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ii

PhD-FSTM-2025-114

Faculty of Science, Technology and Medicine

DISSERTATION

Defence held on 17 September 2025 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG
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Abstract

This thesis studies randomness in quantum dissipative and chaotic dynamics. We first fo-

cus on a detailed study of the effect of noise in the Hamiltonian of a quantum system, going

beyond the noise-average and characterizing higher moments. The main quantity we in-

troduce is the Stochastic Operator Variance (SOV), which is an observable characterizing

the spread of trajectories around the average evolution. Interestingly, this quantity fulfills

different types of uncertainty relations and is related to quantum information scrambling

through out-of-time-order correlators (OTOC). We illustrate the SOV-OTOC connection

in a stochastic version of the Lipkin-Meshkov-Glick (LMG) model, which shows a positive

Lyapunov exponent from an unstable saddle point. We find that under the action of the

noise, this Lyapunov exponent can change sign, thus stabilizing the unstable phase of the

model while destabilizing the stable one. We then study the interplay between noise and

decay in a non-Hermitian Hamiltonian. The noise-average evolution follows an antide-

phasing master equation beyond Lindblad form. We characterize the purity dynamics and

the steady states of this master equation, and study this new evolution in a stochastically

driven version of the Dissipative Qubit. By characterizing its spectral and steady state

properties, we find that there are three phases: the PT unbroken, PT broken, and a

novel Noise Induced (NI) phase where the qubit converges to the lossy state. We further

investigate the validity of our model to explain experimental data, such as the residual

damping rate of the PT unbroken phase. In the last Chapter, we study randomness as a

model for chaotic dynamics. In particular, leveraging a Wigner-like surmise for the k-th

neighbor level spacing distribution, we compute analytically the k-th neighbor Spectral

Form Factor (knSFF), which characterizes the contribution of the k-th neighbor spacings

to the Spectral Form Factor (SFF). We study the properties of the individual knSFF and

characterize their role in building the universal ramp of the SFF. Interestingly, we find

that the very short-range and very long-range spacings are the ones that contribute the

most to the extent of the ramp. We finish by discussing our results and possible pathways

for further research.
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An Invitation to Randomness in Quantum Dynamics

This thesis deals with several different aspects of randomness in quantum dynamics. The

physical world around us has a vast amount of information and fine details. However,

for the purpose of modeling a particular physical phenomenon, most of this complexity is

discarded, leaving only the most relevant degrees of freedom. This reductionist approach

has been very fruitful in the past, leading to some of our best and most accurate physical

theories, such as quantum mechanics. Precisely starting from the quantum world, we can

find two objections to this reductionist approach:

• The first objection, related to the ineludible presence of an environment, comes

purely from the Nature of quantum systems. Classical systems are also surrounded

by an environment that leads to different phenomena, such as your coffee cooling

down after some time. However, in quantum systems, the presence of an environ-

ment has a much more drastic effect due to decoherence. Decoherence is the physical

phenomenon by which quantum systems lose some of their quantum properties and

transition to an effective classical behavior, such as Schrodinger’s famous cat. In

its typical setup, the box containing the cat and the poison is assumed to be com-

pletely opaque. But what if the box were to be made slightly transparent? Then,

some of the information from the inside would be available to an observer, and we

might be able to infer whether the cat is alive or dead. This process removes the

quantum superpositions in which the cat is dead and alive simultaneously, rendering

a classical state in which the cat is either dead or alive with 50% probability. For

this reason, decoherence has been proposed as a mechanism for the emergence of

the classical world [8].

To explain this phenomenon, it becomes essential to add an extra element to the

description of the relevant degrees of freedom, by either modifying the equation

of motion from the Schrödinger equation to a master equation such as the Gorini-

Kossakowski-Sudarshan-Lindblad (GKSL) equation, or by adding an element of

randomness to describe the effect of external sources which interact with the system

of interest — be it an environment such as a bath or an observer.

• The second, even stronger, objection to reductionism, which is ubiquitous in Con-

densed Matter and Statistical Mechanics, is that of emergence. In essence, this

scientific approach poses that the whole is more than the sum of its parts, or in

Anderson’s words “more is different” [9]. At every scale of complexity, collective

phenomena emerge that cannot be understood as a simple combination of the be-
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havior of their building blocks, e.g., knowledge of the behavior of individual spins

does not explain the existence of ferromagnetism, or an understanding of human

biology does not suffice to describe the behavior of societies. In this spirit, when

many individual agents, be it spins, molecules, or humans, interact with each other,

their collective behavior can change drastically and give rise to new behavior.

Understanding the interactions between many different quantum systems in quan-

tum mechanics represents the current frontier in many-body quantum systems. The

challenge is that very few systems are analytically tractable, sometimes only in cer-

tain restricted cases, and their exact numerical solution involves an exponentially

large Hilbert space, rendering the large N limit extremely challenging to reach. The

way randomness appears in complex, many-body systems is even more puzzling.

Importantly, randomness leads to some universality classes, only dependent on the

system’s symmetries, and vastly different systems behave similarly.

These two arguments highlight the need to go beyond a reductionist approach, and mo-

tivate the two main fields that this thesis explores, namely Open Quantum Systems and

Quantum Chaos.

These two fields are particularly timely, as they are important for the state of the art

in quantum information. The great efforts to build a quantum computer go mainly in

two directions1: (i) counter-act the effects of noise on qubits, through quantum error-

correction [10] or error mitigation schemes [11], and (ii) to scale up the quantum systems,

by having more and more qubits, which can be controlled.

Noise, Chaos and Dissipation

“Randomness”, as highlighted in the title of this thesis, provides a common denominator

to all the different facets of this work. The first instance of randomness we will consider

is randomness in time, which we will call noise. It will be used to model dissipation, and

then crafted to unveil new possible dissipative dynamics. A second instance of randomness

will be in the generator of the dynamics, connecting with the theory of Random Matri-

ces (RMT). In this context, the system’s model (i.e., the Hamiltonian) is unknown but

instead sampled from an ensemble of Hamiltonians. Surprisingly, this approach captures

many of the universal features of chaotic and integrable systems. A third instance where

randomness will appear is as local disorder. In some models we will study, introducing

1There is actually a third key direction, that of quantum algorithms, which investigates what tasks can
be performed more efficiently on a quantum computer.
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local random parameters can drastically change their behavior, allowing us to witness a

transition from chaotic to integrable dynamics.

These three sources of randomness can lead to vastly different phenomena. Figure 1

sketches the main results and concepts introduced in this thesis.

GKS-Lindblad

Stochastic Hamiltonians

Uncertainty 
principle

OTOC’s

Non Hermitian 
physics

RMT & 
Poisson

SFF

knLS 
distribution

SOV

SOV-OTOC 
connection

SOV 
uncertainty 

principle
Antidephasing 
Master eq.

PTu, PTb and NI 
phases of SDQ

Model noise 
NH qubit

knSFF
Partial K 

neighbors SFF
Role of all 

neighbors in dip 
& Thouless times

PT symmetry

Dissipative 
Qubit

Chapter 2 Chapter 3

Chapter 4

LMG

dXXZ

Figure 1. Conceptual map of the main results. The topics outside of the circle represent
basic concepts and models on which the current thesis builds, which will be intro-
duced in Chapter. 1. The three sections of the circle represent the three chapters,
along with their main results, introduced in the thesis. The outer circle denotes the
parts of the thesis which deal mainly with Open Quantum Systems theory (red),
Quantum Chaos and Information scrambling (blue), and standard Quantum Me-
chanics (black).

• Chapter 1 will introduce the formalism to model the different sources of random-

ness that we consider. In doing so, we will introduce the main concepts related

to Open Quantum Systems and Quantum Chaos. These include all the concepts

outside the circle in Fig. 1.

• In Chapter 2 we will study noise as a model for dissipation, and consider Stochastic

Hamiltonians. Extending beyond the main approach in the field, we introduce tools

to study quantities beyond the noise-average. The main quantity that we intro-

duce is the Stochastic Operator Variance (SOV) [1], which, interestingly, fulfills an

uncertainty principle analogous to the one obeyed by the quantum mechanical vari-
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ance, and is connected to Out-of-Time-Order Correlators (OTOC’s), which define

a quantum version of the Lyapunov exponent.

• In Chapter 3 we will focus on the effect of noise on dissipation. In particular,

we study the dynamics generated by non-Hermitian Hamiltonians, which are also

subject to noise in their imaginary part, modeling noisy dissipation. Averaging over

the noise, we find an exotic anti-dephasing master equation [2]. We illustrate our

results on the Stochastic Dissipative Qubit (SDQ), which exhibits three distinct

phases: PT unbroken, PT broken, and Noise-Induced. Furthermore, we study the

SDQ as a model for the noise in the experimental realization of the non-Hermitian

qubit.

• In Chapter 4, we will explore randomness as a model for many-body interacting

systems. In particular, we consider the Random Matrix Theory description of the

universal features of quantum chaotic systems and study the role played by the k-

th neighbor level spacing distribution in the Spectral Form Factor (SFF), through

the k-th neighbor SFF (knSFF) [3]. We compute exact and approximate analytical

expressions for this quantity, study the properties of individual knSFF’s, and show

how neighbors further apart participate in building the universal ramp of the SFF.

Purpose of the thesis

Physics is the study of the rules of Nature. Every human has an intuition of how certain

physical properties of the natural world work, particularly those properties at our length

and time scales, e.g., a kid knows how to get a ball through a hoop way before anyone

teaches them Newton’s laws of motion. Physics is a formalization of that intuitive un-

derstanding, which allows us to predict properties at scales outside what any human has

experienced. For this reason, it should be possible to explain in simple terms the main

results of physical theories, even those usually deemed hard to understand. To this end,

one should be able to build a story from the developed formalism. Such a story cannot

contain all the details, but it should keep the fundamental message and conceptual ideas.

Indeed, the greatest physical theories often come with intriguing stories that can spark

curiosity in anyone. For example, in Quantum Mechanics, fundamental concepts such

as superposition, the uncertainty principle, or even path integrals can be distilled into

a simple, yet puzzling, story. In the latter case, the story associated to path integrals

can even be used to quantitavely explain phenomena in the natural world, as famously

done in Feynman’s QED book [12], which does not sacrifice the predictive power of the
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theory while telling a simple, yet strange, story. With its hectic publication pace, the

current academic system rarely offers space to build these stories. For this reason, and

to be able to answer the ultimate question: “What have you done in your thesis?” I will

complement the presentation of results with stories that explain them. In particular, each

of the chapters contains a prelude where I build a simple story of one of the concepts or

main results in a way aimed at being accessible to a non-physicist audience. To make

the thesis reading easier, we compartmentalize it; each main chapter starts with a small

abstract and finishes with a recap of the results.









Chapter 1

An Introduction to the theory of Open
Quantum Systems and Quantum Chaos

After motivating the driving force behind this thesis, randomness as an essential con-
cept in our understanding of the quantum world around us, we now present the technical
formulation of the theories of Open Quantum Systems and Quantum Chaos. We focus
primarily on introducing the techniques used in the thesis, so that the calculations in the
future chapters can be understood. This means that the level of rigour varies throughout
this chapter, due to two key mathematical fields used throughout the thesis: Stochastic
Calculus and Random Matrix Theory. We introduce them with their proper mathemat-
ical definitions, and use them later in a less rigorous way, focusing on deriving results,
rather than rigour. This chapter is structured as follows: we first introduce some basic
notions of quantum information, comment on the different approaches to open quantum
systems, and then introduce the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master
equation. We then introduce stochastic Hamiltonians as a simple, yet powerful, model
for open quantum systems, and non-Hermitian Hamiltonians as an effective model for
nonunitary dynamics. We then turn to the second field, Quantum Chaos, we begin by
introducing random matrix theory, which lays the ground to introduce the founding con-
jectures of quantum chaos, we then introduce other measures of spectral statistics befoire
focusing on a particularly relevant one for us, the spectral form factor (SFF), we finish by
introducing another key quantity for the theory of quantum chaos, the out of time order
correlator (OTOC) and the quantum Lyapunov exponent.

1.1 Some basic notions of Quantum Information

1.1.1 Quantum Channels

The most general quantum channel is given by a Completely Positive Trace Preserving
(CPTP) linear map E : L (H ) → L (H ) [13, 14]. We now review what each of the
properties means:

• A linear map fulfills the property E(aρ̂ + bσ̂) = aE(ρ̂) + bE(σ̂), where a, b ∈ C,
ρ̂, σ̂ ∈ L (H ).

— 3 —



4 Introduction

• A linear map is said to be positive if all positive semi-definite states ρ̂ ≥ 0 7→ E [ρ̂] ≥ 0
are mapped to positive semi-definite states.

• A linear map is said to be completely positive if the map E⊗idn[•] : L (H )⊗Cn×n →
L (H )⊗ Cn×n is positive for all n.

• A linear map is trace preserving if Tr(ρ̂) = Tr(E [ρ̂]) = 1.

A quantum channel is therefore the most general linear map which takes valid quantum
states ρ̂, and takes them to valid quantum states, that is, positive semi-definite and with
unit trace. The requirement of complete positivity implies that enlarging the system
considered to have an ancilla of an arbitrary dimension n does not spoil the positivity of
the channel. Owing to the CPTP properties, the most general quantum channel can be
written in Kraus form as

E [•] =
NK∑
j=1

K̂j • K̂†j , (1.1)

where the set of Kraus operators is {K̂j}NK
j=1, NK ≤ d2 is the number of Kraus operators

and they are subject to the constraint
∑NK

j=1 K̂
†
j K̂j = 1̂ which imposes Trace Preservation

of the dynamics.

A notation comment is now in order: throughout the thesis we denote quantum states
through the ket notation |ψ⟩ ∈ H , vectors in a different vector space are generally denoted
by bold-face, e.g. r, we denote operators– that send states to states Ô |ψ⟩ = |ψ′⟩– with a
hat •̂, we reserve the calligraphic letters E , L, . . . to denote superoperators—which send
operators to operators E [ρ̂] = ρ̂′—. The Script font H , L (H ), . . . is used to denote
more abstract concepts such as vector spaces. The Fraktur font is used as an auxiliary
font to denote other objects, such as probability distributions P(•), or the noise average

of Ât as Ât, lastly E(•) denotes the average over the noise. In contrast, ⟨•⟩ denotes the
expectation value over a quantum state. Throughout the thesis, we work in natural units
ℏ = 1, unless explicitly used to highlight the role of Planck’s constant.

1.1.2 Fidelity between states

In many tasks in the field of quantum information science, we need to measure how close
are two different states. One quantity that characterizes this is the fidelity F . Given two
quantum states |ψ⟩ ∈ H and |ϕ⟩ ∈ H , the fidelity between the two is simply given by

Fψ,ϕ := | ⟨ψ|ϕ⟩ |2, (1.2)

which can take values from zero to one, 0 ≤ Fψ,ϕ ≤ 1, with unity when both states
coincide Fψ,ψ = 1 and zero when they are orthogonal.
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In the most general case, the fidelity between two density matrices ρ̂ ∈ L (H ) and
σ̂ ∈ L (H ) is given by the Uhlmann fidelity [15, 16]

Fρ̂,σ̂ := Tr

(√√
ρ̂σ̂
√
ρ̂

)2

. (1.3)

The density matrices are positive semidefinite ρ̂ ≥ 0; thus, the square root and fidelity
are well defined.

1.2 Different approaches to model Open Quantum
Systems

The theory of Open Quantum Systems (OQS) provides the mathematical formalism to
describe quantum systems interacting with their environment [17, 18]. There are two
main approaches to this end, adopted by different communities.

• The microscopic approach: Here, one considers a particular (idealized) model for the
environment. The “full universe” is thus partitioned into the system and the bath.
We associate a Hilbert space to each of these: HS for the system and HB for the bath.
Since we consider the full System + Bath to be closed, it evolves unitarily, and its
states live in the product space HSB = HS ⊗HB. One could, in principle, solve the
full Schrödinger equation of System + Bath, but this is only possible in simple cases.
In practice, one tries to derive a closed equation for the dynamics of the system
alone; this is what is known as a quantum master equation [17, 18]. Depending
on the community and the reason for deriving a master equation the microscopic
derivations may involve many approximations, e.g. if one wishes to achieve a GKSL
master equation, i.e. a master equation that is guaranteed to evolve density matrices
into density matrices, one needs to consider typically weak system-bath coupling, and
perform the Born, Markov and rotating wave/secular approximations. Each of these
approximations reduces the accuracy of the master equation as a description of the
System coupled to the bath. For a recent critical re-evaluation of the approximations
and assumptions in the microscopic derivation of the GKSL master equation, see
[19]. On the other hand, performing fewer approximations, one can reach a Redfield
equation [20, 21] which is consistently more accurate than other perturbative master
equations [22], but does not generate a positive map and thus does not necessarily
send density matrices to density matrices. Other microscopic approaches to derive a
master equation involve the use of Nakajima-Zwanzig projection operators [23, 24],
which project onto the relevant set of degrees of freedom, see [25] for a recent tutorial.

