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Heart Rate and Body Temperature Relationship
in Children Admitted to PICU: A Machine
Learning Approach

Emilie Lu®, Thanh-Dung Le

Abstract—Vital signs are crucial clinical measures, with
body temperature (BT) and heart rate (HR) being particu-
larly significant. While their association has been studied
in adults and children, research in Pediatric Intensive Care
Unit (PICU) settings remains limited despite the critical con-
ditions of these patients. Objective: This study examines
the relationship between HR and BT in children aged 0 to
18 admitted to the PICU at CHU Sainte-Justine (CHUSJ)
Hospital. Methods: Machine learning (ML) techniques, in-
cluding Gradient Boosting Machines (GBM) with Quantile
Regression (QR), were applied to capture the relationship
between HR, BT, and age, optimizing model performance
through hyperparameter tuning. Results: Analyzing data
from 4006 children, we observed a consistent trend of de-
creasing HR with increasing age and rising HR with higher
BT ranges. Linear models often underestimated HR at lower
BT ranges and overestimated it at higher ranges, especially
in younger age groups. The GBM model demonstrated im-
proved accuracy and supported a user-friendly interface
for HR predictions based on BT, age, and HR percentiles.
Qualitative observations indicated that linear models un-
derestimated HR at lower BT ranges and overestimated
it at higher ones, particularly in younger children. These
findings challenge the direct linear association assumed
in prior studies. Conclusion: This study provides new in-
sights into the non-linear dynamics between HR, BT, and
age in critically ill children, emphasizing further research to

quantify and understand these relationships. Significance:

By refining predictive models and re-evaluating traditional
assumptions, this work provides valuable insights for im-
proving clinical decision-making in PICU settings.
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[. INTRODUCTION

EDIATRIC Intensive Care Unit (PICU) patients’ health
P requires particular attention and ongoing monitoring [1].
Due to their severe conditions or illnesses, these children, par-
ticularly those aged O to 18 years old, have distinct physiological
characteristics requiring special medical evaluation and care
[2]. In the PICU of CHUSJ, caregivers often use the Clinical
decision support systems (CDSS) in their practice to improve
the quality of patient care and outcome [3]. In this high-risk
environment, healthcare practitioners rely on vital sign monitor-
ing as fundamental indicators of patients’ health across all age
groups during their hospitalization [4]. These indicators assist in
making clinical decisions and facilitate prompt interventions if
necessary. Among these vital signs, heart rate (HR) and body
temperature (BT) are crucial parameters providing essential
information about a child’s health, as their relationship can be
influenced by age, agitation, stress, infection, shock, physiologi-
cal distress, or underlying illness [5], [6]. Consequently, HR and
BT offer invaluable insights for guiding physicians in clinical
decision-making [7].

Firstly, HR is fundamental in assessing a person’s overall car-
diac health [8]. This metric varies depending on the child’s age,
as highlighted by Pediatric Advanced Life Support (PALS) data,
where awake patients’ reference HR values are age-dependent
[6], [9]. Newborns under 28 days of age typically have an
HR ranging from 85 to 205 beats per minute (bpm), while
infants and toddlers aged 1 to 24 months fall between 100
and 190 bpm. In children from 2 to 10 years old, the normal
HR ranges between 60 and 140 bpm. Adolescents between 10
and 18 years old usually maintain an HR averaging between
60 and 100 bpm. Monitoring patients’ HR can be an early
indicator of various medical conditions [10]. Deviation from
the normal HR range can signal underlying health conditions
or potential complications. For example, bradycardia, an abnor-
mally low HR, leads to reduced blood flow to organs, leading to
dizziness, fatigue, shortness of breath, loss of consciousness,
and signs of heart failure [11]. Conversely, tachycardia, i.e.,
high HR, can indicate a severe medical condition, such as
shock [12].

0018-9294 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html
for more information.

Authorized licensed use limited to: University of Luxembourg. Downloaded on November 07,2025 at 22:10:51 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0009-0001-5933-9047
https://orcid.org/0000-0003-0782-8698
https://orcid.org/0000-0001-5684-3398
https://orcid.org/0000-0002-4519-1686
mailto:emilie-sokuntheavy.lu.1@ens.etsmtl.ca

LU et al.: HEART RATE AND BODY TEMPERATURE RELATIONSHIP IN CHILDREN ADMITTED TO PICU

2353

Additionally, BT regulation is vital for assessing an individ-
ual’s overall health and reflecting the body’s heat production and
balance, which are crucial for optimal physiological functions.
The regulation of BT is managed by the hypothalamus, a central
region within the brain that acts as the body’s temperature control
center. This process, called thermoregulation, aims to adjust BT
based on signals perceived by thermoreceptors in blood and
skin. The primary goal is maintaining a normal BT around
37 £ 0,5°C, varying slightly in infants and young children.
The hypothalamus plays a crucial role in initiating necessary
adjustments in temperature fluctuations, whether a decrease or
an increase. Extreme temperatures beyond normal ranges indi-
cate health issues: low temperatures (hypothermia) suggest cold
responses or medical problems that can potentially lead to severe
complications. Elevated temperatures (hyperthermia), triggered
by various external factors, such as infection, environmental
temperature, or disruptions in the body’s thermoregulation sys-
tem, often signals illness. Consistent temperature checks are
important in early illness detection, enabling timely medical
interventions. This practice is essential for taking precautionary
measures to avert physiological dysfunction and protect organs’
structure and function from damage [13].

A distinct pattern is observed in the pediatric population from
0 to 18 years, where HR tends to decrease with age after the
initial month. Notably, there is an observed tendency for HR
to rise during the first month following birth, reaching its peak
before gradually decreasing [9]. Insights from studies on hos-
pitalized children in primary care and emergency departments
consistently show that BT is an independent factor influenc-
ing HR, resulting in an average increase of around 10 bpm
per degree centigrade [6], [10]. More specifically, the studies
[14] and [12] highlighted an age-specific influence of BT on
HR. Every 1°C BT increase in children with acute infections
correlates with an HR rise ranging from 9.9 to 14.1 bpm [14]. In
contrast, in children aged 0-16 years old attending urgent and
emergency care, the influence of a 1°C increase in HR shows
a range of 8.7 to 13.7 bpm, with the observed average being
12.3 bpm [12].

In adults admitted to the emergency department, it has been
observed that a 1 °C increase in BT leads to an approximately
7 bpm increase in HR [15]. In contrast, among acute patients
within the emergency department, the results indicate that the
group of patients with a high BT, i.e., greater than 37.2°C,
exhibited the most significant changes in HR, with an increase
of 7.4 + 0.9 bpm per degree [5]. In critically ill adults admitted
to the Intensive Care Unit (ICU), it was observed that within the
temperature range of 32.0° to 42.0 °C, alinear correlation existed
between BT and HR. Specifically, for every 1 °C increase within
this range, the HR showed a linear increase of 8.35 £ 0.50 bpm
(p < 0.0001) [16].

