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Abstract. When designing filter functions in Linear Feedback Shift Registers (LFSR) based
stream ciphers, algebraic criteria of Boolean functions such as the Algebraic Immunity (AI)
become key characteristics because they guarantee the security of ciphers against the powerful
algebraic attacks. In this article, we investigate a generalization of the algebraic attacks proposed
by Courtois and Meier on filtered LFSR twenty years ago. We consider how the standard
algebraic attack can be generalized beyond filtered LFSR to stream ciphers applying a Boolean
filter function to an updated state. Depending on the updating process, we can use different sets
of annihilators than the ones used in the standard algebraic attack; it leads to a generalization
of the concept of algebraic immunity, and more efficient attacks. To illustrate these strategies,
we focus on one of these generalizations and introduce a new notion called Extreme Algebraic
Immunity (EAI).
We perform a theoretic study of the EAI criterion and explore its relation to other algebraic
criteria. We prove the upper bound of the EAI of an n-variable Boolean function and further
show that the EAI can be lower bounded by the AI restricted to a subset, as defined by Carlet,
Méaux and Rotella at FSE 2017. We also exhibit functions with EAI guaranteed to be lower
than the AI, in particular we highlight a pathological case of functions with optimal algebraic
immunity and EAI only n/4. As applications, we determine the EAI of filter functions of some
existing stream ciphers and discuss how extreme algebraic attacks using EAI could apply to
some ciphers.
Our generalized algebraic attack does not give a better complexity than Courtois and Meier’s
result on the existing stream ciphers. However, we see this work as a study to avoid weaknesses
in the construction of future stream cipher designs.

Keywords: Algebraic Immunity · Annihilators · Boolean functions · Stream ciphers

1 Introduction
1.1 The algebraic attack of Courtois and Meier
Twenty years ago, at Eurocrypt 2003 Courtois and Meier [CM03] presented an algebraic attack
on filtered Linear Feedback Shift Registers (LFSR), that broke two stream ciphers Toyocrypt and
LILI-128 [SDGM00]. The attack impulsed a change in stream cipher designs, showing that using
a filter function with a high degree is not sufficient to prevent attacks. More precisely, the attack
showed that even using as filter a Boolean function of maximal degree, say n, an adversary can
always create an algebraic system of equations of degree at most dn/2e in the key variables (in a
known plaintext/ciphertext attack model).

We recall the principle of this attack to show its generalization. First we give some necessary
notations for filtered LFSRs. The LFSR is applied to a binary key (alone or concatenated with an
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Initial Value) that we denote by x, hence the state of the LFSR at time i can be written as L(i)(x)
where L is the linear transformation induced by the LFSR updating process. At time i, the filter
function is applied to the LFSR state to give the i-th bit of the keystream: si = f(L(i)(x)).

If we denote by d the degree of f , since L is linear, each si can be written as an equation of
degree at most d in the key variables (composing x). The first attack considering the algebraic
properties of f consists in trying to solve this algebraic system of degree d. There are many
advanced approaches to solve algebraic systems over F2, such as Gröbner bases algorithms e.g.
[Fau99, Fau02] or XL-algorithms [Cou03a], but for simplicity of exposition we will recall the one
based on linearization. The linearization approach treats each monomial of degree higher than one
as an separate variable, and then solves the linear system newly obtained. Since there are at most
D =

∑d
j=0

(
n
j

)
= Dn

d monomials of degree up to d in n variables, the complexity of this attack
can be estimated by O(Dω) where we denote by ω the exponent for linear algebra.

The algebraic attack proposed by Courtois and Meier [CM03] improves this complexity by not
considering (the degree of) f , but the one of its products by low degree functions. It corresponds
to use Boolean functions g and h of low degree such that f · g = h. From the keystream, the
adversary can derive equations of the form si · g(L(i)(x)) = h(L(i)(x)), which are of degree at
most e = max(deg(g), deg(h)). In [CM03], the authors prove that for any function f there exist
functions g and h such that e ≤ dn/2e, and e ≤ d. This result directly leads to a linearization
attack with complexity O(Eω) where E =

∑e
j=0

(
n
j

)
= Dn

e , giving an attack that surpasses the
one just considers the degree in most of the cases.

It has been shown later that finding low degree functions g and h is equivalent to finding low
degree annihilators1 of f or f + 1. The minimal value e (relatively to the function f ) is in fact the
minimal degree of a non null function g annihilating f or f + 1. Thereafter, e has been known as
the notion of algebraic immunity [MPC04] of a Boolean function, and this parameter is the one
used to bound the complexity of the algebraic attack.

1.2 Generalizing the attack
We show how to generalize this attack to a larger family of stream ciphers. Instead of considering a
filtered LFSR, we generalize to any binary stream cipher design defined by an updating process and
a (Boolean) filter function f . We still denote x the initial state (key of the cipher), and denote by
U (i)(x) the state at time i, obtained by applying the updating process U i times. The keystream bit
si is obtained by applying f to U (i)(x). The updating process is the first part to define the attack
generalization. It is a linear update L for the case of filtered LFSR, but can be quadratic for stream
ciphers using Nonlinear Feedback Shift Registers (NFSR) or more complex.

The second part consists in determining subsets of monomials that appear in the Algebraic
Normal Form (ANF, the representation as a multivariate polynomial over F2) of the annihilators of
f or f+1. For u ∈ Fn

2 , we denote xu the monomial defined by xu =
∏

j∈[n] x
ui
j =

∏
j∈supp(u) xj ,

here [n] denotes the set of integers from 1 to n both included if we use [n]. Thereafter the sets of
monomials we consider are denoted by subsets S ⊆ Fn

2 , and we focus on sets containing all the
monomials appearing in the ANF of an annihilator.

Following these notations, let g be an annihilator of f , m ∈ N be the keystream size, for
i ∈ [m] when si = 1 we define Si as the set of monomials in the ANF of g(U (i)(x)). We define
SI as the union of the Si for i ∈ I . When |I| ≥ |SI |, there are fewer monomials than equations
given by the keystream, then we can apply the aforementioned linearization technique and solve
the linear system to obtain the value of each monomial and then the key value. As for the algebraic
attack described above, if the system is not too redundant, it gives an attack with time complexity
O(|SI |ω).

In order to further improve the efficiency of algebraic attacks, several approaches are proposed,
leading to variants of algebraic attacks. One approach is to consider an annihilator h of f + 1, to
use equations when si = 0. Another approach is to take advantage of multiple linearly independent

1We say that g is an annihilator of f if ∀x ∈ Fn
2 , f(x) · g(x) = 0.
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annihilators instead of one to produce more equations. For all these variants, the crucial point is
the size of the union of sets where the monomials in the ANF of the updated annihilators belong to.
The validity of the attack resides in the fact that the support of the ANF of the annihilators should
remain in a subset of small cardinality. The traditional attack on filtered LFSR uses that U(x) is
linear, therefore g(U (i)(x)) has the same degree as g(x) and therefore Si is included in the set
of monomials of degree at most deg(g) for all i ∈ [m] such that si = 1. Accordingly, the subset
targeted by the algebraic attack is {v ∈ Fn

2 | 0 ≤ wH(v) ≤ d}, where wH(v) denotes the Hamming
weight of v. Thereafter, around Dn

deg(g) such keystream bits are sufficient to determine the key.
In this article we study the notion of algebraic immunity that allows to estimate the complexity

of this generalized algebraic attack. We focus on the case where the updating process is given
by permutation of the set [n], that is U (i) ∈ Sn for all i. With such updating process, the sets
Ek,n = {v ∈ Fn

2 |wH(v) = k} are stable for all k ∈ [0, n] and we will illustrate the attack using
the sets S =

⋃
k∈[0,d]∪k∈[n−d,n] Ek,n. In this case |S| = 2Dn

d that enables us to compare easily
with the complexity of the algebraic attack. We call this particular attack Extreme Algebraic Attack
(EAA) and related criterion on Boolean functions the Extreme Algebraic Immunity (EAI) since it
relies on the subsets of elements with extreme Hamming weight.