• The macroscopic approach postulates the properties of the dynamical map, to en-
sure certain properties, such as Complete positivity and Trace Preservation, or even
time-locality of the master equation1, which can be achieved through the time convo-

1A master equation is said to be time-local if it only depends on the density matrix at time t ρ̂t and
not on the previous times, i.e. ∂ρ̂t = Lt[ρ̂t]. Although the Markov approximation is sometimes called
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lutionless approach [17, 26]. This approach is more common in the fields of quantum
information and especially mathematical physics, in which the GKSL equation was
originally derived. In the following sections, we will follow an approach more in line
with this; we do not build a model for the bath and its interaction with the system,
but rather postulate the evolution of the system to be a CPTP map, as was the
original motivation. Similarly, the treatment of open quantum systems through a
stochastic Hamiltonian can be thought of as macroscopic. We encode the details that
would come from the bath in the correlations between the noise, which are chosen
as part of our model, and do not come from microscopic information.

1.3 Gorini-Kossakowski-Sudarshan-Lindblad Equation

Consider the most general quantum channel E , i.e., a CPTP evolution, furthermore, let us
assume that the evolution is, in a reasonable sense, Markovian2, i.e., memoryless. In here,
for simplicity, we will consider the original framework developed by Gorini, Kossakowski,
Sudarshan [29] and Lindblad [30] in which the evolution of the system is given by a
dynamical semigroup Et. A dynamical semigroup is given by a family of quantum channels
{Et|t ≥ 0, E0[ρ̂] = ρ̂ ∀ρ̂} which fulfills the semigroup identity

Et+τ [•] = Et[Eτ [•]]. (1.4)

The generator of the dynamical semigroup is then given by

∂tρ̂t = lim
∆t→0

E∆t[ρ̂t]− ρ̂t
∆t

= L[ρ̂], (1.5)

where L[•] is the Lindbladian or Liouvillian superoperator which generates the dynamical
semigroup. The celebrated Gorini, Kossakowski, Sudarshan, Lindblad (GKSL) master
equation thus reads

∂tρ̂t = −i[Ĥ, ρ̂t] +
Nc∑
j

γj

(
L̂j ρ̂tL̂

†
j −

1

2
{L̂†jL̂j, ρ̂t}

)
=: L[ρ̂], (1.6)

where Nc ≤ dim(H )2−1 is the number of deocherence channels, the unitary evolution is
described by the Hamiltonian Ĥ ∈ B(H ), and the dissipative evolution is characterized

the time-local approximation, a time-local master equation need not be Markovian. Such an equation
can always be formally derived if the map Et[ρ̂] can be inverted as ∂tρ̂t = Ė [E−1[ρ̂t]], see [26] for an
explicit example of this construction for a single qubit.

2The subject of quantum (non) Markovianity is a fascinating field of study, about which we will not
be concerned much in this thesis. In the main text we follow the standard approach by GKSL, let
us digress on other definitions of Markovianity. A notion which generalizes the classical notion from
one-point probabilities is that of divisibility of the channel [27], i.e. Et3←t1 = Et3←t2 ◦ Et2←t1 for
t3 ≥ t2 ≥ t1. This leads to a master equation of Lindblad form with positive time-dependent rates
γk(t) ≥ 0. However, there is a whole hierarchy [28] of definitions of quantum non-Markovianity.
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by the jump operators3 {L̂j ∈ B(H )}Nc
j=1, and {γj ≥ 0}Nc

j=1 are the decay rates. The
GKSL master equation can always be formally solved as

Et[ρ̂] = eLt[ρ̂]. (1.7)

Note that, however, this formal solution is analogous to stating that the solution of the
Schrödinger equation is the propagator e−iĤt; it is a formal statement, but we do not
necessarily know an efficient way to compute the matrix exponential, especially for large-
dimensional Hilbert spaces.

1.3.1 Vectorization of superoperators

There is an extra caveat which makes the solution of the GKSL equation more involved.
L is a superoperator, i.e., an object that acts on both sides of the state ρ̂, while Ĥ has an
obvious expression as a matrix; a priori, L does not. We want to find a matrix associated
with the superoperator for many purposes, including implementing this formal solution
as we will do in the forthcoming chapters.

There are many approaches to this end, such as the Choi-Jamiolkowski isomorphism
[33, 34]. In here, we will introduce a vectorization procedure such that operators become
vectors as

ρ̂ =
∑
i,j

ρij |i⟩ ⟨j| ∈ L (H ) 7→ |ρ) =
∑
i,j

ρij |i⟩ ⊗ |j⟩∗ ∈ H ⊗ H , (1.8)

which means that a density matrix may be understood as a state on two copies of the
Hilbert space. The superoperator S[•] can be mapped to an operator as

S[ρ̂] = Âρ̂B̂

S ∈ L (L (H ))
7→ Š|ρ) = (Â⊗ B̂⊺)|ρ)

Š ∈ L (H ⊗ H )
, (1.9)

in here we used the accent Š to denote that the superoperator is a linear operator over the
doubled Hilbert space, however in the rest of this thesis we will not make this distinction
since we will either deal with superoperators or with their vectorized form, but not with
both at the same time so there will not be room for confusion, by the context it will be
clear whether we are dealing with the superoperator or its vectorized form.

1.3.2 The adjoint GKSL equation

Even though open quantum systems studies focus extensively on dynamics of density
matrices in the Shcrödinger picture, the GKSL master equation can also be formulated

3Lindblad [30] originally considered bounded linear operators over the Hilbert space as the allowed jump
operators. In physical models of the master equation, see e.g., Quantum Brownian motion, Caldeira
Legett model, etc, it is common to consider unbounded jump operators like x̂, p̂. The extension of
the mathematical formalism to the unbounded case was studied in [31, 32]
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in the Heisenberg picture for a given operator Ât. To do this, one evaluates the evolution
of the expectation value

∂Tr(Âρ̂t) = Tr(Â∂tρ̂t) = Tr(ÂL[ρ̂t]) (1.10)

= Tr(∂tÂtρ̂t) = Tr(L†[Ât]ρ̂),

where the second line is in the Heisenberg picture. In the case that the generator L is
time-independent [17], the adjoint GKSL master equation reads

∂tÂt = L†[Ât] = +i[Ĥ, Ât] +
Nc∑
j=1

γj

(
L̂†jÂtL̂j −

1

2
{L̂†jL̂j, Ât}

)
, (1.11)

which has changed sign in the unitary evolution, as already happens between the Liouville-
von Neumann ∂tρ̂t = −i[Ĥ, ρ̂t] and Heisenberg ∂tÂt = +i[Ĥ, Ât] equations, and where the
jump term changed to L̂†jÂtL̂j. This master equation can still be solved formally through

the map E†t = eL
†t.

1.4 Classical noise Hamiltonians

One simple way to find some master equations is to consider a classical noise source ξt
acting on the quantum Hamiltonian. This approach was originally developed by Budini
[35, 36], used to develop quantum simulators of open quantum systems in [37], and ex-
tended to general sources of noise in [38]. In this thesis we will consider Gaussian white
noise, the Gaussianity implies that the statistics of the noise is completely determined by
the first two moments E(ξt) and E(ξtξτ ), since all the higher moments can be expressed
in terms of the first two. The white noise property amounts to considering

E(ξt) = 0, E(ξtξτ ) = δ(t− τ). (1.12)

The first condition imposes that the stochastic process ξt is driftless, the second condition
implies that it is delta-correlated, i.e. the noise ξt is only correlated to the noise at the
same time ξt, and completely uncorrelated with the noise at any other time ξτ with τ ̸= t.
This property defines white noise, and it implies that the process is Markovian, i.e., it
has no memory. Memory effects are described by E(ξtξτ ) ̸= 0 for t ̸= τ , and this provides
a powerful tool to model non-markovian effects in quantum mechanics.

The idea is to consider a noise in the Hamiltonian, i.e., a driving by the function ξt which is
unknown. Considering the noise affecting only hermitian operators, we find the stochastic
Hamiltonian

Ĥt = Ĥ0 +
Nc∑
j=1

√
2γjξ

(j)
t L̂j, (1.13)
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where γj ≥ 0 are the decay rates, Ĥ0 is the deterministic Hamiltonian of the system,

L̂j are the jump operators which are Hermitian L̂†j = L̂j and the different channels are

assumed to be uncorrelated E(ξ(m)
t ξ

(n)
τ ) = δmnδ(t − τ). Trivially, the total Hamiltonian

Ĥt is Hermitian Ĥ†t = Ĥt. This will be the starting point of our analysis in Chapter 2,
and inspired by this construction, in Chapter 3, we will consider the case in which the
total Hamiltonian Ĥt is non-Hermitian Ĥ†t ̸= Ĥt. The interesting point of this formalism
is that when we average over the noise, we can recover the GKSL equation for the density
matrix, in particular if Ĥ†t = Ĥt the GKSL equation necessarily describes only dephasing
processes, but going beyond Hermiticity for Ĥt allows us to find the most general GKSL
master equation. Since we aim for the future chapters to be as self-contained as possible
and this chapter as merely introducing the framework and formal concepts needed for the
rest of the thesis, we will present the derivation of the GKSL equation from stochastic
Hamiltonians in Sec. 1.4.4, and repeat it in Chapt. 2 for dephasing and in Chapt. 3 for
the generic case.

One of the pioneering works in the study of stochastic Hamiltonians by Budini [35] con-
sidered the case in which jump operators are not Hermitian, L̂j ̸= L̂†j, but where the total
stochastic Hamiltonian is still Hermitian, i.e.

Ĥt = Ĥ0 +
Nc∑
j=1

√
2γj(ζ

(j)
t L̂j + ζ

(j)
t

∗
L̂†j), (1.14)

where now the white noises are complex ζ
(j)
t ∈ C and fulfills

E
(
ζ
(j)
t

)
= E

(
ζ
(j)
t

∗)
= E

(
ζ
(j)
t ζ(k)τ

)
= E

(
ζ
(j)
t

∗
ζ(k)τ

∗
)
= 0, (1.15)

E
(
ζ
(j)
t ζ(k)τ

∗
)
= E

(
ζ
(j)
t

∗
ζ(k)τ

)
= δjkδ(t− τ).

Note that this situation can always be mapped to the real noise case by expressing the
complex noise as ζt =

1√
2
(ξ

(r)
t + iξ

(i)
t ) where the real and imaginary parts are uncorrelated,

i.e. E(ξ(r)t ξ
(r)
τ ) = E(ξ(i)t ξ

(i)
τ ) = δ(t − τ), E(ξ(r)t ξ

(i)
τ ) = E(ξ(i)t ξ

(r)
τ ) = 0. The statistical

properties of the complex noise follow from

1

2
E((ξ(r)t ± iξ

(i)
t )(ξ(r)τ ± iξ(i)τ )) =

1

2
(E(ξ(r)t ξ(r)τ )− E(ξ(i)t ξ(i)τ )) = 0,

1

2
E((ξ(r)t ± iξ

(i)
t )(ξ(r)τ ∓ iξ(i)τ )) =

1

2
(E(ξ(r)t ξ(r)τ ) + E(ξ(i)t ξ(i)τ )) = δ(t− τ).

Therefore, any classical noise, hermitian, stochastic Hamiltonian can always be written
as

Ĥt = Ĥ0 +
Nc∑
j=1

√
2γj(ξ

(r,j)
t (L̂j + L̂†j)− iξ

(i,j)
t (L̂j − L̂†j)), (1.16)
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where both operators L̂j + L̂†j, and −i(L̂j − L̂†j) are Hermitian.

1.4.1 On the different conventions of Stochastic Calculus

The white noise that we have introduced in the previous section ξt has the property that
when integrated, it generates a Wiener process Wt ≡

∫ t
0
ξτdτ . However, the Wiener pro-

cessWt is almost nowhere differentiable4, and therefore ξt ≡ dWt

dt
should be the “derivative

of a non-differentiable function”. To give a more formal and consistent formulation, we
must introduce Stochastic calculus. In this framework, one defines the increment of the
Wiener process dWt, which can be related to the ξt noise from the previous section as
dWt ≡ ξtdt and which integrates to the Wiener process Wt =

∫ t
0
dWτ . Although formally

dWt is the increment of the Wiener process, we will sometimes loosely call both Wt and
dWt the Wiener process; however, by the notation, it will be clear whether we are referring
to the Wiener process itself or its increment.

The theory of stochastic calculus provides the tools to formally solve a Stochastic Differ-
ential Equation (SDE), which when written in “physicists” or Langevin notation reads

ẋt = a(xt, t) + b(xt, t)ξt, (1.17)

i.e. the evolution of the variable x is determined by a deterministic or drift part given by
the function a(x, t) and a stochastic part b(x, t) which is affected by white noise ξt. As we
have already argued, ξt does not have a formal meaning. Whenever we consider an SDE,
we will write it in the form

dxt = a(xt, t)dt+ b(xt, t)dWt. (1.18)

Stochastic Calculus has two main approaches to deal with SDEs, each of them with its
advantages and disadvantages:

• A formal approach to deal with SDEs is that of Itō calculus. In this convention,
the Wiener process dWt is independent of the integration variable xt, i.e., the expec-
tation value factorizes E(f(xt)dWt) = E(f(xt))E(dWt) = 0 for any function of the
stochastic process xt. In this formalism, we have to modify the rules of calculus and
substitute them for the Itō rules, which we will introduce in the coming section. We
will mostly work in Itō convention throughout this thesis, unless explicitly denoted
otherwise.

• On the other hand, Stratonovich calculus keeps the standard rules of calculus
as we know them for deterministic functions, e.g., the chain rule still applies in the
usual way. This formalism does so at a high cost: dWt and the process xt are not
independent, i.e., this means that E(xtdWt) ̸= E(xt)E(dWt). Instead, these averages
have to be computed in a special way, which we introduce in the next subsection. A

4By almost we mean that the set of points in which the Wiener process is differentiable is of measure
zero.
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Stratonovich SDE is conventionally denoted as

dxt = a(xt, t)dt+ b(xt, t) ◦ dWt, (1.19)

where ◦ denotes that the product should be understood in the Stratonovich sense.

1.4.2 Itō calculus

In standard calculus, since we consider dt to be infinitesimally small, when we perform a
Taylor expansion, we only need to keep terms of O(dt). All the higher order terms O(dtn)
with n ≥ 2 will be much smaller than dt and thus negligible.

Itō calculus changes this approach due to the Itō rule which states that

dW 2
t = dt. (1.20)

From a practical point of view this means that now the terms of order O(dW 2
t ) are of the

same order as dt, and therefore we have to keep them. However, terms of order O(dWtdt)
or O(dW n

t ) with n ≥ 3 are of higher order than dt and therefore we can neglect them.

Definition 1 (Itō integral). Consider a function Gτ , the Itō integral is defined as∫ t

0

GτdWτ := ms-lim
n→∞

n∑
i=1

Gti−1
(Wti −Wti−1

), (1.21)

where the function G is evaluated at the beginning of the interval ti−1 and the mean-squared
limit ms-limn→∞ is defined as ms-limn→∞Xn = X ⇔ limn→∞ E((Xn −X)2) = 0.

Itō’s rule is a surprising result. The Wiener process dWt is a stochastic function, but
the square of the Wiener process dW 2

t is deterministic and equal to dt. This can be
proven in several ways; here, we give the main idea of two approaches with different levels
of rigour and defer the interested reader to the original references. Gardiner [39] starts
from the definition of the Ito integral using a test function Gt which is required to be
non-anticipating and shows that

lim
n→∞

E

( n∑
i=1

Gi−1(∆W
2
i −∆ti)

)2
 = 0 ⇒

∫
GtdW

2
t =

∫
Gtdt, (1.22)

where ∆Wi = Wti − Wti−1
is the finite Wiener increment. Jacobs [40] shows that the

variance of the sum of square Wiener increments Var(
∑n

i=1∆W
2
i ) ∼ n−1, and thus van-

ishes in the limit of an infinite number of time-steps n. Even more, the full probability
distribution of the sum of squared Wiener increments converges to a delta function

P

(
n∑
i=1

∆W 2
i

)
→ δ

(
n∑
i=1

∆W 2
i − t

)
. (1.23)
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This means that the sum of squared Wiener increments is exactly t and can have no other
value in the limit of infinite time steps.