Regarding the mentioned findings above, the diverse tech-
niques employed to model the relationship between HR and BT
in children and adults reflect the complexity of this physiological
association. In studies with children, approaches ranged from
percentile curves using advanced statistical distributions [10] to
quantile regression with polynomial equations [6], centile charts

1. Data collection
* 4489 patients admitted to PICU at CHUSJ
from August 2018 to October 2022

2. Data preprocessing

« exclude patients on Extracorporeal membrane oxygenation (ECMO)
« exclude patients with a pacemaker

« exclude patients supported by a Berlin heart

« exclude data from patients who have moved

« normalise BT

« exclude data from patients undergoing specific mediation treatment
« calculate HR median at 1 minute interval

« associate HR and BT within 10 minutes window

« exclude extreme values of HR

« group data per 1°C body temperature range

« keep single observation per patient per temperature group

3. Machine learning
« Conventional Linear Regression (LR, MLR, PR, SVM, statistical modeling)
* Quantile regression performed with :

a) Conventional ML as linear kernel (OLS)

b) Conventional ML as non-linear kernel (GBM, RF)

c) DL as non-linear kernel (MLP, RNN, LSTM)

4. Performance metrics
a) Conventional LR (R2, MSE)
b) Quantile regression (Quantile loss)

5. Expected output
* Model to predict HR based on BT and age

Fig. 1. Workflow to model the relationship between HR and BT.

[14], and multiple linear regression models [12]. Similarly, in
adult studies, techniques such as linear regression [15], linear
and multiple variable regression analyses [5], and multiple
linear regression with various covariates [16] demonstrated a
multifaceted understanding of the HR-BT relationship. These
methods illustrate the diverse approaches to understanding the
HR-BT relationship in different age groups. The findings high-
light the need for age-specific considerations, centile charts, and
flexible modeling approaches to improve clinical assessments
and guide medical interventions. However, the focus on critically
ill children remains significantly limited despite the complexity
of their medical conditions. Moreover, acknowledging the ex-
isting limitations in which traditional methods may not have
captured the complexity of the association, the utilization of
Machine Learning (ML) and Deep Learning (DL) techniques
would enable a more in-depth analysis to accurately capture
the intricate patterns between the two vital signs in critically ill
children.

[I. MATERIALS AND METHODS

This study was conducted following ethical approval from
the research ethics board at CHU Sainte-Justine (CHUSIJ).
The approved protocol number is 2023-5201. Fig. | represents
an overview of the workflow for this study. There are four
main steps, including data collection, data preprocessing, ML
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modeling, and evaluation of the expected output. Those steps
are discussed in detail as follows:

A. Data Collection

Since 2015, a high-resolution database has been in operation
at CHUSJ, collecting clinical data from patients admitted to
the PICU at 1-second to 5-second intervals from monitors.
Patients were continuously monitored during their stay until
their discharge [17]. This project aims to establish a relationship
between HR and BT. Patients at CHUSJ PICU were closely
monitored for both physiological markers. For BT, continuous
monitoring occurred at 30-second intervals, complemented by
manual measurements taken every 2-4 hours. The measurement
method varied based on the patient’s age and included using
rectally, esophageal, or axillary temperature probes. HR was
monitored using electrodes on the patient’s chest, generating
an electrocardiogram (ECG). Alternatively, HR could also be
obtained using a pulse oximeter attached to the patient’s finger,
which provides oxygen saturation data and HR measurements.

Children from 0 to 18 years old who were admitted to the
PICU between August 2018 and October 2022 with HR and BT
records were included in the study. Certain patient groups were
excluded from the study in this population to avoid potential con-
founding factors that interact with BT and HR values. Therefore,
removing these data points was essential to achieve accurate
modeling. Patients on extracorporeal membrane oxygenation
(ECMO), with a pacemaker, or supported by a Berlin heart were
excluded. By excluding those patients, our data extraction pro-
cess yielded information from 4,007 patients admitted between
August 2018 and October 2022. From this patient cohort, we
extracted patient age at admission, 4 days (96 hours) of HR
and BT (value, temperature site, measurement type such as
continuous or manual) data along with the corresponding date
and time of acquisition, comfort scores and specific medication
treatment with the day when the drug treatment was finished.

The average length of stay for the 4,007 pediatric patients
included in this study was 7.30 days, with a standard deviation
of 29.28 days. We extracted HR and BT data for up to 96 hours
(4 days) from each patient’s record. For patients with less than 4
days, we used all available HR and BT measurements within the
recorded time frame. For patients with more than 4 days of data,
only the first 96 hours of data were included in the analysis.
This was done to ensure uniformity across the cohort and to
focus on the most critical period of the PICU stay, where the
majority of significant physiological changes are likely to occur.
However, it is possible that including data beyond the 4-day
window could provide additional insights, especially for patients
with longer stays. Future studies could explore the inclusion of
longer observation periods to evaluate its potential impact on the
predictive accuracy of our model.

B. Data Preprocessing

Data preprocessing is a fundamental initial step in preparing
patient data for the ML algorithm. Effective data preprocessing
ensures data quality issues that can impact the validity of any

conclusions drawn [18]. To get better reliability of subsequent
insights, the process involves the following tasks:

1) Exclude Data From Patients Who Have Moved:
Child’s movements, including when a patient is restless, crying,
or screaming, were excluded from the study. The analysis of the
following comfort scores assisted in identifying and excluding
data from patients who have moved. In this study, we focused on
the relationship between HR and BT during calm, non-moving
states because physical activity or agitation can significantly
alter this relationship.

1) Cornell Assessment of Pediatric Delirium (CAPD)
scale was used in PICU for invasively ventilated chil-
dren who have fluctuations in awareness, attention, and
cognition [19]. The evaluation had 8 questions, and each
answer was associated with a score between 0 and 4. The
total of these scores determined the outcome; delirium
would be absent if the scores were less than 9.

2) Comfort Behavior (Comfort B) was used to assess pain
in ventilated and sedated patients [20]. The score involved
observing 6 behaviors (awakening, agitation, ventilation,
movement, facial expression, muscle tone) rated on a
scale of 1 to 5 to determine the perceived pain level. A
total score between 11 to 17 indicated a normal score
where the patient had no pain.

3) FLACC (Face, Legs, Activity, Cry, Consolability) scale
was used to evaluate pain in noninvasive patients under 6
years [19]. Each behavior was scored on a scale from 0
to 2, and patients were included in our study if they had
a total score between 0 and 3. This range indicated the
absence of pain or mild pain.

4) revised FLACC (r-FLACC) was used for patients with
intellectual disability [19]. The evaluation was executed
the same way as the FLACC scale.

5) Visual numeric Scale (VNS) was used to evaluate and
monitor pain for patients over 6 years with the ability to
communicate [19], [20]. The patient evaluated the pain
on a scale of 10, with a score between 0 and 3 indicating
the absence of pain or mild pain.

6) Richmond Agitation-Sedation Scale (RASS) was a
scale used to evaluate agitation and sedation [19]. We
only kept data with scores between —5 and +1, which
signified instances of physical and verbal stimulation.

