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Abstract—This study introduces a dynamic weighting knowl-
edge distillation (KD) framework for efficient Earth observation
(EO) image classification (IC) in resource-constrained environ-
ments. By leveraging EfficientViT and MobileViT as teacher mod-
els, this approach enables lightweight student models, specifically
ResNet8 and ResNet16, to achieve over 90% accuracy, precision,
and recall, meeting the confidence thresholds required for reliable
classification. Unlike traditional KD with fixed weights, our
dynamic weighting mechanism adjusts based on each feachers
confidence, allowing the student model to prioritize more reliable
knowledge sources. ResNet8, in particular, achieves substantial
efficiency gains, with 97.5% fewer parameters, 96.7% fewer
FLOPs, 86.2% lower power consumption, and 63.5% faster
inference time compared to MobileViT. This significant reduction
in complexity and resource demand makes ResNet8 an ideal
choice for EO tasks, balancing high performance with practical
deployment requirements. This confidence-driven, adaptable KD
strategy demonstrates the potential of dynamic knowledge dis-
tillation to deliver high-performing, resource-efficient models for
satellite-based EOQ applications. Reproducible codes are available
from our shared Github repository '.

Index Terms—Earth Observation, Remote Sensing, Knowledge
Distillation, Onboard Processing, Artificial Intelligence, ResNet.

I. INTRODUCTION

The rapid increase in satellite deployments for EO and
remote sensing (RS) missions reflects a growing demand for
applications like environmental monitoring, disaster response,
precision agriculture, and scientific research [1]. These ap-
plications rely on high-frequency, high-resolution data for
timely and accurate decision-making. However, a significant
bottleneck in Low Earth Orbit (LEO) satellite operations is
reliance on ground stations for data transmission, which limits
the availability of communication windows and results in fre-
quent connectivity loss [2]-[4]. This delay can impede critical
responses in situations requiring immediate data access.

The advent of Satellite Internet Providers, such as Starlink
and OneWeb, offers the potential for continuous (24/7) con-
nectivity to LEO satellites, facilitating on-demand data access
[S]-[7]. Yet, seamless connectivity alone does not fully meet
modern EO and RS requirements, which increasingly demand
real-time, onboard decision-making. For optimal operations,
onboard neural networks (NNs) must prioritize computational
efficiency to autonomously analyze data, identify critical infor-
mation, and make immediate adjustments, such as refocusing
on a target area during subsequent satellite passes [2].

1 https://github.com/ltdung/SnT-SENTRY
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Historically, onboard NNs have been designed for efficiency,
often relying on convolutional neural network (CNN) models
to balance performance and resource constraints. For example,
the ®-Sat-1 mission used a CNN-based NN for onboard
image segmentation using the Intel Movidius Myriad 2 vision
processing unit (VPU), representing the first deployment of
deep learning on a satellite [8]. Similarly, $-Sat-2 adopted a
convolutional autoencoder for image compression to reduce
transmission requirements, demonstrating the feasibility of
lightweight models on hardware-constrained environments on
three different hardware, including graphic processing unit
(GPU) NVIDIA GeForce GTX 1650, VPU Myriad 2, and
central processing unit (CPU) Intel Core i7-6700 [9].

Despite their efficiency, CNNs can be limited in perfor-
mance, especially compared to the recent success of Vision
Transformer (ViT) architectures. ViTs have gained popularity
in computer vision due to their ability to capture global context
via self-attention mechanisms, often surpassing traditional
CNNs in performance. However, ViTs require significantly
more computational power and memory as image resolution
increases, which poses challenges for deployment on power-
constrained satellite platforms [10]-[14].

To overcome these limitations, KD offers a viable approach
for onboard processing. KD is a method where a smaller,
simpler model (the “student”) learns from a larger, complex
model (the “feacher”, such as a ViT). By transferring the
teacher’s semantic knowledge (SK), KD allows the student to
generalize more effectively with lower computational demands
[15]. KD was initially introduced to reduce the computational
burden of deep learning models [16], and recent studies indi-
cate that KD can help students learn complex representations
with strong performance even in simplified forms [17].