An important consequence of Itō’s rule is that the usual chain rule of calculus does not
apply and instead we need to use Ito’s formula, also known as Itō’s lemma. Consider a
generic function of the stochastic process xt given by y = f(x), its derivative is thus

dy =
df

dx
dx+

1

2

d2f

dx2
(dx)2, (1.24)

where now the higher order terms (dx)2 need not be negligible.

1.4.3 Stratonovich calculus and Novikov’s theorem

To keep the standard rules of calculus, we need to develop the Stratonovich stochastic
calculus. The basic object in this convention is Stratonovich stochastic integral.

Definition 2 (Stratonovich integral). Consider a function Gx,τ , the Stratonovich integral
is defined as ∫ t

0

Gxτ ,τ ◦ dWτ := ms-lim
n→∞

n∑
i=1

Gx̄i,ti−1
(Wti −Wti−1

), (1.25)

where the function G is evaluated at the intermediate point x̄i =
xti+xti−1

2
.

The appeal for the standard rules of calculus in the Stratonovich convention is obscured
by the fact that the stochastic process xt and the white noise are not independent. To
deal with expectation values of the form E(xt◦ξ(n)t ) we can make use of Novikov’s theorem,
also sometimes referred to as Furutsu-Novikov formula, [41] which states that

E(x[ξ] ◦ ξ(n)t ) =
Nc∑
m=1

∫ t

0

dτE(ξ(n)t ξ(m)
τ )E

(
δx[ξ]

δξ
(m)
τ

)
, (1.26)

where the proccess x[ξ] is a functional of the white noises ξt = (ξ
(1)
t , . . . , ξ

(Nc)
t ) and δx[ξ]

δξ
(m)
t

is the functional derivative of the stochastic process with respect to the m-th white noise.

1.4.4 Dynamics generated by a stochastic Hamiltonian

There are three possible approaches to finding the dynamics generated by a stochastic
Hamiltonian; here, we introduce them and discuss their advantages and disadvantages.
For ease of notation, let us consider the single noise case, but the approaches trivially
extend to more noise sources.
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Purely Stratonovich approach

When we write a stochastic Hamiltonian as

Ĥt = Ĥ0 +
√

2γξtL̂. (1.27)

We are necessarily interpreting it in Langevin or physicist’s notation, and thus ξt should
be interpreted in Stratonovich convention. The Schrödinger equation reads

∂t |ψt⟩ = −i(Ĥ0 +
√

2γξtL̂) |ψt⟩ , (1.28)

from where it is possible to find an equation for the density matrix ϱ̂t = |ψt⟩ ⟨ψt| as

∂tϱ̂t = |ψ̇t⟩ ⟨ψt|+ |ψt⟩ ⟨ψ̇t| = −i[Ĥ0, ϱ̂t]− i
√

2γξt[L̂, ϱ̂t]. (1.29)

If we average over the noise, we find an equation for ρ̂t = E(ϱ̂t) as

∂tρ̂t = −i[Ĥ0, ρ̂t]− i
√

2γ[L̂,E(ξt ◦ ϱ̂t)], (1.30)

where now the term E(ξtϱ̂t) is cumbersome to compute, needing the use of Novikov’s
formula, which for this case reads

E(ξt ◦ ϱ̂t) =
∫ t

0

dτE(ξtξτ )E
(
δϱ̂[ξt]

δξτ

)
. (1.31)

Now one needs to realize that the functional derivative fulfills the Liouville-von Neumann
equation [35, 37]

∂t
δϱ̂t
δξτ

= −i
[
Ĥt,

δϱ̂[ξt]

δξτ

]
, (1.32)

and thus evolves as

δϱ̂[ξt]

δξτ
= V̂t,τ (−i

√
2γ[L̂, ϱ̂[ξτ ]])V̂

†
t,τ , (1.33)

where V̂t,τ = T← exp(−i
∫ t
τ
dt′Ĥt′) is the propagator with the stochastic Hamiltonian.

Therefore, the expectation value reads

E(ξt ◦ ϱ̂t) =
∫ t

0

dτE(ξtξτ )E(V̂t,τ (−i
√
2γ[L̂, ϱ̂[ξτ ]])V̂

†
t,τ ). (1.34)

When we take white noise, we find that this expression greatly simplifies to

E(ξt ◦ ϱ̂t) =
1

2

√
2γ[L̂, ρ̂t], (1.35)
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where the 1/2 factor comes from the Stratonovich integral of Dirac’s delta in one of the
integrand limits

∫ t
0
dτδ(t− τ)f(τ) = 1

2
f(t), see Sec. 4.2.6. in Gardiner [39]. Therefore we

find the dephasing GKSL master equation

∂tρ̂t = −i[Ĥ0, ρ̂t]− γ[L̂, [L̂, ρ̂t]]. (1.36)

The advantage of this approach is that it can deal with colored noise and Non-Markovian
dynamics in a relatively easy way [35], its main disadvantage is that it is cumbersome,
and if we want to derive an equation of motion for other quantities, it gets completely
impractical.

Purely Itō approach

The Schrödinger equation is to be understood in the Stratonovich sense; it is, however,
quite common to translate between the two conventions of stochastic calculus, at the
price of adding spurious terms [39, 42, 43]. Therefore, the Itō version of the stochastic
Schrödinger equation is

d |ψt⟩ = (−iĤ0 − γL̂2) |ψt⟩ dt− i
√

2γL̂ |ψt⟩ dWt, (1.37)

which directly gives the stochastic master equation

dϱ̂t = d |ψt⟩ ⟨ψt|+ |ψt⟩ d ⟨ψt|+ d |ψt⟩ d ⟨ψt| (1.38)

= (−i[Ĥ0, ϱ̂t]− γ[L̂, [L̂, ϱ̂t]])dt− i
√

2γ[L̂, ϱ̂t]dWt,

and now averaging gives the dephasing GKSL master equation

∂tρ̂t = −i[Ĥ0, ρ̂t]− γ[L̂, [L̂, ρ̂t]]. (1.39)

This method is technically much simpler, and can be easily extended to other quantities,
at the cost of changing the rules of calculus for Itō rules. One unavoidable drawback
is that one cannot extend this model to colored noise. The other drawback is that the
transformation to Itō is not very rigorous, one needs to know how to transform the
Stratonovich equation into Itō convention and what spurious terms should be added.

The best of both worlds: Stratonovich-Itō method

Let us now introduce the approach that we will follow in the rest of the thesis, which is
conceptually the simplest.

The Stochastic Schrödinger equation (1.28) should be understood in the Stratonovich
sense, this means that the standard rules of calculus apply and the propagator solves the
equation

Ût = T←e−i
∫ t
0 dτ(Ĥ0+

√
2γξτ L̂). (1.40)



Introduction 15

If we want to generate the infinitesimal evolution from t to t+ dt, this propagator reads

Ûdt = exp(−iĤ0dt− i
√

2γL̂dWt) = e−idĤt , (1.41)

where the differential Hamiltonian is dĤt = Ĥ0dt+
√
2γL̂dWt.

Note that this object only depends on the Wiener process dWt and not on the state, and
thus we do not need to specify a convention to write this object. The convention must
only be specified when we write products with the state, e.g., Ût |ψt⟩ or Ût ◦ |ψt⟩.
If we shift the focus from the stochastic Schrödinger equation to the propagator as the
fundamental object, some disadvantages of the Itō approach wash away. We can obtain
the spurious terms appearing in Itō convention simply as the quadratic terms in the
propagator

d |ψt⟩ = Ûdt |ψt⟩ − |ψt⟩ =
(
−iĤ0dt− i

√
2γL̂dWt −

1

2
(
√
2γL̂)2dt

)
|ψt⟩ . (1.42)

This is the convention that we will follow in the rest of the thesis. Due to its simplicity,
it keeps the power of the Itō method without the need to modify the equation of motion
in an ad-hoc way to add spurious terms.

1.5 Non Hermitian Hamiltonians

The interest in Non-Hermitian Hamiltonians can be understood as an extension of quan-
tum theory where the axiom of the hermiticity of the Hamiltonian is not postulated
Ĥ† ̸= Ĥ. The motivation behind Bender and Boettcher’s [44] seminal work was that
Non-Hermitian quantum mechanics, and in particular PT symmetric quantum theory,
which keeps the eigenvalues of the Hamiltonian real, could provide a new theory for fun-
damental physics. Nowadays, the motivation for studying Non-Hermitian Hamiltonians
has changed. It is understood that a Non-Hermitian Hamiltonian provides an effective
description of certain physical systems, which nonetheless can show fascinating phenom-
ena, even amenable to experimental observation. In the setup we will consider mostly in
this thesis, a Non-Hermitian Hamiltonian describes the nonunitary dynamics of an open
quantum system undergoing a continuous measurement in the no-click limit. However,
this is only one of the possible physical realizations of NH evolution, in here we briefly re-
view the history of Non-Hermitian Quantum Mechanics and its experimental realization,
and in the coming subsections, we will introduce the basic mathematical framework.

History and importance of non-Hermitian Hamiltonians

In Quantum Mechanics, the eigenvalues of an observable, i.e., the possible outcomes of a
measurement of such an observable, need to be real because the number spit out by any
measurement device is necessarily real. This motivates the postulate that observables in
Quantum theory are necessarily Hermitian matrices, possessing real eigenvalues.
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The reverse implication is, however, more subtle: a non-Hermitian Hamiltonian can have
real eigenvalues. Bender5 and Boettcher realized in their seminal work [44] that the
Hamiltonian

Ĥ = p̂2 + ix̂3, (1.43)

has real spectrum, i.e. all its eigenvalues are real. The physical reason this non-Hermitian
Hamiltonian, which a priori could have an arbitrary complex spectrum, has a fully real
spectrum was shown to be the presence of a symmetry called PT symmetry. In the
forthcoming subsection, we will define formally this symmetry, particularly for a finite-
dimensional Hilbert space. The most general class of non-Hermitian Hamiltonians with a
real spectrum is that of pseudo-Hermitian Hamiltonians [46–48], of which PT symmetric
systems form a subset. Another interesting type of non-Hermitian Hamiltonians arises
from non-reciprocal interactions in a chain, which is the celebrated Hatano-Nelson model
[49], which shows interesting topological phenomena such as the Non-Hermitian skin effect
[50, 51] in which all eigenstates localize around the edges of the chain.

This mathematical observation could be thought to be a formal curiosity but it was
realized that the Maxwell equations in a waveguide can be mapped to Schrödinger’s
equation with a NH, and particularly PT symmetric, Hamiltonian [52, 53]. Shortly after,
the first examples of NH Hamiltonians were realized experimentally [54–56]. By now,
non-Hermitian systems have been been engineered in many classical and quantum setups,
and an extensive review can be found in [57]. This allowed for observing many phenomena
without a hermitian counterpart, such as those arising from the presence of an Exceptional
Point (EP) like unidirectional invisibility [56, 58] or EP-enhanced sensing [59–61]. PT
symmetric Hamiltonians provide a system whose energies are the zeros of the Riemann
zeta function, thus potentially proving the Riemann hypothesis [62]. In recent years, it
was shown that NH Hamiltonians enrich the Altland-Zirnbauer symmetry classification
[63], allowing for novel topological phenomena without a Hermitian counterpart [64–66]
which has also been studied in the context of open quantum systems with structured,
topological baths [67].

There are two prominent approaches to obtaining a non-Hermitian Hamiltonian quantum
mechanically. The first is based on the Feshbach projection approach [68–70]. In this
approach, one is concerned about some energy levels, which define the relevant subspace
of the full Hilbert space, discarding the irrelevant part. One reaches an effective Hamil-
tonian for the relevant subspace, which is in general non-Hermitian [57, 71]. The second
one, which we will consider more in this thesis, is based on quantum trajectories and
post-selection. Quantum trajectories were theoretically proposed and studied in [72–74],
they can be obtained as unravelings of the GKSL master equation [17, 75] or arising from
continuous quantum measurements [42, 43, 76, 77]. Quantum trajectories can be exper-
imentally observed [78, 79] by evolving the system to a variable time t and performing
full state tomography. The experimental control of quantum trajectories then allows for
continuous measurements and post-selection to discard the quantum jumps. The first

5A historical note from Bender can be found in [45] where he mentions what inspired this Hamiltonian,
and early observations by other researchers of the eigenvalues being real.
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successful experimental realization of a NH system in this way was done in the Murch
lab [80] using superconducting qubits. Many of the exceptional phenomena displayed by
NH systems have then been experimentally tested [81–84]. Recently, similar experiments
were performed in trapped ions [85] where NH Hamiltonians can show super quantum cor-
relations, e.g., go beyond the limits posed by quantum mechanics through Legett-Garg
inequalities [86]. Finally, recent proposals study the possibility of obtaining NH Hamilto-
nians without the need for post-selection, e.g., leveraging the symplectic transformations
between the creation and annihilation operators in bilinear quantum optical models [87],
or even arising from a clock in a non-inertial reference frame [88].

We now technically introduce the concept of PT symmetry, particularly in the context
of the NH qubit studied in [80].

1.5.1 Parity-Time Symmetry

Consider the following simple qubit Hamiltonian

ĤJ,G,L =

(
+iG J

J −iL

)
. (1.44)

This Non-Hermitian Hamiltonian represents two states {|0⟩ , |1⟩}. The state |1⟩ has a gain
term, described by +IG in the diagonal, while |0⟩ has a loss term described by −iL. Both
states are coupled by a hopping J , which can induce transitions between the two states.
A Parity transformation in this 2 × 2 Hamiltonian is simply given by P̂ = σ̂x, which
exchanges sites |0⟩ and |1⟩. Transforming the Hamiltonian with a parity transformation
P [•] = P̂ • P̂ we find

P [ĤJ,G,L] = σ̂xĤJ,G,Lσ̂x =

(
−iL J

J +iG

)
. (1.45)

This transformed Hamiltonian has a clear meaning, exchanging the two sites, we end
up with a Hamiltonian with losses −iL in |1⟩ and gains +iG in |0⟩. A time reversal
transformation T sends t→ −t; however, in quantum mechanics, since the propagator is
e−iĤt, this transformation can be equivalently thought of as complex conjugation i→ −i
. Therefore T [•] = •∗. If we applied the time-reversal transformation to Ĥ, we would
end up with a Hamiltonian with losses on site |1⟩ described by −iG and gains in site |0⟩
described by +iL. However, note that if we apply the time-reversal transformation to the
parity-transformed Hamiltonian, we find

PT [ĤJ,G,L] = (σ̂xĤJ,G,Lσ̂x)
∗ =

(
+iL J

J −iG

)
. (1.46)

This is very similar to the original Hamiltonian. Indeed, if we impose the condition of
balanced gain and loss G = L [52], i.e., the amount of energy or matter going into site 1
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is the same as the one exiting the system in site 0, we find that

PT [ĤJ,G,G] = ĤJ,G,G, (1.47)

and we say that the Hamiltonian has PT symmetry. Bender put forward the concept of
PT symmetry [44] for a continuous variable setup, which involves some technical points,
but is physically the same idea as the one described above [89]. The most striking con-
sequence of PT symmetry is that the Hamiltonian has real eigenvalues, albeit it is non-
Hermitian; diagonalizing the Hamiltonian, we find

λ2 +G2 − J2 = 0, λ± = ±
√
J2 −G2. (1.48)

Which has the property that when J ≥ G, the spectrum is real, and when G > J , the
spectrum is purely imaginary. This can be understood in the following way: when the
gains and losses G are smaller than the hopping J , this parameter “compensates” for the
decay and makes the spectrum real, while when the decay G is larger than the hopping
J , the former dominates and makes the eigenvalues purely imaginary. This phenomena
is known as PT -symmetry breaking and the phases J > G and G > J as PT unbroken
(PT u) and broken (PT b), respectively. The reason for the name is that in the unbroken
phase the eigenstates inherit the PT symmetry of the Hamiltonian while in the broken
phase they do not [45]. Between the two phases, when J = G, there is an Exceptional Point
(EP) where both the eigenvalues and the eigenvectors coalesce, and the Hamiltonian is not
diagonalizable at that point. Let us compute the (right) eigenvectors of this Hamiltonian,

defined as Ĥ |λ(r)± ⟩ = λ± |λ(r)± ⟩, which read

|λ(r)± ⟩ =
(
+iG±

√
J2 −G2

J

)
, (1.49)

note that this eigenvector is not normalized. The left eigenvectors, defined as ⟨λ(l)± | Ĥ =

λ± ⟨λ(l)± | or equivalently Ĥ† |λ(l)± ⟩ = λ∗± |λ(l)± ⟩, read

⟨λ(l)± | =
(
−iG±

√
J2 −G2, J

)
. (1.50)

We see that both pairs of eigenvectors coalesce at the EP J = G, and thus, the matrix is
not diagonalizable since its eigenbasis does not span the full Hilbert space. The typical
convention is to take both of these eigenvectors to be bi-orthonormal, as ⟨λ(l)n |λ(r)n ⟩ = δmn
[90].