Based on scores extracted from the database, we assigned
movement or not based on the score. Afterward, we associated
the scores with the nearest date-time values of BT value since it
was monitored at a lower frequency (hours) than HR (seconds).
If any of the scores indicated the presence of movement, we
excluded the data associated with those movement instances to
work with data from calm and non-moving patients.

2) Normalize Body Temperature: We normalized the tem-
perature data, specifically for measurements obtained from the
axillary site, to ensure consistency and accuracy in our analysis.
The interpretation of axillary temperatures was underestimated
by approximately 0.5 °C compared to other methods. Temper-
ature documentation in the PICU was done by recording the
actual temperature value displayed on the thermometer. The
site from which the temperature was taken (oral, axillary, or
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rectal) was also noted. Among these methods, rectal temperature
measurement was usually considered the most precise [21].

3) Exclude Data From Patients Undergoing Specific
Medication Treatment: Patients in the PICU who received
Dexmedetomidine and medication affecting HR were only in-
cluded once their medication treatment was completed. Specifi-
cally, medications used to treat heart conditions that slow down
HR included antiarrhythmics, beta-blockers, calcium channel
blockers, digoxin, and ivabradine [22], [23]. Conversely, med-
ications that increased HR included Dobutamine, Dopamine,
Epinephrine, Milrinone, Norepinephrine (or Noradrenaline),
and Salbutamol. To exclude the medication administration pe-
riod, we excluded data when the monitored timestamp of vital
signs coincided with the medication administration.

4) Calculate Heart Rate Median at 1-Minute Interval: In
the PICU, HR values were recorded initially every second for
all patients. Given the high frequency of measurements, we
simplified the data volume by doing data aggregation. More
specifically, calculating the median HR at one-minute intervals
made the original high-frequency HR data more manageable and
insightful.

5) Associate HR and BT Within 10 Minutes Window: Es-
tablishing the association between HR and BT was important
as it provided valuable insights into the patient’s physiological
response. Since HR and BT were monitored at different PICU
intervals (seconds vs. hours), we associated these two variables
by calculating the median of HR measurements within a 10-
minute window, more precisely, within = 5 minutes of each BT
timestamp.

6) Exclude Extreme Values of Heart Rate: Extreme HR
measurements—yvalues lower than 30 or higher than 240 bpm—
were excluded from the dataset. We hypothesized that these
numbers could result from unusual clinical diseases or data
entry errors, which could have introduced inaccuracies in the
analysis. By removing these outliers, we wanted to ensure our
dataset was more resilient and reliable. This would have allowed
us to base future analysis and modeling efforts on a more
accurate depiction of physiological parameters within the target
population.

Regarding extreme HR values, we excluded observations with
temperatures below 30 °C or above 43 °C and HR values below
30 or above 240 beats per minute, as these readings often indicate
data entry errors or rare clinical conditions that could skew
the analysis. HR values below 30 or above 240 bpm, as these
readings often indicate data entry errors or pre-death (HR below
30/min) or tachy arrythmia (HR above 240/min) conditions that
are not linked to core temperature but states that require specific
interventions. Our approach aligns with previous studies, such
as [10], which also excluded similar extreme values to maintain
data quality and accuracy in their analyses. We recognize that
excluding these data points limits the model’s applicability to
less critical cases, and future research should focus on finding
advanced techniques to handle motion and outliers to develop
more generalized conclusions applicable to a broader patient
population.

7) Group Data Per 1°C Body Temperature Range: We
segmented the data into temperature ranges of 1 degree Celsius

(°C) each to conduct specific temperature value analyses. This
temperature-based segmentation created groups ranging from
33°C to 33.9°C up to 40°C to 40.9 °C. By doing so, we per-
formed detailed investigations into how patient’s physiological
responses vary across different temperature ranges, providing
insights that could be valuable for clinical and research purposes.

8) Keep Single Observation Per Patient: The decision to
preserve only one observation per patient per temperature in-
terval was implemented to address the substantial variability in
data volume per patient and ensure our dataset’s integrity and
balance. By reducing the data to a single observation per patient
per interval, we aimed to give each patient an equal contribution
to the final model, avoiding any skew caused by patients with
disproportionately more data points. Our analysis selected the
observation closest to the group’s median value for each patient
with multiple HR-BT observations within the same BT group
(e.g., 36.0 to 36.9°C). This approach aimed to minimize bias
from extreme values or outliers while selecting a representa-
tive HR-BT pair for that temperature range. For patients with
multiple BT values across different temperature groups (e.g.,
36.0t036.9°C, 37.0to 37.9°C, etc.), we preserved one HR-BT
observation per BT group to ensure the relationship between
HR and BT was captured across the range of temperatures
experienced. This process resulted in approximately one HR-BT
observation per patient per BT group, reducing redundancy
and maintaining a manageable dataset. However, relying on the
population-level median as a reference may introduce bias by
favoring group-based patterns over individual-specific nuances,
potentially overlooking the unique HR-BT relationship for each
patient. A more tailored approach, such as using the patient’s me-
dian HR within the BT range as a reference, could better reflect
individual variability. While our method effectively balanced
representation and dataset efficiency, future work should explore
more advanced strategies, such as incorporating all available
data points or employing patient-specific reference values, to
enhance the model’s robustness and generalizability.

After preprocessing, our dataset comprised 4462 pairs of
HR-BT values represented in Table I. The values were organized
based on BT values, where we used temperature grouping with
1-degree increments. This decision allows for a more granular
representation of temperature variations and makes it easier for
the ML algorithm to identify patterns in the data [18]. Moreover,
the table provides a breakdown of patient counts according
to the patient’s age, offering additional insights into the age
distribution within the dataset. The age groups include newborn
(0-28 days), infant (29 days - 1 year), toddler (1-2 years),
child (2-12 years) and teenager (12-18 years). This meticulous
grouping strategy corresponds to the Food and Drug Adminis-
tration (FDA) standard age categorization, with a more detailed
grouping specifically for patients aged 1 to 2 years [24]. It also
facilitates a more nuanced analysis, considering temperature
variations and age-specific patterns in pediatric patients.