1.3 Avoiding weaknesses in future designs of stream ciphers
Before entering in the core of the article we emphasize that, up to our knowledge, the attack
generalization does not give an attack with better complexity than previously published on a public
stream cipher, differently from the attack from Courtois and Meier in 2003. Consequently, we see
this work as a study to avoid weaknesses in the construction of future stream cipher designs. The
abstraction of the updating function and focus on other sets of monomials than the ones of low
degree comes from the specificity of FLIP [MJSC16] stream cipher and Goldreich’s pseudorandom
generator [Gol00]. For these designs the updating process is a shuffling, keeping stable all sets of
fixed Hamming weight.

Generalized algebraic attacks is a topic of growing importance due to the increasing
number of new symmetric schemes created for efficient advanced cryptographic protocols. For
example, for Fully Homomorphic Encryption (FHE) protocol, it will be more efficient on
the client-side to combine the FHE protocol with a symmetric encryption scheme [NLV11].
To comply with operations that are efficient when performed homomorphically, dedicated
symmetric ciphers with simpler algebraic structure than standard ones have been designed, such
as [ARS+15, MJSC16, DEG+18, MCJS19b, CHK+21, HKL+22, AMT22, CHMS22, DGH+23].
Despite considerable efforts have been done on the homomorphic evaluation of standard symmetric
schemes [GHS12, CLT14, CCF+16] and very recently [BCBS23, BOS23, TCBS23], the efficiency
is still not reaching the one of dedicated ciphers [CHK+21, CDPP22, DGH+23].

Symmetric ciphers with simpler algebraic structure have also been introduced to enhance
protocols with multiparty computation e.g. [ARS+15, AGR+16, AGP+19, GLR+20, GØSW23,
DKR+22, KHS+23], zero knowledge proofs such as [GKR+21, GHR+23, BBC+23], and to be
easier to mask to prevent side channel attacks [MMMS23]. Most of these ciphers are designed
to be more efficient over a particular group Zq, and are called Arithmetization Oriented (AO).
Since more and more applications for AO symmetric ciphers are exhibited, designing efficient AO
symmetric ciphers is a topic of growing interest, which challenges how simple can be the algebraic
structure (for efficiency) while allowing sufficient security. Attacks of such kind as algebraic
attcks, higher-order differential attacks and degree evaluations, have showed the vulnerability
of such AO symmetric primitives [ACG+19, BBLP22, BCD+20, EGL+20, GAH+23, BCP23,
Bar23, BBVY21, LMSI22, LM23, ZWY+23].

1.4 Our contributions
We investigate the algebraic attack given by the generalization of Courtois and Meier’s attack to
other sets of monomials than the one of low degree. We focus on the notion of extreme algebraic
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immunity, given by the sets of monomials of low (between 0 and d) and high (between n− d and
n) degree.

More precisely, in Section 3 we define properly the notion of extreme algebraic immunity and
the set of annihilators to take in consideration for the data complexity of the attack. We describe an
algorithm to compute the EAI of a Boolean function, and in the main theorem we prove an upper
bound on the EAI. We also compare this upper bound to the one of the algebraic immunity (that is
dn/2e) which shows that for most Boolean functions the complexity of the EAA is lower than the
one of the AA.

Then, in Section 4 and Section 5 we study cases where we can show upper bounds (respectively
lower bounds) on the EAI of particular functions. In the first section we exhibit functions with EAI
guaranteed to be lower than the AI. We highlight a pathological case of functions with optimal
algebraic immunity and EAI only n/4. In Section 5 we show that the EAI can be lower bounded
by the algebraic immunity restricted to a subset, as defined in [CMR17]. We generalize the result
of [CMR17] on the algebraic immunity on a slice, it allows us to derive a lower bound on the EAI
of functions obtained by direct sums. Additionally we exhibit a construction where the EAI and
the AI of a function are the same.

Finally, in Section 6 we discuss the potential applications of the EAA. We study the value of
the EAI for some functions in the literature, together with the dimension of annihilators that can be
used. We also review symmetric primitives that triggered this attack generalization, and explain
why it cannot apply directly. We conclude the paper in Section 7.

1.5 Related works
Other attacks relying on algebraic properties have been exhibited on filtered LFSR after Courtois
and Meier’s attack, such as the Fast Algebraic Attack (FAA) [Cou03b] and probabilistic algebraic
attack [CM03, BP05b]. The FAA considers functions g and h such that fg = h but with h of
higher degree than in the AA, using other techniques to cancel the high degree monomials by
summing particular keystream bits. The attack relies on the relations given by the linear updating
process of the LFSR, we did not found a direct relationship between the associated criterion (fast
algebraic immunity) and EAI, nor works generalizing the FAA to other updating processes.

In probabilistic algebraic attacks, the attack considers a function not annihilating f on all
inputs, but on most of it. In this case, there are more functions satisfying these constraints, but the
algebraic system to solve is then a noisy system, where the equations are true with probability 1−β
where β denotes the fraction of inputs where the product f · g is nonzero. The same relaxation of
the annihilators is possible for EAA, directly giving probabilistic extreme algebraic attacks, we
did not explore further this direction since we are not aware of concrete cryptanalyses using these
approaches.

2 Preliminaries
Notations. We use [n] to denote the set of integers from 1 to n both included, and + instead
of ⊕ for the addition over F2. For an element v ∈ Fn

2 we denote wH(v) its Hamming weight
wH(v) = #{i ∈ [n] | vi = 1}.

We highlight particular subsets of Fn
2 . Ek,n denotes the set {v ∈ Fn

2 |wH(v) = k}, also referred
as a slice of the Boolean hyper-cube. We use Pk1,k2,n to refer to a portion of the hyper-cube, the set
Pk1,k2,n =

⋃k2
k=k1

Ek,n = {v ∈ Fn
2 | k1 ≤ wH(v) ≤ k2}. For these two notations we drop the n

part when there is no ambiguity. We use Dn
d to denote the quantity

∑d
i=0
(

n
i

)
, which is the cardinal

of P0,d,n.
We use capital letters to denote matrices, such as M. For matrices A ∈ Fl1×c1

2 , B ∈ Fl1×c2
2

and C ∈ Fl2×c1
2 , we denote the concatenation of columns of A,B as (A|B) ∈ Fl1×(c1+c2)

2 , and
the concatenation of rows of A,C as (A/C) ∈ F(l1+l2)×c1

2 .
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2.1 Boolean Functions, definitions and cryptographic criteria
In this part we provide definitions on Boolean functions and their cryptographic parameters, we
refer to e.g. [Car21] for more details.

Definition 1 (Boolean Function). A Boolean function f with n variables is a function from Fn
2 to

F2. The set of all Boolean functions in n variables will be denoted Bn.

Definition 2 (Algebraic Normal Form (ANF) and degree). We call Algebraic Normal Form
of a Boolean function f its n-variable polynomial representation over F2 (i.e. belonging to
F2[x1, . . . , xn]/(x2

1 + x1, . . . , x
2
n + xn)):

f(x) =
∑

I⊆[n]

aI

(∏
i∈I

xi

)
=
∑

I⊆[n]

aIx
I , where aI ∈ F2.

• The algebraic degree of f equals the global degree of its ANF: deg(f) = max{I | aI =1} |I|
(with the convention that deg(0) = 0).

• Any term
∏

i∈I xi in such an ANF is called a monomial and its degree equals |I|.

We introduce the following notations to denote sets of functions with monomials of specific
degrees only.

Definition 3 (Function sets Fd and Fd,n−d). Let n, d ∈ N∗ such that d ≤ n we denote Fd and
Fd,n−d the sets of Boolean functions having the following properties on their ANF coefficients
(aI)I⊆[n]:

Fd = {f ∈ Bn,∃J ∈ P1,d,n | aJ = 1 and ∀K ∈ Pd+1,n,n aK = 0},

and for d ≤ n/2:

Fd,n−d = {f ∈ Bn,∃J ∈ P1,d,n | aJ = 1 and ∀K ∈ Pd+1,n−d−1,n aK = 0}.