1.5.2 Interlude: Quantum Jumps and Continuous Quantum
Measurements

Here we will introduce the main approach to obtaining a non-Hermitian Hamiltonian on
the lab. Following Wiseman and Milburn [42], we consider that our measurement over a
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time dt is described by a quantum channel

ρ̂t+dt = E [ρ̂t] =
∑
r

M̂r(dt)ρ̂tM̂
†
r (dt), (1.51)

where the sum over r accounts for all the possible measurement’s results. In the simplest
case, we consider two operators of the form

M̂0(dt) = 1̂−
(
1

2
ĉ†ĉ+ iĤ

)
dt, M̂1(dt) =

√
dtĉ, (1.52)

associated to measurement results r = 0 and r = 1, respectively.

Note that these are bona fide Kraus operators since they obey the normalization con-
dition M̂ †

0(dt)M̂0(dt) + M̂ †
1(dt)M̂1(dt) = 1̂. Starting the measurement from state ρ̂ the

probability of observing the result r = 1 after a time dt is given by

P(r = 1, dt) = Tr(ρ̂M̂ †
1(dt)M̂1(dt)) = dtTr(ĉ†ĉρ̂), (1.53)

which is infinitesimal6. The probability of measuring r = 0, the null result, is thus much
larger

P(r = 0, dt) = 1− dtTr(ĉ†ĉρ̂) = 1−O(dt). (1.54)

If we take the operator ĉ =
√
γâ to be an annihilation operator, this continuous measure-

ment models photodetection of a cavity. Introducing the number of photodetections up
to time t as N(t) and starting in a pure state |ψt⟩ one can introduce the increment in the
phototections at time t dNt as defined by the properties

dN2
t = dNt, E(dNt) = dt ⟨ψt|ĉ†ĉ|ψt⟩ , (1.55)

dNt is therefore a point process [42]. The first property implies that at any time the
increment is either dNt = 0 or dNt = 1, i.e., either we do not detect a photon or we do.
The probability of detecting a photon over the time dt is given by P(r = 1, dt) = E(dNt).

Let us now look at how the state evolves: If we detect a photon dNt = 1, the state is
updated to

|ψ(1)
t+dt⟩ =

M̂1(dt) |ψt⟩√
⟨ψt|M̂ †

1(dt)M̂1(dt)|ψt⟩
=

ĉ |ψt⟩√
⟨ψt|ĉ†ĉ|ψt⟩

. (1.56)

6As long as ĉ†ĉ ∈ B(H ) is a bounded linear operator over the Hilbert space, as in the original derivation
of Lindblad [30, 42]
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If we do not detect a photon, dNt = 0, and the state is updated to

|ψ(0)
t+dt⟩ =

M̂0(dt) |ψt⟩√
⟨ψt|M̂ †

0(dt)M̂0(dt)|ψt⟩
=

(
1̂−

(
1
2
ĉ†ĉ+ iĤ

)
dt
)
|ψt⟩√

1− dt ⟨ψt|ĉ†ĉ|ψt⟩

=
(
1̂− dt

(
iĤ + 1

2
(ĉ†ĉ− ⟨ψt|ĉ†ĉ|ψt⟩)

))
|ψt⟩+O(dt3/2). (1.57)

This evolution can be rewritten as a nonlinear Stochastic Schrödinger equation (SSE) of
the form

d |ψt⟩ =


 ĉ√

⟨ĉ†ĉ⟩ψ
− 1

 dNt +

(
⟨ĉ†ĉ⟩ψ − ĉ†ĉ

2
− iĤ

)
dt

 |ψt⟩ , (1.58)

where we introduced the short-hand notation ⟨ĉ†ĉ⟩ψ ≡ ⟨ψt|ĉ†ĉ|ψt⟩ and we discarded terms
of order dNtdt that come from writing the probability of the null measurement 1− dNt.
The case in which we observe a photodetection is called a quantum jump. However, it
describes a “sudden change in the observer’s knowledge, not an objective physical event”
[42], in contrast with Bohr’s original interpretation [91]. The dynamics described by
the solutions of this equation are called quantum trajectories. These are not quantum
trjectories in the Bohmian sense, or objectively real [76], but rather subjectively real in
the sense that the trajectory depends on the choice of the measurement scheme chosen
by the observer, however, once this scheme is chosen, all observers would agree on the
result. The general approach of mapping the GKSL equation to a Stochastic Differential
Equation of a certain kind is called an unraveling of the master equation [17]. There
are several different unravelings, e.g., based on quantum jumps dNt as described here,
based on white noise dWt like homodyne or heterodyne detection. All these unravelings
give different stochastic density matrices ϱ̂t that reproduce the evolution of the GKSL
equation on average ρ̂t = E(ϱ̂t).

1.5.3 Non-Hermitian Hamiltonians from Continuous Measurements

Pure initial state

Leveraging the framework of quantum trajectories, there is a simple way to engineer
a non-Hermitian Hamiltonian. Imagine that we do a continuous measurement up to a
certain time t and we post-select only those trajectories that did not have a quantum jump.
For these special trajectories, the evolution of the wavefunction follows the Schrödinger
equation

i∂t |ψt⟩ =
(
Ĥ − i

2
ĉ†ĉ+

i

2
⟨ĉ†ĉ⟩ψ

)
|ψt⟩ . (1.59)
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Note that this equation looks like the Schrödinger equation, but there are two main
differences:

• The effective Hamiltonian Ĥeff = Ĥ− i
2
ĉ†ĉ is non-Hermitian since Ĥ†eff = Ĥ+ i

2
ĉ†ĉ ̸=

Ĥeff . This means that it does not generate unitary evolution, which can be seen by
computing the propagator Ĝt = e−iĤeff t whose hermitian conjugate is not its inverse

Ĝ†tĜt = e+iĤ
†
eff te−iĤeff t ̸= 1̂.

• The equation is nonlinear in the wavefunction. The non-linearity arises from the
state-dependent term ⟨ĉ†ĉ⟩ψ. This term ensures that the wavefunction |ψt⟩ is nor-
malized at all times ⟨ψt|ψt⟩ = 1.

Even though the equation is non-linear, it can be formally solved in terms of the propa-
gator as

|ψt⟩ =
Ĝt |ψ0⟩√

⟨ψ0|Ĝ†tĜt|ψ0⟩
=

e−iĤeff t |ψ0⟩√
⟨ψ0|e+iĤ

†
eff te−iĤeff t|ψ0⟩

. (1.60)

Generic initial state

If we allow for an initially mixed state ρ̂0, the generic evolution follows the non-linear
master equation found by Brody and Graefe [92]

∂tρ̂t = −i[Ĥ, ρ̂t]−
1

2
{ĉ†ĉ, ρ̂t}+ Tr(ĉ†ĉρ̂t)ρ̂t. (1.61)

Note that the anti-commutator term naturally arises from the GKSL equation; therefore,
this equation— discarding the nonlinear term, which simply enforces normalization—
can be thought of as the GKSL equation in which we have “killed” the quantum jumps∑

j L̂j ρ̂L̂
†
j [89]. Again, this nonlinear master equation can be formally solved as

ρ̂t =
Ĝtρ̂0Ĝ

†
t

Tr(Ĝ†tĜtρ̂0)
=

e−iĤeff tρ̂0e
+iĤ†

eff t

Tr(e+iĤ
†
eff te−iĤeff tρ̂0)

. (1.62)

This evolution has an interesting property: it preserves the rank of states, which allows
for a purely geometric formulation of NH dynamics [93]. A consequence is that if the
initial state is pure ρ̂0 = |ψ0⟩ ⟨ψ0|, the state remains pure along the evolution. This can
be easily understood for the qubit in the Bloch sphere; the trajectories that start on the
surface of the sphere remain on the surface, but inside the sphere, the trajectories can
have all sorts of behavior, since the evolution in general does not preserve the purity, as
unitary evolution would do. This can be easily checked from the expression of the purity

Pt = Tr(ρ̂2t ) =
Tr(Ĝ†tĜtρ̂0Ĝ

†
tĜtρ̂0)

Tr(Ĝ†tĜtρ̂0)Tr(Ĝ
†
tĜtρ̂0)

=

{
1 if ρ̂0 = |ψ0⟩ ⟨ψ0|
< 1 if Tr(ρ̂20) < 1

. (1.63)
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Where the case for mixed initial state can be proved by expanding ρ̂0 =
∑

i pi |ψi⟩ ⟨ψi|,
which gives

Pt =

∑
i,j pipj| ⟨ψj|Ĝ†tĜt|ψi⟩ |2∑

i,j pipj ⟨ψi|Ĝ†tĜt|ψi⟩ ⟨ψj|Ĝ†tĜt|ψj⟩
.

The Cauchy-Schwarz inequality ensures that

| ⟨ψj|Ĝ†tĜt|ψi⟩ |2 ≤ ⟨ψi|Ĝ†tĜt|ψi⟩ ⟨ψj|Ĝ†tĜt|ψj⟩ ,

and therefore Pt ≤ 1.

Passive PT symmetry

The types of NH Hamiltonians that we can achieve from continuous measurements and
post-selection are always of the form Ĥ − i

2
ĉ†ĉ note that, whatever the operator ĉ, the

product will always be positive semi-definite ĉ†ĉ ≥ 0. This means that, at least in this
approach, it is only possible to realize NH Hamiltonians whose eigenvalues have negative
imaginary part. This comes from the fact that if the quantum channel E [•] is trace
preserving, applying any post-selection strategy to choose only a subset of Kraus operators
will only yield a trace decreasing map. This implies that gains, described by positive
imaginary terms like +iG in (1.44), cannot be implemented in quantum setups, and
are hard to implement even in classical setups [89]. However, considering non-uniform
losses can achieve the same phenomenology. This gives rise to a passive-PT symmetric
Hamiltonian [89]. In particular, the version of (1.44) that has been realized in the lab
[80], which we will call the Dissipative Qubit can be written in the {|e⟩ , |f⟩} basis as

Ĥdq =

(
0 J

J −iΓ

)
= Jσ̂x − iΓ |e⟩ ⟨e| , (1.64)

where the anti-Hermitian term comes from setting ĉ =
√
2Γσ̂− =

√
2Γ |g⟩ ⟨e| and thus

− i
2
ĉ†ĉ = −iΓ |e⟩ ⟨e|. Note that this Hamiltonian is not PT -symmetric, however it can be

mapped to a PT -symmetric Hamiltonian by a constant shift of the energy +iΓ/2, which
has no physical effect, provided that the evolution of the state is renormalized. This shift
makes the eigenvalues purely real and purely imaginary, in the PT unbroken and PT
broken phases, respectively.

Details on the experimental setup of the Dissipative Qubit

The first physical implementation of this system consisted of a superconducting qubit
setup, particularly a transmon, which has 3 levels {|g⟩ , |e⟩ , |f⟩}. Two Josephson junctions
form the transmon circuit in a Superconducting Quantum Interference Device (SQUID)
shunted by a capacitor [80, 94]. The full 3-level system is described by the master equa-
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tion7

∂tρ̂t = −i[Ĥ, ρ̂t] + 2ΓeDσ̂− [ρ̂t], (1.65)

the dissipator superoperator is defined as DX̂ [•] := X̂ • X̂† − 1
2
{X̂†X̂, •}. This channel

describes spontaneous emission from |e⟩ → |g⟩. An Impedance mismatch element is used
to shape the density of states and thus to achieve a large decay rate Γe. This decay rate
can be tuned by a magnetic flux Φ through the SQUID, which tunes the frequency of the
levels of the transmon. The circuit is embedded in a waveguide, the dispersive interaction
between the transmon and the fundamental mode of the waveguide gives a state-dependent
shift of the cavity frequency, which is detected with a weak microwave tone, lastly the
phase shift is detected by homodyne measurement with a Josephson parametric amplifier
[80]. Recently, another setup for realizing a Non-Hermitian Qubit based on trapped ions
has been realized [85].

1.6 A crash course in Random Matrix Theory

Why Random Matrices?

In the 1950s, physicists were trying to characterize certain properties of heavy nuclei.
These systems are composed of hundreds of nucleons that interact very strongly with
each other, as Bohr pointed out [95]. Even if we had a model for the interaction of
each pair of nucleons, solving it for all practical purposes would be impossible. In this
context, Wigner introduced an extremely simplified model [96]; his idea was that the
system under study would be so complex that its Hamiltonian would be almost random,
or at least this could be a good model for it. The only constraint that one should impose
on the randomness is that it respects the fundamental symmetries of the system. In a
sense, this is a statistical model of the behavior of complex nuclei, instead of averaging
over different initial states, as typically done in physics, Wigner’s approach considered
an ensemble of Hamiltonians with some common symmetry; in this way, one extracts the
properties that are common to all the ensemble.

This was the original idea behind the grand development of Random Matrix Theory
(RMT), which ever since has been explored in many different areas of physics [97–99]
and mathematics [100]. See [99] for a historical account of the different periods in the
development of RMT.

7This master equation holds when we disregard the decay channel |f⟩ → |e⟩. In reality, this channel
is present, but its decay rate Γf is very small compared to the decay rate of the channel |e⟩ → |g⟩
given by Γe. For one of the particular realizations in [80] we have Γf = 0.25µs−1, while Γe = 6.7µs−1,
which justifies this approximation. The effect of this decay rate can be accounted for by shifting the
decay rate Γ = Γe − Γf .
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1.6.1 Definition of Gaussian Random Matrix Ensembles

The basic object in RMT is an ensemble of random matrices {Ĥ}, which in physical
applications are typically considered to model Hamiltonians, and more importantly one
needs to introduce a probability distribution P(Ĥ) over this ensemble, such that we know
how likely it is to sample a given matrix Ĥ.

In the Gaussian random matrix ensembles, the different matrix elements Hij are sampled
independently from one another. This means that the probability distribution over the
Hamiltonians factorizes as

P(Ĥ) =
N∏

i,j=1

pij(Hij). (1.66)

In particular, one can show [101] that for the different Gaussian Random Matrix Ensem-
bles, which we will define in this section, this expression reduces to

P(Ĥ) = Ce−ATr(Ĥ
2), (1.67)

where A sets the energy scale and C is a normalization factor which can be thought of as
the inverse of the partition function C = 1/Z.

The ensembles are fundamentally characterized by their symmetries. Once the physical
Hamiltonian has been block diagonalized according to its unitary symmetries, e.g., fixing
the global spin, we can model it using random matrix theory. The relevant symmetries
for defining the RMT are antiunitary, the most relevant symmetry for our case is time-
reversal symmetry T̂ . Anti-unitary symmetry can be expressed as a product of a unitary
operator Û and complex conjugation K̂, i.e., T̂ = ÛK̂. Note that if we act twice with
time-reversal symmetry, we should recover the same state, which enforces T̂ 2 = α1̂ with
|α| = 1. From the expression of the antiunitary operator, we find that it fulfills the
property [101]

T̂ 2 = ÛK̂ÛK̂ = Û Û∗ = α ⇒ Û∗ = αÛ † ⇒ Û † = (Û∗)⊺ = αÛ∗

⇒ Û∗ = α2Û∗ ⇒ α2 = 1 ⇒ α = ±1. (1.68)

Therefore, the square of the time-reversal operator has the two possible values T̂ 2 = ±1.
The T̂ 2 = 1 case is obtained in spinless systems and whenever the Hamiltonian is real
in a certain basis, while the T̂ 2 = −1 case can be obtained for spin 1

2
systems [101].