In this study, we leverage KD to train deployable models
for onboard EO tasks, explicitly focusing on IC. By distilling
SK from ViTs into efficient student models (StuMs), we aim
to boost onboard processing capabilities while maintaining
computational efficiency suitable for satellite EO missions.
Traditional KD approaches often struggle with training in-
stability, mainly when exact prediction matches are enforced
through Kullback-Leibler (KL) divergence from a single
teacher, which can impair performance [18]. To address this,
we propose a dynamic weighting mechanism for dual-feacher
KD (DualKD), where the weight assigned to each feacher
adapts based on their confidence level, enabling the StuM to
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Fig. 1: The schematic workflow of DualKD.

prioritize the most reliable knowledge sources. This approach
considers that one instance may have varying semantic similar-
ities to different teachers, thus improving the students ability
to generalize data representation.

II. MATERIALS AND METHODS
A. Dataset

This study utilizes the EuroSAT dataset [19], a well-
established land use and land cover classification benchmark
specifically curated from Sentinel-2 satellite imagery. Eu-
roSAT includes 27,000 labeled, geo-referenced images, each
with a resolution of 64x64 pixels across 13 spectral bands,
and is organized into 10 distinct classes. These classes cover
various land types, such as industrial and residential build-
ings, annual and permanent crops, rivers, lakes, herbaceous
vegetation, highways, pastures, and forests, representing di-
verse European landscapes. Each class contains between 2000
and 3000 images, providing a balanced model training and
evaluation dataset. EuroSAT’s compact image size and broad
class diversity make it suitable for developing and assessing
deep learning models intended for onboard processing in EO
missions. This dataset is valuable for applications that demand
real-time decision-making capabilities, such as environmental
monitoring, disaster response, and precision agriculture.

B. Dual teachers Knowledge Distillation

Traditional KD methods often face training instability, es-
pecially when forced to closely match a single teacher model
(TeaM)’s predictions using KL divergence, which can compro-
mise performance [18]. We propose a DualKD framework with
a dynamic weighting mechanism to overcome this challenge
and enhance the StuM’s adaptability and effectiveness. Unlike
traditional KD approaches that employ fixed weights, this
method adjusts each feacher’s influence based on confidence
levels, allowing the StuM to prioritize knowledge from the
more reliable teacher. This dynamic weighting approach im-
proves flexibility in handling multiple feachers with varying
degrees of reliability, ultimately optimizing the semantic in-
formation from the KD process.

As shown in Fig. 1, given an input zx, the semantic
distillation process starts by computing softened probability
distributions for the TeaM and the StuM. This is achieved by
scaling their logits with a temperature parameter 7. For TeaM

T, the softened probability distribution is:

Pr, (z) = softmax (T} (x)/7), (D)
and similarly for TeaM T5:

Pr, (x) = softmax (Tx(z)/7), (2)
with the StuM S:

Pg(z) = softmax (S(x)/7) . 3)

Confidence for each feacher is computed as the average
of the maximum probabilities in their respective softened
distributions:

Cr, = E[max(Pr, ()], Cr, =E[max(Pr,(x))]. @)

Based on these confidence scores, we dynamically adjust the
weights « and [ assigned to each feacher in the distillation
loss KDjss. If both confidence scores are significantly below
a predefined threshold 4, both teachers are ignored (a = § =
0). If either confidence score is close to the threshold, we
prioritize the more reliable teacher by reducing the weight
of the less reliable one, with minimum weights set by wi,iy,.
When both teachers are above the threshold, equal weights
(e = B =0.5) are used.

The distillation loss KDjos, a weighted KL divergence
between the students and each teachers softened probabilities,
is then computed, with the weights o and 3 reflecting each
teacher’s confidence.