Fd denotes the set of (non constant) functions of algebraic degree at most d. Fd,n−d denotes the
set of non constant functions with a non null part of degree at most d, no monomials of degree
between d and n− d− 1 and potentially monomials of degree between n− d and n.

The following properties hold:

• for d ≤ n/2, Fd ( Fd,n−d,

• |Fd| = 2Dn
d − 2 and for d < n/2, |Fd,n−d| = (2Dn

d − 2) · 2Dn
d = 22Dn

d − 2Dn
d +1.

Definition 4 (Algebraic Immunity [MPC04]). The algebraic immunity of a Boolean function
f ∈ Bn, denoted as AI(f), is defined as:

AI(f) = min
g 6=0
{deg(g) | fg = 0 or (f + 1)g = 0},

where deg(g) is the algebraic degree of g. The function g is called an annihilator of f (or f + 1).
Additionally we denote AN(f) = ming 6=0{deg(g) | fg = 0}, and DAN(f) the dimension of the
annihilators of f of degree at most AI(f).

We recall the generalization of algebraic immunity studied in [CMR17], named restricted
algebraic immunity.

Definition 5 (Restricted Algebraic Immunity). Let n ∈ N∗ and S ⊆ Fn
2 , the algebraic immunity

of a Boolean function f ∈ Bn restricted to the subset S, denoted as AIS(f), is defined as:

AIS(f) = min
g 6=0 over S

{deg(g) | fg = 0 or (f + 1)g = 0},

where deg(g) is the algebraic degree of g over S, that is the minimal degree over the functions
coinciding with g over S.
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In [CMR17] the restricted AI is studied principally for the slices, i.e. the subsets Ek,n. In this
paper we will focus on results relative to the subsets P0,d,n.

Definition 6 (Reed Muller code). The Reed Muller code RM(r, n) is the binary code of length 2n

whose codewords are the evaluations of all Boolean functions of algebraic degree at most r in n
variables on the 2n entries.

We denote Mr,n its generator matrix of size
∑r

i=0
(

n
i

)
× 2n whose term at row indexed by

u ∈ P0,r,n and at column indexed by x ∈ Fn
2 is given by xu =

∏n
i=1 x

ui
i .

For a set S ⊆ Fn
2 we denote Mr,n(S) the matrix obtained by keeping only the columns of

Mr,n whose indexes are in S.

We recall a property that will be used later one in the article.

Property 1 (Reed Muller code’s property). Let r, n ∈ N, such that n > 0 and r ≤ n, the dimension
of RM(r, n) is Dn

r .

The algebraic immunity of a function can be determined by considering Reed Muller codes, as
shown in [CM03]. The main idea consists is the following: the generator matrix of RM(r, n) is
split in two parts, one with the columns with entries corresponding to the support of an n-variable
function f , and the other corresponding to the co-support of f . Accordingly, the first matrix
generates the (evaluations of the) functions fg for all g with degree at most r, and the second
matrix generates the products (f + 1)g. The rank of one of the two matrices to be lower than the
dimension of RM(r, n) is equivalent to have a not null annihilator of degree at most r. Accordingly,
the algebraic immunity of f is the smallest r such that rank(Mr,n) 6= rank(Mr,n(supp(f))) or
rank(Mr,n) 6= rank(Mr,n(supp(f + 1))).

We recall the secondary construction of Boolean functions called direct sum, it will be used to
build examples of functions with particular parameters in the article.

Definition 7 (Direct Sum). Let f be a Boolean function of n variables and g a Boolean function
of m variables, f and g depending on distinct variables, the direct sum ψ of f and g is defined by:

ψ(x, y) = f(x) + g(y), where x ∈ Fn
2 and y ∈ Fm

2 .

2.2 Symmetric Boolean functions
Symmetric Boolean functions are Boolean functions such that changing the order of the (binary)
input does not change the output. Their cryptographic parameters and properties have been studied
in multiple works such as [Car04, CV05, BP05a, DMS06, QLF07, SM07, QFLW09, CL11], and
more recently [TLD16, CM19, CZGC19, Méa19, Méa21, CM22].

Definition 8 (Symmetric Functions). Let n ∈ N∗, the Boolean symmetric functions are the
functions which are constant on each Ek,n for k ∈ [0, n]. We focus on 2 families of symmetric
functions:

• Elementary symmetric functions. Let k ∈ [0, n], the elementary symmetric function of
degree k in n variables, denoted σk,n, is the function whose ANF contains all monomials of
degree k and no monomial of other degrees. When n is unambiguous from the context we
denote σk,n as σk.

• Threshold Functions. Let d ∈ [0, n], the threshold function of threshold d is defined as:

∀x ∈ Fn
2 , Td,n(x) =

{
0 if wH(x) < d,

1 otherwise.

We will provide examples using threshold functions, we recall here some properties on
elementary symmetric and threshold functions necessary for the proofs later on.
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Property 2. Let n ∈ N∗ and 1 ≤ d ≤ n the following properties hold on symmetric functions:

1. Simplified representation.

The n-variable elementary symmetric functions form a basis of the n variable functions, we
refer to the Simplified Algebraic Normal Form (SANF) for the polynomial representation of
a symmetric function as the sum of elementary symmetric functions: f =

∑n
i=0 λiσi, where

λi ∈ F2

2. Product of elementary symmetric functions, e.g. [BP05a] Lemma 1.

Let a, b ∈ N, σaσb = σc where c = bin(a) ∪ bin(b) where bin(·) represents the binary
decomposition.

3. Algebraic immunity e.g. [CM22], Proposition 3.

AI(Td,n) = min(d, n− d+ 1), AN(Td,n) = n− d+ 1, AN(1 + Td,n) = d.

4. SANF structure [Méa19]:

• The SANF is periodic with period D = 2dlog(d)e: ∀i ∈ [n] λi = λi mod D, where
mod D in this context denotes the integer between 1 and D in such congruence class.

• The elements in the SANF mod D belongs to an interval: λi = 1 ⇒ i mod D ∈
[d,D].

• The border of the intervals are in the SANF: ∀i ∈ [n] such that i = d mod D or
i = D mod D, λi = 1.

3 Extreme algebraic immunity
In this section we define the extreme algebraic immunity, this criterion is designed for the case
where the set defined by the union of monomials of degree from 0 to d and from n− d to n is kept
unvariant by the updating process.

First, we define the criterion of EAI of a Boolean function , and the associated set of annihilators
to take into consideration for the (data) attack complexity. Then, we exhibit the relationship between
EAI and (punctured) Reed Muller codes. Finally, we prove the maximum value that the EAI can
reach in the main theorem of the section, and discuss its impact on the attack compared to the
standard algebraic immunity.

Definition 9 (Extreme Algebraic Immunity). The extreme algebraic immunity of a Boolean
function f ∈ B∗n, denoted as EAI(f), is defined as:

EAI(f) = min
1≤d≤n/2

{∃g ∈ Fd,n−d | gf = 0 or (f + 1)g = 0}.

The EAI criterion generalizes the one of AI, instead of considering the smallest d such that
f (or f + 1) admits an annihilator in Fd it considers the smallest d such that Fd,n−d contains an
annihilator.

Note that, by definition of Fd,n−d, such annihilator have a degree at most d part which is not
null. The reason to consider such annihilators, rather than the ones having only monomials of
degree at least n− d is to prevent to mount an attack with equations allowing to recover only the
value of the high degree monomials, and not the variables. For example, the function

∏n
i=1 xi

annihilates all functions not null in 1n, that is half of Bn.
For the data complexity of the extreme algebraic attack the number of annihilators of f or f + 1

inside Fd,n−d is important since as for the algebraic attack, linearly independent annihilator can be
used to produce more than one equation per keystream bit. Similarly to the DAN for the algebraic
attack, we consider the cardinal of the set of annihilators of f that can be used for the attack.
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Definition 10 (Set of usable annihilators). We denoteDEAN(f) the cardinal of the sets annihilators
of f from FEAI(f),n−EAI(f) .

