meaux@uni.lu
4 Alpen-Adria-Universitit Klagenfurt, Klagenfurt am Worthersee, Austria
mattsteiner@edu.aau.at

Abstract. Efficiently protecting embedded software implementations of standard
symmetric cryptographic primitives against side-channel attacks has been shown to
be a considerable challenge in practice. This is, in part, due to the most natural
countermeasure for such ciphers, namely Boolean masking, not amplifying security
well in the absence of sufficient physical noise in the measurements. So-called prime-
field masking has been demonstrated to provide improved theoretical guarantees in
this context, and the Feistel for Prime Masking (FPM) family of Tweakable Block
Ciphers (TBCs) has been recently introduced by Grassi et al. (EUROCRYPT’24) to
efficiently leverage these advantages. However, it was so far only instantiated for and
empirically evaluated in a hardware implementation context, by using a small (7-bit)
prime modulus.

In this paper, we build on the theoretical incentive to increase the prime field size
to obtain improved side-channel (Faust et al., EUROCRYPT’24) and fault (Moos et
al., CHES’24) resistance, as well as on the practical incentive to instantiate an FPM
instance with optimized performance on 32-bit software platforms. We introduce
mid-pSquare for this purpose, a lightweight TBC operating over a 31-bit Mersenne
prime field. We first provide an in-depth black-box security analysis with a particular
focus on algebraic attacks — which, contrary to the cryptanalysis of instances over
smaller primes, are more powerful than statistical ones in our setting. We also
design a strong tweak schedule to account for potential related-tweak algebraic
attacks which, so far, are almost unknown in the literature. We then demonstrate
that mid-pSquare implementations deliver very competitive performance results on
the target platform compared to analogous binary TBCs regardless of masked or
unmasked implementation (we use fix-sliced SKINNY for our comparisons). Finally,
we experimentally establish the side-channel security improvements that masked
mid-pSquare can lead to, reaching unmatched resistance to profiled horizontal attacks
on lightweight 32-bit processors (ARM Cortex-M4).

Keywords: Side-Channel Attacks - Prime Ciphers - Software Masking
1 Introduction
Differential Power Analysis (DPA) is a very powerful attack technique that reduces the

secrecy of (e.g., a block cipher) secret key exponentially in the number of measurements
obtained by the adversary [KJJ99]. Masking is one of the few countermeasures that

Licensed under Creative Commons License CC-BY 4.0. (@) |
Received: 2025-04-15 Accepted: 2025-06-15 Published: 2025-09-05

https://doi.org/10.46586/tches.v2025.i4.486-519
https://orcid.org/0000-0003-1140-0520
https://orcid.org/0000-0001-5733-4341
https://orcid.org/0000-0003-3809-9803
https://orcid.org/0000-0001-7444-0285
https://orcid.org/0000-0001-5206-6579
mailto:Brieuc.Balon@uclouvain.be,Thorben.moos@uclouvain.be,fstandae@uclouvain.be
mailto:l.grassi@tue.nl
mailto:pierrick.meaux@uni.lu
mailto:mattsteiner@edu.aau.at
http://creativecommons.org/licenses/by/4.0/

B. Balon, L. Grassi, P. Méaux, T. Moos, F.-X. Standaert, M. J. Steiner 487

can theoretically mitigate this exponential security decrease, by itself amplifying the
noise in the measurements exponentially in its number of shares [CJRR99]. Such a
noise increase can in turn improve side-channel security exponentially in this (number of
shares) parameter [PR13,DDF14,DFS15]. Yet, this amplification typically requires that
implementations are sufficiently noisy in the first place, a condition that has been shown
to hardly be met by software executed on 32-bit processors, which are popular targets
for lightweight embedded security [BCPZ16,BS21]. Concretely, these results show that
without additional (hardware) countermeasures, ensuring side-channel security in software
implementations is doomed to require a (prohibitively) high number of shares, leading to
low efficiency.

However, recent works on masking over prime-order fields hint that this unsatisfactory
situation is not irremediable. In particular, and building on the seminal theoretical
advances of Dziembowski et al. [DFS16], it has been shown that:

e Masking in prime-order fields can provide strong side-channel security even in the
context of (very) low-noise implementations [MMMS23].

e Dedicated lightweight ciphers to facilitate prime-field masking can be very effi-
cient [GMM™24], and leverage secure (masked) squaring gadgets [CMM*23].

o Prime-field masking brings significant advantages for fault resistance [MSS24].

o Increasing the field/word size is highly beneficial for amplifying both side-channel
resistance [FMM™24] and fault resistance [MSS24] even further.

Yet, for now, the only ciphers specialized for prime masking, AES-prime [MMMS23] and
small-pSquare [GMM™24] (an instance of the Feistel for Prime Masking (FPM) family),
have been tailored to hardware implementations and use a small (7-bit) prime modulus.
Since parallelizing computations over the word size of a processor is not directly feasible for
prime-field arithmetic, such primitives are not ideally suited to demonstrate the potential of
prime masking on software platforms, where low noise levels are most commonly observed.

Our Contributions. 1In this work, we propose mid-pSquare, a new instance of the FPM
family of Tweakable Block Ciphers (TBCs), and analyze its black-box and side-channel
security. In both cases, the main challenges relate to the larger (31-bit) prime modulus
it uses to reach high security and efficiency on software platforms. From the (black-box)
cryptanalysis viewpoint, it implies that the best attack vectors against the design are
now algebraic ones (in contrast to statistical ones for small-pSquare). Hence, we focus
on this type of cryptanalysis techniques. We believe that the depth of our algebraic
analysis can provide new insights for family instances over larger fields even beyond our
concrete design. In particular, while statistical related-tweak attacks are well-known in
the cryptanalysis literature, algebraic ones are almost non-existent. Thus, presenting
the challenge of considering such attacks even before their concrete application to any
primitives. We address this uncertainty by designing an algebraically strong yet efficient
tweak schedule, which is another main difference to small-pSquare.

From the side-channel analysis viewpoint, we are able to provide evidence for the strongly
superior security of masked mid-pSquare implementations on an ARM Cortex-M4 device, by
comparing it to (masked) fix-sliced SKINNY [AP21], which is a state-of-the-art lightweight
TBC [BJK'16]. Such an analysis does not come without hurdles, since directly profiling
32-bit operations and leveraging 32-bit key guesses in higher-order side-channel attacks
with a large number of measurements is computationally prohibitive [YK21, CDSU23].
Hence, we provide a comprehensive discussion of attack and extrapolation strategies in
order to reach sound conclusions. To the best of our knowledge, this is the first work

488 mid-pSquare — Prime-Field Masking in Software

that demonstrates high security against strong profiled horizontal/multivariate attacks in
software with a number of shares that leads to affordable performance figures.

For completeness, we also discuss in Appendix B the orthogonal issue of transitional leak-
ages from microarchitectural overwriting [CGP*12, BGG*14], and show both information
theoretically and in practice, that it is less of a concern for prime-field masking.

In summary, we find that mid-pSquare is very easy to implement and mask, highly
efficient on various platforms (especially with single-cycle 32-bit unsigned multiplication
instructions available) and, for comparable if not better performance figures, provides
side-channel security guarantees that can be orders of magnitude larger than for compa-
rable binary TBCs like SKINNY. Given that prime-field masking also provides concrete
advantages for fault resistance, especially for larger field sizes [MSS24], we conclude that
mid-pSquare improves the state of the art for multiple relevant aspects of secure software
implementations.

Cautionary note #1: Why prime-field masking? The aforelisted references estab-
lished prime-field masking as an interesting alternative for securing embedded software
devices against side-channel attacks in low-noise contexts. Intuitively, the important advan-
tage they bring over Boolean masking is a lower “algebraic compatibility” with the leakage
functions usually observed in practice, like the Hamming weight (HW) function [MOPO07]
or weighted sums of bits [SLP05]. This is because without noise, knowing for example the
Hamming weight of Boolean shares leads to significant information about the masked secret
(parity of its HW), independent of the number of shares. Leaking the Least Significant
Bit (LSB) of d Boolean shares directly provides the LSB of the secret. By contrast,
Dziembowski et al. showed that with prime-field encodings, security amplification (in the
number of shares) only requires the leakage function to be non-injective, independent of
its shape [DFS16]. Leaking the LSB of d prime-field additive shares does not directly
translate into a bit of the secret.! Concretely, the important implication of this result,
confirmed experimentally by the aforelisted references on prime-field masking, is that the
increased security of such encodings indeed originates from their algebraic nature and is
not caused by a variation of the Signal-to-Noise Ratio (SNR) of the side channel [Man04],
which remains largely unaffected by moving from Boolean to prime-field masking.

Cautionary note #2: Why SKINNY? In order to exhibit the good physical security
vs. performance tradeoff that mid-pSquare enables, we need to compare it with a competitor.
Given that small-pSquare (the original FPM instance from [GMM™24]) was designed with
hardware implementations in mind, it is not expected to perform well in 32-bit software.
Lightweight binary ciphers are more natural candidates for this purpose, since it is well-
known that they lead to better efficiency and security against horizontal attacks than, for
example, the AES [BS21]. We selected SKINNY [BJK'16] for two main reasons. First it
is a popular TBC, now an ISO standard, with different tweak sizes of 0, n and 2n bits
(where n is the block length of the cipher) — which directly corresponds to the mid-pSquare
variants we put forward. This makes SKINNY a nice comparison target with respect to
performance and black-box security of all mid-pSquare variants. Second it has been designed
to be efficient on both software and hardware platforms, with side-channel security via
masking as an explicit design goal [BJKT16]. Besides, SKINNY has also been instantiated
in different variants of Romulus [IKMP20], a finalist in the NIST lightweight cryptography
competition. Concrete software performance comparisons between different lightweight
Authenticated Encryption with Associated Data (AEAD) primitives, including Romulus,
can be found for example in the eBACS (ECRYPT Benchmarking of Cryptographic
Systems) database [BL25]. We nevertheless insist that from the side-channel security
viewpoint alone, the conclusions we reach for SKINNY would also be observed with other

1 This example is given for intuition. The LSB is a worst-case leakage function in the prime-field case
and security amplification is better with global (e.g., Hamming weight) leakage functions [FMM™24].

B. Balon, L. Grassi, P. Méaux, T. Moos, F.-X. Standaert, M. J. Steiner 489

binary cipher structures. For example, protecting the implementations of the recently
standardized Ascon family (based on a lightweight permutation over a 320-bit state), also
requires Boolean masking due to its bit-slice nature [DEMS21]. Such implementations
would therefore suffer from the same lack of noise amplification that we see with SKINNY
and effectively any design that is masked over Fy. However, from a performance point
of view, it is challenging to draw any meaningful conclusions from direct comparisons
between tweakable block ciphers and permutation-based primitives like the Ascon family,
motivating the selection of SKINNY.

2 Specification of mid-pSquare over FJ,,

Here we provide the details of mid-pSquare over F3;, ,, whose round function (without
tweakey addition) is shown in Figure 2. We refer to [GMM™24] for an explanation of the
design rationale of this scheme. The main differences to the design proposed in [GMM*24]
are the parametrization and the tweak schedule — we will explain the design rationale in
the following.

2.1 High-Level Structure

The high-level structure of mid-pSquare is given in Figure 1 and directly follows that of
the FPM, family of tweakable block ciphers introduced in [GMM™24].

X
@ K+Too
N, xR
x
& K+T) - K+Ti
N, xR N, xR
x
D K @ K+ @ K+ T,
N, xR N, x R N, xR
@ K S K+ @ K+Tia
N, xR N, xR N, xR
@ K @ K+Tn, @ K +Tow,-1/2
N, xR N, xR N, xR
& K @ K+Tw, @ K+ T (v -1y

Figure 1: High-level structure of mid-pSquare, for 7 = 0, 1, 2 (left to right). We use the
shortcut notation IV, X R to denote the application of the round R [V, times.

490 mid-pSquare — Prime-Field Masking in Software

The mid-pSquare. tweakable block cipher takes as inputs a plaintext x € F%m,l, a key
K e]F;lgl_l and an optional tweak defined as follows:

(TW, 7@, TM)eF ifr>1 .
0 otherwise (7 = 0)

If 7 = 0, mid-pSquare takes no tweak and corresponds to a block cipher. If 7 > 0,
mid-pSquare is a key alternating cipher, where a tweakey is added every r > 1 rounds. We
denote a single round as R and a group of N, rounds R as a step S. A tweakey addition is
performed after every step. If 7 = 0, the tweakey is always the master key K. If 7 > 1, the
tweakeys are defined as K + Ty 0, K +T10, ..., K+ 119, K+Tp1, K+T11, ..., K+
Ty, K+To K+T1, ..., K+T-_1;, where the values T} ; € IFZ are produced by
a tweak scheduling algorithm and are independent of the master key. If 7 = 1, we usually
omit the first index for simplicity (i.e., we use T; instead of Ty ;). The rounds R : F} — Fp
(and the steps S) are independent of both the tweak and of the master key.

2.2 Round Function F

The round function F over]F127 corresponds to a 2-round Feistel instantiated with = — 22,
where the rotation of the inputs is replaced by a multiplication with a matrix M. It is
characterized by two parameters: b = 2, the number of branches in the generalized Feistel
network and ¢ = 2, the number of [F,, values in each branch.

31

Fan)
3
Fan\
A

Fan) Fan) Fan) Fan)
\i/ L \i/ A\
Ci,0 Ci,1

Figure 2: Round R of mid-pSquare over F,, with b =2 and ¢ = 2 (see [GMM24]).