KDioys = a-Dice(Ps(2) || Pry (2))+8-Dx(Ps () || Pr, (x)),

&)
where the KL divergence Dy for each “feacher-student” pair
is scaled by the temperature squared, 72, to stabilize training

Dy (Ps(a)] Pr, () = D Pr(a);log (5?2((35 > - ©

The total distillation loss is calculated as a combination of
the classification loss, CEjy, and the distillation loss KDy
A classification loss CE;,ss between the students predictions
and the true labels is calculated to ground the students learning
in teacher guidance and actual labels, where

CEloss = - Z Yi IOg (PS (x)z) . (7)

Then, the final combined loss, Ly, integrates these com-
ponents: a weighted combination of CEys and KDjyg. This
framework allows the student to leverage insights from both
teachers selectively, focusing on the most reliable sources
for improved generalization and adaptability across instances
during training,

o+ o+
ﬁtotal = (1 - 2 B) ' CEloss + 9 6 - KDjogs (8)

The pseudo Algorithm 1 presents the core steps for im-
plementing the proposed DualKD framework with a dynamic
weighting mechanism that prioritizes the SK from two TeaMs.
This adaptive approach is designed to maximize the StuM’s
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Algorithm 1 DualKD with Dynamic Weighting

Require: Input data x, true labels y, model_student, model_teacher_1,
model_teacher_2, temperature 7, confidence threshold (4), minimum
Weight (wmzn)

Ensure: Combined loss L;,¢4; for backpropagation

1: Forward pass:

2:  Ti(xz) < model_teacher_1(z)

3:  T(xz) < model_teacher_2(z)

4:  S(z) «+ model_student(x)

5: Calculate softened probabilities with temperature 7:

6:  Pr, (x) < softmax(Ty(x)/T)

7.

8

9

Pr, (z) < softmax(T2(x)/T)

1 Pg(z) < softmax(S(z)/T)

: Calculate confidence scores for both teachers:
10:  Cp, < E [max(Pr, (x))
11:  Cq, < E |max(Pr,(x))
12: Dynamically set weights o and /3 based on confidence scores:
13: if Cp, < 0.4 and Cp, < 0.4 then
14: a, 3+ 0.0,0.0
15: else if Cr; < 6 and Cp, < 6 then
16:  a <+ max(0.5 — (6 — Cry ), Wmin)
17: B + max(0.5 — (0 — Cr1y), Wmin)
18: else if Cr; < 6 then
190 «a,8+0.3,0.7
20: else if C1,, < 6 then
21: a, 3+ 0.7,0.3
22: else
23:  a,8+ 0.5,0.5
24: end if
25: Compute Distillation Loss (KL Divergence with weighted sum):
26: lossy «— DKL(PS(x) || PT1 (:E))
27:  loss2 <~ Dgr(Ps(z) || Pry(x))
28:  KDjpss < (-lossy + B - lossg) - 72
29: Compute Classification Loss (Cross-Entropy):
30: CEoss < 721' yi log (Ps(x)z)
31: Combine losses to calc;late Total Loss:

/' Ignore both teachers

/I Reduce «v, prioritize teacher 2
/I Reduce 3, prioritize teacher 1

// Equal weighting for both confident feachers

32: ﬁtotal ~— (1- aQLB . CEloss + OCTW 'KDloss
33: Backpropagate using L;,;q;

learning efficiency by allowing it to concentrate on information
from the most reliable feacher in each instance. Specifically,
each TeaM’s confidence score is computed by averaging the
maximum probabilities of their softened outputs across a
batch, reflecting each teachers reliability. These scores are
then used to dynamically adjust the weights, « and f, for
each reacher, guiding the student to selectively emphasize
knowledge from the teacher with higher semantic value in
each scenario. This dynamic weighting mechanism enables
the student to effectively distill the most meaningful and rele-
vant SK, ultimately enhancing its performance and robustness
across tasks.

o Low confidence in both teachers: 1If both confidence
scores fall significantly below a threshold 6, both teachers
are disregarded

« Moderate confidence in both feachers: Both teachers
are assigned reduced weights, ensuring some influence
without complete reliance.

o Low confidence in one teacher: Lower weight is as-
signed to the less confident feacher, prioritizing the more
reliable one.