In Definition 10, the annihilators considered have at least one monomial in the part of degree
up to d, since annihilators that would be null on this part lead to equations allowing to recover
only the high degree monomials, as noted previously. We consider this set rather than all linear
combinations obtained from these annihilators since the linear combinations can be null of the low
degree part.

In the following proposition we exhibit the relationship between extreme algebraic immunity
and (punctured) Reed-Muller codes. It generalizes the result of Courtois and Meier on the algebraic
immunity. Thereafter we prove an upper bound on the EAI of any function in the main theorem of
this section.

Proposition 1. Let n ∈ N∗ and f ∈ Bn non constant. We denote S = Mn,n(supp(f)), C =
Mn,n(supp(f + 1)) and Sj

i (respectively Cj
i ) the sub-matrix of S (respectively C) formed by the

rows indexed by the monomials from degree i to j.
Then, EAI(f) is the smallest d such that either rank(Sd

0/Sn
n−d) < Dn

d + rank(Sn
n−d) or

rank(Cd
0/Cn

n−d) < Dn
d + rank(Cn

n−d).

Proof. We prove the statement by showing that f (respectively (f + 1)) has an annihilator in
Fd,n−d if and only if rank(Sd

0/Sn
n−d) < Dn

d + rank(Sn
n−d) (respectively rank(Cd

0/Cn
n−d) <

Dn
d + rank(Cn

n−d)). Without loss of generality we consider the case of f having such annihilator.
Assume f admits an annihilator g ∈ Fd,n−d, then g can be written as gl +gh with gl containing

monomials with degree belonging to [d] and gh containing the ones of degree at least n− d, and
gl is not null. (gl + gh)f = 0 therefore glf = ghf , and we consider the two cases glf = 0 and
glf 6= 0:

• If glf = 0, then a non null linear combination of the products of f by the monomials of
degree at most d is giving the null function. That is, a non null linear combination of the
rows of Sd

0 gives 02n , therefore rank(Sd
0) <

∑d
i=0
(

n
i

)
= Dn

d . Hence rank(Sd
0/Sn

n−d) <∑d
i=0
(

n
i

)
= Dn

d + rank(Sn
n−d).

• If glf 6= 0, then a (non null) linear combination of the products of f by the monomials of
degree at most d equals a (non null) linear combinations of the products of f by monomials of
degree at least n−d. That is rank(Sd

0/Sn
n−d) < rank(Sd

0)+ rank(Sn
n−d). Since rank(Sd

0) ≤
Dn

d , it gives the final result.

For the reverse implication, if rank(Sd
0/Sn

n−d) < Dn
d +rank(Sn

n−d), then either rank(Sd
0) < Dn

d

or rank(Sd
0) = Dn

d and there is at least a non null element belonging to the span of both matrices.
In the first case it implies that f has an annihilator in Fd and therefore in Fd,n−d. The second case
implies that a linear combination of the products of f by monomials of degree at least n− d give
the same function as another non null combination of products of f by monomials of degree at
most d. Therefore, f admits an annihilator in Fd,n−d.

Theorem 1. Let n ∈ N, n ≥ 2 and f ∈ Bn, then:

EAI(f) ≤ min
(
d
∣∣Dn

d >
1
3 · 2

n

)
.

Proof. In this proof, first using the notations from Proposition 1 we show that rank(Sn
n−d|Cn

n−d)
is Dn

d and then we use it to determine a value of d such that the equalities rank(Sd
0/Sn

n−d) =
Dn

d + rank(Sn
n−d) and rank(Cd

0/Cn
n−d) = Dn

d + rank(Cn
n−d) are not both possible.

First, we show that for d ∈ [0, n] rank(Sn
n−d|Cn

n−d) = Dn
d . Since S and C are defined by

the support and co-support of f , permuting the columns of Sn
n−d,Cn

n−d we obtain Mn
n−d the

sub-matrix of Mn,n restricted to the rows corresponding to degree at least n− d. Since RM(n, n)
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has length 2n and dimension 2n (Property 1), Mn
n−d has rank Dn

d . Thereafter we use the following
fact:

R = max{rank(Sn
n−d), rank(Cn

n−d)} = dD
n
d

2 e+ r, (1)

where r is a positive integer.
Then, we derive conditions on d such that one of the two equalities cannot be satisfied anymore.

Since S has |supp(f)| columns (i.e. S ∈ F2n×| supp(f) |
2 ) and C has |supp(f + 1)| columns (i.e.

C ∈ F2n×| supp(f+1) |
2 ), the rank of sub-matrices obtained by these matrices is upper bounded by

these quantities. Abstracting which matrix corresponds to f or f + 1, (since |supp(f)|+ |supp(f +
1)| = 2n), without loss of generality, we assume the maximum column number is the one of
supp(f), that is 2n−1 + u, and for supp(f + 1) it is 2n−1 − u with u a positive integer no greater
than 2n−1. Then we consider two possibilities:

|suppf | = 2n−1 + u

S
|suppf+1| = 2n−1 − u

C

Snn−d

Sd0

Cn
n−d

Cd
0

(a) Case a

|suppf | = 2n−1 + u

S
|suppf+1| = 2n−1 − u

C

Snn−d

Sd0

Cn
n−d

Cd
0

(b) Case b
Figure 1: Two cases considered in the proof of Theorem 1

a) The biggest support is the one where the Dn
d last rows of Sn

n−d have rank R, i.e. , R =
rank(Sn

n−d), which is depicted in Figure 1a. In this case both equalities are possible only if:

Dn
d +R ≤ 2n−1 + u, and 2Dn

d −R ≤ 2n−1 − u.

Equation (1) implies:

3
2Dn

d + r ≤ 2n−1 + u, and
3
2Dn

d − r ≤ 2n−1 − u.

That is:
3
2Dn

d ≤ 2n−1 + (u− r), and
3
2Dn

d ≤ 2n−1 − (u− r).

Therefore:
3
2Dn

d ≤ 2n−1 − |u− r|, (2)

where | · | denotes the absolute value.

b) The smallest support is the one where the Dn
d last rows of Cn

n−d have rank R, i.e. ,
R = rank(Cn

n−d), which is depicted in Figure 1b. In this case both equalities are possible
only if:

Dn
d +R ≤ 2n−1 − u, and 2Dn

d −R ≤ 2n−1 + u.

Equation (1) implies:

3
2Dn

d + r ≤ 2n−1 − u, and
3
2Dn

d − r ≤ 2n−1 + u.
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That is:
3
2Dn

d ≤ 2n−1 − u− r, and
3
2Dn

d ≤ 2n−1 + u+ r.

Therefore:
3
2Dn

d ≤ 2n−1 − |u+ r|. (3)

Since both u and r are positive integers, when d is such that Dn
d >

1
3 · 2

n neither of Equations 2
and 3 holds. Thereafter, either

Dn
d + rank(Sn

n−d) > rank(S) ≥ rank(Sd
0/Sn

n−d)

or
Dn

d + rank(Cn
n−d) > rank(C) ≥ rank(Cd

0/Cn
n−d)

holds. Using Proposition 1, we can conclude EAI(f) ≤ d.

Remark 1. Note that the algebraic immunity is upper bounded by dn/2e as shown in [CM03].
Using the approach displayed in the proof of Theorem 1 it corresponds to the smallest d such
that Dn

d > 2n−1 − u. Since u is positive (null for balanced functions), the bound on the AI is the
smallest d such that Dn

d >
2n

2 . It is to compare with 2n

3 for EAI, thereafter the upper bound on the
EAI is smaller than the one on AI for all odd n greater than 1 and even n greater than 4.