Linear Layer M. The linear layer of mid-pSquare is instantiated via the invertible
“pseudo-Hadamard transform” [Mas93] matrix M € F232 | defined as:

2311
2 1
-]

where x — 2 - x operation is just a bit rotation. The matrix M corresponds to a Maximum
Distance Separable (MDS) code, and it can be computed via only two additions with a
depth of one if the x — 2 - x operation is implemented as a bit rotation.

Round Constants. We denote the bit-wise rotation left via <. Given the first 64 bits of
the binary sequence of m — denoted as 7hinea — the round constants c; o, c;1 € Fos1_q are
defined as:

B. Balon, L. Grassi, P. Méaux, T. Moos, F.-X. Standaert, M. J. Steiner 491

e ¢i,0 = (Thinea < i) mod 2%';
o ¢i1 = (Mbines <K (i + 32)) mod 231

As no sequence of 31 consecutive 1s exists in mhings, it holds that ¢; 0, c;1 € Fas1_y.

2.3 Tweak Schedule (7 > 1 Only)

The non-linear tweak schedule performs a sequence of operations reminiscent of the
AES/Rijndael round function [DR02]. We first employ a non-linear mapping ¥ to all field
elements individually (analogous to SubBytes), followed by a row-wise rotation of the state
elements II; (analogous to ShiftRows), concluded by column-wise matrix multiplication
. (analogous to MixColumns). The resulting function @, o I, o ¥ realizes a bijective
mapping F;"ﬂ_l > F%;{_l, and the tweak update function tku is obtained by iterating it
four times. The individual functions W, I, ®, are defined as follows:

1. ¥ is a non-linear mapping F,, — F,, for p = 23! — 1 defined as:

() =A"" [A@) @ (Ma) > D& (Ap) > 1) |
[—

constant

where A : Fgs1_; — F3!\ {1} is the invertible map that returns the bit-string
corresponding to the input (where 1 € F3! is the 1s bit-string), @ is the bitwise XOR,
and > is a bit-wise right shift. We will prove that this map is bijective below;

2x(27) 2x(27) Jefined as:

2. II; is a linear mapping Fos: ", " — Flsi "y

I o T2 ... T4r-—2)\ _ [(To ... T47—4 T4.7-2 .
- =
r1 T3 ... T4.r-1 3 ... T4.71-1 Iy ’

3. &, is a linear mapping]Fggxl(ff) —]Fggxl(ff), in which each column of the state is

multiplied by the invertible matrix M € Fggﬁz_l defined as M = ﬁ ﬂ .

The resulting function for 7 = 1 is depicted in Figure 3.

T | | Ve | W) | e || g N

Figure 3: Tweak update function tku for 7 = 1 mapping F3s, | — F3,,_, is realized by
iterating the depicted progression four times.

Design Rationale. The main related-tweak attacks against small-pSquare are of statistical
nature (e.g., differential attacks), as discussed in [GMM™24]. Due to the relatively small
size of the prime (approximately 7 bits) and the relatively large state-size (equal to 16),
algebraic attacks were indeed less efficient than statistical attacks in that case. We will
show in the next section that this is not the case for mid-pSquare: algebraic attacks are
now stronger than statistical attacks. In this respect, and since related-tweak algebraic
attacks are almost unknown in the literature, the tweak-schedule of mid-pSquare has been
designed with the goal to maximize the resistance against such attacks. In order to achieve

492 mid-pSquare — Prime-Field Masking in Software

this goal, mid-pSquare’s tweak-schedule aims to have a complex and high degree algebraic
representation over I, over multiple rounds. In such a way, exploiting the algebraic relation
between related tweaks becomes more complicated and expensive from an attacker’s point
of view. At the same time, it is computed via functions that can be evaluated efficiently
over F,, (as in the case of II; and ®.) or over F4 (as in the case of ¥). As already pointed
out, these functions take inspiration from the AES/Rijndael round function.

Lemma 1. The tweak schedule tku : Fg'ﬂ_l — F%gﬁ_l 1s invertible.

Proof. 1t is sufficient to prove that W, IT., ®. are invertible. Since Il and ®, are linear
mappings we only focus on W. In the case of ¥, it is sufficient to note that the map
r—=z® (x> 1)®11...10 over F3!, that is,

. 1 100 0 0 .)
0 01 10 ...0°0 0

Z1 T1 :

. 00 0 0 11 . (1)
n-l 00 0 0 1 n-l

is invertible and admits 1 as a fixed point. The map over F3! is invertible since the matrix
has full rank (for each row ¢, adding all rows with index greater than ¢ to the i-th row
gives the canonical vector e;). The element 1 is sent to 00...01 @ 11...10 =1, that is 1
is sent to itself, therefore W is a bijection from Fos1_q to Fas1_1. O

We point out that full diffusion in the tweaks is achieved after 2 - 7 applications of
&, oIl o ¥, which corresponds to half a tweak update when 7 = 1, and a full tweak update
when 7 = 2. The algebraic properties of this tweak schedule are detailed next.

2.4 Security Level and Number of Rounds

We claim 120 bits of security for mid-pSquare with the aforementioned parameters (p =
231 — 1;b=2,c = 2). In particular, we claim that

there exists no classical attack in the single-key setting with data, computational
and memory complexities smaller than 220,

For a security level of 120 bits, the number of rounds are defined as follows. Each step S is
defined by N,. =4 rounds R. The number Ny of steps S is as follows:

e 7=0: Ny = 14; e 7=1: Ny, = 16; e T7=2: N, =18.

A direct comparison of parameters, sizes and properties to FPM instance small-pSquare
is given in Table 1.

Remark 1. An earlier preprint version of this paper? included a 124-bit security claim.
Yet, after Beyne and Verbauwhede showed that the given degree estimates were overly
optimistic [BV25], in particular the minimum number of rounds needed to reach maximum
degree (a sufficient but not necessary condition for achieving security), this claim has
been revised. While the authors suggested to increase the number of rounds (though
admitting “it is unlikely that there are corresponding attacks”, see [BV25, Sect. 1 — page
4]) we concluded that a small revision of the security claim would be wiser. The degree
growth is fast until reaching almost maximum degree which is sufficient to support a
slightly reduced security claim and only then slows down, requiring approximately the
same number of rounds again to eventually reach maximum degree (more details later).

2 nttps://eprint.iacr.org/archive/2025/519/20250319: 151040

https://eprint.iacr.org/archive/2025/519/20250319:151040

B. Balon, L. Grassi, P. Méaux, T. Moos, F.-X. Standaert, M. J. Steiner 493

Table 1: Comparison of parameters, sizes and properties of the two FPM instances small-
pSquare and mid-pSquare.

FPM Instance 7 P b ¢ block secur. tweak N, N, max. deg. mon.
0 0 9

small-pSquare 1 27 -1 4 4 112 112 112 4 16 16-(p—1) p'©
2 224 21
0 0 14

mid-pSquare 1 231 -1 2 2 124 120 124 4 16 4-(p—1) p*
2 248 18

Hence, instead of increasing the number of rounds we decided to reduce the security claim
to 120 bits (which is still above small-pSquare’s and should be sufficient for all practical
purposes) to restore the initially intended security margin. Our analysis proposed in the
following sections supports this choice.

3 Black-Box Security Analysis

In this section, we justify the number of rounds just given for mid-pSquare. Due to the
design analogies between mid-pSquare and small-pSquare, the security analysis is similar
for the two schemes. For this reason, here we limit ourselves to focus on the main attack
vectors against mid-pSquare, by adapting the security analysis of small-pSquare. We refer
to the security analysis of small-pSquare presented in [GMM™24] for more details regarding
the attack vectors that do not determine the choice of the number of rounds.

To summarize our security analysis, we are going to show that the main attack
vectors against mid-pSquare are of algebraic nature, including in particular (related-tweak)
interpolation and Grobner basis attacks. As already pointed out, this results in a crucial
difference between the security analysis of mid-pSquare and small-pSquare.

Remark 2. Related-tweak algebraic attacks (in which the attacker considers combinations
of systems of equations under different chosen tweaks in order to reduce the cost of
the attack and/or break more rounds) are almost unknown in the literature. This is
presumably due to the fact that symmetric primitives over binary fields such as AES or
SHA-3/Keccak have been shown vulnerable to statistical attacks mainly, while algebraic
attacks gain more popularity recently due to the emergence of symmetric primitives
designed for applications such as Multi-Party Computation (MPC), Fully Homomorphic
Encryption (FHE), and Zero-Knowledge (ZK) [GLR'20, GKR*21,DGGK21, BBC*23,
GHR 23, GOSW23]. Still, symmetric schemes designed for such applications are not
commonly tweakable constructions.

3.1 Statistical Attacks
3.1.1 Differential Attacks

Given pairs of inputs with some fixed input differences, a differential attack [BS91, BS93]
exploits the non-uniform probability distribution of the output differences produced by
the cryptographic primitive. We recall that the differential probability (DP) of having a
certain output difference Ap given a particular input difference Aj through a permutation
P over [} is defined as:

{x € Fy | P(z + Ar) — P(z) = Ao}

DPp =
pn

494 mid-pSquare — Prime-Field Masking in Software

In order to argue for the resistance of mid-pSquare against differential attacks, we
compute lower bounds on the minimal number of active square operations, both in the
single-key and related-tweakey model. In contrast to the single-key model, where the
round tweakeys are constant and thus do not influence the activity pattern, an attacker is
allowed to introduce differences within the tweakey state in the related-tweakey model.
For achieving this goal, we make use of the following observations:

e Since x — 2 is a quadratic map, DP,, ,,> < p~! =~ 273! for each A;,Ap # 0;

¢ The minimum number of active square maps in F is one. Indeed, since F is a 2-round
Feistel scheme over IFZQ,, the best case for the attacker can occur when the first z — 22
map is inactive. It directly follows that DPg < p~! ~ 2731;

o Define the function S as the 4-round Feistel scheme R* instantiated with F (and recall
that 2 rounds lead to full diffusion). As is well-known (e.g., [DKLS20]), at least one
function R is active every 2 rounds. It follows that DPs < (DPg)? < p=2 ~ 2792,

We then compute the minimum number of steps N required to guarantee security. Due
to the clustering effect (i.e., the fact that several differential characteristics can be used
together for setting up the attack) and due to the possibility to exploit a Meet-in-the-
Middle (MitM) approach for setting up the attack, we claim that the scheme is secure if
every differential characteristic has probability smaller than 272:5% a5 27300 for a factor
2.5 (equal to the one used for small-pSquare), where £ = 120 < 31 - 4 bits is our target
security level. Moreover, we conjecture that the attacker cannot skip more than 2 steps S
by a simple partial key-guessing, since one step S is sufficient to achieve full diffusion. It
follows that:

e 7 = 0: by simple computation, we have N, > [300/62] +2 = 5+ 2 = 7, where 2
steps S are added for preventing partial key-guessing strategies;

o 7 = 1: following the argument proposed by LED’s designers in [GPPR11] and already
used for small-pSquare, the attacker can choose related tweaks such that only one out
of two consecutive steps S is active. As a result, it is sufficient to double the number
of steps S obtained for 7 = 0 to guarantee security. That is, Ny =2-5+2 =12;

o 7 = 2: following the argument proposed by LED’s designers in [GPPR11] and already
used for small-pSquare, even if the attacker has more freedom in the choice of the
tweaks, it is possible to show that at least two among four consecutive steps are
active (see e.g. the “super-step” S? := So'S argument given in [GMM™24, Sect. 5.1]).
Similar to before, it follows that N, > 10 is a necessary condition for security. Still,
the attacker can potentially skip two steps (equivalently, one super-step S?) at each
side of the cipher by working with input (respectively, output) differences in the
plaintexts (resp., ciphertexts) that cancel out with the ones in the tweaks, leading
S? to be inactive. As a result, we require that Ny > 2-5+4 4+ 2 = 16.

3.1.2 Other Statistical Attacks

As in the case of small-pSquare, linear attacks [Mat93] do not outperform differential
attacks against our scheme. A similar conclusion holds for truncated differential [Knu94],
impossible differential [BBS99], boomerang [Wag99] and other statistical attacks. In
particular, truncated differential cryptanalysis generalizes differential cryptanalysis in the
sense that truncated differentials are differentials where only a part of the difference is
specified (e.g., usually the attacker only specifies if the difference is zero or non-zero).
Impossible (truncated) differential attacks exploit output (truncated) differences which
cannot occur in the course of a function, that is, output (truncated) differences with
probability zero. It is well-known that in the case of a Feistel scheme instantiated with a

B. Balon, L. Grassi, P. Méaux, T. Moos, F.-X. Standaert, M. J. Steiner 495

-10°
T 50
8
6 [—
]
&
&
< 47 N
©— component 1
—e— component 2
2 component 3
component 4
0"~ I

25 30 35

Figure 4: Degree growth of mid-pSquare in terms of the number of rounds r from [BV25,
Figure 13].

permutation, impossible differentials exist for 5 rounds [LR88, Pat98, Pat04]. Since each
step S consists of 4-round F, the number of rounds required to guarantee security against
differential attacks is largely sufficient for preventing these attacks as well.