« High confidence in both teachers: Both teachers receive
equal weighting.

Conv2D(3->16) Conv2D(3->16)
(3x3, stride 1, pad 1) (3x3, stride 1, pad 1) Initial Layer
BatchNorm2D, ReLu BatchNorm2D, ReLu
2 x Conv2D (16->16) 4 x Conv2D (16->16) Residual Block 1
(3x3, stride 1, pad 1) (3x3, stride 1, pad 1) csidual Bloc
2 x Conv2D (16->32) 4 x Conv2D (16->32) .
(313, stride 2) (313, stride 2) Residual Block 2
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AdaptiveAvgPool2D AdaptiveAvgPool2D
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Fig. 2: Variants of ResNet-based StuMs network structure.

C. Machine Learning Models

A recent study [13] provides a comprehensive analysis
of ViTs performance and robustness in EO-IC, identifying
EfficientViT and MobileViT as the two most effective models.
Therefore, we select EfficientViT and MobileViT as our TeaMs
for this study. Technically, the EfficientViT model combines
convolutional layers with local window attention mechanisms
to optimize the balance between performance and computa-
tional efficiency, featuring approximately 4 million param-
eters [20]. The MobileViT model integrates convolutional
and transformer-based processing, using depthwise separable
convolutions and self-attention mechanisms for high accuracy
and efficient image classification [21].

ResNet has been shown to outperform standard CNNs for
IC because of its ability to address the vanishing gradient
problem through skip connections, allowing for deeper archi-
tectures and improved feature learning, as demonstrated in
a comparative analysis [22]. Additionally, ResNet is widely
recognized for its effectiveness in KD training [23], [24].
Therefore, we select a ResNet-based architecture as the StuM
for this study. We utilize two variants of ResNet—ResNet8
and ResNetl6—as StuMs for KD, as shown in Fig. 2. These
models are designed with progressively deeper architectures
to balance performance with computational efficiency, making
them suitable for deployment in resource-constrained environ-
ments, such as onboard satellite processing.

o ResNet8: This lightweight ResNet variant consists of
an initial convolutional layer followed by three residual
blocks. Each block is structured to gradually increase
the number of feature channels, from 16 to 64, through
convolutional layers with either stride 1 or 2. The model
concludes with an adaptive average pooling and dense
layers. ResNet8’s shallow architecture makes it highly
efficient for scenarios with limited computation power.

¢ ResNet16: This model builds on ResNet8’s structure by
incorporating additional convolutional layers within each
residual block, doubling the network’s depth. The in-
creased depth allows ResNetl6 to capture more complex
features, making it a more capable model for handling
detailed image classification tasks. Like ResNet8, it uses
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TABLE I: Experiment Parameters Setting

Parameter Value
Epoch 50

Batch size 64
Optimizer AdamW
Learning rate 0.00025
Weight decay 0.0005
Scheduler ReduceLRonPlateau
Threshold (8) 0.6
Temperature (7) 5

Min weight (Wyin,) 0.1

an adaptive average pooling layer and a dense layer.

Both models are configured with Batch Normalization and
ReLU activation functions to enhance training stability and
convergence. Their structural differences offer a range of
performance and efficiency trade-offs, providing flexibility for
different use cases in the knowledge distillation framework.

D. Evaluation Metrics

To comprehensively evaluate the performance of our multi-
class classification model across 10 classes, we employ three
key metrics: accuracy, precision, and recall (sensitivity) [25].
These metrics are calculated for each class individually and
then aggregated using macro-averaging to assess the model’s
performance as follows [26]-[28],

K
TP
Accuracy = Z Wk 9
k=1
K
.. 1 TP,
Precision = N ; Nkm (10)
K
TPy,
: (1)

1
Recall = — S " Np— %
=N ; *TP, + FN,

where N is the total number of data points across all classes.
K is the total number of classes. N; is the number of data
points in class k. T'Py, is True Positives, F' Py, is False Positives,
F Ny, is False Negatives for class k, respectively. We use
weighted precision and recall to ensure that each class is given
equal importance, thereby providing a balanced evaluation of
the model’s classification capabilities across the entire dataset.
These macro-averaged evaluation metrics will select the best
models in the final analysis.