Our main goal was to accurately capture the true relationship
between HR, BT, and age in stable states of pediatric patients
admitted to the PICU. Data down-selection during preprocessing
was necessary to ensure the dataset’s quality, as data quality
directly influences the ML model’s ability to identify meaningful
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TABLE |
NUMBER OF OBSERVATIONS AND PERCENTAGES FOR EACH BODY TEMPERATURE CATEGORY BY AGE GROUP FOLLOWING DATA PREPROCESSING

HBT range (°C) Newborn Infant Toddler Child Teenager Median HR (bpm) Total Percentage”

33339 2 2 0 1 I 105 6 0.14%
34-34.9 8 3 0 4 2 118 17 039%
35-35.9 10 15 3 18 13 113 59 134%
36-36.9 110 335 139 640 391 114 1615 36.77%
37-37.9 136 442 201 752 420 119 1951 44.42%
38-38.9 48 168 53 243 117 131 629 14.32%
39-39.9 5 2 13 78 28 133 152 3.46%
40-40.9 0 3 2 21 7 132 3 075%

[ Subtotal 39 99 4111757 979 462 100% |

patterns. Therefore, we removed instances that could introduce
confounding factors, such as patient motion or extreme HR
values, as these factors can introduce noise into the model,
potentially leading to prediction inaccuracies. Previous studies
have predominantly focused on the linear relationship between
HR and BT; however, our observations suggest that this relation-
ship is not clearly linear, with linear models underestimating or
overestimating HR in specific BT and age ranges, as evidenced
by the improved accuracy of our GBM model. Additionally, the
number of data points per patient varied, which could lead to
an imbalance in the model. To address this, we ensured that
each patient contributed equally to the final model. We selected
observations that were the most representative of stable states to
achieve a balanced dataset. While this approach helped us focus
on capturing the fundamental dynamics between HR, BT, and
age, we acknowledge that it may also result in the loss of some
information. Originally, our dataset included 10,135 HR-BT
pair values, which were reduced to 4,462 observations for 4007
patients after applying our down-selection strategy. While this
represents 56% data loss, this approach avoids overrepresenting
patients with disproportionately large data points, ensuring that
no single patient dominates the dataset. However, we recognize
that this method may lead to a loss of variability, as only a
subset of the available data is retained. While this reduces noise,
it may limit the ability to capture finer details in individual
patient variations, which we highlight as a limitation in our
study. In future studies, preserving as much data as possible
and employing advanced techniques to handle motion artifacts
and outlier values will be crucial. This will help develop models
with more generalized conclusions that apply to a broader range
of clinical conditions.

C. Machine Learning

Following the preprocessing steps, the objective is to capture
the intricate relationship between HR and BT in critically ill
pediatric patients. We will validate this finding with our data
by employing conventional linear regression models based on
previous studies highlighting linear relationships. For this study,
four popular algorithms were used for modeling the linear
relationship [18]:

1) Conventional Linear Regression:

a) Linear Regression (LR) is used to determine the best lin-
ear function that fits a given set of input-output pairs [18].
This approach was also used by Kirschen, Singer, Thode
Jr, & Singer, 2020 and Jensen & Brabrand, 2015 where

they respectively observed that a 1 °C rise in BT would
cause a7 bpmanda 7.4 £ 0.9 bpm increase in HR among
adults admitted to the emergency department [5], [15].
The limitation of this technique is only one independent
variable can be used to predict the dependent variable,
making this approach less accurate for prediction. [18].

b) Multiple Linear Regression (MLR) is also used to build

a linear model to predict the dependent variable related
to one or many independent variables, which makes this
technique a better prediction model than the linear regres-
sion [15]. This technique was used by Heal et al., 2022,
Jensen & Brabrand, 2015 and Broman, Vincent, Ronco,
Hansson, & Bell, 2021 where they all concluded in a linear
change between HR, BT and age [5], [12], [16].

c) Polynomial Regression (PR) with first degree, is a linear

regression equation. The first-degree polynomial, often
called simple LR, considers terms up to the first power,
resulting in a model where the response variable is a linear
function of the predictors. [18]

d) Support Vector Machine (SVM) can be used for both

classification and regression problems. In this work, we
employed the linear kernel, and the objective was to fit as
many data points as possible to the hyperplane line inside
the demarcation lines, known as the decision boundaries.
This approach’s strength is its excellent prediction accu-
racy and robustness against outliers. However, it does not
attempt to minimize the errors between the true and pre-
dicted values, in contrast to other regression algorithms
[18].

e) Statistical modeling approach by Davies & Maconochie,

2009 enabled them to predict HR at different quantiles,
leading to the conclusion that “BT serves as an inde-
pendent determinant of HR, resulting in an approximate
increase of 10 bpm per degree centigrade” [6]. In our
study, we used their established equation to determine its
coefficients, then evaluated its effectiveness in predicting
HR with our data [6]. Their statistical modeling is shown
below:

Expected HR value = BT - a + Age - b + (Age?)

- ¢ + constant (1)

where BT is the body temperature in °C and Age is the
age in month [6].

Authorized licensed use limited to: University of Luxembourg. Downloaded on November 07,2025 at 22:10:51 UTC from IEEE Xplore. Restrictions apply.



LU et al.: HEART RATE AND BODY TEMPERATURE RELATIONSHIP IN CHILDREN ADMITTED TO PICU 2357

2) Quantile Regression: Furthermore, we incorporated
Quantile regression (QR) into our analysis for a more com-
prehensive exploration, combined with various traditional ML
algorithms and DL models. This method allowed us to go
beyond linear assumptions and enhanced our ability to uncover
linear and non-linear patterns in our dataset. We also included
interaction terms BT and age to enhance the accuracy of the
predictive model for HR and provide a more comprehensive
understanding of the dynamic.

QR is a statistical method used to estimate the response
variable at various quantiles (e.g., 0.10, 0.25, 0.50, 0.75, 0.90).
Its primary purpose is to analyze the impact of predictor vari-
ables (independent variable) on the output variable (dependent
variable) across these quantiles. Unlike traditional regression
methods, such as Least squares regression, which focus on esti-
mating the mean, QR can offer insights into how the predictors
influence various parts of the response distribution, making it
valuable in situations where the relationship is not uniform
across all quantiles and suitable for capturing a broader range
of information about the response variable [25]. This method
is typically utilized when the assumptions of linear regression
are unmet. One of the advantages of QR lies in its robustness,
as it is less sensitive to outliers compared to the least squares
method. This robustness enhances the reliability of the technique
in the presence of atypical data points. Additionally, QR offers
flexibility by enabling the capture of the entire distribution of
the outcome variables, providing a more comprehensive view of
the relationship between variables. Moreover, it addresses the
issues related to heteroscedasticity, where the variance of the
dependent variable varies differently depending on the levels
of the independent variable. This implies that the variance of
residuals is not constant across all levels of the response variable
[25]. Another benefit of using QR is that we may customize the
kernel, which allows us to improve our capacity to identify and
comprehend subtleties in the relationships between variables.
Because of its adaptability, we continue to analyze three different
kernels: conventional ML as a linear kernel, conventional ML
as a non-linear kernel, and DL as a non-linear kernel.

a) Conventional ML as a linear kernel

i) Ordinary Least Squares (OLS) is utilized to
model and estimate the coefficients of a linear
relationship between variables, particularly when
the assumed relationship is linear. OLS aims to
comprehend the correlation between variables and
make predictions while minimizing the sum of all
squares, also called the residual sum of squares
(RSS), which is the difference between observed
and predicted values. This method proves efficient
in providing accurate parameter estimates when
the assumption of linearity holds. It also offers in-
terpretability where the coefficients present clear
insights into the relationship between the variables
[26].