3.2 Algebraic Attacks

Algebraic attacks exploit the polynomial representation of a cipher for forgery or key
recovery. Interestingly, the scenario for mid-pSquare is similar to recently introduced MPC-
friendly Pseudo-Random Functions (PRF) Ciminion [DGGK21] and Hydra [GOSW23]. We
have a relatively large prime field (p = 231 — 1), a relatively small state (n = 4) and a low
degree Feistel round function (deg(R) = 4). In this setting, algebraic attacks are expected
to be more competitive than statistical attacks that are sensitive to the underlying finite
field size, which we discuss next.

3.2.1 Degree and Density of the Polynomial Representation

First of all, we evaluate the growth of the degree in mid-pSquare with a fixed key. In the
case 7 = 0 and/or of a fixed tweak, the polynomials representing mid-pSquare belong to
Fplzo, x1,z2, 23]/ (zh — 0,2} — 21,25 — 22, 25 — x3) where p = 231 — 1. Hence, we note
that the degree in one variable is at most p — 1 = 231 — 2, that the total degree is then at
most 4 - (p — 1) and that the total number of monomials is p*. Before going on, we point
out that the following analysis can be generalized for the case of related tweaks, for which
the adversary can consider the same polynomials but with more variables.

Growth of the Degree. It can be observed that deg(R) = deg(R™!) = 4, noting that the
degree of a Feistel scheme remains the same in both the forward and backward directions.
More specifically, at the output of the internal function of R and of R™!, only one of the
components attains the maximum degree of 4, while the other has degree 2. Due to the
Feistel structure, the degree remains unchanged for half of the state, since this portion
does not enter the function F. For this reason, it follows that the minimum degree over
the 4 polynomials of a step of r consecutive rounds R (and R™1) is 227=3. More precisely,
for r > 2, the degrees of the four polynomials are 227~1,227 227=3 and 2272, In other
words, the minimal degree a polynomial can attain after r rounds is 2273, until it reaches
the maximum degree in one variable. Therefore, the condition 2273 >p—1 =231 —2
holds for r > 17. Then, we consider when the maximum total degree is reached. First,

496

mid-pSquare — Prime-Field Masking in Software

Table 2: Maximum and minimum degree of mid-pSquare for » > 15 rounds as predicted

in [BV25).

round | log,(min degree) log,(max degree)
15 27.0 30.0

16 29.0 31.584962499825412
17 30.999999999328193 | 32.32192809354375
18 31.999999998992287 | 32.70043971690083
19 32.45943161741583 | 32.90689059417533
20 32.80735492071399 | 32.977279922134976
21 32.95419630899992 | 32.99435343550997
22 32.98868468541797 | 32.9985904284004
23 32.997179479591374 | 32.999647735184425
24 32.99929538567914 | 32.999911940851725
25 32.99982387767195 | 32.9999779847091
26 32.9999559704259 | 32.99999449520106
27 32.999988991724734 | 32.99999862279452
28 32.99999724693134 | 32.999999654691045
29 32.99999931072562 | 32.999999912665054
30 32.99999982667372 | 32.99999997715855
31 32.999999955660726 | 32.99999999328193
32 32.99999998790747 | 32.99999999731277
33 32.999999995969155 | 32.99999999832048
34 32.99999999798458 | 32.999999998488434
35 32.999999998488434 | 32.999999998488434

we determine the minimal number of rounds such that at least one complete monomial
appears, where z¢ = Hf:o xi' is called complete if e; > 0 for 0 < i < 3. We observe
that such monomial appears after 2 rounds, and we determine the number of rounds
sufficient to obtain monomials up to the maximum total degree in the 4 polynomials:
22:(r=2)=3 > 4(p — 1) = 4(2%' — 2), which is satisfied for 7 > 20 (hence, 3 extra rounds).

Recent Results by Beyne and Verbauwhede [BV25]. Tt is crucial to keep in mind that
the previous number of rounds is a lower bound, that is, it gives an estimation of the
minimum number of rounds necessary to reach maximum degree. In practice, due to the
particular structure of the cipher, more rounds could be necessary. This is exactly what
Beyne and Verbauwhede [BV25] recently proved. As in the case of ciphers over binary
fields [BCC11,EGL 20, CGGT22], the growth of degree slows down when it is close to
its maximum — a graphical representation for mid-pSquare is given in Figure 4, concrete
numbers are shown in Table 2. In particular, Beyne and Verbauwhede showed that 35
rounds are actually necessary for reaching the maximum degree 4 - (p — 1) ~ 233, At
the same time, it is possible to observe that the difference between the maximum degree
4-(p—1) and the degree at round e.g. r > 20 is very small, and not expected to impact
our design with a claimed security level of 120 bits.

Density of the Polynomial Representation. Besides the degree’s growth, another crucial
factor for preventing algebraic attacks is the density of the polynomial representation.
Indeed, with equal degrees, a cipher whose polynomial representation is sparse is more
vulnerable with respect to some algebraic attacks than a cipher for which it is full. Before
going on, we point out the following.

Assumption 1. We say that the polynomial representation of mid-pSquare has reached

B. Balon, L. Grassi, P. Méaux, T. Moos, F.-X. Standaert, M. J. Steiner 497

’
—7 —7
S —n c —n
-% 13 % 13
=05 — 17| < —17/
> >
T —19 T —19
) 23 9] 23
0 ‘ ‘ ‘ ‘
2 4 6 8 10 6 8 10
Number of Rounds Number of Rounds
(a) Minimum density. (b) Maximum density.
1 — — ‘ 1 —
1
!
509F 5]
= = 1 — 028
[S o5} ' ~2=]
= =ha ' 237
< 0.8 © 1 45
%] %] h — ¥
’ - = —_5310
07t ‘ L ‘ o / -2
5 7 113 17 19 23 29 5 10 15 20 25 30
Prime Number of Rounds
(c) Min density after 6 rounds vs. prime (d) Extrapolation of min density for p = 23! —1.

Figure 5: Minimum and maximum density of the interpolation polynomial of toy mid-
pSquare for p in 7 < p < 23. Figure 5c¢ shows the (linear) relation between density after 6
rounds and the prime p. In Figure 5d, extrapolation of the number of rounds needed to
reach saturation for p = 231 — 1.

saturation if it contains % - p* monomials.?

As in the case of small-pSquare, checking the density of the polynomial representation
of mid-pSquare is too complex, and out of our reach. For this reason, we focus on a
toy-version of mid-pSquare defined over Fé for smaller primes p with 7 < p < 23. Our
results are displayed in Figure 5. Beyond providing figures for minimum and maximum
density we also verified that the density after a certain number of rounds (here 6) seemingly
decreases linearly for increasing primes. We then use this relationship to extrapolate the
density development for p = 231 — 1. Concrete details for p € {19,23} are given in Table 3.
Focusing on the case p € {19, 23}, there are respectively 130321 and 279841 monomials in
4 variables, and on average a polynomial over IF;’; has ijl - p* terms which corresponds
respectively to 123462 and 267674 terms. Analogous results hold for p € {7,11,13,17}.
From our extrapolation (see Figure 5), we estimate that 24 rounds are sufficient for the
polynomial to be saturated.?

Algebraic Properties of the Tweak-Schedule. For the tweak schedule, the complex
representation of ¥(x) over F,, prevents us from computing its polynomial directly and
checking the system given by the tweak schedule. Hence, we analyze it by studying the
properties obtained from the same system over smaller Mersenne primes.

First, we computed the polynomial representation of the univariate function ¥ and its
inverse for p = 7,31 and 127. In all cases, the degree is p — 2, and the number of monomials
indicates high density. Specifically, there are 6 monomials for both ¥ and its inverse when
p =17, 27 and 29 monomials for p = 31, and 118 and 122 monomials for p = 127.

Then, for the polynomial system derived from the tweak schedule, we focused on a
toy-version of small-pSquare with p =7 and 7 = 1. The polynomial system nearly reaches
saturation by the end of the first round (between 1964 and 1984 monomials), and it is
already saturated before the end of the second tweak update. As a result, for 7 = 2, we

3 This corresponds to the average for a polynomial in the ring in which we operate.

4 In [BV25], Beyne and Verbauwhede pointed out that 35 (to reach maximum degree) + 2 (to get
density) = 37 rounds are necessary. We emphasize that this refers to a stricter condition on the density
than our definition of saturation with (p — 1) - p> monomials.

498 mid-pSquare — Prime-Field Masking in Software

Table 3: Number of monomials per branch in the polynomials after r rounds of mid-pSquare
over F,, (with constants fixed to 0). For the considered values of p € {19, 23}, there are
respectively 130321 and 279841 monomials in 4 variables.

Rnd Number of monomials Rnd Number of monomials
1 4,9,1,1 1 4,9, 1,1
2 35,194, 4, 9 2 35, 196, 4, 9
3 1443, 10317, 35, 194, 3 1529, 12402, 35, 196
4 44476, 76034 1443, 10317 4 66368, 145824, 1529, 12402
5 100198, 115181, 44476, 76034 5 204257, 242718, 66368, 145824
6 | 122131, 123177, 100198, 115181 6 | 261575, 267086, 204257, 242718,
7 | 123492, 123663, 122131, 123177 7 | 267397, 267853, 261575, 267086
8 123429, 123471, 123492, 123663 8 | 267573, 267826, 267397, 267853

(a) Case: p=19. (b) Case: p =23.

expect the polynomial system to reach saturation after 6 iterations of ®. oIl o ¥, and
therefore to also be saturated before the end of the second tweak update.

3.2.2 Linearization Attack

A system of x polynomial equations in x variables can be solved via the linearization
technique, which consists in adding new variables to replace all the monomials of degree
larger than 1 in the system. The resulting system of equations can be solved using linear
algebra if there are enough equations. The computational complexity of this attack is:

: I, W
OrgnllgzO(p #(D,x —1)*),

where [is the number of guessed variables, #(D, z) = (D jz) is the maximum number of
monomials in a polynomial of degree D < p in z variables, and 2 < w < 3. We remark
that MitM versions of this attack are also possible. In the case of mid-pSquare with 7 =0
(remember that the key is composed of 4 Fa31_; words), then:

min 2317 . (D+4 - l>w < 9120
4 —1 -

occurs already for D > 21615 (taking the conservative value w = 2). Since the minimal
degree follows 2273 (where 22773 > 216-15 for » > 10) and based on the density analysis
just given, we therefore conclude that 2 -5 = 10 steps S (equivalently, 2 - 20 = 40 rounds)
are sufficient to prevent MitM algebraic attacks based on linearization.

In the case of mid-pSquare with 7 > 1, the attacker can potentially simplify the
equations to solve by making use of the freedom in the tweak. For example, the linear
combinations of several polynomials under properly chosen related tweaks can be exploited
to cancel monomials whose coefficients depend on the tweaks or part of them. Still, this
procedure is not for free, since the attacker has to solve equations in the tweak variables,
that are dense and of high (e.g., maximum) degree due to the non-linear tweak schedule.
As we have seen, 2 - 7 steps are sufficient for reaching full diffusion in the tweak-schedule.
At the same time, 2 - 7 steps guarantee a complex algebraic representation of the tweak
schedule, which is represented by a polynomial of maximum degree and dense. Based on
this, we conjecture that 2 - 7 extra steps — for a total of 10+ 2 - 7 steps, or 40 + 8 - 7 rounds
— are sufficient to prevent related-tweak algebraic attacks based on linearization.

B. Balon, L. Grassi, P. Méaux, T. Moos, F.-X. Standaert, M. J. Steiner 499

Relation with Grobner Bases Attacks. We recall that Grébner basis attacks reduce to
linearization ones when (i) the attacker aims to solve equations linking the plaintexts (and
tweaks) to the ciphertexts only, with the key as only variable, and (ii) the attacker can
collect enough data for linearizing the system (i.e., the best scenario for the attacker).

3.2.3 Interpolation Attack

Interpolation attacks were introduced by Jakobsen and Knudsen [JK97] to break symmetric
primitives with a simple (and low degree) algebraic expression. As the name suggests,
the attack strategy consists in considering the (intermediate) ciphertext as a polynomial
of the plaintext.> With sufficiently many plaintext /ciphertext pairs, one can reconstruct
this polynomial. Since the polynomial is key-dependent, some (partial) round keys can be
recovered by employing a guess-and-determine strategy. As for the linearization attack,
we remark that MitM versions of such attack are also possible.

The simplest way to prevent the interpolation attack is to ensure that the polynomial
representation is of maximum degree and dense. This implies that the attacker needs
(more than) the full-codebook to construct the polynomial, making the attack infeasible.

In the case of mid-pSquare with 7 = 0, then 24 rounds (equivalently, 6 steps S) are
sufficient to reach close to the maximum degree and density in one direction. Due to
the MitM approach, we conjecture that 6 -2 4+ 2 = 14 steps S (equivalently, 56 rounds)
are sufficient to prevent algebraic attacks based on interpolation attacks, where 2 steps S
are added for preventing partial key-guessing strategies. In the case of mid-pSquare with
7 > 1, based on the algebraic complexity of both the polynomial systems of the scheme
and of the tweak schedule, we add 2 - 7 extra steps S (equivalently, 8 - 7 rounds) to mitigate
related-tweak variants of the interpolation attack, similar to how we handle linearization
attacks. This brings the total to 14 + 2 - 7 steps S (equivalently, 56 + 8 - 7 rounds).