ITI. EXPERIMENTAL SETUP

All the experiments are conducted on GPU NVIDIA RTX™
6000 Ada Generation, 48 GB GDDR6. Experiments were
implemented using the Scikit-learn library [29], and Pytorch.
The data was divided into 70% training and 30% testing.
In addition, we also applied batch normalization [30] are
employed for models’ stability. Experiment parameters setting
are summarized in Table I.

IV. RESULTS AND DISCUSSIONS

The performance comparison, as shown in Table II, clearly
illustrates the substantial improvements gained by applying
KD, especially with a DualKD approach. Initially, employing

TABLE II: Performance Comparison of ResNet8

Model Accuracy (1) | Precision () | Recall (1)
ResNet8 (Base) 87.76 87.7 87.76
ResNet8 (EfficientViT) 91.77 91.74 91.77
ResNet8 (MobileViT) 91.06 91 91.06
ResNet8 (Dual) 92.88 93.07 92.88

Bold denotes the best values.

TABLE III: Performance Comparison of ResNetl16

Model Accuracy (1) | Precision (1) | Recall (1)
ResNetl6 (Base) 92.9 9291 92.9
ResNet16 (EfficientViT) 94.49 94.52 94.49
ResNet16 (MobileViT) 93.29 93.33 93.29
ResNet16 (Dual) 96.46 96.52 96.46

Bold denotes the best values.

KD with single feachers like EfficientViT and MobileViT
boosts ResNet8’s accuracy from 87.76% (base model) to
91.77% and 91.06%, respectively, demonstrating increases of
approximately 4% over the baseline. Precision and recall also
reflect similar enhancements. However, the dual-feacher setup
achieves the best results, increasing accuracy to 92.88% - a
total improvement of 5.12% over the base model. Precision
and recall also reach peak values of 93.07% and 92.88%,
showing the most significant gains. This highlights how lever-
aging semantic insights from both teachers allows the model
to capture richer, more nuanced features, resulting in a marked
increase in performance across all metrics.

Similarly, the performance comparison for ResNet16 in Ta-
ble III demonstrates the significant gains achieved through KD,
particularly with a DualKD approach. Utilizing single-teacher
KD models like EfficientViT and MobileViT already enhances
ResNet16’s performance, with EfficientViT increasing accu-
racy from 92.9% (base model) to 94.49%—an improvement of
1.59%—and MobileViT achieving a slight increase to 93.29%.
However, the dual-feacher configuration yields the highest
performance across all metrics, boosting accuracy to 96.46%,
a total improvement of 3.56% over the base model. Precision
and recall are similarly elevated, reaching 96.52% and 96.46%,
respectively, marking the most substantial gains. Once again,
this result underscores the DualKD strategy’s effectiveness
in enhancing ResNetl6’s predictive capability, demonstrating
that combining semantic insights from two teachers allows
for a more comprehensive knowledge transfer, significantly
improving the model’s overall performance.

However, despite these advancements, the StuMs still fall
short of matching the performance levels of the TeaMs, as
summarized from [13]. The EfficientViT TeaM achieves an
impressive accuracy of 98.76%, precision of 98.77%, and
recall of 98.76%. MobileViT, the highest-performing model in
this comparison, reaches an accuracy, precision, and recall of
99.09%. This difference highlights the gap between the StuMs
and their teacher counterparts, illustrating that while KD with
dual feachers substantially narrows the performance gap, the
StuM's have yet to achieve the full predictive capacity exhibited
by the reachers.

Authorized licensed use limited to: University of Luxembourg. Downloaded on November 07,2025 at 22:07:26 UTC from IEEE Xplore. Restrictions apply.