The theorem shows that the EAI upper bound is smaller than the AI one, since for each function
such that 2Dn

EAI(f) < Dn
AI(f) the EAA has a better time complexity than the standard AA we

can expect the EAA to be more efficient for many functions. We also remark that if other sets
than P1,d,n ∪ Pn−d,n,n are considered, for example with less slices in the the range [n − d, n],
Proposition 1 and Theorem 1 can also be adapted since the same arguments can be applied to other
punctured Reed Muller codes.

4 Functions such that EAI 6= AI
As a preliminary remark, let us denote by en the bound from Theorem 1, then we obtain that for
any function f such as AI(f) ≥ en it holds EAI(f) < AI(f). This is the case for all functions with
optimal algebraic immunity, and in general for an overwhelming part of Bn, since most functions

have AI larger than n
2 −

√
n
2 ln

(
n

2a ln(2)

)
for all a < 1 when n tends to infinity, as shown by

Didier [Did06]. In the next proposition we give a different example of constructions such that
EAI 6= AI.

Proposition 2. Let n, t ∈ N∗, t ≤ n/3, and g ∈ Bn non constant such that deg(g) < t then the
following holds on f = g + Tn−t,n:

EAI(f) ≤ t, and AI(f) ≥ t+ 1.

Proof. First, since g has degree lower than t and is not constant, and Tn−t,n has only monomials
of degree at least n− t (Property 2 Item 4), f belongs to Ft,n−t. Accordingly, 1 + f also belongs
to Ft,n−t and since 1 + f annihilates f it guaranties EAI(f) ≤ t.

Then, we show that AI(f) ≥ t + 1. We show it by contradiction. Let us assume that there
exists h non null of degree at most t such that h(ε+ g + Tn−t,n) = 0, where ε ∈ {0, 1}. Since g
has degree lower than t ≤ n/3 the product h(ε+ g) has degree lower than 2n/3. Using Property 2
Item 3, Tn−t,t has no annihilator of degree lower than t + 1, therefore the product h(Tn−t,n)
contains terms of degree at least 2n/3. Therefore, h(ε+ g + Tn−t,n) = 0 is impossible leading to
a contradiction. It allows us to conclude AI(f) ≥ t+ 1.
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The gap between EAI and AI can be bigger than in the previous example, we illustrate it in
the following proposition. It allows us to exhibit functions supposed to be safe against algebraic
attacks, that should not be used in contexts were the extreme algebraic attack can apply.

Proposition 3. Let m ∈ N∗ and k ∈ N such that k < 2m−1, then the threshold function
T2m,2m+2k is such that:

EAI(T2m,2m+2k) = k, and AI(T2m,2m+2k) = 2k + 1.

Furthermore,

EAI(T2m,2m+2k+1) = k + 1, and AI(T2m,2m+2k+1) = 2k + 2.

Proof. First, we obtain the AI of these functions using Property 2 Item 3: AI(T2m,2m+2k) =
min(2m, 2m +2k−2m +1) = 2k+1 and AI(T2m,2m+2k+1) = min(2m, 2m +2k+1−2m +1) =
2k since k < 2m−1.

Then, we prove the value of EAI for f = T2m,2m+2k. We begin by showing that EAI(f) ≤ k.
Using Property 2 Item 4 we obtain f = σ2m,2m+2k. The function g = σk,2m+2k + σ2m+k,2m+2k

annihilates f : fg = σ2m+k,2m+2k + σ2m+k,2m+2k = 0 using Property 2 Item 2. Since g belongs
to Fk,2m+2k−k, it gives EAI(f) ≤ k. To prove the other part, EAI(f) > k − 1, for any function h
non null of degree d lower than k, we obtain that the product hf has degree lower than 2m + k and
is not null since AI(f) = 2k + 1 (note that the same arguments apply with 1 + f ). The product of
f with any function with monomials of degree between 2m + 2k − d and 2m + 2k is null or with
monomials of degree greater than or equal to 2m + 2k − d > 2m + k. Thereafter, no element of
Fd,n−d annihilates f (nor f + 1), therefore EAI(f) > k − 1, allowing to conclude EAI(f) = k.

Finally, we prove the value of EAI for f = T2m,2m+2k. Using similar arguments as above
for T2m,2m+2k, we can exhibit annihilators of f inside F(k+1),n−(k+1) such as σk,2m+2k+1 +
σ2m+k,2m+2k+1 and σk+1,2m+2k+1 + σ2m+k+1,2m+2k+1. Moreover, there are no annihilators in
Fk,n−k, since functions of degree at most k give non null products of degree at most 2m + k and
product with functions with monomials in the range of degree [2m + k + 1, 2m + 2k + 1] give
products null of with monomials of degree at least 2m + 2k + 1− k = 2m + k + 1. It allows to
conclude, EAI(f) = k + 1.

Note that for such functions the EAI is (around) twice lower than the algebraic immunity.
In particular, some functions from this family are example where the EAA is devastating, the
functions T2m,2m+1−1 have optimal AI,i.e. (n+ 1)/2, but their EAI is only n/4.

5 Upper bound on EAI, and functions such that EAI = AI
In this part we study upper bounds on the EAI and exhibit cases where the EAI is equal to the AI.
First, we show that the EAI is greater than the AI restricted to the slices of low Hamming weight.
Then, we generalize a result of [CMR17] related to the algebraic immunity restricted to one slice.
We prove in Theorem 2 that for functions obtained by direct sum, the restricted AI can be upper
bounded by the AI of one component function minus the degree of the other component function.
Finally, we use these results to exhibit cases where the EAI is at least AI plus one, or equal to AI.

Proposition 4. Let n ∈ N∗, and f an n-variable Boolean function, then:

∀k ∈ N∗, k <
n

2 , EAI(f) ≥ AIP0,k,n
(f).

Proof. We denote AIP0,k,n
(f) = t, using Definition 5 it means that f or f+1 admits an annihilator

of degree t over P0,k,n which is not null over P0,k,n, and this property does not hold for integers
lower than t. Note that in the particular case of the set P0,k,n, the sub-matrix of Mk,n obtained
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by taking the columns corresponding to P0,k,n is upper triangular with ones on the diagonal, then
invertible, therefore there are no not null function of degree at most k null over P0,k,n. Accordingly,
using the matrix representation, AIP0,k,n

(f) = t implies that:

rank(Mt−1,n(suppf ∩ P0,k,n)) = rank(Mt−1,n(suppf ∩ P0,k,n)) =
t−1∑
i=0

(
n

i

)
= Dn

t−1.

Since the rank of the matrix Mt−1,n(suppf ∩ P0,k,n) is already the maximal and it gives
the rank of Mt−1,n(suppf ), and the same argument on Mt−1,n(suppf+1 ∩ P0,k,n) leads to
rank(Mt−1,n(suppf+1)) = Dn

t−1.
We denote S = Mn,n(suppf ), C = Mn,n(suppf+1) and Sj

i (respectively Cj
i ) the sub-matrix

of S (respectively C) formed by the rows indexed by the monomials from degree i to j. Then, in the
previous paragraph we showed rank(St−1

0 ) = rank(Ct−1
0 ) = Dn

t−1 where the rank comes from the
P0,k,n part, and in the following we show than span(Sn

n−k)∩ span(St−1
0 ) = 02n = span(Cn

n−k)∩
span(Ct−1

0 ). By construction Sn
n−k,Cn

n−k is a reordering of the last Dk
0 rows of Mn,n which

corresponds to the monomials of degree at least n − k, therefore being null on all elements of
Hamming weight lower than n − k, a fortiori on P0,k,n since k < n/2. Then, all elements in
the span of Sn

n−k (respectively Cn
n−k) are null on suppf ∩ P0,k,n (respectivelysuppf+1 ∩ P0,k,n)

whereas only the null vector has this property in the span of St−1
0 (respectively Ct−1

0 ).
Finally, since Sn

n−t−1 is a sub-matrix of Sn
n−k, we obtain rank(St−1

0 |Sn
n−t−1) = Dn

t−1 +
rank(Sn−t−1,n), and the same result relatively to C. Therefore, using Proposition 1 we can
conclude EAI(f) ≥ t hence EAI(f) ≥ AIP0,k,n

(f).