3.2.4 Grobner Basis Attack

Given at least one known plaintext-ciphertext sample of mid-pSquare (with known tweaks),
an adversary can set up a fully determined polynomial system and subsequently solve
for the key variables. A general tool for polynomial system solving are Grébner bases,
see [CLO13] for an introduction. A Grobner basis attack proceeds in three steps:

1. Compute a degrevlex Grobner basis.
2. Term order conversion to a lexicographic Grobner basis.

3. Factor the univariate polynomial.

We quickly recall the lexicographic and degrevlez term orders on a polynomial ring
Klz1,...,%,], where K is a field. Given monomials a = [[/_, 2% and b = []I_, 2%,
then we say that lexicographically a >i., b if there exists 1 < j7 < n such that a; =
bi,...,a;-1 = bj_1 and a; > b;. Moreover, we say that degree reverse lexicographically
(degrevlex) a >ppryr b if either deg(a) > deg(b), or deg(a) = deg(b) and there exists
1 < j < nsuchthat a, =by,...,aj41 = bj+1 and a; < b;. For the analysis of mid-pSquare,
we consider an iterated polynomial model where variables are introduced for the key and
the intermediate states after every round. For ease of presentation, we assume that a key
is added after every Feistel layer, i.e. we work with step size N, = 1. We denote the total
number of rounds of mid-pSquare by r = N,. - N,. Also, let:

Yo = (-171 + Ci,O)Q + o + 1 + ¢ 0, (1)
y1 = (yo +cin)® +2-yo — 1, (2)

5 The variables of such polynomial are the plaintexts (or the ciphertexts) and not the key.

500 mid-pSquare — Prime-Field Masking in Software

then we abbreviate the i*" round of mid-pSquare as:

Zo T2 + Yo+ Cin
r1 | | a3ty —cipo
R; = . (3)
2 Zo
I3 T

The polynomials modeling the " round are then given by:

Ri(p+k+t@)+k+t® —xV =1,
£ = {R; (x(i_l))+k+t(i)—x(i), 2<i<r—1, (4)
R (xD) + k+t(—c, i=r,

where k = (ko,...,ks) denotes the key variables, x() = (xéi)7 . ,mg)) denotes inter-

mediate state variables, t(9) = (téi), . ,téi)) € IF; denotes the tweaks, and p,c € IF;‘, is

a plaintext-ciphertext pair. Then F = {f(i)}1<i<r CcF, [X(i),k |1 <i<r-— 1} is a
polynomial model for mid-pSquare with a single plaintext-ciphertext sample.

Single Plaintext-Ciphertext Sample. A recent work [Ste25] constructed a quadratic
degrevlex Grobner basis for the MPC-friendly PRF Hydra [GOSW23] via affine preprocessing
and a linear change of coordinates. By performing a non-linear preprocessing step in every
round we can extend this degrevler Grébner basis construction to mid-pSquare if 2 | r:6

1. For 1 < i < r, replace fl(i) = fli) mod (f(()i)) where division with remainder is
performed w.r.t. the degreviez term order x(Y) >prr ... >prr x" Y >ppp k.7
With Equations (1), (2) and (4) we can see that deg (fl(l)) = 2 after the reduction.

2. Set up new substitution variables Z1,..., Zo.:

o fori=1,set &1 = k1 and 2o ::E(()l) — ko — ko;

o forl<ic< r, set Toi_1 = $§i_1)

. N —1 . -1
o fori=r,set To,_1 = xgr) and Toy = —xér) _ ko.

and Zq.; = xéi) — xgi_l) — ko;

3. Collect the quadratic polynomials of the f(?)’s in Fisqu, the linear polynomials of the
£()g in Fiin, and the polynomial containing the z;’s in Fgyps-

4. Perform Gaussian elimination on F;, and replace Fsqy = Fsqgu mod (Fyipn) and
Fsubs = Fsubs mod (Fiin), where division with remainder is performed w.r.t. the de-
grevler term order x@) >DRL --- >DRL x(r=1) >prr K >prr £1 >DRL --- >DRL
Top.

5. Perform Gaussian elimination on Fsyps and replace Fsgy = Foqu mod (Fyyps)-

Let us illustrate the idea behind Steps 1 and 2. The polynomials in (), where 1 < i < r,
reduce to:

xéH) +yo+ecii+ko ﬂﬁéi)
i—1 i
2§V 4 (yo + cin)?+2 yo—a1 etk | _ !Ei) (5)
x((;t—l) + ko :Léz) ’
xgl_l) + k3 a:gl)

6 We remark that the number of rounds of our scheme is always even.

7 We naturally order the vectors’ variables, i.e., a:éi) >pDRL -+ >DRL a:gi) and ko >pRrL --- >DRL k3.

B. Balon, L. Grassi, P. Méaux, T. Moos, F.-X. Standaert, M. J. Steiner 501

and similarly, with appropriate modifications for ¢ = 1,7. (We omitted the tweaks for ease
of presentation.) Then, yg = x(gz) — :z:g—l) — ko — ¢;,1, and substituting this expression into

the second branch yields that:
(o) a7 ko) 42 (o)~ k) 4 el bk s a =, (@

where ¢; = ¢;0—2-¢;,1 € Fp. This polynomial is exactly the result of fl(i) mod (féi)) with

respect to degrevlex. Consequently, the quadratic components of féi) and fl(i) mod (féi))

are both squares of linear equations, and we collect these linear equations in the Z;’s. The
remaining steps of the procedure essentially perform a change of variables to the Z;’s.

If Fiin and Fgups both have full rank, then the change of variables to the &;’s is fully
determined and invertible. In particular, we then have that Fs, C P = F, [:%j | 1<
j<2- r] and for every 1 < j < 2. r there exists f; € Fgqy such that LMprr(f) = 2.
By [CLO13, Chapter 2 §9 Theorem 3, Proposition 4] Fy4, is then a degrevlex Grébner
basis for mid-pSquare. In addition, it is easy to see that the [F)-vector space dimension
of P/(Fsqu) is given by dimp, (Fsqu) = 227 In practice, for our model with N, = 1, we
observed that this substitution process is always successful over prime fields [F,, and for
any even round number 7.8 The construction of the Grébner basis can be extended to
the full mid-pSquare with N,. = 4, but the Z;’s have to be slightly modified, because the
key is only added after every full step. Then, we observed that the substitution process
is successful for any Ny > 1. Therefore, in a Grobner basis attack on mid-pSquare we
can proceed directly to the term order conversion step. Using the state-of-the-art FGLM
(Faugere, Gianni, Lazard and Mora) algorithm [FGHR14] this step has a polylogarithmic
complexity of O (2‘*"2"’), where 2 < w < 3 is the linear algebra constant [VXXZ24]. Thus,
to achieve security level k with respect to term order conversion, we must ensure that
r > ﬁ, hence conservatively r > g.

More Plaintext-Ciphertext Pairs (with No/Single/Un-Releated Tweaks). Assume we
are given k > 2 plaintext-ciphertext samples, but k is too small to perform a linearization
attack (see Section 3.2.2). In this case, we can still set up an overdetermined iterated
polynomial system for mid-pSquare consisting of k - 4 - r equations in k-4 - (r — 1) + 4
variables. Analogous to the construction of the degrevler Grobner basis, we can reduce
this system to k - 2 - r quadratic equations in k-2 -7 — (k — 1) - 4 variables. Each sample
then contains two polynomials with the quadratic terms:

e k2, which comes from the first round, and
e k2, which comes from the last round.

The term k? is obvious from the first round function. For the term k2, recall that one

5
of the quadratic equations in the last round is mgil) + (x&ril) + cr’o) +¢p1 + ko = co,

but we also have the linear equation xY"” + k3 = c3. Hence, we produce the claimed

quadratic term after a linear variable elimination. So, we can produce additional (k —1) -2
linear polynomials to eliminate the same number of variables. After this preprocessing, we
are left with k-2 -7 — (k — 1) - 2 quadratic polynomials in k-2 -r — (k — 1) - 6 variables.

For the complexity estimation, we assume that this quadratic system is semi-regular
(see, e.g., [BFSY05] for a formal definition). The degree of regularity Dicq is defined next,
as the index of the first non-positive coefficient in the series:

(1 o ZQ)]CQT*(]C*I)Q

H(Z) = (1 _Z)k.g.rf(kfl).ﬁ ’ (7)

8 This process always fails for odd round numbers, but we use an even number of rounds in our scheme.

502 mid-pSquare — Prime-Field Masking in Software

The complexity of computing a DRL Grobner basis with the F5 algorithm [Fau02] is then
bounded by (see [BFSY05]):

O((kz-2~r—(kD—rei)-(i—i-Dreg)w), ®)

where 2 < w < 3 is the linear algebra constant.” For example, for = 16 (equivalently, 4
steps) and k = 2 we have D,eg = 24, and with w = 2 the binomial coefficient evaluates to
approximately 136 bits. For r = 12 (equivalently, 3 steps) and k = 3, we have D,q; = 21
and with w = 2 the binomial coefficient evaluates to approximately 127 bits.

Since this approach performs worse than term order conversion even for k = 2 we
conjecture that recomputing the degreviex Grobner basis for an overdetermined mid-pSquare
system is not more competitive than direct term order conversion.

We finally note that the adversary can linearize more quadratic polynomials in the first
round via chosen plaintexts or related tweaks. We discuss this improvement in Appendix C,
but we stress that the expected complexity improvement is negligible.

Setting the Number of Rounds. To explain our rationale for choosing the round number
of mid-pSquare with respect to Grobner basis attacks, we need to delve into more details
of term order conversion algorithms. Let G = {g;}1<i<a.r C P =TF) [:%1 [1<i<2: r]
represent our mid-pSquare degreviex Grobmner basis with LMpgy(g;) = 27. Let B C P
consist of all square-free monomials, including 1. Then, B forms an F,-vector space basis
of the quotient ring P/(G) and |B| = 22". Now, we set up the so-called multiplication
matrix M., for the last variable &5.,.. The columns of Ms.,. are labeled by B and the rows
by Za.r - B. The entries of row Zs.,. - s are the coefficients of the remainder 7z, .s = $2., - 8
mod (G).

Under a standard assumption,'® the minimal polynomial of Ma., corresponds to the
univariate polynomial in the lexicographic Grobner basis. Improvements in term order
conversion algorithms generally arise from fast linear algebra [FGHR14] or the exploitation
of structural properties like sparsity [FM17] to compute the minimal polynomial.

We aim to protect mid-pSquare against sparse FGLM algorithms which could exploit
additional structural information currently unknown to us. For this purpose, we recorded
the sparsity ratio #(non-zero entries) /24" of the multiplication matrix Ms.,. Since the
matrix size grows with 247, it is not feasible to collect data for mid-pSquare with step
size N, = 4 and r = N,. - Ns. Instead, we use the model with N, = 1 as estimator for
the sparsity of mid-pSquare. For r € {2,4,6}, we recorded 100 samples with random keys,
constants and plaintexts, and computed the sparsity ratio. We observed that the sparsity
ratio follows an exponential decay of the form 6(r) = a-27%". Our interpolated coefficients
are:

log, (6(r)) = (=1.05301 +£3-107°) - 7 + (0.0597 £ 1-107%) , (9)

where the + terms represents the R?-value of the respective coefficients. Therefore, in
logarithm in base 2 we approximate the number of non-zero coeflicients in Ms., with:

4-r+log, (8(r)) ~4-r—1.05-r+0.06 ~ 2.95 7. (10)

To protect mid-pSquare against sparse FGLM algorithms and achieve a security level of

K, we require that r > 5%=. Our rationale is that unless the characteristic polynomial of

9 We are aware that the bound just given is only an upper bound. At the same time, we emphasize
that (1st) no non-trivial lower bound is known in the literature (to the best of our knowledge), and (2nd)
this bound has been widely used in the design of several arithmetization-friendly symmetric primitives
such as, for example, [GLR 20, GKR*21,DGGK21,BBC*23, GHR 123, GOSW23].

10 Namely, we assume that the lexicographic Grébner basis must be in #2..-shape position, meaning

that it takes the form (@1 —f1 (@Q.T),...,fg%l — for_1 (fz,r),fg‘r(ig‘r)).

B. Balon, L. Grassi, P. Méaux, T. Moos, F.-X. Standaert, M. J. Steiner 503

M., can be trivially computed, a term order conversion algorithm should process every
non-zero matrix entry at least once. Consequently, it would require at least ~ 229"
non-trivial operations. For r = 42 (meaning 10.5 steps) we have 2.95 - r = 123.9, and for
r = 48 (meaning 12 steps) we have 2.95 - r = 141.6. We conjecture that this worst-case
scenario approach provides a sufficient security margin for mid-pSquare with N,. = 4 and
N, =16, i.e., r = 56 full rounds, against Grobner basis attacks, even under (hypothetical)
algorithmic improvements.

3.2.5 Higher-Order Differential Attacks

Higher-order differential attacks have been introduced by Lai [Lai94] and by Knud-
sen [Knu94] to attack ciphers over F} with low degree. In particular, they proved that,
given a function F over % of degree §, and given any affine subspace V C % of dimension
9 + 1 (hence, dim(V) > deg(F) + 1), then

Zx:ZF(x)zo.

zeV zeV

Since this fact holds independently of the value of the secret key, it can be used to distinguish
a cipher from a pseudo-random permutation, and to set up key-recovery attacks.

An analogous property holds for ciphers over Fy, as shown in [BCDT20]. Given a
function F over F}) of degree strictly less than d - (p — 1), and given any affine subspace

V C Fy of dimension d, then
Z x= Z F(z) =0.
reV eV

More recently, Beyne and Verbauwhede [BV25] extended such a result by introducing
“ultrametric integral cryptanalysis” over finite rings of prime characteristic p.