b) Conventional ML as a non-linear kernel

i) Gradient Boosting Machine (GBM) creates a
predictive model in the form of a decision tree,
where each tree in the ensemble corrects the errors

of its predecessor, leading to an overall model with
enhanced accuracy and robustness. The primary
objective of GBM is to generate a predictive model
capable of capturing complex relationships in the
data. This versatile technique can be applied to
both regression and classification problems. One
of its key strengths lies in its iterative improvement
process, where subsequent trees focus on address-
ing the residuals left by previous ones. Its iterative
and sequential construction allows it to capture
and model complex, non-linear interactions be-
tween variables. This flexibility makes GBM a
valuable tool for tasks where the underlying rela-
tionships may not follow a simple linear structure.
Some notable advantages of GBM include high
predictive accuracy, the capability to handle both
linear and non-linear relationships effectively, and
robustness against overfitting. The model’s ability
to learn from its mistakes and continuously refine
its predictions makes it a valuable tool for tasks
requiring precision and adaptability in the face of
complex data structures [27], [28], [29].

ii) Random Forest (RF) constructs many decision
trees, each built on a subset of the data during
training. Consequently, the output represents these
trees’ mean or average prediction for regression
problems. Each tree focuses on a specific sub-
set, and the final prediction aggregates these in-
dividual tree predictions. The algorithm offers
several benefits: flexibility to handle regression
and classification problems, robustness against
overfitting compared to decision trees, ability to
highlight feature importance for better predictive
performance, effectiveness in capturing complex
relationships and non-linear patterns, and reduced
sensitivity to outliers [30].

¢) Neural network as a non-linear kernel

The decision to use these advanced methods was driven
by the need to address non-linear associations and out-
liers within the dataset, which are challenging to model
using traditional approaches. Quantile Regression was
specifically chosen to provide a robust analysis of the
data distribution across different percentiles, highlighting
variations in HR that mean-based methods could obscure.
In neural network models, we design a small-scale model
with only three hidden layers and a small number of
neurons. Additionally, we employed techniques like early
stopping to mitigate overfitting and ensure that the models
generalized well despite the limited data points.

i) Recurrent Neural Network (RNN) is designed
to discover patterns in sequential data, making
them suitable for time series analysis and natural
language processing. Their fundamental advan-
tage lies in their ability to use their collection of
previous inputs to make real-time decisions by
doing the same task on each sequence element.
This model’s incapacity to provide background

Authorized licensed use limited to: University of Luxembourg. Downloaded on November 07,2025 at 22:10:51 UTC from IEEE Xplore. Restrictions apply.



2358

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 72, NO. 8, AUGUST 2025

knowledge over an extended period is one of its
limitations [31].

ii) Long Short-Term Memory (LSTM), an ad-
vanced form of RNN, addresses the issue of learn-
ing long-term dependencies. Its unique architec-
ture incorporates four interacting layers contain-
ing chains of repeated modules. This model’s
memory cells enable it to store and retrieve infor-
mation selectively over time. This makes LSTMs
highly effective in tasks requiring understanding
context over extended periods [31], [32].

iii) Multilayer Perceptron (MLP) is characterized
by three layers (input, hidden, and output layers)
of interconnected nodes (neurons), where each
node in one layer is linked to every node in the
next layer with associated weights. Also known
as a supplement of feed forwards NN, the data
move in one direction from the input, hidden to the
output layer. The multiple hidden layers represent
the computational engine of MLP. It facilitates
feature learning, allowing the network to acquire
hierarchical representations of data and capture in-
tricate patterns and features due to their nonlinear
characteristics. Moreover, The MLP’s adaptability
and effectiveness make it a popular choice for
various ML applications, including regression and
classification [33].

D. Performance Metrics

The following performance metrics were used to assess the
effectiveness of ML and DL models. We used R-squared and
Mean square errors to evaluate conventional linear regression.
While QR models were evaluated using quantile loss. These
metrics provided a comprehensive evaluation of the models’
performance, offering insights into their ability to predict and
capture the underlying patterns within the data. Each metric
contributed to a nuanced understanding of the model’s accuracy
for the regression task [34].

- R-squared (R2), or the coefficient of determination, repre-
sents “the proportion of variance in the dependent variable (out-
put) that is predictable from the independent variables (input)”
[35]. The interpretation of R2 provides a quantitative measure
of the quality fit. Potentially ranging from O to 1, an R2 value
near 1 indicates that the model explains all of the dependent
variable’s variability, signifying a robust fit. In contrast, an R2
value nearing O indicates that the model fails to explain the
variability in the dependent variable, implying a less effective
fit [36]. The R2 equation is defined below:

S (- V)2
Yim(Yi—Y)?
\yhere n is the number of ob~servations, Y, is the true value,
Y, is the predicted value and Y is the mean of Y values. More
precisely, the numerator is the sum of the squared residual (SSR),

representing the difference between the actual and predicted
values. The denominator is the total variations of the sum of

RZ=1- )

squares, representing the sum of the distance between the data
and the mean all squared [36].

- Mean Square Error (MSE) measures the average squared
difference between the true and the predicted values. Being only
apositive value, the interpretation of the MSE value is as follows:
a lower MSE signifies that the predicted values exhibit closer
proximity to the actual values, reflecting an enhanced overall
fit. This metric provides a standardized measure for evaluating
regression models’ precision and accuracy, facilitating straight-
forward comparisons between different models [37], [38]. The
MSE equation is defined below :

n

_1 2
MSE = —% (i —Yi) 3)

i=1

where n is the number of observations, Y; is the true value and
Yi is the predicted value. [37]

- Quantile Loss (QL), also known as Pinball Loss, is a
metric used in QR to calculate the performance of conditional
quantiles, providing insight into how well a model captures the
distribution of the data [39]. Unlike other ML algorithms, R2
is not a good metric to evaluate performance since it is not
based on distribution assumptions [40]. A reminder that QR is
a statistical method that aims to model the response variable’s
conditional distribution through different quantiles, allowing us
to have information on the entire distribution, not just the mean.
To interpret QL results, a low QL value means a superior per-
formance from the model, suggesting that the predicted values
closely align with the actual values at the designated quantile
[41]. The QL equation is shown below:

QL:(y,9) =max(r(y —9), (T =Dy —9)) &

where 7 is the quantile level, y is the true value, ¢ is the predicted
value [41]. To compare the performance of quantile regression
for each model, it is necessary to compute the total quantile
loss, achieved by calculating the average quantile loss across all
quantiles. This enables the performance analysis of all quantiles
within a model [42].

The ultimate goal is to identify patterns and associations and
develop a robust predictive model. The model aims to assist
healthcare professionals in anticipating changes in HR based
on variations in BT, age, and quantile of interest. Through the
integration of advanced ML methodologies, this study seeks
to propel the field of pediatric critical care forward, providing
clinicians with actionable insights to tailor interventions and
enhance overall patient care in the PICU.