In the case of functions obtained by direct sum, Theorem 1 of [CMR17] gives an upper bound
on the algebraic immunity restricted to a slice depending on the (standard) algebraic immunity of
one of the two functions and the degree of the second one. We generalize this result, it allows to
derive an upper bound on the AI restricted to P0,d,n+m of f + g depending on the AI of f and the
degree of g. Combining it with the bound of Proposition 4, it gives an upper bound on the EAI of a
direct sum, and it allows to determine functions such that the AI and EAI have the same value.

Theorem 2. Let n,m ∈ N, and S ⊆ Fn+m
2 , if for all elements (a, b) ∈ S with a ∈ Fn

2 and b ∈ Fm
2

there exists a vectorial Boolean function L : Fn
2 → Fm

2 satisfying the following properties:

• the m coordinate functions of L are affine,

• L(a) = b,

• ∀x ∈ Fn
2 (x, L(x)) ∈ S,

then for all functions f ∈ Bn, g ∈ Bm and their direct sum ψ the following holds:

AIS(ψ) ≥ AI(f)− deg(g).

Proof. Let h(x, y) be a non-null annihilator of ψ over S of degree AIS(ψ)), then there exists
(a, b) ∈ S such that h(a, b) = 1. Assuming the existence of L satisfying the three requirements,
h(x, L(x)) is an n-variable Boolean function annihilator of f(x) + g(L(x)) since (x, L(x)) ∈ S
and h annihilates ψ over S. Moreover, the function h(x, L(x)) is not null since h(a, L(a)) =
h(a, b) = 1.

If g(b) = 0 then h(x, L(x))(1 + g(L(x)) is a non null annihilator of f , which gives:

AN(f) ≤ deg(h) + deg(L(g)).

Since h(x, y) is a non null annihilator of ψ over S we get deg(h(x, L(x))) ≤ AIS(ψ), and since all
coordinate functions of L are affine deg(L(g)) ≤ deg(g), it implies AN(f) ≤ AIS(ψ) + deg(g).
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If g(b) = 1, then h(x, L(x))g(L(x) is a non null annihilator of 1 + f , which gives AN(f) ≤
deg(h) + deg(L(g)). Following the same arguments, AN(f + 1) ≤ AIS(ψ) + deg(g), and
combining the two cases for g(b) we obtain: AI(f) ≤ AIS(ψ) + deg(g).

This result has been derived assuming h(x, y) be a non-null annihilator of ψ over S of degree
AIS(ψ), when it is not the case it implies the existence of h(x, y) a non-null annihilator of 1 + ψ
over S of degree AIS(ψ) by definition of AIS . Accordingly, the same reasoning applies with 1 +ψ,
f + 1 and g, therefore we can conclude AI(f) ≤ AIS(ψ) + deg(g) or equivalently:

AIS(ψ) ≥ AI(f)− deg(g).

In particular the result of [CMR17] consists in the case where n ≤ k ≤ m and S = Ek,n+m.
Up to permutations of the variables, L is chosen to give the complement of a on the first n bits, 1
on k − n remaining bits and 0 on the others. Such L maps a to b, all elements of Fn

2 to elements of
Hamming weight wH(a) + n− wH(a) + k − n = k and each coordinate function is affine.

Corollary 1. Let k, n,m ∈ N, n ≤ m, n ≤ k ≤ n + m and S = P0,k,n+m, for all functions
f ∈ Bn, g ∈ Bm and their direct sum ψ the following holds:

AIS(ψ) ≥ AI(f)− deg(g).

Proof. Using Theorem 2, it is sufficient to show for (a, b) ∈ S the existence of L satisfying the
requirements. Up to permutations of the variables, the wH(a) = r first bits of a are equal to one
and the n − r others to zero, the wH(a, b) − r = s first bits of b are equal to one and the m − s
others to zero.

If s ≤ n − r we define L as L(x1, . . . , xn) = (1 + xr+1, . . . , 1 + xr+s, 0m−s). It satisfies
L(a) = b, for all element x ∈ F2 the vector (x, L(x)) has Hamming weight at most n then
(x, L(x)) ∈ S, and all coordinate functions of L are affine, therefore L complies with the
requirements of the theorem.

If s > n − r we define L as L(x1, . . . , xn) = (1 + xr+1, . . . , 1 + xn, 1s−n+r, 0m−s). It
satisfies L(a) = b, for all element x ∈ F2 the vector (x, L(x)) has Hamming weight at most
n+ s−n+ r = s+ r = wH((a, b)) then (x, L(x)) ∈ S since all elements of Hamming wH((a, b))
belong to S, and all coordinate functions of L are affine, therefore L complies with the requirements
of the theorem.

Proposition 5. Let n,m ∈ N∗, m > n, and f an n-variable Boolean functions. We denote
ψ ∈ Bn+m the function defined for all (x, y) with x ∈ Fn

2 , y ∈ Fm
2 as ψ(x, y) = f(x). The

following holds:
AI(ψ) = EAI(ψ).

Proof. First we apply Corollary 1 with f , the null function in m variables as g and S = P0,n,n+m,
it gives:

AIP0,n,n+m(ψ) ≥ AI(f).

Then, using Proposition 4 for k = n we obtain:

EAI(ψ) ≥ AIP0,n,n+m
(ψ).

Since the algebraic immunity is an affine equivalent notion AI(ψ) = AI(f) therefore EAI(ψ) ≥
AI(ψ). Finally, by definition of the EAI, EAI(ψ) ≤ AI(ψ), which allows us to conclude:

EAI(ψ) = AI(ψ).
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From Corollary 1 we can deduce that all functions that are direct sum of an n-variable Boolean
function f and the sum of m variables such that n ≤ m are such that EAI(f) ≥ AI(f)− 1. The
Xor-Threshold functions used to instantiate FiLIP [MCJS19b, HMR20] belong to this category,
therefore the extreme algebraic attack would lead to no improvement or low improvement of the
algebraic attack on these specific functions.

Proposition 5 shows that for all functions with more than half variables with no influence
(variables such that changing their values never changes the output), the EAI and the AI are equal.
There are examples of functions using less than half of the (key/seed) variables with all instances
of the cipher FiLIP, and with the local pseudorandom generator of Goldreich [Gol00].

Note that these results can be generalized to other variants of the algebraic immunity than the
EAI. Indeed, Proposition 4 bounds the EAI based on the algebraic properties of the function only
on the set formed by the slices of small Hamming weight, then the same arguments apply when we
consider other set of monomials including the same slices. For example, the reasoning applies if
we consider the set given by P1,d,n and only a subpart of Pn−d,n,n. Similarly, the generality of
Theorem 2 can be used to derive results on variations of the AI for direct sums, as in Corollary 1
for case of EAI.

6 Applications of the EAA and functions in the literature
In this section, we investigate potential applications of the EAA. Firstly, following the proof strategy
for Theorem 1, we determine the EAI of two ciphers GEA-1/2 and LILI-128. More specifically,
in Subsection 6.1 for the filter function of GEA-1/2, and in Subsection 6.2 for the filter function
of LILI-128, we respectively compute the exact value of the EAI, and find all the corresponding
annihilators and the linearly independent ones among them which might be used for further attacks.
Next, in Subsection 6.3, we review existing symmetric primitives (such as FLIP, FiLIP and variants)
that triggered EAA, and we explain the detailed reason why EAA cannot apply directly.