As we saw before, 35 rounds are necessary for mid-pSquare in order to reach maximum
degree. (Note that the data complexity of the attack is at most 2120, which implies that it
is unlikely for the attacker to cover such a number of rounds with a zero-sum distinguisher.)
Regarding the key-recovery phase, two approaches can be considered. Let {p;}; be a set of
plaintexts for which the zero-sum holds after a certain number of rounds, and let {¢;};
be the corresponding ciphertexts. As first approach, the attacker partially guesses the
key, partially decrypts the ciphertexts with respect to the guessed key, and checks that
the zero-sum holds. Due to the wrong-key randomization hypothesis, the attacker can
discard wrongly guessed keys (that is, the keys for which the zero-sum property does not
hold). However, this attack strategy does not allow to cover many rounds, since a single
step S provides full diffusion, and the attacker is forced to guess the entire key in order to
partially decrypt the ciphertexts for more rounds. As in [EGL™20], another more efficient
approach consists in setting up a system of equations defined as

ZR;T(Ci) = 07

and solve it with respect to the key k (for a certain number of rounds r), instead of partially
guessing the key directly. Our previous analysis shows that the attacker cannot solve such
a system of equation when r > 20, which implies that 35 + 20 = 55 rounds (equivalently,
14 steps) are more than sufficient to prevent higher-order differential attacks for 7 = 0.
Similar to how we handle previous algebraic attacks, for 7 € {1,2}, we add 2 - 7 extra
steps S (equivalently, 8 - 7 rounds) to mitigate related-tweak variants of the higher-order
differential attack, for a total to 14 + 2 - 7 steps S (equivalently, 56 + 8 - 7 rounds R).

504 mid-pSquare — Prime-Field Masking in Software

4 Performance Comparison

Now that we have specified the design of mid-pSquare and analyzed its security against
cryptanalysis, it is time to establish its performance when implemented on the envisioned
target platform, namely simple 32-bit microcontrollers such as ARM Cortex-M devices.

Choice of the Prime. Both AES-prime [MMMS23] and the original FPM instance called
small-pSquare [GMM*24] make use of a 7-bit prime modulus. In particular, they use
p = 27 — 1 = 127, a so-called Mersenne prime known to enable efficient field arith-
metic [MMMS23]. The choice of the small field size is intended to maintain efficiency in
hardware implementation. However, on 32-bit microcontrollers, optimized instructions for
integer arithmetic like addition, subtraction and — most importantly — multiplication of
32-bit operands are commonly available. In most cases, the number of cycles these instruc-
tions take to execute is independent of the size of the operand (i.e., they run in constant
time). While addition and subtraction require only a single cycle on virtually all devices
we consider, multiplication of full-width operands may take multiple cycles on lowest-end
processors, such as ARM Cortex-M0/M3. However, in ARM Cortex-M4 devices and almost
all more advanced families of 32-bit microcontrollers, unsigned integer multiplication of
32-bit words is also executed in only one cycle for any operand values. Thus, to optimally
leverage the capabilities of such Arithmetic Logic Units (ALUs), Mersenne primes of a
size close to the maximum single-precision operand width (i.e., 32 bits) should be chosen.
Fortunately, p = 23! — 1 is a Mersenne prime and appears to be perfectly suited for efficient
field arithmetic under the given constraints, as elements from the associated prime field IF,,
occupy almost the entire register width, while — very importantly — still allowing to perform
one arithmetic addition of two field elements without risking an overflow. This enables
optimal efficiency for constant-time modular addition, subtraction and multiplication
using the common Mersenne prime reduction trick (see [MMMS23, GMM™24]). Smaller
Mersenne primes (e.g., 27 —1, 213 —1, 217 — 1 or 219 — 1) would lead to the same number of
cycles for individual field operations despite processing fewer bits per instruction.'’ Larger
Mersenne primes (> 2%1 — 1) would imply costly multi-precision arithmetic. Non-Mersenne
primes of equivalent size would require a larger number of cycles per modulo reduction. We
therefore argue that mid-pSquare with p = 23! — 1 is ideally suited for embedded devices
with 32-bit operand/register width, especially if single-cycle full-width multiplication is
available, as it enables highly efficient field arithmetic, including the non-linear layers, in
constant time.

Choice of the Competitors. A natural target for comparison is of course small-pSquare as
the only other existing FPM instance to date. Yet, its hardware-oriented design choices, in
particular its small prime modulus and the bit/word shuffling in the tweak schedule, make
it less suited for 32-bit software platforms. Therefore, it is significantly more meaningful to
select an additional competitor that is actually meant to be efficient in the envisioned setting.
For this purpose we have chosen SKINNY, a tweakable lightweight block cipher introduced
at CRYPTO 2016 [BJK'16]. Due to its robust security and high efficiency in both software
and hardware, SKINNY has been selected as part of the ISO/TEC 18033-7:2022 standard
for TBCs. In the following we compare our masked and unmasked implementations of
small-pSquare and mid-pSquare to corresponding SKINNY implementations. We believe
SKINNY is a great fit for this purpose, as it offers multiple versions with different tweak sizes
(namely, 0, n and 2n, just as we do for mid-pSquare), it has been designed to be efficient on
microcontrollers, and it has been designed with masking as a side-channel countermeasure

11 Depending on the concrete prime choice, underlying algorithm and processor operand width it may be
feasible to achieve significant performance improvements by reducing the frequency of modulo reductions
when smaller primes are used. Yet we found this to be less effective for our purposes than increasing the
prime size.

B. Balon, L. Grassi, P. Méaux, T. Moos, F.-X. Standaert, M. J. Steiner 505

in mind. In particular, it was demonstrated in the original proposal that bit-sliced SKINNY
implementations lead to high performance in software [BJKT16]. At CHES 2021, an even
better form of sliced representation of the cipher has been introduced which is called
fiz-sliced representation and allows to minimize the impact of the ShiftRows operation
which often becomes a performance bottleneck in bit-sliced software [AP21]. For the
following comparison we have taken the efficient fix-sliced implementations provided by
the authors of [AP21] and masked them to obtain high performance side-channel resistant
software implementations of SKINNY-128-128, SKINNY-128-256 and SKINNY-128-384. We
compare the execution time and code size to our respective small-pSquare and mid-pSquare
implementations for 7 = 0, 1 and 2, up to 32 shares. All masked software implementations
are based on the trivial composability notion Probe Isolating Non-Interference (PINI) [CS20]
using proven gadgets from [CGLS21] and [CMM*23]. All implementations are constant-
time C-language implementations and publicly available under an open-source license at
https://github.com/uclcrypto/mid-pSquare.

Results. Tables 4 and 5 show the respective performance figures (in terms of cycle
counts) and cost figures (in terms of code size), respectively, for different tweak sizes and
numbers of shares d in the masked implementations. All numbers are obtained using
Keil MDK-ARM Tool Professional Version 5.36.0.0 using the pVision IDE. The C code is
compiled using the default ARM compiler v6 of the tool, with the -03 flag to optimize for
speed, as well as Link Time Optimization (LTO) enabled. Cycle counts are measured on
the STM32F415RGT6 microcontroller which is part of the STM32F target board for the
ChipWhisperer CW308 UFO board, via ST-LINK in-circuit debugger. They are given for
encryption and decryption separately and include everything needed, the data path, the
key schedule, the tweak schedule (which remains unmasked for both ciphers due to tweaks
being considered public information) and the transformation into the target representation
(for fix-sliced SKINNY). This differs from the numbers in [AP21], which exclude some of
these parts. The program code size is given for encryption and decryption together as the
actual size in bytes of the machine code generated by the compiler and stored in flash
memory.

Randomness Generation. For the masked implementations we distinguish between TRNG
on and TRNG off. For the TRNG on case we have employed the integrated on-board
True Random Number Generator (TRNG) of the Cortex-M4 for masking randomness
generation in chunks of 32 bits. The corresponding source code includes TRNG initialization
(TRNG_Init) and de-initialization (TRNG_DeInit) functions which are called once each, as
well as a randomness extraction function (TRNG_GetRand) to obtain a fresh chunk of 32
random bits whenever needed (this can be many times depending on the masking order
and round number). We have also experimented with Pseudo Random Number Generators
(PRNGs), but found that, on this target, the on-chip TRNG is more cycle-efficient than
deterministic primitives with even a minimal level of cryptographic strength. For the
TRNG off case the source code is simply missing the initialization, de-initialization and
randomness extraction functions and the constant RAND_CONST is used whenever a random
32-bit value would be needed. Obviously, this leads to an insecure implementation, but
we believe it is crucial to report performance numbers both including and excluding the
additional cost of randomness generation, as this aspect can be optimized independently
of the masked implementations. The differences in the tables between the TRNG on and
TRNG off case in terms of both cycles count and code size can then largely be attributed
to the presence or absence of calls to the randomness extraction function, respectively.

Interpretation. small-pSquare is clearly the least performing algorithm across the board
in terms of cycle counts. Compared to the corresponding mid-pSquare implementations

https://github.com/uclcrypto/mid-pSquare

506 mid-pSquare — Prime-Field Masking in Software

Table 4: Cortex-M4 cycle counts for SKINNY-128, small-pSquare and mid-pSquare imple-
mentations for different tweak sizes and numbers of shares d used when masked.

Primitive d=1 d=2 d=14 d=38 d=16 d=32

TRNG TRNG TRNG TRNG TRNG

off on off on off on off on off on
SKINNY-126-128 E| 6.9k|17.7k 20.0k| 62.9k 77.9k|186.2k 244.6k|830.8k 1.11M |2.56M 3.86M
D| 6.9k|17.8k 20.4k| 63.5k 78.5k|188.0k 246.4k | 790.2k 1.07M |2.56M 3.86M
mall-oSauare » — 0 B | 10:3k|35.1k 56.4k | 110.0k 227.0k | 557.2k 1.01M | 1.9IM 3.92M | 7.03M 15.4M
p>q =% D|10.8k|35.9k 57.4k|108.8k 227.5k |557.0k 1.00M | 1.95M 3.92M |7.05M 15.4M
oS _o B| 29k|110k 14.1k| 30.8k 55.4k | 165.9k 263.2k|574.4k 990.0k | 2.08M 3.84M
mid-poquare 7 = D| 2.9k|10.8k 14.0k| 31.4k 55.3k | 163.7k 258.3k | 579.5k 992.9k | 2.16M 3.82M
SKINNY-128-256 E| 84k|21.3k 24.1k| 75.8k 93.8k|223.6k 293.6k|996.8k 1.33M |3.06M 4.63M
D| 8.4k|21.4k 24.6k| 76.4k 94.4k|225.7k 295.8k | 954.5k 1.29M | 3.06M 4.63M
smalloSauare 7 — 1 E| 236k |67.6k 102.5k | 107.3k 405.9k | 988.9k 1.80M | 3.43M 6.97M | 12.7M 27.5M
p=q =% D|24.8k|69.1k 106.0k | 199.7k 409.5k | 990.1k 1.80M | 3.45M 6.95M | 12.5M 27.5M
mideoSquare — 1 E| B:1k| 145k 177k | 37.7k 63.2k|189.5k 300.8k [653.9k 1.14M |2.38M 4.36M
p>q = D| 5.1k|13.9k 18.2k| 37.6k 65.1k | 187.1k 299.3k | 668.4k 1.13M |2.46M 4.36M
SKINNY-128-384 E|10.4k | 25.4k 28.7k| 89.1k 110.2k | 261.4k 343.1k| 1.16M 1.55M |3.57M 5.41M
D|10.3k|25.5k 29.2k| 89.8k 110.9k |263.9k 345.6k | 1.10M 1.49M |3.57M 5.41M
oS _, E[30.7k|88.6k 135.2k|258.4k 532.2k | 1.30M 2.36M | 4.50M 9.15M | 16.6M 36.1M
small-poquare 7 =2 51391k | 90.2k 138.6k | 261.5k 537.0k | 1.30M 2.34M | 4.53M 9.12M | 16.4M 36.1M
doSauare - — 2 | TAk|17.5k 22.4k| 44.5k 73.3k [215.6k 340.4k|753.3k 1.28M |2.77M 4.92M
mic-poquare T = D| 7.3k|17.6k 22.2k| 44.6k 72.8k|216.4k 337.2k |744.2k 1.28M |2.67M 4.92M

Table 5: Cortex-M4 code size in bytes for SKINNY-128, small-pSquare and mid-pSquare
implementations for different tweak sizes and numbers of shares d used when masked.