2025 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN)

TABLE IV: Model Comparison on Parameters, FLOPs, Size, Inference Time, and Power Consumption

Models Total Parameters (/) FLOPs ({) Size (MB) () | Inference time (s) () | Power (W) ()
ResNet8 98,522 60,113,536 5.95 5.84 10.94 + 0.83
ResNetl16 195,738 117,883,520 10.01 6.7 24.63 £+ 1.63
EfficientViT [13] 3,964,804 203,533,056 38.19 10 29.04 £ 0.96
MobileViT [13] 4,393,971 1,843,303,424 259.30 16 79.23 £ 1.45
Bold denotes the best values.
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mance underscores its effectiveness as a StuM under the Forest -
DualKD approach. The key advantage of using ResNet8 lies 00
in its significantly lower complexity compared to its TeaMs, Herbacsoustiegetation
EfficientViT and MobileViT, making it exceptionally suitable Highuay o00
for deployment in resource-constrained environments.
As summarized in Table IV, with a parameter count of Indlustrial 4 200
only 98,522, ResNet8 is 97.5% smaller than EfficientViT = -
. . sture - |
(3,964,804 parameters) and 97.8% smaller than MobileViT 0
(4,393,971 parameters). It requires just 60,113,536 FLOPs, PermanentCrop -

representing a 70.5% reduction compared to EfficientViT
and an impressive 96.7% reduction compared to MobileViT.
Additionally, ResNet8’s model size is only 5.95 MB, making
it 84.4% smaller than EfficientViT (38.19 MB) and 97.7%
smaller than MobileViT (259.30 MB). The inference time
is equally optimized, with ResNet8 achieving 5.84 seconds,
which is 41.6% faster than EfficientViT and 63.5% faster than
MobileViT. Its power consumption is also considerably lower
at 10.94 W + 0.83 W, which is 62.3% less than EfficientViT
and 86.2% less than MobileViT. These reductions in complex-
ity, size, and energy demands highlight ResNet8’s suitability
for real-world applications where computational resources and
power efficiency are critical. By maintaining high performance
with low complexity, ResNet8 demonstrates the effectiveness
of DualKD in creating a lightweight model that meets both

-300

Residential -
-200

River -
-100

w
1)
1<)
)
=)
=
=)
=)
o

Sealake -

AnnualCrop -
Forest -
Highway -
Industrial -
Pasture -
PermanentCrop -
Residential -
River -

Sealake

HerbaceousVegetation -

Predicted

Fig. 4: Confusion matrix from ResNet8 (top) and ResNet16 (bottom)
with DualKD.

predictive confidence and deployment constraints.
Figure 3 shows the training and evaluation accuracy for
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ResNet8 and ResNet16 with DualKD shows an initial phase
of fluctuations, particularly in the evaluation metrics. During
the first 20 epochs, both models experience notable variability,
reflecting the model’s adaptation to the dual-teacher signals.
However, after 20 epochs, both ResNet8 and ResNet16 curves
smooth out and converge, indicating stabilized learning and
consistent improvement. Notably, ResNet8 exhibits a better
convergence pattern than ResNetl6, as evidenced by the
smaller gap between its training and evaluation accuracy. This
narrower difference suggests that ResNet8 generalizes more
effectively, maintaining closer alignment between its train-
ing and evaluation performance. While ResNetl16 ultimately
achieves higher overall accuracy, comparing the confusion
matrices of Fig. 4, it does so with a larger training-evaluation
gap and at the cost of increased complexity—approximately
double that of ResNet8. Given the marginal performance
gain relative to its added computational cost, ResNetl6 may
not be worth the additional complexity, making ResNet8 the
more efficient for applications requiring a balanced trade-off
between accuracy and power consumption.

V. CONCLUSIONS

In conclusion, this study demonstrates the effectiveness of
DualKD in enhancing the performance of lightweight StuM:s,
specifically ResNet8 and ResNet16. Both models achieve over
90% accuracy, precision, and recall, meeting the required con-
fidence level for reliable predictions and showing substantial
improvements over baseline performances. ResNet8, in par-
ticular, strikes an optimal balance between high accuracy and
efficiency, with significantly lower parameter counts, FLOPs,
inference time, and power consumption.
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