6.1 GEA-1 and GEA-2
GPRS (General Packet Radio Service) is a mobile data standard that was widely deployed in the
early 2000s. To protect against eavesdropping GPRS between the phone and the base station, two
proprietary stream ciphers GEA-1 and GEA-2 were initially designed and used for this purpose.
GEA-1 is built from three linear feedback shift registers over F2, together with a non-linear filter
function f : F7

2 → F2, which is a Boolean function on seven variables of degree 4. The first public
analysis of GEA-1 was proposed by Beierle et al. [BDL+21] as a key recovery attack utilizing the
weakness of the initialization function. Without such weakness in the initialization as in GEA-1,
the authors also presented key recovery attacks on GEA-2. The attacks on GEA-1/2 was further
improved/complemented by Amzaleg and Dinur [AD22].

As said, our focus is not on the initialization function, but only on the component of the key
generation function f . We take the specification of f = f(x1, x2, . . . , x7) from [BDL+21] and
give it in algebraic normal form as follows:

x1x3x6x7 + x1x4x6x7 + x1x2x6x7 + x2x3x6x7 + x1x3x4x7 + x2x4x5x7 + x2x4x6x7+
x1x3x5 + x1x3x4 + x1x2x4 + x1x3x7 + x1x2x5 + x1x2x7 + x2x3x7 + x3x6x7 + x1x4x6+
x2x5x7 + x2x3x6 + x1x4 + x1x6 + x2x4 + x2x6 + x2x7 + x1x3 + x2 + x3x4 + x3x6+
x3x7 + x5x6 + x6x7 + x3 + x4 + x6.

The cipher GEA-2 is a simple extension of GEA-1. A fourth register of length 29, is added to the
system together with an instance of f . In this paper we only focus on the filter function f , and it is
the same for GEA-1 and GEA-2, so we can call them uniformly as GEA.

According to the definitions of AI and EAI, for the filter function of GEA we have AI(f) =
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EAI(f) = 3. In addition, we found DEAN(f) = 64 usable annihilators2, and 48 linearly
independent ones. We give one example in the following:

x1x2x4x5x6x7 + x1x2x3x4x5 + x1x2x3x5x7 + x1x2x4x6x7 + x1x3x4x6x7 + x1x4x6x7+
x1x2x3 + x1x2x4 + x1x3x5 + x1x4x5 + x1x2x7 + x1x5x7 + x1x2 + x1x3 + x1x4 + x1x5+
x1x7 + x1.

6.2 LILI-128

LILI-128 is a candidate stream cipher submitted to the NESSIE project. It uses two LFSRs, LFSRc

and LFSRd. LFSRc has an internal state of 39 bits and is clocked once for each output bit. LFSRd

has an internal state of 89 bits and is clocked 1 to 4 times, depending on two bits in LFSRc. During
key setup phase a 128 = 39 + 89-bit cryptovariable is directly loaded into these two registers. If
we use u0, u1, . . . , u88 to denote the individual bits of LFSRd, then the ten bits from LFSRd are
fed to a highly nonlinear function, fd : F10

2 → F2 to generate one output bit z(t) as

z(t) = fd(u0, u1, u3, u7, u12, u20, u30, u44, u65, u80).

The ten-variable Boolean function fd(x1, x2, · · · , x10) has the following ANF:

x2 + x3 + x4 + x5 + x6x7 + x1x8 + x2x8 + x1x9 + x3x9 + x4x10 + x6x10 + x3x7x9+
x4x7x9 + x6x7x9 + x3x8x9 + x6x8x9 + x4x7x10 + x5x7x10 + x6x7x10 + x3x8x10+
x4x8x10 + x2x9x10 + x3x9x10 + x4x9x10 + x5x9x10 + x3x7x8x10 + x5x7x8x10+
x2x7x9x10 + x4x7x9x10 + x6x7x9x10 + x1x8x9x10 + x3x8x9x10 + x4x8x9x10+
x6x8x9x10 + x4x6x7x9 + x5x6x7x9 + x2x7x8x9 + x4x7x8x9 + x4x6x7x9x10+
x5x6x7x9x10 + x3x7x8x9x10 + x4x7x8x9x10 + x4x6x7x8x9 + x5x6x7x8x9+
x4x6x7x8x9x10 + x5x6x7x8x9x10.

According to definitions of AI and EAI, for the filter function of LILI-128 we obtain AI(f) =
EAI(f) = 4. In addition, we found 264 annihilators, and DEAN(f) = 151 of them having degree
up to 4 in the lower part set of Fd. We give one example in the following:

2We have discarded the annihilators with null part in the set of high degree Fn−d since they are not interesting for the
attacks.
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x1x4x5x7x8x9x10 + x2x4x5x7x8x9x10 + x3x4x5x7x8x9x10 + x1x2x6x7x8x9x10+
x1x3x6x7x8x9x10 + x4x5x6x7x8x9x10 + x5x6x7x8x9x10 + x1x3x7x8 + x3x4x7x8+
x1x5x7x8 + x4x5x7x8 + x1x6x7x8 + x2x6x7x8 + x1x2x7x9 + x1x3x7x9 + x2x3x7x9+
x1x5x7x9 + x2x5x7x9 + x4x5x7x9 + x1x2x8x9 + x1x3x8x9 + x2x3x8x9 + x2x4x8x9+
x4x5x8x9 + x1x6x8x9 + x4x6x8x9 + x1x7x8x9 + x2x7x8x9 + x4x7x8x9 + x2x4x7x10+
x3x4x7x10 + x1x5x7x10 + x3x5x7x10 + x1x6x7x10 + x3x6x7x10 + x4x6x7x10+
x1x2x8x10 + x2x3x8x10 + x1x4x8x10 + x3x4x8x10 + x1x5x8x10 + x2x5x8x10+
x3x5x8x10 + x1x6x8x10 + x2x7x8x10 + x3x7x8x10 + x1x2x9x10 + x1x3x9x10+
x2x3x9x10 + x1x4x9x10 + x2x4x9x10 + x2x5x9x10 + x3x5x9x10 + x1x6x9x10+
x3x6x9x10 + x1x7x9x10 + x1x8x9x10 + x2x8x9x10 + x3x8x9x10 + x1x2x7 + x1x3x7+
x2x3x7 + x1x4x7 + x2x4x7 + x1x5x7 + x2x5x7 + x4x6x7 + x5x6x7 + x1x2x8 + x2x3x8+
x3x4x8 + x1x5x8 + x4x5x8 + x1x7x8 + x3x7x8 + x4x7x8 + x5x7x8 + x1x2x9 + x1x3x9+
x2x3x9 + x2x4x9 + x3x4x9 + x1x5x9 + x3x5x9 + x4x5x9 + x4x7x9 + x2x8x9 + x3x8x9+
x4x8x9 + x5x8x9 + x1x2x10 + x1x3x10 + x2x3x10 + x1x4x10 + x3x4x10 + x1x5x10+
x2x5x10 + x5x6x10 + x2x7x10 + x3x7x10 + x1x8x10 + x4x8x10 + x6x8x10 + x7x8x10+
x1x9x10 + x4x9x10 + x5x9x10 + x6x9x10 + x8x9x10 + x1x2 + x1x3 + x2x3 + x1x4+
x3x4 + x1x5 + x3x5 + x1x7 + x2x7 + x3x7 + x4x7 + x5x7 + x1x8 + x2x8 + x3x8 + x4x8+
x5x8 + x7x8 + x1x9 + x2x9 + x3x9 + x4x9 + x5x9 + x8x9 + x1x10 + x4x10 + x6x10+
x7x10 + x1 + x2 + x3 + x4 + x5 + x7 + x8 + x9 + 1.

6.3 Attack motivation and limitations
In this part we discuss the motivation of the attack, that is, symmetric primitives where other
subsets of monomials than the ones of low degree can be kept stable by the updating process. We
explain why a direct application of the extreme algebraic attack is not possible for these already
published designs, and suggest attack modifications. First we recall the paradigms of the stream
ciphers FLIP [MJSC16] and FiLIP [MCJS19b] since we consider (modifications of) these schemes.