Primitive d=1 d=2 d=4 d=28 d=16 d =32
TRNG TRNG TRNG TRNG TRNG
of f on of f on of f on off on off on
SKINNY-128-128 23.9k | 57.5k 66.6k | 109.2k 109.6k | 243.1k 244.6k | 617.1k 618.8k | 574.3k 574.4k

small-pSquare 7 =0 | 3.7k | 12.6k 15.9k | 21.3k 39.7k | 44.8k 36.7k | 55.1k 47.7k | 76.7k 68.4k
mid-pSquare 7 = 0 2.1k | 3.6k 5.0k 6.8k 9.8k | 13.5k 16.4k | 16.6k 18.4k | 19.5k 21.2k

SKINNY-128-256 28.1k | 68.2k 79.1k | 131.7k 132.1k | 243.8k 243.5k | 756.2k 757.8k | 688.0k 688.0k
small-pSquare 7 = 1 6.1k | 14.9k 18.8k | 25.6k 43.9k | 49.0k 41.0k| 59.6k 52.0k | 81.0k 72.7k
mid-pSquare 7 =1 3.0k | 4.4k 5.9k 7.8k 10.5k | 14.4k 17.3k| 17.9k 19.6k | 20.5k 22.2k
SKINNY-128-384 32.4k | 79.0k 91.6k | 154.8k 155.2k | 340.8k 342.3k | 857.6k 859.2k | 801.9k 801.9k
small-pSquare 7 = 2| 6.3k | 15.2k 19.0k | 25.8k 44.1k | 49.2k 41.2k | 59.9k 52.2k | 81.3k 72.7k
mid-pSquare 7 = 2 5.1k | 6.5k 8.2k | 12.4k 16.4k | 23.3k 27.7k| 28.1k 28.8k | 34.1k 35.2k

it is between 3x and 7x slower for the same parametrization and masking order. This
highlights the difference that dedicated software-oriented and hardware-oriented design
choices can make for FPM instances. The gap between SKINNY and mid-pSquare is much
smaller. Interestingly, the mid-pSquare software implementations almost consistently (e.g.,
for any order and tweak size in the TRNG off case) outperform the efficient (masked) fix-
sliced SKINNY implementations in terms of cycle counts. In contrast to previous prime-field
cipher designs such as AES-prime and small-pSquare, mid-pSquare even outperforms its
competitor in the unprotected case. The SKINNY implementations come at a significant
code size which is in part caused by the fix-sliced representation, whereas the masked
prime-field ciphers can be more than an order of magnitude smaller in memory. In general,
the code of mid-pSquare is extremely simple and compact, leading to short compilation
times and small binaries even at high masking orders. We conclude that mid-pSquare
is highly competitive on 32-bit platforms compared to existing prime-field ciphers and
even outperforms certain standardized binary lightweight TBCs, both with and without
masking applied.

B. Balon, L. Grassi, P. Méaux, T. Moos, F.-X. Standaert, M. J. Steiner 507

5 Physical Security Evaluation

In this section, we aim to compare the side-channel security of masked mid-pSquare
implementations with the ones of SKINNY, on the same Cortex-M4 platform as we used
for performance evaluations. Given the acknowledged difficulty of evaluating side-channel
security [ABBT20], especially for ciphers with significantly different structures, we start
by providing some rationale for the following experimental analyzes.

In general, side-channel security evaluations can be performed in two fashions. On the
one hand, (qualitative) leakage detection aims to provide easy-to-operate conformance-style
tests [SM16]. However, if used as a stand-alone tool, it provides limited security guaran-
tees [WO19]. Hence, leakage detection is frequently complemented with a quantitative
step, where evaluators try to assess the security of an implementation against the best at-
tacks [SMYO09]. In the context of this paper, we are interested in this second (quantitative)
approach, both because the horizontal attacks we aim to prevent with prime-field masking
are in this category [BCPZ16,BS21], and because we want to compare the side-channel
security of binary and prime ciphers with their corresponding masking scheme.

Comparing the side-channel security of different ciphers and masking schemes never-
theless remains non-trivial. Besides, the choice of a 31-bit prime modulus for mid-pSquare
implies that predicting its intermediate computations (as needed to perform DPA) requires
profiling 31-bit operations for the type of horizontal attacks we are interested in and guess-
ing 31-bit key chunks. Both are computationally-intensive tasks [YK21], and when applied
in the context of higher-order side-channel attacks, which use many leakage measurements
and require combining the leakage of several shares, they are hardly achievable with current
tools [CDSU23]. As a result, our following experiments exploit a number of simplifications
and extrapolations. We next detail them for both SKINNY and mid-pSquare and explain
why they allow putting forward relevant conclusions and scaling trends.

Starting with SKINNY, we observe that as for any binary cipher implementation, it comes
with the benefit that adversaries can trade side-channel signal for (guessing) computational
power. That is, by guessing more key bits, one can predict (and exploit the leakage of)
more bits of more target intermediate values. Due to the aforementioned computational
limitations, we for now limited our investigations to 16-bit key guesses. So a more powerful
side-channel adversary (performing 32-bit key guesses) would be able to further decrease
the data complexity of the attacks we exhibit. Given this choice, we then tried two guessing
strategies. One favors the exploitation of the key addition and MixColumns operations (by
partitioning key guesses in order to predict their intermediate values). The other favors
the exploitation of the S-box layer. We tested both and observed that the second approach
led to the best attacks. So we next report the results obtained with this strategy only.'?

Following with mid-pSquare, and as just mentioned, we cannot leverage the same
side-channel signal vs. computational power tradeoff, since predicting the outputs of
the first-round key additions and square operations directly requires guessing 31-bit
chunks. Since this is too expensive given the number of traces required to evaluate our
masked mid-pSquare implementations, we opted for a different strategy than for SKINNY
and evaluated the security of size-reduced toy versions (the entire structure remains the
same only the prime field is decreased in cardinality): one with a 7-bit modulus as for
small-pSquare [GMM " 24], one with a 13-bit modulus and one with a 19-bit modulus (all
Mersenne primes, with consistent gaps of 6 bit in between and 2 x 6-bit to the actual
31-bit prime). Given the theoretical finding that increasing the field size amplifies security
without any noise for the Hamming weight leakage function [FMM™24], our goal is to
confirm this security guarantee for the concrete leakage function of our target device.

12 It is an interesting problem to try combining the two strategies. This could however only weaken the
security reported for SKINNY, and strengthen our conclusions on the interest of prime masking.

508 mid-pSquare — Prime-Field Masking in Software

This would imply that the side-channel security of masked mid-pSquare implementations
is improved when increasing the modulus, even against adversaries able to guess |F,|
key candidates. Therefore, it would also imply that any security gap that we observe
between our SKINNY and toy mid-pSquare implementations could only be further amplified
if considering more powerful adversaries able to directly guess 31/32-bit key chunks.

Setup. Measurements are performed on an ARM Cortex-M4 microcontroller mounted on
a ChipWhisperer CW308 UFO board operating at 8 MHz clock frequency derived from an
external quartz on the UFO board. Leakage is measured using a Tektronix CT-1 current
probe and sampled at 62.5 MSamples/s by a PicoScope 5244D with 12 bits of resolution.

SKINNY. As mentioned before, we use the optimized 32-bit fix-sliced C-implementation
of SKINNY from [AP21] which achieves state-of-the-art performance for binary ciphers on
ARM processors. Like in bit-sliced implementations, fix-sliced ones store each bit of a
byte in different registers (called slices), but it reduces the number of cycles by avoiding
the overhead of the ShiftRows operation which is expensive to compute on a sliced state.
For that, the technique instantiates multiple slightly different MixColumns operations and
adapts the execution of the SubByte operation, which increases the code size. In addition
to fix-slicing, the authors of [AP21] propose a decomposition of the SKINNY 8-bit S-Box
from 8 bits to 4 bits, exploiting the symmetry in the design. This decomposition allows
filling each register entirely and leads to the use of only 4 registers to pack the whole state
instead of 8. In the end, the fix-sliced implementation is about 2.5x faster compared to
bit-sliced versions at the expense of doubling the code size. We refer to [AP21] for the
full details on the optimizations and performances. To the best of our knowledge, no
C-language masked bit /fix-sliced software implementation of SKINNY exists in the public
space. Hence, we have built our own (which is contained in our public repository) based
on the provided unprotected fix-sliced one. Our masked implementations follow the same
architecture, with the linear layer applied independently to each share while the non-linear
layer is using PINI gadgets from [CGLS21] to ensure provable security. As mentioned
above, in our implementations, the key schedule is masked but the tweak schedule is not
as the tweak is considered public.

mid-pSquare. For mid-pSquare we have developed straightforward 32-bit C-language
implementations. Since each word of the state and inputs already occupies almost the
full data width of registers and buses, there is no need to parallelize operations or change
representations (bit-/fix-slicing would anyway not be applicable). The target for the attack
is the first squaring operation in the first round which is implemented using the gadget
from [CMM 23] that has been proven secure at arbitrary orders.

Noise Level. A quantitative leakage evaluation of the target device is provided in
Appendix A based on a simple example computation (not directly related to the field
arithmetic used by our target algorithms). We confirm that, as indicated in previous works
already [BS21], the physical noise level provided by such Cortex-M microcontrollers is very
low and operands that are touched by a few consecutive instructions can be leaked almost
in full (at least up the sizes we tested). Hence, without additional countermeasures or
assumptions, adversaries with profiling access to the device will not be hindered significantly
by the physical noise level, motivating the need for masking schemes which minimize the
reliance on noise.

Attack methodology and results. We target the first round of both ciphers without
tweak and limit our analysis to masked implementations using d = 2, 3 and 4 shares to
keep the analysis complexity manageable. The attacks are performed in three steps.

B. Balon, L. Grassi, P. Méaux, T. Moos, F.-X. Standaert, M. J. Steiner 509

0.05 1 1
000, - - 1 A - - 1 Illl II'J “ l.l - -
0 5000 10000 15000 0 5000 10000 15000
0.1+ 1 1
0.0 N ; A - ahe . - - N ; llll Jll u J = -
x 9 0 5000 10000 15000 0 5000 10000 15000
% J
0 N N Wldd o
S0 5000 10000 15000 0 5000 10000 15000
0.4 1 1
021 N | Lol lIJ oL
0 5000 10000 15000 0 5000 10000 15000

Time samples

Figure 6: Exemplary SNR figures for mid-pSquare (left) and SKINNY (right) when consid-
ering the lower 4, 8, 12 and 16 bits (top to bottom) out of the 31/32-bit values processed
by the non-linear layer.

First, a training dataset, where all intermediate values (including fresh randomness)
are assumed to be known, is used to create models of the shared inputs and outputs of the
non-linear operations (modular squaring for mid-pSquare, S-box for SKINNY). Corresponding
SNR values for the lower 4, 8, 12 and 16 bits of a value processed by the non-linear layer
are depicted in Figure 6. It can be observed that the maximum SNR which is naturally
upper bounded by the ratio of bits included in the computation to the total number of
bits in the operand (31 and 32, respectively) is slightly larger for mid-pSquare while more
sample points admit a notable SNR peak for SKINNY. We believe that these results are
reasonably comparable. The attacker then models the leakage distribution associated to
each share.

The tool used to model the leakage distribution is Regression-Based Linear Discriminant
Analysis (RLDA) introduced at CHES 2023 [CDSU23] which is particularly effective for
handling large (> 16 bits) intermediate values. In the second step, the attacker uses
an attack dataset, where only the unshared input associated to each trace is known.
The independent probability distributions for each share obtained in step one can be
combined using a technique called Soft Analytical Side Channel Attack (SASCA) [VGS14].
SASCA enables the attacker to retrieve the probability associated to the unmasked value
by propagating the probabilities of each share to its unmasked representation using the
encoding relations between the variables. After running the SASCA belief propagation,
the attacker gets the probabilities on the unmasked inputs and outputs of the non-linear
operation. Then the adversary may infer the probabilities related to each key guess using
the known input of the first round. Finally, the attacker combines the probabilities from
multiple attack traces that use the same key by assuming independence between the
encryption executions. We have performed these three steps using the open-source SCALib
library [CB23].

The resulting key ranks for the profiled horizontal SASCA attacks on SKINNY and
the reduced versions of mid-pSquare are depicted in Figures 7 and 8, respectively. As
expected, the attack on masked fully fix-sliced SKINNY implementations succeeds with a low
number of attack traces. In particular a 4th-order attack on the 4-share implementation
requires only a few thousand traces to isolate the correct key candidate, which is consistent

510 mid-pSquare — Prime-Field Masking in Software

with [BS21]. For the reduced versions of mid-pSquare, this is only true for the 7-bit
implementation. Here the amplification in the prime size appears to be too small to render
such attacks hard. Still, it is important to note that the 7-bit implementation achieves
this result without the help of algorithmic noise, as only 7 bits of each register/operand
are occupied while all remaining ones are zero. SKINNY’s SCA security on the other hand
benefits from at least half of the state contributing to algorithmic noise. However, as
evident from our results increasing the prime size of mid-pSquare while keeping operations
and masking order identical increases the hardness of the attack drastically, losing more
than two orders of magnitude in attack performance from 7-bit to 19-bit. While we were
unable to analyze the attack on the full 31-bit versions!'?, we have extrapolated the trends
on the reduced version to predict the potential attack success on mid-pSquare. We believe
such extrapolation is even conservative considering that the relative amount of information
that can be extracted through the leakage typically decreases when increasing the field
size (due to operating on more bits in parallel). Assuming that the attack approximation
on mid-pSquare is sound, the security gain compared to SKINNY would be almost 5 orders
of magnitude large.'*

=

& 121 —_ =2
§ 91 —_d=3
= d=4
N

g 37

g

< 0

100 102 10* 10° 10°
Number of attack traces

Figure 7: Key rank estimation on SKINNY for different masking orders.

f‘% 4 fév 10

=31 p— o 87 i

) L= ¥ 6- =

= 21 d=4 5 4. d=4

& 14 8

> >

<C 0 T T T T < 0 T T T T
10° 10? 10* 106 108 10° 10? 10* 109 108

Number of attack traces Number of attack traces
(@p=2"-1 (b) p=2" -1

& 15 1 —_— 2 & 24 1

3 13 1 — d=3 £171

- 1 d=4 — Y d=2

ED 6 T -§, 10 d=3

S 3 g 37 d=4

> > . .