IIl. RESULTS AND DISCUSSION

To ensure a reliable evaluation of our models, the
train test split functionin Scikit-learn [43] is a widely
used technique to partition a dataset into training and testing
subsets for machine learning tasks. It ensures a randomized
split based on specified proportions (80% for training and 20%
for testing) and shuffles the data by default to avoid biases
caused by the original order. In combination with early stopping
techniques, this strategy helps to monitor performance on a

Authorized licensed use limited to: University of Luxembourg. Downloaded on November 07,2025 at 22:10:51 UTC from IEEE Xplore. Restrictions apply.



LU et al.: HEART RATE AND BODY TEMPERATURE RELATIONSHIP IN CHILDREN ADMITTED TO PICU

2359

Heart rate as a function of age for children 0-18 years old admitted to the PICU with body temperature between 33 to 40.9°C
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Fig. 2.
TABLE Il
HYPERPARAMETERS FOR CONVENTIONAL ML MODELS
Hyperparameters | GBM RF
# Estimators 300 1000
Max depth 3 N/A
Learning rate 0.01 N/A
Min samples leaf 9 1
Min samples split 9 N/A
Random state N/A 3

TABLE IlI
HYPERPARAMETERS FOR NEURAL NETWORK-BASED MODELS

Hyperparameters | RNN | LSTM | MLP
Hidden layers 3 3 3

Epochs 200 200 200

Batch size 32 32 32

Units (#neurons) 64 64 512
Optimizer Adam | Adam | Adam
Learning rate 0.001 0.01 0.001

validation set, effectively preventing overfitting and improving
the model’s generalization capability.

For hyperparameter tuning, we employed a grid search tech-
nique, systematically testing different combinations of critical
parameters, as shown in Tables II and III, to identify the optimal
settings that maximize prediction accuracy. This method allowed
us to fine-tune each model to achieve the best performance based
on the specific characteristics of our dataset. We used early
stopping criteria for deep learning models to avoid overfitting
by halting training when the validation loss ceased to improve,
thereby ensuring that the model did not learn noise from the
training data.

Firstly, our initial findings from the research involve the gener-
ation of a graph showing HR concerning age for a temperature
range presented in Fig. 2. Upon analysis, we observe a trend
where HR decreases with the patient’s age. This observation
aligns with the findings presented in the article by the study [9].
The graphical representation provides valuable insights into the
relationship between age and HR within distinct temperature

1 23 456 78 910112 1 2 3 4 5 6 7 8 9 10 1

12 13 14 15 16 17 18
Age (Years)

Median heart rate as a function of age for children from 0-18 years old admitted to the PICU with body temperature between 33 to 40.9°C.

TABLE IV
MODEL PERFORMANCE FROM TRADITIONAL LINEAR MACHINE LEARNING
TECHNIQUES TO PREDICT HEART RATE FROM CHILDREN 0-18 YEARS OLD
WITH BODY TEMPERATURE BETWEEN 33 70 40.9°C

H Conventional linear regression R2 MSE H
Linear regression 0.3145  621.1870
Multiple Linear Regression 0.3563  583.2989
SVM (kernel: linear) 03152 620.5312
Statistical model (quantile=0.5)  0.3576  581.2691

ranges, highlighting a potential correlation that needs further
investigation. This initial exploration sets the foundation for a
more in-depth analysis of age-related variations in HR across
different BT intervals.

Expanding on these insights, we applied ML techniques to
uncover subtle patterns and dependencies within our dataset.
Each algorithm underwent meticulous hyperparameter tuning
to optimize the model performance. Hyperparameters were set
before the training process. Meticulous tuning suggests a careful
and detailed examination of these hyperparameters to achieve
the best possible performance from the model. It involves itera-
tively adjusting individual hyperparameters, training the model,
and evaluating its performance until an optimal configuration
is found. The goal is to enhance the model’s effectiveness and
accuracy. This meticulous approach to hyperparameter tuning
is essential for achieving optimal results and maximizing the
model’s potential.

Since prior research has consistently underscored the linear
association between HR and BT [5], [6], [10], [12], [14], [15],
[16], we initially used conventional linear regression models.
We started with LR to predict HR based on age for each BT
range. Subsequently, we explored MLR and PR degree 1 to
incorporate BT and age as independent variables. Finally, we
experimented with SVM with a linear kernel and the statistical
model. Examining the outcomes of our analyses, the perfor-
mances of these traditional linear regression methods in captur-
ing the linear relationship for BT ranging from 37 to 37.9 °C are
summarized in Table IV. The R2 values for the linear models
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ranged from 0.3145 to 0.3576. These values indicate that the
models explain approximately 31.5% to 35.8% of the variability
in HR based on BT. The relatively low R2 values suggest that
linear models are limited in capturing the complex relationship
between HR and BT, which may be influenced by non-linear
interactions or additional physiological variables not considered
in these models. Also, the MSE values range from 581.2691 to
621.1870, indicating the average squared difference between
the predicted and actual HR values. Higher MSE values reflect
more significant inaccuracies in the model’s predictions. In this
case, the linear models exhibit relatively high MSEs, suggesting
that their predictive accuracy is limited, likely due to the over-
simplified assumption of a linear relationship between HR and
BT. Our study uses advanced ML techniques to identify subtle
variations in HR that might not be detected using conventional
linear models, thereby providing a more accurate understanding
of the physiological interactions in critically ill children. Our
work sets the foundation for more sophisticated analysis in this
domain, challenging established views and encouraging further
exploration into the complex relationship between HR and BT.
From the comparative study, we can conclude that there are
no obvious linear relations between HR and BT because of
significantly small R2 values and a significant value of MSE
loss. These values suggest that the linear models struggled to
account for a substantial portion of the variability in HR based
on BT and age. Based on these findings, there may be a potential
need for more advanced methodologies to effectively capture the
intricacies of the relationship between HR and BT.

Our experimental findings suggest that linear models might
not be able to adequately capture the complexity of the re-
lationship observed in critically ill patients. This assertion is
supported by the studies [44], [45], highlighting the non-linear
correlation between HR and BT. Specifically, in Momo et al.
(2023) article [44], the authors critique the work of Heal et al.
(2022) [12], who utilized linear regression models to demon-
strate a significant increase in HR of 12.3 bpm for every 1°C
rise in BT among emergency department patients. Additionally,
Momo et al. (2023) underscore the significance of findings from
other studies employing non-linear models. These studies reveal
adistinct, curve-like increase in HR within the temperature range
of 37°C to 38 °C, highlighting the intricate relationship between
HR and BT [44].

The authors respond to the previously mentioned critiques
in the article by Heal et al. (2023). They acknowledge that
employing linear models may not be the most accurate approach
and suggest using polynomial regression. They also note that
contrary to earlier research suggesting a general 1°C increase
correlating with a 10 bpm rise, their findings indicate a 12.3
bpm increase, emphasizing potential variations within specific
temperature ranges. This distinction gains particular significance
when considering the application of such predictive tools to
individual patients in a clinical setting [45].