Therefore, according to their different behavior under time-reversal symmetry, there are
three possible Gaussian Random Matrix ensembles, which is known as Dyson’s threefold
way [102]. These three possibilities define the three basic ensembles that we will consider
in the remainder of this thesis. The Dyson index β distinguishes between the three

• Gaussian Orthogonal Ensemble (GOE): If T̂ 2 = +1 the system shows con-
ventional time reversal symmetry. In this case, the ensemble is invariant under
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orthogonal transformations respecting Ô⊺Ô = ÔÔ⊺ = 1̂. This implies that

P(1)(ÔĤÔ⊺) = P(1)(Ĥ), ∀ Ô ∈ O(H ), (1.69)

where O(H ) denotes the group of orthogonal linear operators over the Hilbert space.
This property physically represents that the ensemble should remain invariant under
changes of basis that keep the Hamiltonian real. The GOE is characterized by β = 1.
The Hamiltonians of GOE have real matrix elements Hij ∈ R, given a matrix X̂ in
which all its elements are normally distributed Xij ∼ N (0, 1), with 1 ≤ i, j ≤ N we
can sample a GOE matrix as

Ĥ =
X̂ + X̂⊺

2
, Ĥ ∈ GOE(N). (1.70)

• Gaussian Unitary Ensemble (GUE): When there is no time-reversal symmetry,
the ensemble will be invariant under unitary transformations

P(2)(ÛĤÛ †) = P(2)(Ĥ), ∀ Û ∈ U (H ), (1.71)

where U (H ) denotes the group of unitary operators over the Hilbert space. Again,
the physical meaning of this requirement is that the ensemble should remain invariant
under a change of basis, i.e. the probability of two Hamiltonians related simply by
a change of basis should be the same Ĥ, Ĥ ′ = Û †ĤÛ . The GUE is characterized
by β = 2. The matrix elements now need not be real, however, Ĥ still has to
be Hermitian. If we sample a square matrix with complex, normally distributed
variables, Xmn ∼ N (0, 1) + iN (0, 1), with 1 ≤ m,n ≤ N , we can sample a GUE
matrix as

Ĥ =
X̂ + X̂†

2
, Ĥ ∈ GUE(N). (1.72)

• Gaussian Symplectic Ensemble (GSE): When the system is anti-symmetric un-
der time-reversal transformations T̂ 2 = −1 the ensemble is required to be invariant
under symplectic transformations Ŝ

P(4)(ŜĤŜ†) = P(4)(Ĥ). (1.73)

The symplectic transformations are those 2N × 2N matrices that satisfy

Ŝ†Ω̂Ŝ = Ω̂, where Ω̂ =

(
0 −1

1 0

)
⊗ 1̂N . (1.74)

The GSE is characterized by β = 4. It can be sampled by constructing the com-
plex, normally distributed matrix Xmn ∼ N (0, 1) + iN (0, 1), 1 ≤ m,n ≤ 2N and
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computing

Ĥ =
X̂ + X̂† − Ω̂(X̂ + X̂†)Ω̂

2
√
2

, Ĥ ∈ GSE(N). (1.75)

Due to Kramer’s degeneracy [101], the eigenvalues of this ensemble come in degen-
erate pairs; for this reason, for the spectral analysis of this ensemble, we will only
consider one energy per each degenerate pair.

A key feature of these Gaussian ensembles is that the joint probability density of all the
eigenvalues is known analytically [103]

ρβ(E1, . . . , EN) = C
∏

1≤i<j≤N

|Ei − Ej|β e−A
∑N

i=1 E
2
i , (1.76)

where A is a constant that fixes the energy scale and C ensures normalization of the
joint probability density. The most relevant term in this expression is the Vandermonde
determinant

∏
1≤i<j≤N |Ei−Ej|β; this term describes the interaction, also called the level

repulsion, between the eigenvalues. Interestingly, this level repulsion is stronger the higher
the value of the Dyson index β of the ensemble. This is one of the key features presented
by random matrices, which makes them interesting from a physical point of view, as will
be discussed in the next section.

In a real system, building the joint probability density of all the eigenvalues is impractical.
Thus we resort to other measures of spectral correlations which are easier to compute
or measure. The most basic of these quantities is the nearest-neighbors Level Spacing
(nnLS) distribution P(s). The nearest-neighbor level spacings are defined simply as sn :=
En+1−En. Given the set of all possible level spacings {sn}N−1n=1 we can compute the nnLS
distribution P(s). For the Random Matrix Ensembles, this distribution is given by the
Wigner’s Surmise [104]

Pβ(s) = Cβs
βe−Aβs

2

, (1.77)

where Cβ and Aβ are given by [101]

Cβ =
2

Γ(β+1
2
)

(
Γ(β

2
+ 1)

Γ(β+1
2
)

)β+1

=


π
2
for β = 1,

32
π2 for β = 2,
218

36π3 for β = 4,

(1.78a)

Aβ =

(
Γ(β

2
+ 1)

Γ(β+1
2
)

)2

=


π
4
for β = 1,

4
π
for β = 2,

64
9π

for β = 4,

(1.78b)
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which ensures that the distribution is normalized and that the average level spacing is
unity [101] ∫ ∞

0

P(s)ds = 1,

∫ ∞
0

sP(s)ds = 1. (1.79)

The expressions for these distributions can be derived analytically for a 2× 2 matrix, and
interestingly, agree quite well with a random matrix of any dimension N , provided that
one enforces the conditions (1.79), something that can be achieved through a numerical
process called unfolding the spectrum [101, 105] which will be introduced in the next
section.

1.6.2 Unfolding the spectrum

Spectra have two main contributions, a system-specific one and a universal one, which
is the one we can model in the context of Random Matrices. To remove all the system-
specific information and analyze only universal behavior, we typically perform a procedure
called unfolding of the spectrum [99], which we detail in this section. Given a spectrum
{En}Nn=1, which we assume to be ordered n ≥ m⇒ En ≥ Em, we can compute the density
of states ρ(E)

ρ(E) =
N∑
n=1

δ(E − En), (1.80)

which yields the cumulative density of states η(E) defined as

η(E) =

∫ E

−∞
ρ(E ′)dE ′ =

N∑
n=1

Θ(E − En), (1.81)

where Θ(x) is the Heaviside step function. The function η(E) counts the number of energy
levels with energy En < E, and is also sometimes referred to as the staircase function.
This function has two different contributions: a smooth and a fluctuating one

η(E) = η̄(E) + ηfl(E), (1.82)

where the smooth part η̄(E) is the cumulative local density of states [99] obtained as

η̄(E) =

∫ E

−∞
ρ̄(E ′)dE ′, (1.83)

where ρ̄(E ′) is the local density of states [101]. The unfolding procedure consists of
mapping each eigenvalue En to a new eigenvalue en as

En 7→ en = η̄(En), (1.84)
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so that now the staircase function for the unfolded spectrum {en}Nn=1 reads

η(e) = e+ ηfl(e), (1.85)

which has unit-density states all over the spectrum; therefore, the spectral analysis of the
unfolded spectrum should only contain universal information and should not depend on
the system-specific local density of states. Of course, to unfold a given spectrum, one
needs to find the staircase function η̄(E), which is generally a non-trivial task.

Analytical unfolding in Gaussian Random Matrices

We know that the local density of states of Random Matrices in the N → ∞ limit is
well-described by Wigner’s semicircle law [106] as

ρ̄(E) =
1

πβN

√
2Nβ − E2, (1.86)

where we see that the local density of states is a semicircle with radius
√
2Nβ depending

on the dimension of the matrix and the Dyson index. For this local density of states, the
staircase function can be computed analytically to be

η̄(E) = N

∫ E

−∞
ρ̄(E ′)dE ′, (1.87)

=


0 E < −√

2Nβ,

N

2
+

E

2βπ

√
2βN − E2 +

N

π
arctan

(
E√

2βN − E2

)
−√

2Nβ ≤ E ≤ √
2Nβ,

N E >
√
2Nβ.

This analytical unfolding is essential when comparing random matrices of different di-
mensions, which is necessary since many of the analytical expressions such as the level
spacing distribution P(s) are obtained analytically for 2× 2 matrices.

Numerical unfolding

In the general case, where we have obtained some spectrum numerically, we do not know
an analytical expression for its local density of states. In this case, it becomes important
to find a numerical procedure to find the staircase function η̄(E). Following [105], we use
the following algorithm:

1. Order the energies such that E1 ≤ E2 ≤ · · · ≤ EN
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2. Compute the staircase function η(E) =
∑N

n=1Θ(E − En). In practice, we compute
the histogram for the density of states

ρnum(x1, . . . xNbins
) =

N∑
n=1

Θ(En ∈ [xi, xi+1])
Nbins
i=1 ,

which depends on the number of bins Nbins, and compute its cumulative function
ηnum(E) =

∑
xi<E

ρnum(xi).

3. We fit the staircase function ηnum(E) to a certain polynomial of degree κ, which is
smooth in the variable pκ(E) =

∑κ
α=0 cαE

α = η̄num(E).

4. Once we have found the polynomial fit η̄num(E) = pκ(E) we find the unfolded spec-
trum as

en = η̄num(En).

5. This spectrum {en}Nn=1 now should have a density of states equal to unity; however,
the tails of the density of states are hard to sample properly, and we typically get
some unwanted behavior in the tails. For this reason, we choose a window of energies
of size Nen in the middle of the spectrum.

The numerical unfolding depends on two parameters [3]: the number of bins Nbins and the
degree of the polynomial fit κ. The number of bins should be chosen in a “mesoscopic”
scale: large enough such that the density of states does not change much over the the
interval [xi, xi+1], but small enough such that the bin size xi+1−xi ≫ ⟨s⟩ contains enough
levels. The role of the degree of the polynomial is also critical, since a high degree can
lead to overfitting [107], i.e., to attributing part of the fluctuating ηfl(E) to the staircase
function η̄(E). To test what parameters provide the best unfolding for our case, we use
the analytical unfolding known for random matrices and compare it with the numerical
approach, defining a quality of the unfolding Q as

Q :=

Nbins∑
i=1

Nen∑
n=1

[Histi(η̄an(En))− Histi(η̄num(En))]
2 . (1.88)

Figure 1.1 shows the quality of the unfolding [3] as a function of the two parameters
Nbins and κ. We observe that unfolding with degrees 1 and 2 performs poorly, and that
unfolding with degree κ > 5 performs slightly worse, which we attribute to overfitting.
To avoid this, we choose a polynomial of degree κ = 3 and a number of bins Nbins = 50.
As argued by Bertrand and Garcia-Garcia [107], a global unfolding, such as the one we
use, keeps the long-range correlations between energies, which are critical for our work in
Chap. 4.
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Figure 1.1. Quality of the numerical unfolding with respect to the analytical one for
GOE matrices. The dimension of the random matrices is N = 400, we choose the
central window with Nen = 200 energies and average over Nav = 500 realizations
of the ensemble.

1.7 Founding Conjectures of Quantum Chaos

Having introduced the basic concepts in the theory of Random Matrices, we are now in a
position to answer the question: “why is RMT important in physics?”, with a particular
focus on the chaotic or integrable dynamics of quantum systems. The connection to these
systems is through two conjectures, which we introduce now.

1.7.1 Berry Tabor conjecture

The Berry-Tabor conjecture [108] states that the energy levels of integrable quantum
systems, i.e., those that are not chaotic, follow a Poisson Point Process on the real line.
This means that they behave as if the energies were sampled randomly and independently
from each other. This is also called the Poisson ensemble in which each energy Ei ∼
U[− l

2
, l
2
] is sampled independently8 in a certain interval. The level spacing distribution

reads

P(s) = e−s. (1.89)

This distribution reflects a key feature of integrable systems: the value of the level spacing
at s = 0 is P(0) = 1, which indicates that by randomly sampling energies it is very
probable that the two neighboring energies En, En+1 are very close, i.e. nearly degenerate

9.
This arises naturally since the energies are sampled independently and thus have no

8Here we sample the energies from a uniform distribution on the interval [−l/2, l/2], but sampling them
from a different distribution, such as normal distribution, is expected to give similar results.

9Note that even if the distribution is maximum at the origin, the probability of having two exactly
degenerate levels is zero, since the set with s = 0 has zero measure.
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repulsion. There are many possible definitions of what an integrable system is; for a
complete discussion, see [109]. Generally, one expects an integrable quantum system to
have an extensive number of conserved quantities, in terms of which the dynamics can be
solved.

1.7.2 Bohigas Giannoni Schmitt conjecture

The Bohigas-Giannoni-Schmitt conjecture [110] states that chaotic quantum systems fol-
low the spectral statistics of a Random Matrix Ensemble with the same underlying sym-
metries. In particular, by looking at the nnLS distribution one expects it to follow the
Wigner’s surmise (1.77)

P(s) = Cβs
βe−Aβs

2

, (1.90)

where the Dyson index β is to be chosen accordingly to the underlying symmetries of the
system: β = 1 for T 2 = +1, β = 2 for T 2 = 0, and β = 4 for T 2 = −1. The original
conjecture was posed for systems with a well-defined semiclassical limit ℏeff → 0 in which
the dynamics is chaotic, like quantum billiards [111, 112] or the quantum kicked top
[101, 113]. The most general Quantum Kicked Top [101] is given by a Floquet operator
F̂ which describes the evolution of the system in one period–the kicks are periodic– and
generally reads

F̂ = e−i
tx
N
Ŝ2
x−iaxŜx e−i

ty
N
Ŝ2
y−iayŜy e−i

tz
N
Ŝ2
z−iazŜz , (1.91)

which can show Poisson, GOE, or GUE statistics depending on the values of a = (ax, ay, az)
and t = (tx, ty, tz). As an example of integrable Kicked Top we consider a = (0, 0, 1)
and t = (0, 0, 10), while as an example of GOE statistics we consider a = (1, 0, 1) and
t = (10, 0, 0). The pseudo-energies ϵn can be obtained from the eigenvalues of the Floquet
operator as F̂ |χn⟩ = eiϵn |χn⟩ [101], which give the nnLS as sn = ϵn+1 − ϵn.
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P
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Figure 1.2. Nearest-neighbor level spacing distribution for a Quantum Kicked Top
in the integrable (blue) and GOE (red) phases. The system has S = 400, and the
pseudo energies were unfolded by a 3rd order polynomial with 50 bins.
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The nnLS distributions for the Quantum Kicked Top in the integrable and chaotic phase
are shown in Fig. 1.2, which shows good agreement with the Poisson (blue) and Wigner-
Dyson (red) results, thus justifying the Berry-Tabor and Bohigas-Giannoni-Schmit con-
jectures. This plot clearly illustrates that in integrable systems one expects many small
spacings, i.e., almost degenerate levels. In contrast, for chaotic systems the probability
density at s = 0 vanishes, this arises from level repulsion, and grows linearly for small s
as P(s) ∝ s. Interestingly, a very large spacing s ≳ 2 is more probable when the levels
are uncorrelated, a feature arising from the fact that a Gaussian approaches zero faster
than an exponential.

1.8 Other measures of spectral Statistics

Although the nnLS is the most basic of all measures of spectral correlations, there are
many other measures, which have their advantages and disadvantages. We briefly review
now two that will be related to the analysis carried out in Chapter 4.

1.8.1 Short range: Spacing ratios

If one wants to see whether a given spectrum {En}Nn=1 shows level repulsion, the level
spacing distribution will in general show P(0) = 0 and a power law growth at small s.
However, if one wants to compare with the Wigner surmise, the spectrum first has to be
unfolded, as discussed in Sec. 1.6.2, to remove the dependence on the density of states
ρ(E). This is problematic since the unfolding procedure is not always reliable and it
involves some extra processing of the spectral data, which may be a drawback in some
occasions. For this reason, Oganesyan and Huse [114] introduced the nnLS ratios r̃n as a
numerical tool to determine whether a given spectrum shows level repulsion without the
need for unfolding. The level spacing ratio is defined from two level spacings sn, sn−1 as

rn :=
min(sn, sn−1)

max(sn, sn−1)
, (1.92)

which can equivalently be re-written in terms of the ratio r̃n = sn
sn−1

as rn = min(r̃n, r̃
−1
n )

[115, 116]. The advantage of the ratio is that by comparing sn with sn−1, all the energies
have approximately the same density of states ρ(En), and thus this contribution is removed
from r̃n. The probability distribution for the ratios r̃n can be computed for RMT [115]

P(β)(r̃) =
1

Zβ

(r̃ + r̃2)β

(1 + r̃ + r̃2)1+
3
2
β
, (1.93)

where Zβ is some normalization constant [115], while for Poisson “β = 0” it reads [114, 115]

P(0)(r̃) =
1

(1 + r̃)2
. (1.94)
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Similarly to the level spacing distribution, the ratio distribution vanishes at r̃ = 0 for
RMT, while it is maximum at s = 0 for Poisson, thus showcasing level repulsion. To
compare numerical data with RMT, it is also customary to introduce the average of the
ratio rn as a simple measure of spectral correlations, in particular, the exact values for
the average read [114, 115]

⟨r⟩ =


2 ln 2− 1 ≈ 0.39 Poisson,

4− 2
√
3 ≈ 0.53 GOE,

2
√
3

π
− 1

2
≈ 0.60 GUE,

32
15

√
3
π

− 1
2
≈ 0.67 GSE.

(1.95)

1.8.2 Long range: Number variance

Correlations are present all over the spectrum of random matrices, with the nnLS being
only one indication of the correlation to nearest neighbors. A more thorough study of spec-
tral correlations in random matrices or quantum chaotic systems necessitates measures of
correlations at all possible spectral distances. Throughout the thesis, we will study the
spectral form factor in depth, encompassing all correlations. However, for completeness,
we review other measures of long-range correlations.