Z 0 . . — ; < ; ; e :

100 102 10* 106 108 10° 102 10% 106 108
Number of attack traces Number of attack traces
(c)p=2"-1 (d)p=2% -1

Figure 8: Key rank estimation on the different reduced mid-pSquare instances. The results
for mid-pSquare with p = 23! — 1 are obtained through extrapolation.

13 We emphasize the infeasibility of performing even parts of our analysis on the full mid-pSquare.
Acquiring the 19-bit results of Figure 8c already took more than a week on a dedicated computation server
with 128-thread CPU under full load. We estimate that reproducing the key rank estimation for the full
31-bit version with only 2 shares would take at least 6 months of computation time on the same server.
Completing the graph for 3 and 4 shares is therefore estimated to take multiple years.

14 We recall that we propose mid-pSquare only with a 31-bit modulus. The toy versions in this section
are analyzed for illustration and to practically confirm the scaling trends described in [FMM™24].

B. Balon, L. Grassi, P. Méaux, T. Moos, F.-X. Standaert, M. J. Steiner 511

6 Conclusion

Our novel instance of tweakable lightweight block cipher mid-pSquare, optimized for
efficient prime-field masking on 32-bit software platforms, provides excellent performance
and security figures compared to the state of the art. It is easy to implement, uses little
memory, leads to short code, fast compilation times and small binaries even at very high
security orders. Considering that on top of the huge advantages in side-channel security
against profiled horizontal attacks (which currently are among the biggest threats to
masked software implementations), mid-pSquare is also expected to deliver significantly
better fault resistance when masked, right out of the box [MSS24], we believe it is fair to
conclude that the design principles of mid-pSquare have great potential to improve the
concrete physical security of symmetric cryptography in software in the near future.

Acknowledgments

Lorenzo Grassi was supported by the European Research Council (ERC), grant number
101160608 “SYMPZON”. Pierrick Méaux was funded by the ERC under the Advanced
Grant program (grant number: 787390). Frangois-Xavier Standaert and Thorben Moos are
research director and post-doctoral researcher of the Belgian Fund for Scientific Research
(FNRS-F.R.S.), respectively. This work has been funded in part by the ERC Advanced
Grant number 101096871. Views and opinions expressed are those of the authors and do
not necessarily reflect those of the European Union or the ERC. Neither the European
Union nor the granting authority can be held responsible for them.

References

[ABBT20] Melissa Azouaoui, Davide Bellizia, Ileana Buhan, Nicolas Debande, Sébastien
Duval, Christophe Giraud, Eliane Jaulmes, Francois Koeune, Elisabeth Oswald,
Frangois-Xavier Standaert, and Carolyn Whitnall. A systematic appraisal
of side channel evaluation strategies. In SSR, volume 12529 of LNCS, pages
46-66. Springer, 2020.

[AP21] Alexandre Adomnicai and Thomas Peyrin. Fixslicing aes-like ciphers new
bitsliced AES speed records on arm-cortex M and RISC-V. TACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021(1):402-425, 2021.

[BBC*T23] Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen,
Vesselin Velichkov, and Danny Willems. New design techniques for efficient
arithmetization-oriented hash functions: Anemoi permutations and Jive com-
pression mode. In CRYPTO (3), volume 14083 of LNCS, pages 507-539.
Springer, 2023.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Reduced
to 31 Rounds Using Impossible Differentials. In FUROCRYPT, volume 1592
of LNCS, pages 12-23. Springer, 1999.

[BCC11] Christina Boura, Anne Canteaut, and Christophe De Canniére. Higher-Order
Differential Properties of Keccak and Luffa. In FSE, volume 6733 of LNCS,
pages 252-269. Springer, 2011.

[BCD*20] Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder, Gregor Leander,
Gaétan Leurent, Maria Naya-Plasencia, Léo Perrin, Yu Sasaki, Yosuke Todo,
and Friedrich Wiemer. Out of Oddity - New Cryptanalytic Techniques Against

512

mid-pSquare — Prime-Field Masking in Software

[BCPZ16]

[BFSYO05]

[BGGT114]

[BIK*16]

[BL25]

[BSY1]

[BS93]

[BS21]

[BV25]

[CB23]

[CDSU23]

[CGGT22]

[CGLS21]

Symmetric Primitives Optimized for Integrity Proof Systems. In CRYPTO,
volume 12172 of LNCS, pages 299-328. Springer, 2020.

Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina
Zeitoun. Horizontal Side-Channel Attacks and Countermeasures on the ISW
Masking Scheme. In CHES, volume 9813 of LNCS, pages 23—-39. Springer,
2016.

Magali Bardet, Jean-Charles Faugere, Bruno Salvy, and Bo-Yin Yang. Asymp-
totic behaviour of the degree of regularity of semi-regular polynomial systems.
In Proc. of MEGA, volume 5, 2005.

Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
Francois-Xavier Standaert. On the cost of lazy engineering for masked software
implementations. In CARDIS, volume 8968 of Lecture Notes in Computer
Science, pages 64-81. Springer, 2014.

Christof Beierle, Jérémy Jean, Stefan Ko6lbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In
CRYPTO, volume 9815 of LNCS, pages 123-153. Springer, 2016.

Daniel Bernstein and Tanja Lange. eBACS: ECRYPT Benchmarking of
Cryptographic Systems. https://bench.cr.yp.to, Accessed 10 March 2025.

Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. J. Cryptol., 4(1):3-72, 1991.

Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data Encryption
Standard. Springer, 1993.

Olivier Bronchain and Francgois-Xavier Standaert. Breaking Masked Imple-
mentations with Many Shares on 32-bit Software Platforms or When the
Security Order Does Not Matter. JACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(3):202—-234, 2021.

Tim Beyne and Michiel Verbauwhede. Integral cryptanalysis in characteristic
p. Cryptology ePrint Archive, Paper 2025/932, 2025.

Gaétan Cassiers and Olivier Bronchain. Scalib: A side-channel analysis library.
J. Open Source Softw., 8(86):5196, 2023.

Gaétan Cassiers, Henri Devillez, Francois-Xavier Standaert, and Balazs Ud-
varhelyi. Efficient regression-based linear discriminant analysis for side-channel
security evaluations towards analytical attacks against 32-bit implementations.
TACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(3):270-293, 2023.

Carlos Cid, Lorenzo Grassi, Aldo Gunsing, Reinhard Liiftenegger, Chris-
tian Rechberger, and Markus Schofnegger. Influence of the Linear Layer
on the Algebraic Degree in SP-Networks. JACR Trans. Symmetric Cryptol.,
2022(1):110-137, 2022.

Gaétan Cassiers, Benjamin Grégoire, Itamar Levi, and Frangois-Xavier Stan-
daert. Hardware Private Circuits: From Trivial Composition to Full Verifica-
tion. IEEE Trans. Computers, 70(10):1677-1690, 2021.

https://bench.cr.yp.to

B. Balon, L. Grassi, P. Méaux, T. Moos, F.-X. Standaert, M. J. Steiner 513

[CGPT12]

[CJRRO9]

[CLO13]

[CMM*23]

[CS20]

[DDF14]

[DEMS21]

[DFS15]

[DFS16]

[DGGK21]

[DKLS20]

[DRO2]

[EGL*20]

Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Renner,
Matthieu Rivain, and Praveen Kumar Vadnala. Conversion of security proofs
from one leakage model to another: A new issue. In COSADE, volume 7275
of Lecture Notes in Computer Science, pages 69-81. Springer, 2012.

Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In CRYPTO,
volume 1666 of LNCS, pages 398-412. Springer, 1999.

David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms:
an introduction to computational algebraic geometry and commutative algebra.
Springer Science & Business Media, 2013.

Gaétan Cassiers, Loic Masure, Charles Momin, Thorben Moos, and Francois-
Xavier Standaert. Prime-Field Masking in Hardware and its Soundness
against Low-Noise SCA Attacks. [TACR Trans. Cryptogr. Hardw. Embed.
Syst., 2023(2):482-518, 2023.

Gaétan Cassiers and Francois-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE Trans.
Inf. Forensics Secur., 15:2542-2555, 2020.

Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying Leakage
Models: From Probing Attacks to Noisy Leakage. In EUROCRYPT, volume
8441 of LNCS, pages 423-440. Springer, 2014.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schléffer.
Ascon v1.2: Lightweight authenticated encryption and hashing. J. Cryptol.,
34(3):33, 2021.

Alexandre Duc, Sebastian Faust, and Frangois-Xavier Standaert. Making
Masking Security Proofs Concrete - Or How to Evaluate the Security of Any
Leaking Device. In FUROCRYPT, volume 9056 of LNCS, pages 401-429.
Springer, 2015.

Stefan Dziembowski, Sebastian Faust, and Maciej Skérski. Optimal Amplifica-
tion of Noisy Leakages. In TCC (A2), volume 9563 of LNCS, pages 291-318.
Springer, 2016.

Christoph Dobraunig, Lorenzo Grassi, Anna Guinet, and Daniél Kuijsters.
Ciminion: Symmetric Encryption Based on Toffoli-Gates over Large Finite
Fields. In EUROCRYPT, volume 12697 of LNCS, pages 3-34. Springer, 2021.

Orr Dunkelman, Abhishek Kumar, Eran Lambooij, and Somitra Kumar
Sanadhya. Counting Active S-Boxes is not Enough. In INDOCRYPT, volume
12578 of LNCS, pages 332—344. Springer, 2020.

Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002.

Maria Eichlseder, Lorenzo Grassi, Reinhard Liiftenegger, Morten (ygarden,
Christian Rechberger, Markus Schofnegger, and Qingju Wang. An Algebraic
Attack on Ciphers with Low-Degree Round Functions: Application to Full
MiMC. In ASIACRYPT, Part I, volume 12491 of LNCS, pages 477-506.
Springer, 2020.

514

mid-pSquare — Prime-Field Masking in Software

[Fau02]

[FGHR14]

[FM17]

[FMM+24]

[GHR*23]

[GKR™21]

[GLR*+20]

[GMM+24]

[GOSW23]

[GPPR11]

[IKMP20]

[JK97]

[KJJ99]

Jean-Charles Faugere. A new efficient algorithm for computing Grébner bases
without reduction to zero (Fs). In Proceedings of the 2002 international
symposium on Symbolic and algebraic computation, pages 75-83, 2002.

Jean-Charles Faugere, Pierrick Gaudry, Louise Huot, and Guénaél Renault.
Sub-cubic change of ordering for grobner basis: a probabilistic approach. In
Katsusuke Nabeshima, Kosaku Nagasaka, Franz Winkler, and Agnes Sz&nto,
editors, International Symposium on Symbolic and Algebraic Computation,
ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages 170-177. ACM, 2014.

Jean-Charles Faugere and Chenqi Mou. Sparse FGLM Algorithms. Journal
of Symbolic Computation, 80(3):538-569, 2017.

Sebastian Faust, Loic Masure, Elena Micheli, Maximilian Orlt, and Francois-
Xavier Standaert. Connecting leakage-resilient secret sharing to practice:
Scaling trends and physical dependencies of prime field masking. In EU-
ROCRYPT (4), volume 14654 of Lecture Notes in Computer Science, pages
316—344. Springer, 2024.

Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus Schofnegger,
Roman Walch, and Qingju Wang. Horst meets Fluid-SPN: Griffin for zero-
knowledge applications. In CRYPTO (8), volume 14083 of LNCS, pages
573-606. Springer, 2023.

Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for zero-knowledge proof
systems. In 80th USENIX Security Symposium USENIX Security 2021, pages
519-535. USENIX Association, 2021.

Lorenzo Grassi, Reinhard Liiftenegger, Christian Rechberger, Dragos Rotaru,
and Markus Schofnegger. On a Generalization of Substitution-Permutation
Networks: The HADES Design Strategy. In EUROCRYPT (2), volume 12106
of LNCS, pages 674-704. Springer, 2020.

Lorenzo Grassi, Loic Masure, Pierrick Méaux, Thorben Moos, and Francois-
Xavier Standaert. Generalized Feistel Ciphers for Efficient Prime Field Masking.
In EUROCRYPT, volume 14653 of LNCS, pages 188—-220. Springer, 2024.

Lorenzo Grassi, Morten @ygarden, Markus Schofnegger, and Roman Walch.
From Farfalle to Megafono via Ciminion: The PRF Hydra for MPC applica-
tions. In FUROCRYPT, volume 14007 of LNCS, pages 255-286. Springer,
2023.

Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED Block Cipher. In CHES, volume 6917 of LNCS, pages 326-341.
Springer, 2011.

Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Duel of the titans: The romulus and remus families of lightweight AEAD
algorithms. TACR Trans. Symmetric Cryptol., 2020(1):43-120, 2020.

Thomas Jakobsen and Lars R. Knudsen. The Interpolation Attack on Block
Ciphers. In FSE, volume 1267 of LNCS, pages 28-40. Springer, 1997.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages
388-397. Springer, 1999.

B. Balon, L. Grassi, P. Méaux, T. Moos, F.-X. Standaert, M. J. Steiner 515

[Knu94]

[Laio4]

[LRSS]

[Man04]

[Mas93]

[Mat93]

[MCHS23]

[MMMS23]

[MOPO7]

[MSS24]

[Pat98]

[Pat04]

[PR13]

[SLPO5]

[SM16]

Lars R. Knudsen. Truncated and Higher Order Differentials. In FSE, volume
1008 of LNCS, pages 196-211. Springer, 1994.