Since traditional linear models do not adequately capture the
complex and potentially non-linear relationship, we conducted
a comprehensive evaluation using QR performed with ML and
DL as a linear and non-linear kernel. Through this, we aim to
enhance the depth and precision of our analysis. The advantage
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Fig. 3. Comparison of quantile loss per quantile for each technique
for a body temperature range between 33 to 40.9°C from critically Il
patients 0-18 years old from 1 experiment.

TABLE V
MEAN TOTAL QUANTILE LOSS AND SD FROM 5 EXPERIMENTS FOR
DIFFERENT METHODS PERFORMED WITH QR WITH A TEMPERATURE
RANGE BETWEEN 33 70 40.9 °C FROM CRITICALLY ILL PATIENTS 0-18

YEARS OLD
H Model ~ Mean total quantile loss & SD H

GBM 6.5069 £+ 5.2507e-05

RNN 6.5633 + 0.0078
LSTM 6.5990 + 0.0144

MLP 6.6148 + 0.0236

OLS 6.6867 + 0.0

QR 6.6903 + 0.0

RF 7.6584 + 0.0

of QR lies in its ability to handle data with varying distributions
and to provide a more nuanced understanding of the conditional
distribution of the response variable across different quantiles
[25]. This is particularly relevant when the relationship between
variables may not be constant across the entire distribution. To
evaluate the models with QR, it is unsuitable to use R2, as
mentioned in the literature [40]. Instead, it is essential to investi-
gate the quantile loss (QL) for each quantile as the performance
metric for QR. The results presented in Fig. 3 reveal that the
lowest QL value is seen at each quantile in QR performed with
GBM, showing that the underlying relationship is effectively
captured.

To assess the performance of each model with QR, the
performance metric is the total quantile loss, representing the
overall performance across all quantiles within a model. This
metric is obtained by calculating the average QL across all
quantiles. The data presented in Table V detail the average total
quantile loss and the standard deviation (SD) for each predictive
model derived from the outcomes of five distinct experiments.
The best model is once again QR performed with GBM. The
model demonstrates superior efficacy by achieving the lowest
total quantile loss value. The exceptional performance of this
model suggests its effectiveness in handling the complexities in
the data, contributing to enhanced predictive capabilities. This
advanced method outperforms conventional approaches with
linear kernels, such as OLS, RF, and standalone QR. Specifically,
the higher total quantile loss result for RF implies potential
limitations in its effectiveness within this context. These results
underscore the significance of employing advanced ML and DL
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Fig. 4. QR performed with GBM model shows a non-linear relationship
between HR, BT, and age for children 0-18 years old admitted to PICU
with a temperature range of 34 to 40.9 °C. True values are shown in
black, while predictions are shown in red. The analysis is performed at
different quantiles, where each row represents a specific quantile, from
0.05 to 0.95. Subfigure (a) illustrates model predictions at quantile 0.05,
(b) at quantile 0.25, (c) at quantile 0.50, (d) at quantile 0.75, and (e) at
quantile 0.95.
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Fig. 5. Exploration of the HR model predictions influenced by age
along the x-axis and BT through variation of 34 to 40.9 °C in the color
scale for children 0-18 years old admitted to PICU. The analysis is
performed at different quantiles, where each row represents a specific
quantile, from 0.05 to 0.95. Subfigure (a) illustrates model predictions
at quantile 0.05, (b) at quantile 0.25, (c) at quantile 0.50, (d) at quantile
0.75, and (e) at quantile 0.95.
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Heart rate prediction based on body temperature and age for critical ill pediatric patients

Enter the required information in the fields below and click the ‘Predict Heart rate’ button to get the predicted heart rate.

Current Heart rate (bpm): | 0
Current Body temperature (°C): = 0

Patient's Age (months): = 0

Predict Heart rate

(a)

Heart rate predictions at different percentiles for
a 100.0 months old patient with a body temperature of 36.0°C

150 oo e e e ———— 95th P
T 120 - - - 75th P
=3
e
“
s
=] @® Actual HR: 110 bpm
]
©
g
R | S RS S SIS RS] 7
J
t
o
o
T
80 pe=- - -| 25th P
60 - - - -={ 5th P
(b)

Fig. 6.

Heart rate predictions at different percentiles for
a 100.0 months old patient with a body temperature of 36.0°C
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HR Predictions at different percentiles (5th, 25th, 50th, 75th, 95th) for a given patient’s age and BT will be integrated into the CDSS system

(a) User interface featuring three key inputs - current HR, current BT, and patient’s age - for HR predictions (b) Example of case scenario with a
normal HR is indicated by a green dot, which falls within the normal range defined by the 5th and 95th percentiles (c) Another example of a case
scenario shows an abnormal HR, marked by a red dot located outside the normal range.

techniques for capturing nuanced patterns in critical care scenar-
ios, providing valuable insights into the relationships between
physiological parameters.

Besides the RF approach, the other approaches achieved
similar results to those achieved by GBM with QR (considered
the best). For example, results achieved by OLS are 6.6867 +
0.0 vs. 6.5069 + 5.2e-05 (from GBM), with only 2.8% down
performance (in mean total quantile loss measure) GBM offers
advantages over OLS, making it particularly suitable for clinical
applications. First, GBM can capture complex, non-linear rela-
tionships between features, often crucial in clinical data where
interactions among variables—such as age, body temperature,
and heart rate—tend to be highly non-linear. Conversely, OLS
assumes a linear relationship, which may oversimplify these in-
teractions and miss subtle but clinically significant patterns that
could influence decision-making. Additionally, GBM provides
robustness and flexibility by iteratively boosting predictions to
minimize errors from prior models, making it more resilient
to various data distributions and outliers [46]. This iterative
adjustment allows GBM to handle the variability inherent in
clinical data more effectively than OLS, which can be sensitive to

outliers and may require extensive preprocessing to yield reliable
results.

Fig. 4 presents the predictive accomplishment of the best-
performing model—QR using GBM kernel—highlighting its
capacity to capture the complex non-linear relationships at
varying quantiles (0.05, 0.25, 0.50, 0.75, 0.95). From top to
bottom, the figure sequentially exhibits the model’s proficiency
in forecasting HR at multiple quantiles, from the 5th to the 95th
percentile. This projection is based on patient age, ranging from
infancy to nearly 18 years (0-200 months), and BT between
34°Ct040.9 °C. The x-axis denotes the patient’s age in months,
and the y-axis records HR in beats per minute (bpm). The sub-
figure presents the actual HR data as black dots, with the model’s
predicted values shown in red, facilitating a straightforward
comparison of the observed and predicted HR. This allows for
a direct appraisal of the model’s precision in replicating the true
HR values.