The easiest of such measures is the number variance Σ2(ϵ), introduced by Dyson and
Mehta [99, 117], which is given in terms of the number of levels N(xs, ϵ) =

∑N
n=1 Θ(En ∈

[xs, xs + ϵ]) on the interval [xs, xs + ϵ], where xs is the starting energy of the interval and
ϵ is the length of the energy window. The number variance is therefore defined as

Σ2(ϵ) := Exs
(
N(xs, ϵ)

2
)
− Exs(N(xs, ϵ))2, (1.96)

where the average is performed over the starting points of the interval. For Poisson, this
quantity is well-known to grow linearly Σ2(ϵ) = ϵ, while for the random matrix ensembles,
it behaves logarithmically Σ2(ϵ) ∼ log(ϵ), see [99] for the exact expression.

1.9 Spectral Form Factor

1.9.1 The many faces of the Spectral Form Factor

The spectrum arising from a random matrix is not only correlated to its nearest neighbors,
but instead shows correlations between all the different eigenvalues. Some indicators,
such as the number variance discussed in Sec. 1.8.2, focus on the long-range spectral
correlations. However, a more interesting one is the Spectral Form Factor (SFF), which
takes all the possible energy ranges into account. Berry studied this quantity [118] and can
be computed analytically for random matrices [103]. This quantity was also introduced as
a numerical tool by Leviandier et al. [119], which allowed for the analysis of correlations
in spectra with possibly missing levels [120–122].
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There are many possible different definitions of the SFF, at a finite temperature T it can
be written in terms of the partition function Zβ =

∑N
n=1 e

−βEN analytically continued to
complex β [123–126]

Sβ,t :=

〈∣∣∣∣Zβ+it

Zβ

∣∣∣∣2
〉

=

〈
1

Z2
β

N∑
m,n=1

e−β(Em+En)e−it(Em−En)

〉
, (1.97)

where β = 1/(kbT ) is the inverse temperature, and ⟨•⟩ denotes a suitable average, as
discussed more carefully in Sec. 4.3.1, which is needed since the SFF is not self-averaging
[127]. Interestingly, we found that, similarly to the universal bound on the Lyapunov
exponent by Maldacena, Shenker, and Stanford [128], the early time exponential decay
of the SFF Sβ,t ∼ e−ηt is also universally bounded by [4]

η ≤ π

2β
. (1.98)

The SFF that we will consider mostly in Chapter 4 will be at infinite temperature β = 0,
which simply reads

St :=
1

N2

〈
N∑

m,n=1

e−it(Em−En)

〉
. (1.99)

For a generic system, this quantity shows a very distinctive shape, at time zero it is
S0 = 1, due to the normalization, after that it starts decaying in the slope, showing
some oscillations. Then, if the system is chaotic, it grows back in a linear ramp, and
saturates to a plateau given by limt→∞ St =

1
N
. The plateau arises due to the different

oscillation frequencies ωmn = Em − En not having rational relations with each other and
thus cancelling each other out. In the case of certain integrable models, such as the
Harmonic Oscillator or the Calogero-Sutherland model [4, 129], there exist frequencies
such that their ratio is rational ωmn/ωkl ∈ Q, these oscillations are in phase and thus
in the long-time limit they do not simply cancel out, in this casess the SFF does not
show a plateau but rather oscillatory behavior. Lastly, in a generic integrable system, the
oscillation frequencies will not show rational ratios. Thus the SFF converges to a plateau,
but since the spectrum does not show level-repulsion, it will not show a linear ramp.

In general, one can consider a general filtering function for the spectrum f(E) and define
the SFF as [130]

St =
1

Z

〈∣∣∣∣∣
N∑
n=1

f(En)e
−iEnt

∣∣∣∣∣
2〉

, (1.100)

where Z is simply a normalization factor. The introduction of filters or different averages
is equivalent to breaking unitarity of the evolution [131], which reduces the effects of
quantum noise, rendering the SFF to be self-averaging, a feature observed in [132]. Lastly,
the SFF can be understood as a fidelity for a special initial state, such as the coherent Gibbs
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state |ψβ⟩ =
∑

n
e−

β
2 En√
Zβ

|En⟩, or the Thermofield Double State |TFDβ⟩ =
∑

n
e−

β
2 En√
Zβ

|En⟩1⊗
|En⟩2 [129]

Sβ,t =
∣∣∣⟨ψβ|e−iĤt|ψβ⟩

∣∣∣ . (1.101)

Lastly, perhaps the most common definition of the SFF is as a Fourier Transform of the
two-point correlation function ⟨ρ(E)ρ(E ′)⟩ of the level density ρ(E) as

Sβ,t =

∫∫
dEdE ′⟨ρ(E)ρ(E ′)⟩e−β(E+E′)e−it(E−E

′). (1.102)

1.9.2 Connected SFF

The SFF can generally be split in three main contributions10 [124, 126, 129]

Sβ,t ∝ ⟨Z2β⟩+ ⟨Zβ+it⟩⟨Zβ−it⟩+ S
(c)
β,t, (1.103)

where the three terms correspond to the plateau, disconnected, and connected parts of
the SFF. The most interesting part is the connected one, defined from the connected two
point correlation function ⟨ρ(E)ρ(E ′)⟩c = ⟨ρ(E)ρ(E ′)⟩ − ⟨ρ(E)⟩⟨ρ(E ′)⟩

S
(c)
β,t =

∫∫
dEdE ′⟨ρ(E)ρ(E ′)⟩c e−β(E+E′)e−it(E−E

′). (1.104)

The connected part encodes the universal features of the spectral statistics of the model;
these are the correlations that are well described by RMT. The level repulsion between
the eigenvalues gives rise to the universal ramp of the SFF, a feature widely considered
a signature of quantum chaos. In particular, for the Gaussian ensembles of Random
Matrices, one can compute analytical expressions for the connected SFF b(t) [103]. We
adapt these by setting the plateau time to tp = 2π—which is the Heisenberg or plateau
time for an unfolded spectrum with

∫∞
0
sP(s)ds = 1—and the plateau value to 1/N . The

10Here we disregard the proportionality factors since they obscure our reasoning, particularly because

averages of the form
〈

Zβ+it

Zβ

〉
cannot be computed analytically and one instead takes the “annealed”

averages [126]
⟨Zβ+it⟩
⟨Zβ⟩ . These two averages are approximately equal in the high temperature β ≪ 1

limit. However, in Chap. 4 we will only deal with infinite T and this will not be an issue, so we will

not comment on it. A solution to this issue is to multiply by a term of the form
⟨|Zβ|2⟩
|⟨Zβ⟩|2 as in [130].
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connected SFFs read [133]

bgoe(t) =


t

πN
− t

2πN
log

(
1 +

t

π

)
for t ≤ 2π,

2

N
− t

2πN
log

t+ π

t− π
for t > 2π,

(1.105a)

bgue(t) =


t

2πN
for t ≤ 2π,

1

N
for t > 2π,

(1.105b)

bgse(t) =


t

4πN
− t

8πN
log

(
1− |t|

2π

)
for t ≤ 4π,

1

N
for t > 4π.

(1.105c)
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Figure 1.3. Spectral Form Factor for the Random Matrix Ensembles: The SFF numer-
ically generated (solid lines), along with the universal connected SFF b(t) (1.105)
(dashed lines). We indicate the plateau value St→∞ = 1

N (dotted gray), as well as
the Heisenberg or plateau time tp = 2π (dash dotted gray). The numerical results
are obtained for N = 200 and averaged over Nav = 500 realizations of the RMT
ensemble. The spectrum was unfolded analytically, see Sec. 1.6.2.

Figure 1.3 shows the time evolution of the SFF for the different ensembles. The three main
contributions ot the SFF now have a clear interpretation: the plateau sets the saturation
value at long times, the disconnected SFF is responsible for the early time decay and
the oscillations of the SFF, and the connected SFF gives rise to the universal ramp. In
Fig. 1.3 we see that the Poisson ensemble shows no correlation hole, thus saturating
directly to the plateau value. In contrast, the other ensembles display a correlation hole
with the characteristic linear ramp. This ramp is well characterized by the connected
SFF b(t) (dashed lines). Interestingly, the different symmetries of the ensembles cause a
difference in the transition from the ramp to the plateau: GOE shows a smooth transition;
while GUE shows a sharp transition, which is called the kink ; lastly, GSE shows an
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increase around tp = 2π, before saturating to the plateau, which is called the spike.
These are related to the different amounts of level repulsion between the eigenvalues in
the different RMT ensembles. Therefore, the presence of the correlation hole and the
ramp is widely regarded as one of the signatures of Quantum Chaos [118, 133–135] even
when no semiclassical limit is available [136].

Let us now address a natural question: “do we need to perform spectral unfolding to use the
SFF as a signature of quantum chaos?” The answer is that it depends on what we want
to use the SFF for: if we want to inspect a plot looking for the correlation hole and we will
take that observation as a signature of quantum chaos, then we do not need to perform
unfolding, as long as the spectrum shows level repulsion, the SFF will show a correlation
hole with a linear ramp; However, if we want to compare to the analytical expressions
from RMT for the connected SFF (1.105), then we do need to perform unfolding, since
the dependence on the density of states ρ(E) will give a non-universal contribution to the
SFF, which cannot be well captured by the universal RMT results.

1.10 Out of Time Order Correlators

1.10.1 General definition of the OTOC

One fundamental limitation of taking the SFF, or the nnLS distribution, as a signature
of Quantum Chaos is that we do not have a natural notion of Lyapunov exponent λ,
as we have classically. Thus the classical-quantum correspondence for a chaotic system
remained elusive. To bridge the notions of classical and quantum chaos, Kitaev [137, 138]
proposed to study an object of the form

Ct := −⟨[Ât, B̂0]
2⟩, (1.106)

where Ât = e+iĤtÂe−iĤt and B̂0 are two hermitian operators in Heisenberg picture, but
critically the former is evaluated at time t. In contrast, the latter is evaluated at time 0, in
here ⟨•⟩ represents a suitable average, which will be particularized to different cases. This
quantity is called an Out-of-Time-Order-Correlator (OTOC). The quantity is composed
of two types of terms

Ct = ⟨ÂtB̂0B̂0Ât⟩+ ⟨B̂0ÂtÂtB̂0⟩ − 2Re(⟨ÂtB̂0ÂtB̂0⟩), (1.107)

where the first two terms are time-ordered and the last term is the one that is genuinely
out of time order, therefore it is also sometimes called the OTOC [139].

This quantity had been studied already by Larkin and Ovchinnikov [140] in the context
of a quasiclassical theory of superconductivity, but had not received much attention back
then. The reason why such a quantity is interesting is that if the system shows a Lyapunov
exponent, it is expected to grow exponentially as

Ct ∼ εeλt, (1.108)
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for a certain window of times between the dissipation td ∼ λ−1 and the Ehrenfest or
scrambling time tE ∼ λ−1 log(1

ϵ
) [128]. The parameter ε ≪ 1 is small, so there issts a

long range of times in the window [td, tE], to which we can fit a Lyapunov exponent. The
existence of this small parameter implies that the Lyapunov regime can only be seen in
systems with a semiclassical limit, as we will introduce in the next section, or with a large
N limit such as the Sachdev-Ye-Kitaev model [138, 141–143].

If the operators Âx,t and B̂0,0 are space-separated, one expects the OTOC to show a light
cone as

C(x, t) = −⟨[Âx,t, B̂0,0]
2⟩ ∼ eλ(t−|x|/vB), (1.109)

where vB is the butterfly velocity, characterizing the speed of spread of information in
these systems, and related to the Lieb-Robinson bound [144]. Recently, it has been found
that many other types of behavior are possible beyond this linear light cone [145–147].

For systems with small local Hilbert space dimension, such as spin 1
2
spin chains, there

is in general no Lyapunov regime, however, even in these systems, OTOC’s still contain
relevant information, particularly related to the spreading of quantum information in the
system and operator growth [148] which can also be conveniently formulated in Krylov
space [5, 149]. Consider the case of a spin chain, let us take an initial local operator in

site j, e.g., Âj,0 = σ̂
(j)
x , and a Hamiltonian Ĥ with nearest-neighbor interactions, the time

evolution in the Heisenberg picture gives

Âj,t = ê+iĤtσ̂(j)
x e−iĤt = σ̂(j)

x − it[Ĥ, σ̂(j)
x ]− t2

2
[Ĥ, [Ĥ, σ̂(j)

x ]] + . . . (1.110)

so we see that at time zero the operator only lives on site j, at times of order O(t) it
involves operators in the sites [j − 1, j, j + 1], at times of order O(t2) operators in the
[j − 2, j − 1, j, j + 1, j + 2] sites, and so on [148]. This phenomenon is known as quantum
information scrambling, and the idea is that local information such as that codified in the
operator σ̂

(j)
x , becomes increasingly non-local under many-body dynamics, and cannot be

recovered by local measurements, only by global ones.

The OTOC then only starts to grow when the time evolution of Ât reaches the support
of the operator B̂, thus encoding locality in many-body dynamics.

1.10.2 Connection to the classical limit: A semiclassical argument

The reason why this quantity is related to the Lyapunov can be seen choosing the operators
Â = x̂ and B̂ = p̂, and, through the correspondence principle, we know that in the
semiclassical limit the commutator is related to the Poisson bracket − i

ℏ [•, •] ↔ {•, •}pb.
Recall that for a classical phase space with two degrees of freedom (x, p), the Poisson
bracket is defined as {f, g}pb := ∂f

∂x
∂g
∂p
− ∂f

∂p
∂g
∂x
, which implies that the semiclassical ℏeff → 0
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of the OTOC reads [128, 140]

Ct = −⟨[x̂t, p0]2⟩ ∼ εeλt
ℏeff→0−→ C

(cl)
t = ℏ2⟨{xt, p0}2pb⟩ = ℏ2

〈(
∂xt
∂x0

)2
〉

∼ ℏ2e2λclt,

(1.111)

where ∂xt
∂x0

is a quantity characterizing the sensitivity to initial conditions of a classical
system. From this semiclassical argument, we see that the quantum Lyapunov exponent
is related to the classical one as λ ≈ 2λcl and that the small parameter is given by Planck’s
constant ε = ℏ2. This classical argument can be refined through a phase space formulation
[150], which shows that the Lyapunov growth is the dominant term of the expansion, until
the Ehrenfest time tE at which quantum corrections become dominant.

1.10.3 A Lyapunov exponent does not imply chaos

The connection between the classical and quantum Lyapunov exponents is not as trans-
parent as it seems from this simple semiclassical argument, since the classical Lyapunov
is the average over phase space of the logarithm of the sensitivity, and the quantum one
is the log of the average over phase space, the relation between the Lyapunov exponents
actually holds as [151]

λ ≥ 2λcl, (1.112)

which was numerically observed in a chaotic system with a well-defined semiclassical
limit, the quantum kicked rotor [152]. The interpretation of this Lyapunov exponent as
a measure of chaos is, however, weakened by the fact that there exist several integrable
models [153, 154], such as the Lipkin-Meshkov-Glick model, which we will introduce in the
next section, that show a positive quantum Lyapunov exponent. Xu et al. showed that
unstable saddle points in phase space provide a possible mechanism for the emergence of
exponential growth of OTOC’s without chaotic behavior. Indeed this provides a further
lower bound on the Lyapunov exponent

λ ≥ λsaddle, (1.113)

and even in chaotic systems, the scrambling can be dominated by saddle points, i.e.,
the bound by the properties of the saddle (1.113) can be tighter than the bound by the
classical Lyapunov exponent (1.112), such as in the Feingold-Peres model [151].

This leads to a separation in terminology between scrambling, which refers here to expo-
nential growth of out of time order correlators, and quantum chaos, which is most typi-
cally defined through the connection to random matrices through the Bohigas-Giannoni-
Schmitt conjecture [110]. The OTOC, as a quantity which is related to the Lyapunov
exponent, does of course carry certain information about quantum chaos, but it is a neces-
sary, not sufficient condition for chaos [155]. This is similar to the case in classical chaos,
a positive Lyapunov exponent is one of the necessary conditions for chaos, but there are
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integrable systems which have positive Lyapunov exponents, e.g. an inverted harmonic
oscillator, for this reason in a reasonable definition of classical chaos one also asks for
extra conditions, such as: aperiodicity of the trajectories at long times [156], the system
to present mixing [105] or even topological transitivity and dense periodic points such as in
Devaney’s definition [157], which imply exponential sensitivity on initial conditions [158].