Xuejia Lai. Higher Order Derivatives and Differential Cryptanalysis. In
Communications and Cryptography: Two Sides of One Tapestry, pages 227—
233. Springer US, 1994.

Michael Luby and Charles Rackoff. How to Construct Pseudorandom Per-
mutations from Pseudorandom Functions. SIAM J. Comput., 17(2):373-386,
1988.

Stefan Mangard. Hardware countermeasures against DPA ? A statistical
analysis of their effectiveness. In CT-RSA, volume 2964 of Lecture Notes in
Computer Science, pages 222-235. Springer, 2004.

James L. Massey. SAFER K-64: A Byte-Oriented Block-Ciphering Algorithm.
In Fast Software Encryption - FSE 1993, volume 809 of LNCS, pages 1-17.
Springer, 1993.

Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In FEURO-
CRYPT, volume 765 of LNCS, pages 386-397. Springer, 1993.

Loic Masure, Gaétan Cassiers, Julien M. Hendrickx, and Francois-Xavier
Standaert. Information bounds and convergence rates for side-channel security
evaluators. TACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(3):522-569,
2023.

Loic Masure, Pierrick Méaux, Thorben Moos, and Frangois-Xavier Standaert.
Effective and Efficient Masking with Low Noise Using Small-Mersenne-Prime
Ciphers. In EUROCRYPT, volume 14007 of LNCS, pages 596—627. Springer,
2023.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks
- revealing the secrets of smart cards. Springer, 2007.

Thorben Moos, Sayandeep Saha, and Francgois-Xavier Standaert. Prime
masking vs. faults - exponential security amplification against selected classes
of attacks. TACR Trans. Cryptogr. Hardw. Embed. Syst., 2024(4):690-736,
2024.

Jacques Patarin. About Feistel Schemes with Six (or More) Rounds. In FSE,
volume 1372 of LNCS, pages 103-121. Springer, 1998.

Jacques Patarin. Security of Random Feistel Schemes with 5 or More Rounds.
In CRYPTO, volume 3152 of LNCS, pages 106—-122. Springer, 2004.

Emmanuel Prouff and Matthieu Rivain. Masking against Side-Channel Attacks:
A Formal Security Proof. In EUROCRYPT, volume 7881 of LNCS, pages
142-159. Springer, 2013.

Werner Schindler, Kerstin Lemke, and Christof Paar. A Stochastic Model for
Differential Side Channel Cryptanalysis. In CHES, volume 3659 of LNCS,
pages 30—46. Springer, 2005.

Tobias Schneider and Amir Moradi. Leakage assessment methodology - ex-
tended version. J. Cryptogr. Eng., 6(2):85-99, 2016.

516 mid-pSquare — Prime-Field Masking in Software

[SMY09] Frangois-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework
for the analysis of side-channel key recovery attacks. In EUROCRYPT, volume
5479 of Lecture Notes in Computer Science, pages 443-461. Springer, 2009.

[Ste25] Matthias Johann Steiner. Grébner basis cryptanalysis of Ciminion and Hydra.
IACR Transactions on Symmetric Cryptology, 2025(1):240-275, Mar. 2025.

[VGS14] Nicolas Veyrat-Charvillon, Benoit Gérard, and Francois-Xavier Standaert.
Soft Analytical Side-Channel Attacks. In ASTACRYPT, volume 8873 of LNCS,
pages 282-296. Springer, 2014.

[VXXZ24] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou.
New bounds for matrix multiplication: from alpha to omega. In David P.
Woodruff, editor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete
Algorithms, SODA 202/, Alexandria, VA, USA, January 7-10, 2024, pages
3792-3835. STAM, 2024.

[Wag99] David A. Wagner. The Boomerang Attack. In FSFE, volume 1636 of LNCS,
pages 156—170. Springer, 1999.

[WO19] Carolyn Whitnall and Elisabeth Oswald. A critical analysis of ISO 17825
("testing methods for the mitigation of non-invasive attack classes against
cryptographic modules’). In ASTACRYPT (8), volume 11923 of Lecture Notes
in Computer Science, pages 256—284. Springer, 2019.

[YK21] Shih-Chun You and Markus G. Kuhn. Single-trace fragment template attack
on a 32-bit implementation of keccak. In CARDIS, volume 13173 of Lecture
Notes in Computer Science, pages 3—23. Springer, 2021.

A Quantitative Leakage Evaluation

To understand the leakage behavior of our target device (an STM32F415RGT6 ARM
Cortex-M4 microcontroller, more details in Section 5), we exemplarily analyze the maximum
amount of information that can be extracted from a sample computation when there is
no algorithmic noise. The latter requirement means that registers and operands are filled
by values large enough to be profiled in full, while the remaining bits are zero. We have
chosen a simple z — z® power map computation over Zo» for flexible operand width n,
which consists of three multiplications and is compiled without optimizations (-00). The
corresponding power trace and SNR are depicted in Figure 9.!° The three peaks for the
multiplications are clearly visible.

After selecting the points of interest based on the SNR peaks, we perform Linear
Discriminant Analysis (LDA) using the SCALib library [CB23] to model the leakage
with 20 dimensions for n = 4, 6, 8, 10 and 12. We then compute the metrics Perceived
Information (PI) and Training Information (TI) in function of the number of training
traces and plot their convergence in Figure 10.

The PI is a lower bound on the Mutual Information (MI), which constitutes the metric
we are actually interested in but which cannot be computed if the real leakage distribution
is unknown [MCHS23] (as is always the case in experimental studies). The T1I then gives an
upper bound on the learnable information for parametric leakage models [MCHS23]. We
observe that the simple power map computation consisting of only three multiplications
leaks almost in full about the n input bits, e.g., the Pl is > 9 and ~ 11 bits for n = 10
and n = 12, respectively. This signifies highly leaky computations and a very low physical
noise level, motivating the use of prime-field masking which is known to provide superior
security guarantees in this context [DFS16, MMMS23].

15 We also tested such experiments over Fon and Fon_1 and obtained similar results.

B. Balon, L. Grassi, P. Méaux, T. Moos, F.-X. Standaert, M. J. Steiner 517

2500
_ — 8 bits model
S o L 254
5 "
—2500 L
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

Time samples

Figure 9: Power trace (left) and 8-bit SNR (right) of exemplary power map computation
to assess the available amount of leakage on the target device.

1 —— 4 bits 6 bits —— 8 bits — 10 bits — 12 bits

104

IT metric
oo

44

2% 100 4x10° 6x10° 8x10° 10x10° 12x10° 14x10° 16x 10° 18x 10° 20 x 10°
Number of Traces

Figure 10: PT (solid lines) and TI (dashed lines) convergence of the LDA-based templates.

B Transitional Leakages

While profiled horizontal attacks are currently assumed to be most effective attack vector
on masked software implementations, especially bit-sliced ones [BS21], it is fair to wonder
whether (potentially univariate) transitional leakages from microarchitectural overwriting
could not change the picture. To investigate this question, we first perform an information
theoretic analysis of the maximum amount of information an adversary can possibly extract
from the noise-free Hamming distance (assumed to be leaked through overwriting) between
two shares in a first-order masked implementation.

The results, depicted in Figure 11, show that the leakage is much smaller in the case
of additive prime-field masking compared to Boolean masking. While simple additive
masking over prime fields is clearly not immune to transitional leakages, it can be observed
that not only the relative amount of information leaked decreases in the field size in case of
prime-field masking, but even the absolute one. This highlights that transitional leakages
are generally expected to be less of an issue for prime-field masked implementations and
once again confirms that increasing the field size is an effective tool for improving the
concrete side-channel security guarantees provided by prime-field masking.

To connect this information theoretic analysis to practical observations, we also per-
formed a leakage detection experiment. Figure 12 depicts Test Vector Leakage Assessment
(TVLA) evaluations of first-order masked SKINNY and mid-pSquare implementations mea-
sured on the same target platform as introduced before. While transitional leakages appear
to lead to security order reductions in both cases, the difference in magnitude and number
of traces required for detection confirm experimentally that these leakages are of lesser
extent for masked mid-pSquare. We must stress, however, that simple changes to the
source code (e.g., switching the outer and inner for loops used for tweakey additions) or
compiler optimization flags (e.g., switching -03 to -01) can have a significant impact on

518 mid-pSquare — Prime-Field Masking in Software

4
T e
—~ 31
62 92 —&— 2 Share Additive Binary-Field Masking
g —&— 2 Share Additive Prime-Field Masking
=28
z | e . —

O
0 T

10 15 20 2% 30
Field Size in Bits

(S8

Figure 11: Information theoretic evaluation of the transitional leakage caused by overwrit-
ing, assuming (simulated) Hamming distance leakage between two shares.

the magnitude of the maximum ¢-statistics value for a given number of measurements in
Figure 12. In general, our work does not aim at guaranteeing the independent leakage
assumption or passing common leakage detection tests with the smallest possible number
of shares, which inevitably requires a closer inspection of the concrete microarchitecture of
the target device. Such issues have already been tackled in a large number of contemporary
works on secure masking in software and, if needed, the same principles can be applied to
mid-pSquare. Yet, in all tested scenarios, the leakage detection tests required a significantly
smaller amount of traces to overcome the detection threshold for the experiments on
masked SKINNY compared to masked mid-pSquare on the same target device.

—— st order 1st order
1001 2nd order 1501 2nd order
8 8
& 0 i 1T T I 21001
s T e i | E
G 7
1001 =50
: : : T T T 04 . . . ;
0 2000 4000 6000 8000 10000 12000 0 50000 100000 150000 200000 250000
Time Samples Number of Traces
(a) SKINNY-128-128 2-Share implementation
‘ —— st order 1st order
54 2nd order | 2nd order
8 l{ I J M l ‘ 8
B i L J %]
5 ol ”’\ H' Hl I‘n)N‘ Mt “ “ ‘ -'m 4. =
? | |) o by
& |! ‘ H r‘ ik u47\]\’\/lrb‘tﬁw\/
—541 |
0 2000 4000 6000 8000 10000 12000 0 50000 100000 150000 200000 250000

Time Samples Number of Traces

(b) mid-pSquare (7 = 0) 2-Share implementation

Figure 12: Left: TVLA over points, right: TVLA over traces (for mid-pSquare and
SKINNY).

C Additional Details on Grobner Basis Attacks

C.1 Linearization With Related-Tweaks

To the best of our knowledge, related-tweak Grobner basis attacks are unknown in the
literature. In the following, we argue that a related-tweak Grobner basis attack on mid-

B. Balon, L. Grassi, P. Méaux, T. Moos, F.-X. Standaert, M. J. Steiner 519

pSquare reduces to a slightly improved two-plaintext-ciphertext attack. Let p1,p2 € IF; be
two plaintext samples encrypted under the same key with tweaks tg,t; €]F;%.

We denote At = to—t1, and let x*) and y(¥) denote the intermediate state variables in
the models of p; and ps, respectively. In a two-plaintext-ciphertext attack, we can generate
a new linear polynomial by computing the difference between quadratic polynomials from
the first round. Explicitly, this yields:

(ko +p1,o+to) + xé” +p1o— (ko + pao + to + Atg)? — yf)l) — P22

)

_ = (11)

1 1 2 2
= 938) yé 42 k- (p1,0 — p2,0 — Ato) + (1,0 + t%) — (p2,0 +to + Atg)”,
where we deliberately absorbed the Feistel constants into to and ty. If py o —p2,0+ Aty # 0,
then this linear polynomial has three terms, and we are in the same scenario as in a
two-plaintext-ciphertext attack. On the other hand, with related tweaks the adversary
could enforce that pi o — p2,0 + Aty = 0 which implies that y(()l) = xél) - (pl,o + 15(2))2 +

(p2,0 +to + AtO)Q. In addition, by computing fr%)l mod (fg)o) for both p; and p», we

produce two quadratic polynomials analogous to the construction of the degreviex basis
for a single sample. Let us now examine the difference between the quadratic components

of fiy = fiwy mod (f5)o, Fiilo), which s given by:

P p2,1 P o

2 2 2 2
(28 = ko= k) = (" = ko — k) = f" =" 2 (ko + k2) (s — 2f") . (12)

(The quadratic components are derived as in Equation (6).) Thus, if the adversary enforces
that p1,0 — p2.0 + Atp = 0, then he can linearize another quadratic polynomial for free.
Therefore, in a related-tweak attack the adversary can improve the semi-regular Hilbert
series for two samples to:

2 4.-r—3
(1-2%)
(1= z)dr=7"

For example, for r = 16 (and k = 2), the degree of regularity is Dy = 24, and with w = 2
the (adjusted) binomial coefficient evaluates to approximately 135 bits.

As a result, we conjecture that a related-tweak Grobner basis attack only mildly
improves beyond the capabilities of a two-plaintext-ciphertext attack.

H(z) = (13)

	Introduction
	Specification of mid-pSquare over F_{2^{31} - 1}^4
	High-Level Structure
	Round Function F
	Tweak Schedule (τ >= 1 Only)
	Security Level and Number of Rounds

	Black-Box Security Analysis
	Statistical Attacks
	Algebraic Attacks

	Performance Comparison
	Physical Security Evaluation
	Conclusion
	Quantitative Leakage Evaluation
	Transitional Leakages
	Additional Details on Gröbner Basis Attacks
	Linearization With Related-Tweaks