Furthermore, in response to the nature of the wide BT range
(from 34 °C t0 40.9 °C), Fig. 5 is introduced to deliver enhanced
detail concerning the model’s predictions concerning BT varia-
tions. Specifically, the experimental results for HR prediction for
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a specific quantile (0.05, 0.25, 0.50, 0.75, 0.95) are presented,
respectively, in each row. A color gradient alongside each scatter
plot translates the spectrum of colors to specific BT values,
offering an instant visual guide. The scatter points, color-coded
to represent varying BTs, effectively differentiate the HR pre-
dictions according to BT variations, thereby enriching the visual
representation and enhancing the interpretability of the model’s
capacity to account for temperature-dependent HR variations.
Consequently, analyzing the scatter plots across all the quantiles
reveals a pattern: as BT increases, so does the predicted HR,
while an inverse relationship is observed with increasing age,
where the predicted HR generally declines. This visualization
is not merely a reflection of the model’s prediction accuracy;
it also communicates critical insights for clinical applications,
particularly as it highlights the expected HR values within the
commonly encountered 5th to 95th percentile range in a clinical
setting.

To enable clinicians at CHUSJ to utilize our QR prediction
model implemented with GBM, we have developed an example
of a user interface (UI) integrated into the hospital’s CDSS,
as shown in Fig. 6. This Ul processes three input parameters:
the current HR, BT, and the patient’s age, then provides HR
predictions across various percentiles (5th to 95th) specifically
tailored to individual patients. Importantly, these results are
derived from the inference process of our trained model, which
defines a normal HR range within the 5th to 95th percentile.
Within this range, a green dot indicates that the patient’s HR falls
within the expected parameters, signaling normalcy. Conversely,
ared dot is an immediate visual indicator of deviation from the
norm, prompting timely attention and intervention. Through this
interface, the CDSS can assess in real-time whether a patient’s
HR is within the predicted safe range or requires further evalua-
tion, aiding caregivers in their clinical decision-making process.

This UI will be integrated into a personalized dashboard, for
which we designed a prototype to optimize the representation
of clinical data collected from existing sources (e.g., EHR,
clinical systems, and devices) via a structure that supports the
integration of a home-developed CDSS in the PICU [47]. The
personalized dashboard was based on analyzing end-user needs
and their clinical workflow. It is a structure with three levels
of abstraction—unit level, patient level, and system level—to
optimize clinical data representation and display for efficient
patient assessment and to provide a flexible platform to host the
internally developed CDSS. However, it should be noted that
integrating this tool in the PICU of CHUSJ does not require
caregivers to enter patient information manually. The data rep-
resentation for the CDSS consists of three levels: unit, patient,
and system levels. The unit level allows visualization of all
admitted patients, while the patient level enables assessment
of the patient’s status and progress [47]. Lastly, the system
level presents many “groups of indicators related to human
body systems and provides access to decision support tools
developed for specific issues involving these systems [47]”.
Therefore, the patient’s information is already integrated into
the system automatically. Consequently, our predictive model
will be generated and displayed at the system level of the CDSS.

Our model’s limitation is that no HR prediction is provided
if the inputs fall outside the ranges covered by our dataset. This

underscores the importance of ensuring that the input parameters
remain within the dataset’s scope to obtain accurate predictions.
Furthermore, clinicians must evaluate the predictions’ interpre-
tation and validation. This highlights the critical role of clinical
expertise in assessing and confirming the accuracy and clinical
relevance of the predicted HR values in this population.

IV. CONCLUSION

In summary, this study represents a comprehensive and in-
novative approach to understanding the relationship between
HR, BT, and age in children within the PICU. By employing a
meticulous multi-stage data preprocessing strategy, the research
aimed to reveal complex patterns that conventional models might
overlook.

The findings of this study align with prior research by con-
firming the expected downtrend in HR with increasing patient
age. However, the nuanced approach of grouping data by tem-
perature rather than age allowed for a more granular exploration.
Notably, the performance evaluation of various ML algorithms
yielded insightful results. Unlike earlier studies that suggested
linear correlations, conventional linear regression demonstrated
limited effectiveness in accurately capturing the relationship
within the data. In contrast, QR implemented with advanced
ML techniques, such as the GBM model, exhibited superior
performance by adjusting more accurately to variations in HR
across a broad BT range from 33 to 40.9 °C, particularly in
regions where linear models tended to underestimate or overes-
timate HR. This highlights the potential limitations of assuming
a strictly linear association in such datasets. Furthermore, the
HR model predictions clearly show a downward HR trend with
age and an upward trend with BT between the Sth and 95th
percentiles. Based on that model, we created a simple user
interface for caregivers. Based on age and BT, they can quickly
determine in real-time whether a patient’s HR falls within the
normal range or not.

V. FUTURE WORKS

We recognize the importance of evaluating the generalizabil-
ity of our model on external datasets. In this study, we initially
developed our model from a specific dataset. However, to en-
hance the model’s applicability, we propose future validation
on separate datasets from other PICUs. Additionally, utilizing
datasets with multiple observations per patient would allow us to
further assess the model’s robustness and adaptability. By test-
ing the model across different patient populations and clinical
settings, we aim to ensure its performance extends beyond the
initial dataset used in this study.

Additionally, the exact nature and extent of the non-linear
relationship require more detailed quantitative analysis. How-
ever, qualitative insights indicate that linear models often un-
derestimate HR at lower BT levels and overestimate it at higher
BT levels, especially among younger age groups. This limi-
tation underscores the need for a more comprehensive under-
standing of the interaction between HR, BT, and age. Future
research should prioritize rigorous quantification of this non-
linearity and investigate the specific conditions where linear
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models diverge from observed trends to enhance predictive
accuracy.

Furthermore, selecting the observation closest to the
population-level median HR within each BT group helped
reduce data redundancy and maintain a manageable dataset.
However, this approach may introduce bias by prioritizing
group-based patterns over capturing individual-specific nu-
ances, potentially overlooking unique HR-BT relationships for
each patient. Future work should explore alternative strategies,
such as using patient-specific medians as references or incorpo-
rating all available data points through advanced modeling tech-
niques, to capture individual variability better and improve the
model’s robustness and generalizability across diverse datasets.

Looking forward, the paper suggests promising future di-
rections and areas for improvement. One intriguing prospect
involves observing a cohort of subjects upon whom clinicians
have implemented interventions guided by the predicted HR
model. These observations could involve observing trends and
assessing the long-term effects of interventions. Extracting in-
sights from the resulting conditions and outcomes would be
interesting in refining future studies. Moreover, if the HR falls
outside the 5th and 95th percentiles, the time spent in this range
may be associated with bad outcomes. It would be valuable
to investigate whether there are treatments that could reduce
the duration of time spent in these extremes to enhance patient
outcomes. Furthermore, while most of our patients are calm, we
suggest a subgroup analysis to compare the results for agitated
versus non-agitated patients to ensure the relationship remains
consistent. Another direction for future research is to explore
the interplay of variables, focusing on gender-based differences,
considering that HR tends to be higher in women than men. Also,
we suggest enhancing the predictive Ul tool by integrating ad-
ditional parameters such as respiratory rate, blood pressure, and
oxygen saturation. Including these variables will help improve
the tool’s predictive accuracy and clinical utility, making it more
comprehensive in addressing the complex needs of critically ill
pediatric patients. Finally, incorporating other neural network
architectures, such as Convolutional Neural Networks (CNN)
or Transformers, could offer valuable insights.
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