1.10.4 On averaging and different OTOCs

There are many different types of OTOCs, which are used in different contexts. In Sec.
2.6.3, we will introduce the ones relevant for this thesis. One of the reasons why different
OTOCs are introduced is due to various choices for the thermal average; let us comment
on these briefly now.

The most typical case is to consider the thermal average ⟨•⟩β = Tr(•ρ̂β), which involves an

average with a thermal state ρ̂β = 1
Zβ
e−βĤ , which also includes the infinite temperature

limit β = 0, in which ρ̂β becomes the maximally mixed state ρ̂β=0 = 1̂
N
. However, to

obtain one of the most striking results associated with the quantum Lyapunov exponent,
Maldacena, Shenker, and Stanford [128] used a regularized version of the 4-point OTOC
as

C̃
(reg)
β,t =

1

Zβ
Tr(Âte

−β
4
ĤB̂0e

−β
4
ĤÂte

−β
4
ĤB̂0e

−β
4
Ĥ). (1.114)

This regularization is needed in quantum field theories since evaluating the standard
thermal average leads to some operators being inserted at the same spacetime point,
which can produce short-distance divergences in quantum field theory [159]. Another
common regularization strategy is to split the thermal factor into two

C
(reg)
β,t =

1

Zβ
Tr([Ât, B̂0]e

−β
2
Ĥ [Ât, B̂0]e

−β
2
Ĥ). (1.115)

A one-parameter family of possible regularizations was introduced by Tsuji et al. [160],
which leads to an alternative proof of the Maldacena-Shenker-Stanford bound [128]. The
dependence of the Lyapunov exponent on the different regularization contours and the
difference between regularized and unregularized Lyapunov exponents have been studied
in [161–163].

1.10.5 The bound on chaos

Maldacena, Shenker, and Stanford [128] proved that the Lyapunov exponent of a given
system cannot be arbitrarily large, and that it fulfills the universal bound

λ ≤ 2π

βℏ
. (1.116)
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This bound is physically motivated from the point of view of holography, in which black
holes are conjectured to be the fastest scramblers in nature [164], i.e., those showing fastest
growth of OTOCs, and their Lyapunov exponent is 2π

βℏ , the universal upper bound. Even

more surprisingly, any system that saturates the bound (1.116), such as the Sachdev Ye
Kitaev model for low temperature [142, 143], is conjectured to be holographically dual to
a black hole. The early time exponential decay of the SFF, St ∼ e−ηt also obeys a very
similar universal bound η ≤ π

2βℏ [4, 165]. This bound can be understood simply in the

semiclassical limit [166, 167], derived through different regularizations [160] and relates
to the fluctuation dissipation theorem [168, 169].

1.10.6 Dissipative OTOC

A natural extension of OTOC’s is to consider the time evolution to be given by a CPTP
map E†t [•] = eL

†t instead of being simply unitary. In this case the dissipative OTOC reads

Ct := −⟨[E†t (Â), B̂]2⟩. (1.117)

This quantity was originally studied by Syzranov et al. [170] for finite open systems in the
dephasing case, and afterwards studied for the average bipartite case [171], for spreading
of quantum information in spin chains [172, 173], these works seem to suggest a non-trivial
interplay between growth due to scrambling and decay due to decoherence [174].

Recap of main concepts of the introduction

• The most general completely positive, trace preserving (CPTP) quantum channel
can be written in Kraus form as (1.1)

E [•] =
NK∑
j=1

K̂j • K̂†j .

• The Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation (1.6) de-
scribes the most general generator of a Markovian CPTP map and reads

∂tρ̂t = −i[Ĥ, ρ̂t] +
Nc∑
j

γj

(
L̂j ρ̂tL̂

†
j −

1

2
{L̂†jL̂j, ρ̂t}

)
=: L[ρ̂],

where L(•) is the Lindbladian superoperator.

• The increment of the Wiener process, also called simply Wiener process dWt =
ξtdt, can be understood formally in two different conventions for stochastic cal-
culus :
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– In the Itō convention, it obeys the Itō rule dW 2
t = dt, which changes the

standard rules of calculus, and is independent of the variable E(dWtf(xt)) =
E(dWt)E(f(xt)) = 0.

– In the Stratonovich convention, we keep the standard rules of calculus, at
the price of averages of the form E(xt ◦ ξt) being cumbersome to compute
using Novikov’s formula (1.26).

• A non-Hermitian PT symmetric Hamiltonian is invariant under the combined
action of parity and time-reversal PT [Ĥ] = Ĥ. It has a phase with purely
real spectrum (PT unbroken) and one with purely imaginary spectrum (PT
broken). A system has passive PT symmetry if the Hamiltonian with a certain
imaginary constant Ĥ + iE0 has PT symmetry. A non-Hermitian Hamiltonian
can be realized through continuous quantum measurements and post-selection
of the jumps. The Dissipative Qubit

Ĥdq =

(
0 J

J −iΓ

)
= Jσ̂x − iΓ |e⟩ ⟨e| ,

illustrates many of the features of non-Hermitian Hamiltonians and is amenable
to experimental realization.

• There are three Gaussian ensembles of random matrices, distinguished by the
Dyson index: GOE β = 1, GUE β = 2, and GSE β = 4. The joint probability
distribution of their eigenvalues is (1.76)

ρβ(E1, . . . , EN) = C
∏

1≤i<j≤N

|Ei − Ej|β e−A
∑N

i=1 E
2
i .

The spectrum of random matrices shows level repulsion, which can be studied
through their level spacing distribution, with the nearest neighbor level spacings
sn = En+1 − En, which obeys the Wigner surmise (1.77)

Pβ(s) = Cβs
βe−Aβs

2

.

To compare with this analytical expression, a general spectrum has to be un-
folded, cf. Sec. 1.6.2, either numerically or analytically.

• The study of quantum chaos builds on two conjectures, cf. Sec 1.7

– The Berry-Tabor states that integrable quantum systems show spectral
statistics consistent with the Poisson ensemble in which each of the energies
is sampled independently.

– The Bohigas-Giannoni-Schmitt conjecture states that chaotic quantum sys-
tems have the spectral statistics predicted by random matrices.
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• One of the most commonly used signatures of quantum chaos is the spectral form
factor (SFF) defined for infinite temperature as

St :=
1

N2

〈
N∑

m,n=1

e−it(Em−En)

〉
,

which shows a universal linear ramp for random matrices, and thus the ramp
can be taken as a signature that the quantum system is chaotic.

• The out-of-time-order correlator (OTOC) is a correlation function defined from
two operators in the Heisenberg picture as (1.106)

Ct = −⟨[Ât, B̂0]
2⟩.

If this quantity grows exponentially in a certain window of time, it defines the
quantum Lyapunov exponent λ as

Ct ∼ eλt.

The time evolution can be generalized by a dissipative quantum channel, thus
generalizing this quantity to a dissipative OTOC.





Chapter 2

Stochastic Hamiltonians:
Beyond the noise average

“And if the cloud bursts thunder in your ear,
You shout and no one seems to hear,

And if the band you’re in starts playing different tunes,
I’ll see you on the dark side of the moon”

Pink Floyd

Abstract of this chapter

• The main objective of this chapter is to characterize the dynamics of stochastic
Hamiltonians of the form Ĥt = Ĥ0 +

√
2γξtL̂ going beyond the noise average.

For this, we define the Stochastic Operator Variance (SOV) as

∆Â2
t = E(Â2

t )− E(Ât)2.

This observable characterizes the deviation of trajectories from the average. We
show that this quantity can be expressed in terms of the adjoint Liouvillian L†
as

∆Â2
t = eL

†t[Â2]− (eL
†t[Â])2.

• The SOV’s of two different operators fulfill the uncertainty-like relationship

⟨∆Â2
t ⟩⟨∆B̂2

t ⟩ ≥
D2

+(Â, B̂)−D2
−(Â, B̂)

4
,

where the lower bound is determined by the difference between the time-evolved
(anti)commutator and the (anti)commutator of the time-evolved operators

D±(Â, B̂) = ⟨E†t ([Â, B̂]±)⟩ − ⟨[E†t (Â), E†t (B̂)]±⟩,

where we use the general notation for (anti)commutators [Â, B̂]± = ÂB̂ ± B̂Â.

— 45 —
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• The SOV is related to a dissipative Out-of-Time-Order-Correlator (OTOC) Ct
through the SOV-OTOC connection

1

N
∂tTr(∆Â

2
t ) = 2γCt.

• We study as an example the Lipkin-Meshkov-Glick LMGmodel subject to energy
dephasing. In the thermodynamical limit, we find that the Lyapunov exponent
of the origin of the system is well-modeled by the SOV through the SOV-OTOC
relation. As the noise increases, the Double Well (DW) phase stabilizes, i.e.,
its Lyapunov exponent becomes negative. In contrast, the Single Well (SW)
phase becomes unstable and acquires a positive-Lyapunov exponent. This noise-
induced stabilization is analogous to the Kapitza pendulum, but here obtained
from stochastic driving.

This chapter studies quantum systems coupled to classical noise beyond the noise average.
The standard setup in quantum mechanics assumes that we have full knowledge of the
Hamiltonian generating the system’s evolution. This is, however, an idealization, since
even in the most controlled quantum setups, the parameters of the evolution are subject to
errors and fluctuations. The unavoidable presence of noise motivates referring to current
quantum devices as Noisy Intermediate Scale Quantum (NISQ) devices [175, 176]. In
the context of Quantum Computing, although the errors that occur in quantum circuits
are modeled in discrete time, the quantum system in the lab does not evolve in discrete
chunks of time but rather continuously in time. It is subject to different sources of noise.
These can be accounted for in terms of Stochastic Hamiltonians [35] which include a noisy
term in the generator of the evolution, and can be understood as arising from the different
unravelings of the master equation [42, 72, 75, 177–179]. When we consider an average
over the noise, the equation of motion for the system reduces to a master equation for the
noise-averaged state of the system. In particular, if the noise on the Hamiltonian is white
noise, the master equation will be Markovian, and we can recover certain GKSL master
equations.

Here, we go beyond the paradigm of studying noise-averaged evolution and characterize
the noise-induced fluctuations. In particular, we will focus on the Stochastic Operator
Variance, an observable that we introduce to characterize the variance (over the classical
noise) of any given quantum mechanical operator in the Heisenberg picture. We will
show how this quantity characterizes scrambling properties, particularly the Lyapunov
exponent, and obeys a generalized uncertainty relation.

2.1 A story for the results of this chapter

A quantum state1 can be represented by different numbers on a matrix. Basically, it
is a “table of numbers”, each entry having two values, the real and imaginary part of a

1For the sake of simplicity in the analogy, let us consider only finite-dimensional Hilbert spaces.
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complex number. Your phone’s screen is a familiar device that acts similarly; each pixel
in the screen contains three values for the amount of red, green, and blue it should show.
Therefore, a quantum state can be conceived as analogous to a picture on your phone.
The main purpose of studying quantum dynamics is to understand how different quantum
states evolve in time, i.e., to witness the sequence of quantum “pictures” as time passes,
essentially like a film.

There is a myriad of possible quantum dynamics, but in a broad sense, they can be
classified into unitary and dissipative dynamics. The defining feature of unitary dynamics
is that no matter the current picture in the film, it is always possible to “rewind” the
dynamics and find the first photogram of the movie. On the other hand, dissipative
dynamics tends to a particular end, which physicists call a steady state. There can be
several possible ends, but in many relevant cases, there is a single ending to the dynamics—
in other words, we know the end of the story, like in Titanic. Note that the existence of
a single end to the story prevents us from rewinding time and finding out what the first
frame of the movie was, since different starting images could have led to the same ending.

Imagine that we were recording an animal daily, say a rabbit, to track its position in a
forest. Every day, the animal sleeps in the same den, and each day it goes in a different
direction: perhaps some days it goes to a river nearby, other days to a field to eat some
wheat, or runs away from a predator. At the end of the day, the rabbit returns to its
den, and everything repeats the next morning, so each film is, in a sense, “unitary”. Now
imagine that the films from all the different days were played simultaneously on your
phone; in other words, that you only had access to the film averaged over all the days.
You would see something quite weird: the rabbit would appear to split into many copies
and, at the same time, go to the river, go to the field, and run from the predator. However,
watching all of the recordings one by one would take a lot of time. In quantum systems
subject to noise, the story is quite similar; we let them evolve with many realizations of a
random process, and then look at the average over all possible random processes. In this
chapter, we propose to go beyond the average picture and understand deviations from
it, without the full complexity of considering all the possible realizations of the random
process. To this end, we introduce a quantity, which we call the Stochastic Operator
Variance, which characterizes how far away the trajectories of the rabbit are from the
“average” film. For quantum systems, it captures how much we can trust the average
evolution.

Figure 2.1 provides a pictorial illustration of this concept2. We have three rabbits with
different “levels of randomness” which illustrate how strong the noise in our quantum
evolution is. The way to compute the quantum variance of each of these is: at a given
time, the rabbit reached several points, but when we measure where the rabbit is on a
given day, it can only be in one place, and thus the state “collapses” and we find one

2For completeness, let us describe how the trajectories in the “cellular automaton” were generated. We
have a 22×22 grid, and we generate Ntrajs = 40 trajectories with Nt = 20 time-steps. At each step we
generate a random number r ∼ U([0, 1]) and if it is smaller than a certain threshold r < pth we generate
a random evolution which uniformly chooses either 0 or 1 for each of the directions x and y, if the
random number is larger than the threshold r > pth we move in diagonal xi+1 = xi+1, yi+1 = yi+1.
Rabbit 1 is not very random with pth = 0.05, Rabbit 2 has pth = 0.4 and Rabbit 3 has pth = 1.
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Figure 2.1. Pictorial representation of the Stochastic Operator Variance and its
difference with the quantum mechanical variance. We show three different
rabbits that are going to the river: Rabbit 1 is very deterministic, every day he
follows the shortest path and deviates very little from it, Rabbit 2 has a medium
probability of deviating from the path, and Rabbit 3 has a very high probability of
deviating from the shortest path. The grid shows the average picture—analogous
to the quantum state— for each of these rabbits. The colored triangles (blue,
green, and red) highlight the last position reached in each trajectory of the rab-
bit. The spread of the positions, as characterized by a single number, is given
by the standard quantum mechanical variance ∆x, ∆y and is highlighted in the
red arrows. The rightmost image shows the Stochastic Operator Variance of the
trajectories of the different rabbits (blue, green, red) at the last time step. This is
an operator, i.e., a picture instead of a number, which characterizes how far each
of the trajectories is from the average one at a given time. Since the trajectories
reach different parts of the grid, we were able to superimpose the three in one
image for simplicity, but each color represents a different picture.

position of the rabbit. Repeating this experiment over the days, we find that each day
the rabbit reached a different point, and we can find the spread of these points, which
is a single number called the quantum variance ∆x or ∆y in Fig. 2.1. The Stochastic
Operator Variance that we introduce does things differently, instead of asking for the
spread of positions reached by the rabbit, we measure how far is a trajectory from the
average trajectory, i.e. given the blob of points reached by the rabbit throughout all the
days, how far from that blob are we? It does not require collapsing the state many times,
and it has more information, since a picture contains more information than a single
number. In essence, while the quantum variance is a number that measures how spread
out the position of the rabbit is, the Stochastic Operator Variance is a full picture, which
for every position in the grid measures how far a trajectory of the rabbit in that position
is from the average trajectory over all the days.

Perhaps one of the most mind-boggling features of quantum mechanics is Heisenberg’s
uncertainty principle. It tells us that in the quantum world, it is impossible to determine
with arbitrary precision the speed and at the same time the position of a quantum particle:
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If we know with perfect accuracy the position of a quantum particle we do not know its
speed, and if we know perfectly well the speed of the particle we have no knowledge of its
position. This arises because properties of quantum objects are not described by numbers
but by matrices —remember the pixels in your phone screen—. When multiplying these
objects, we get a different result if we multiply the first by the second than if we multiply
the second by the first. A simple example of two everyday actions that do not commute
is putting on your sock and then your shoe, which is not the same as putting your shoe
on first and then your sock. In the case of the rabbits if we were to measure the spread
in positions that the rabbit reached ∆x and the spread of the velocities at which the
rabbit reached ∆p, these two quantities cannot be known at the same time with arbitrary
precision, this is, by knowing that the rabbit reached a position with complete certainty,
the speed at which it reached is entirely unknown. One of the main results of this chapter
is that the Stochastic Operator Variance, i.e., the picture that measures how far away
we are from the average evolution, also fulfills an uncertainty relation. This means that
the distance from the average trajectory of two different evolutions cannot be smaller
than a certain value. Throughout the chapter we will study various versions of this new
uncertainty principle: the closest to Heisenberg’s uncertainty principle involves getting
an average value of this Stochastic Operator Variance over the grid, and therefore is an
inequality between numbers, just like the uncertainty principle; a second stronger version
of the uncertainty principle that we will introduce poses a contraint to the full operator,
i.e. the full picture, and says that the stochastic Operator Variances of two different
operator need to follow a certain inequality.