The Filter Permutator (FP) paradigm is a stream cipher paradigm introduced in [MJSC16]
in the context of hybrid homomorphic encryption [NLV11], designed to be efficiently evaluated
homomorphically. The filter permutator paradigm is depicted in Figure 2 on the left side. For each
bit of keystream the binary key is permuted by a wire-cross permutation publicly derived from a
pseudorandom generator and then a Boolean function called filter is applied on this permuted key
to give the keystream bit. The improved filter permutator, introduced in [MCJS19b] modifies the
FP paradigm by using only a subpart of the key for each keystream bit and adding a random vector
to the input of the filter function.

The attack based on the extreme algebraic immunity adapts differently to FLIP, FiLIP and
variations of these schemes, as we detail in the following:

FLIP. For FLIP stream ciphers, the inputs of the Boolean function f are always the variables xi

of then secret key K, only permuted by a wire-cross permutation. Accordingly, the product f · g
with g ∈ Fd,n−d an annihilator of f gives equations with monomials in the variables xi in Fd,n−d,
and the wire-cross permutations stabilize the set P0,d,n ∪ Pn−d,n,n. Instead of the usual algebraic
attack, the extreme algebraic attack can directly be used. It is the only context we found in open
literature where the attack applies.

Nevertheless, the EAA does not give an attack with better complexity than already known,
nor contradict the 2128 security claim for two reasons. First, the instances of FLIP (called FLIP
functions in [MJSC16]) are direct sums of monomials, they correspond to functions with AI far



Pierrick Méaux and Qingju Wang 17

Key register K Key register KIV IV

PRNG PRNG

Perm.
Gen.

Perm.
Gen.

Subset

Whitening

f f

m c m c
Figure 2: Filter permutator and improved filter permutator paradigms.

from the maximum of dn/2e. In this case the AI of the function comes only from the part of low
degree (the ANF contains only elements of low degree), thereafter the EAI can be bounded from
the AI restricted on the slices of low Hamming weight, following Proposition 4. It results in cases
where AI(f) = EAI(f), where the EAA has a worse time complexity. Then, since the Hamming
weight is constant and known for the keys of FLIP instances, the attacks using the properties of the
filter function on the particular slice of Hamming weight n/2 from [CMR17] are more adapted.

FLIP with whitening. We consider a variant of FLIP where a whitening is added before the
application of the filter, this alternative would be sufficient to avoid the filter to be evaluated on
inputs of Hamming weight n/2 only. We explore two possible strategies to apply the EAA.

First, we consider the n key bits and their complements as 2n binary variables, in this case the
adversary obtains a system in 2n variables. This choice is motivated by the fact that Pn−d,n,n is not
stable when constants are added: the affine mapping xi 7→ xi + 1 can generate monomials of lower
degree. But as for FLIP, the attack generalization leads to improvements only for filter functions
such that the EAI would be different from the AI. If we write the filter function as a 2n-variable
function in the 2n key variables, it corresponds to a direct sum of the initial filter and the null
function in n variables, therefore a function such that the EAI equals the AI by Proposition 5.

The other strategy consists in considering only the n original variables, in this case a variation
of the EAA is possible. Each time the Hamming weight of the whitening is at most t, an annihilator
from Fd,n−d gives equations with monomials belonging to P0,d,n ∪ Pn−d−t,n,n. Then, it is
interesting for functions having annihilators with a part of degree at most d and potentially a part
of degree even higher than n − d, such that subtracting t to the degree does not go lower than
n− d (which would result in more monomials). Indeed, on a monomial of degree d, the mapping
x 7→ x+ a with a ∈ Fn

2 of Hamming weight t ≤ d can generate monomials of any degree between
d− t and d. For example on the monomial

∏d
i=1 xi, the mapping x 7→ x+ 1d gives the sum of all

monomials of degree between 0 and d in the variables x1 to xd.

FLIP with a large register, and local PseudoRandom Generators (PRG). We consider an
alternative of FLIP where the key register is larger than the number of variables of the filter function.
This setting also corresponds to the local variant of Goldreich’s PRG [Gol00] where the seed’s size
is a parameter n and the number of variables of the function (called predicate) is a constant. We refer
to the survey of Applebaum [App13] for local PRGs and to [AL16, CDM+18, YGJL22, Üna23]
for recent cryptanalyses.

In this context f has n variables but the register has size N > n, that is, the output is
independent of a large number of variables. It is also the case of Goldreich’s PRG with a constant
locality, where N >> n. The EAA applies to this context, nevertheless the filter function
corresponds to the direct sum of f in n variables and the null function in N − n variables, which
is the case of Corollary 1, so the attack does not lead to a better complexity than the standard
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algebraic attack.
We can conceive a variant of Goldreich’s PRG with an anti-local property (which would go

against the motivation of the first design and the following lines of works), where each output bit
depends on all or almost all inputs. In this case, the EAI will be a criterion to consider for the
security, since it gives a better attack than the one based on the AI, and predicates satisfying the
requirements of [AL16] will not be immune to the extreme algebraic attack. Nevertheless, we are
not aware of contexts where such anti-local PRG would be interesting.

FiLIP. FiLIP uses both a large key register and a whitening, which limits the impact of EAA
as explained above. Furthermore, the different filters considered so far are direct sum of
monomials [MCJS19b] and functions obtained as the direct sum of a linear function and a threshold
function [MCJS19a, HMR20]. As for FLIP instances, the first family of function is such that
AI = EAI, and for the second family, the direct sum with a linear function corresponds to a case
covered by Corollary 1 resulting in a difference between EAI and AI of at most 1.

Beyond variants of FLIP and FiLIP, we discuss variations of the extreme algebraic attack that
could lead to new cryptanalyses.

Adaptation to filtered LFSR. In the context of a filtered LFSR, due to the linear update of the
variables, the monomials of degree at most d stay in P0,d,n, but the high degree part is not stable.
Each affine mapping xi 7→ ε+

∑
j∈J xi can give monomials of lower degree. An attack strategy

consists in selecting only the keystream bits such that the associated linear updates are only a
permutation of the variables of the initial state, in this case an annihilator from Fd,n−d gives
equations only in monomials from P0,d,n and Pn−d−,n,n. These cases being extremely rare (if the
LFSR has maximal period, only n! over 2n are permutations of the initial variables), therefore the
adversary should also take into consideration the cases where the linear update does not reduces
too much the degree of the monomials from the Pn−d,n,n part. Considering n linear (not affine)
mappings, the degree can degrade at most from the maximum occurrence of one variable, that we
denote by `, in this case, the monomials created belong to Pn−d−`,n,n. For example, the attack
could be interesting for a function having AI(f) > d and an annihilator in Fd,n−d where only the
monomial of degree n appears in the Pn−d,n,n part.

Adaptation to filtered NonLinear Feedback Shift Register (NLFSR). In this context, the update
is not linear so the degree of the equations increases, and the same happens for the monomials of
the annihilators. A variant of the attack could be over the monomials of high degree only, since the
degree increases quickly, and the one of the Pn−d,n,n part decreases less. A particular study could
be performed to verify if the low degree monomials disappear in specific cases.

7 Conclusion
In this article we propose the new notion of extreme algebraic immunity, to illustrate and study
potential generalizations of the algebraic attack presented by Courtois and Meier’s twenty years
ago. We perform a theoretic study of the EAI criterion and explore its relation to other algebraic
criteria. Our generalized algebraic attack does not give a better complexity than Courtois and
Meier’s attacks on the public stream ciphers, but it can help to understand better the strength of the
standard algebraic attack and avoid weaknesses in the construction of future stream cipher designs.

As for future works, it might be interesting to determine if variations of the EAA can be applied
to new stream ciphers adapted to advanced applications such as fully homomorphic encryption,
multiparty computation or zero knowledge. Another direction we can investigate is probabilistic
EAA. Similarly to probabilistic AA mentioned in related work, the high level idea is to find
functions annihilating the filter function in most inputs but not all, this degree of freedom could
give a bigger number of exploitable equations in some cases.
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