The second main result of this chapter has to do with the Butterfly effect, which is shown
by physical systems that we call chaotic. These systems are very sensitive to the initial
conditions, which means that starting them from one position or another position very
close will show two extremely different evolutions, the popular way of presenting this
phenomenon states that “the flap of the wings of a butterfly” [a very small perturbation
to the initial conditions of a certain system] “can cause a tornado in the other side of
the world” [can lead to vastly different outcomes]. Lorenz realized that a very simplified
model of the Earth’s atmosphere was showing chaos [180], in particular, this is what we
call the Lorenz attractor, which has a very characteristic shape akin to a butterfly’s wings.
However, a very natural question arises: “If I have a chaotic system and I start it from
two slightly different initial conditions, how fast will I see a deviation of the trajectories?”
this is what the Lyapunov exponent measures, how fast is the exponential separation of
the neighboring trajectories.

The extension of this concept to the quantum world is quite involved, one reason being
that if we measure the position of a quantum system, we collapse its wavefunction and
drastically change its behavior. One tool physicists recently introduced to study this
quantity is called the Out of Time Order Correlator, which, in essence, measures the
sensitivity to initial conditions by considering the effect of different quantities at different
times that are not ordered. The most common case is to consider a certain quantity at
time 0, evolve it to time t, evolve it “backwards in time” to time 0, and then back to time
t. This quantity provides a way to define a Lyapunov exponent for a quantum system
and characterizes how entanglement spreads in a quantum system. Furthermore, black
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holes have been conjectured to be highly chaotic quantum systems, because they scramble
information in the fastest possible way, saturating a universal bound on the Lyapunov
exponent. Our second main result on this chapter is to establish a connection between
the Stochastic Operator Variance and Out of Time Order Correlators, this physically
means that if the rabbits were chaotic in some way, for example one could think that
the grid is not in a flat euclidean space, but rather on a more interesting curved space
such as hyperbolic space, the distance between two different initial conditions could grow
exponentially in time with a Lyapunov exponent, and the Stochastic Operator Variance
would characterize the chaos in this system. Fig. 2.2 shows two sample paths of rabbits in
this hyperbolic geometry described by the Poincaré disk, where the distance between the
two rabbits can grow exponentially in time, therefore illustrating the possible presence of
chaos in these systems.

Figure 2.2. Adding chaos to Fig. 2.1. The image shows two sample paths (green and pink) of
two rabbits in hyperbolic space represented by a Poincaré disk, with p = 3, q = 7
generated using hypertiling [181]

2.2 The Stochastic Operator Variance

Let us consider the most general Stochastic Hamiltonian, with Nc sources of classical,
white noise

Ĥt = Ĥ0 +
Nc∑
n=1

√
2γn ξ

(n)
t L̂n, (2.1)

where {γn|γn ∈ R, γn ≥ 0}Nc
n=1 is the set of the noise strengths associated to the n-

th noise channel, ξ
(n)
t is the n-th classical white noise which obeys E(ξ(n)t ) = 0, and

E(ξ(n)t ξ
(m)
t′ ) = δnmδ(t− t′); and {L̂n|L̂†n = L̂n, L̂n ∈ B(H )}Nc

n=1 is the set of operators that
characterize how the n-th source of noise affects the Hamiltonian of the system, which, as
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we shall see below, correspond to the jump operators in the GKSL equation. For a formal
treatment of ξt, it is useful to introduce the differential of the Hamiltonian dĤt, which
describes the evolution over a small time dt and depends on the increment of the Wiener
process dW t ≡ ξtdt. This definition has some subtleties when working in the Heisenberg
picture, which we discuss now.

Throughout this chapter, we will be interested in the time evolution of operators Ât
in the Heisenberg picture. Let us first review the evolution of a deterministic oper-
ator under an explicitly time-dependent Hamiltonian Ĥt. We know that the states
evolve according to the Schrödinger equation ∂t |ψt⟩ = −iĤt |ψt⟩, whose solution reads

|ψt⟩ = Ût |ψ0⟩ = T←e−i
∫ t
0 Ĥτdτ |ψ0⟩, where T← denotes the chronological time ordering

operator and Ût is the propagator between times 0 and t. We make no assumptions in
the structure of the Hamiltonian, in particular, the Hamiltonian does not commute with
itself at different times, [Ĥt, Ĥτ ] ̸= 0 for t ̸= τ . The expectation value of Â evolves as
⟨Ât⟩ = ⟨ψ0|Û †t ÂÛt|ψ0⟩ = ⟨ψt|Â|ψt⟩ = ⟨ψ0|Ât|ψ0⟩ where the expression can be equivalently
understood in Schrödinger |ψt⟩ or Heisenberg Ât pictures. In the latter, the operator
evolves as

Ât = Û †t ÂÛt. (2.2)

The Heisenberg equation in this case reads ∂tÂt = +i[Ĥ
(h)
t , Ât] where Ĥ

(h)
t = Û †t ĤtÛt ̸= Ĥt

is the Hamiltonian in the interaction picture with respect to itself. Note that, due to the
non-commutativity of the Hamiltonian with itself at different times, the Hamiltonian in
the Heisenberg picture Ĥ

(h)
t is not equal to the time-dependent Hamiltonian Ĥt. Solving

the Heisenberg equation yields the evolution of the operator in the Heisenberg picture Ât.
However, the same evolution can also be written in terms of the original propagator Ût
as in (2.2). Thus, we do not need to consider the Hamiltonian in the Heisenberg picture.

Importantly for our analysis, operators in the Heisenberg picture evolve “backwards in
time”. To show this, let us split the propagator into two: one evolution from 0 to t1 and
another from t1 to t2. Doing so, one finds

⟨Ât2⟩ = ⟨ψ0|T→e−i
∫ t1
0 ĤτdτT→e−i

∫ t2
t1
Ĥτdτ ÂT←e−i

∫ t2
t1
ĤτdτT←e−i

∫ t1
0 Ĥτdτ |ψ0⟩ ,

where T→ represents the anti-chronological time ordering operator—backwards evolution.
From this expectation value, it is clear that while states evolve forwards in time from
0 → t1 and from t1 → t2, shifting the evolution to operators results in them evolving in
the opposite order, from t2 → t1 and from t1 → 0. This is not a physical “backwards in
time” evolution but an artifact of the Heisenberg picture.

This detail will be quite important for our argument. Indeed, as already explained in
Sec. 1.4.2, the Itō convention of Stochastic calculus imposes a discretization of the time
interval [t, t+ dt], where the noise needs to be evaluated at the beginning of the interval
t. In the Heisenberg picture, since we evolve backwards in time, to describe the evolution
in the interval [t − dt, t], the noise should be evaluated at dW t−dt to respect the Itō
convention. A similar noise evaluation has been introduced in adjoint Stochastic Master
Equations for continuous measurements [182, 183]. The differential of the Hamiltonian in
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the Heisenberg picture is thus

dĤt = Ĥ0dt+
Nc∑
n=1

√
2γn dW

(n)
t−dtL̂n. (2.3)

Following the simple approach described in Sec. 1.4.4, we shift the focus from the Hamil-
tonian to its associated differential propagator, which reads

Ûdt = e−idHt = exp

(
−iĤ0dt− i

Nc∑
n=1

√
2γndW

(n)
t−dtL̂n

)
. (2.4)

Since the operator evolves backwards in time, we have that the propagator acts as Ât−dt =
Û †dtÂtÛdt, i.e., acting on the operator at time t, on Ât, gives the operator at time t− dt.
This allows us to find a Stochastic Differential Equation for the evolution of the operator.
In particular, by introducing the backwards differential dÂt = Ât−dt − Ât, we find the
adjoint Stochastic Master Equation

dÂt =

(
+i[Ĥ0, Ât]−

Nc∑
n=1

γn[L̂n, [L̂n, Ât]]

)
dt+ i

Nc∑
n=1

√
2γn[L̂n, Ât]dW

(n)
t−dt

=: L†[Ât]dt+ i
Nc∑
n=1

√
2γn[L̂n, Ât]dW

(n)
t−dt, (2.5)

where we have introduced the adjoint Lindbladian L†[•]. Averaging this equation over the

noise Ât = E(Ât), the second term cancels out for driftless noise, leading to the adjoint
GKSL equation

∂tÂt = +i[Ĥ0, Ât]−
Nc∑
n=1

γn[L̂n, [L̂n, Ât]] = L†[Ât]. (2.6)

This equation describes dephasing caused by the Hermitian jump operators L̂n. We now
introduce the main quantity studied throughout this chapter.

Definition 3 (Stochastic Operator Variance). Given an operator evolving in the
Heisenberg picture Ât under a Stochastic Hamiltonian, the Stochastic Operator Variance
(SOV) ∆Â2

t is defined as the variance over the classical noise and reads

∆Â2
t := E(Â2

t )− E(Ât)2. (2.7)

Figure 2.3 schematically illustrates the meaning of the SOV. The figure shows many
different evolutions of the operator Ât = Û †t Â0Ût with different noise realizations. The
average over the noise (thick black line) gives the evolution predicted by GKSL. However,
the single trajectories have much more information; particularly, they can substantially
deviate from the mean. The Stochastic Operator Variance characterizes a part of this
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t

1̂

X̂

SOV

GKSL

Â0

Figure 2.3. Illustration of the SOV: Illustration of the Stochastic Operator Variance (red).
An operator Â evolves in the Hilbert space of operators B(H ) with different
realizations (gray) of a stochastic Hamiltonian. We show a 2-dimensional subspace
of the Hilbert space of operators spanned by the identity 1̂ and a generic operator
X̂. The noise-averaged evolution (black) follows the adjoint GKSL equation. The
SOV ∆Â2

t characterizes the deviation of different trajectories (red). The figure is
only an illustration, for a simulation of the evolution of the SOV in the Hilbert
space of operators, we refer the reader to Fig. 2.9.

information and captures the spread of all the stochastic single trajectories around the
average.

The expression for the SOV can be greatly simplified by leveraging the unitarity at single
trajectories property of Ût, particularly Û

†
t Ût = 1̂. The second moment over the noise

thus simplifies to

E(Â2
t ) = E(Û †t ÂÛtÛ

†
t ÂÛt) = E(Û †t Â2Ût) = eL

†t[Â2], (2.8)

where we used the fact that the average of any operator E(X̂t) evolves according to the
adjoint GKSL equation ∂tE(X̂t) = L†[E(X̂t)], to formally write E(Û †t • Ût) = eL

†t[•]. The
SOV then reduces to

∆Â2
t = eL

†t[Â2]− eL
†t[Â] · eL†t[Â]. (2.9)

Note that the evolution is a CPTP map. Writing it as E†t [•] = eL
†t[•] the SOV becomes the

variance ∆Â2
t = E†t [Â2] − E†t [Â]2 of a Hermitian matrix under the evolution of a positive

unital linear map—Recall that a map is unital if it preserves the identity E†[1̂] = 1̂. This
quantity has been studied in the context of the theory of positive definite matrices [184].
Below, we detail some of its properties.
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2.2.1 Mathematical properties of the SOV

Since the Lindbladian L†[•] is the generator of a CPTP map eL
†t[•], it also preserves

Hermiticity. This means that if the initial operator is Hermitian Â† = Â, the SOV ∆Â2
t

is also Hermitian (∆Â2
t )
† = ∆Â2

t , and thus an observable.

Another key property of the SOV is that it is positive semi-definite. This ensures that the
variance is non-negative. This can be proven using Kadison’s inequality [185]. Kadison’s
inequality states that for a linear map E†[•] that is positive X̂ ≥ 0 ⇒ E†[X̂] ≥ 0, and
unital E†[1̂] = 1̂, given a Hermitian operator X̂† = X̂, the following inequality holds

E†[X̂2] ≥ E†[X̂]2. (2.10)

Note that eL
†t[•] is (completely) positive and unital, which implies that the SOV is positive

semidefinite ∆Â2
t = eL

†t[Â2]− (eL
†t[Â])2 ≥ 0.

Another interesting property of the SOV which comes from the connection to the variance
of positive definite matrices is that, if the operator is bounded from below and above
m1̂ ≤ Â ≤M 1̂, then the SOV is bounded from above by [184]

∆Â2
t ≤

(
M −m

2

)2

1̂. (2.11)

Let aj be the spectrum of the operator Â |aj⟩ = aj |aj⟩, which is well defined given that

Â† = Â. A particularly simple case of this inequality follows since minj aj1̂ ≤ Â ≤
maxj aj1̂

∆Â2
t ≤

(maxj aj −minj aj)
2

4
1̂. (2.12)

So that this bound implies that if Â is a bounded operator, the SOV is also bounded from
above.

2.2.2 Comparison to the Variance over state

The standard quantum mechanical variance of operator Â over a state ρ̂ reads

Var(Â, ρ̂) = Tr(Â2ρ̂)− Tr(Âρ̂)2. (2.13)

If we assume an initially pure state and a dissipative GKSL dynamics, we have

Var(Â, eLt[|ψ0⟩ ⟨ψ0|]) = Tr(Â2eLt[|ψ0⟩ ⟨ψ0|])− Tr(ÂeLt[|ψ0⟩ ⟨ψ0|])2,
= ⟨ψ0|eL

†t[Â2]|ψ0⟩ − ⟨ψ0|eL
†t[Â]|ψ0⟩

2
, (2.14)

= Var(eL
†t[Â], |ψ0⟩ ⟨ψ0|) ≡ Var(Ât, ψ0).
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The dissipative dynamics can be equivalently applied to the state in the Schrödinger
picture or to the observable in the Heisenberg picture.

The quantum variance (2.14) appears to be similar to the SOV (2.9). To make explicit
the difference between the two approaches, let us look at the expectation value of the
SOV over the initial state |ψ0⟩

⟨ψ0|∆Â2
t |ψ0⟩ = ⟨ψ0|eL

†t[Â2]|ψ0⟩ − ⟨ψ0|eL
†t[Â] · eL†t[Â]|ψ0⟩ . (2.15)

The difference between the two quantities then reduces to

⟨ψ0|∆Â2
t |ψ0⟩ − Var(Ât, ψ0) = ⟨ψ0|eL

†t[Â]Q̂eL
†t[Â]|ψ0⟩ , (2.16)

where Q̂ = 1̂ − |ψ0⟩ ⟨ψ0| is the projector over the complementary subspace of |ψ0⟩ ⟨ψ0|.
We can then conclude that the expectation value of the SOV contains the information
contained in the quantum variance plus the information in which Ât leaves the subspace
spanned by |ψ0⟩. In particular, writing this projector in the basis of the complementary
subspace {|ϕn⟩ | ⟨ϕn|ψ0⟩ = 0}d−1n=1 as Q̂ =

∑d−1
n=1 |ϕn⟩ ⟨ψn|, allows to express the expectation

value of the SOV as

⟨ψ0|∆Â2
t |ψ0⟩ = Var(Ât, ψ0) +

d−1∑
n=1

| ⟨ψ0|Ât|ϕn⟩ |2. (2.17)

So the term additional to the quantum mechanical variance is given by the transition
amplitude of Ât outside of the |ψ0⟩ subspace.
Another difference between the SOV and the quantum variance over a state is that
given any basis {|ψn⟩}dn=1 since ∆Â2

t is an operator it has both diagonal matrix elements
⟨ψn|∆Â2

t |ψn⟩, which are the ones that are given by the quantum variance plus transitions
out of the |ψn⟩ subspace, but it also has off-diagonal matrix elements ⟨ψn|∆Â2

t |ψm⟩ which
have no analog in the variance over a state.

2.2.3 The SOV as an operation on replicated Hilbert spaces

We now turn to an alternative representation to provide further understanding of the
SOV. Expression (2.9), in terms of the CPTP map, can be understood with two replicas
of the Hilbert space H ⊗H . In each of these, we consider an initial operator Â ∈ B(H )
living in the space of operators over the Hilbert space. We denote each Hilbert space by
a subscript 1 and 2, respectively. In particular, we consider an operator in each of the
original Hilbert spaces, i.e. X̂ ∈ B(H )1 and Ŷ ∈ B(H )2, we further introduce an
“interaction” between the two replicas I : X̂ ∈ B(H ) × Ŷ ∈ B(H ) 7→ X̂Ŷ ∈ B(H ),
which gives the product X̂Ŷ . One way to produce this interaction is through a partial
trace and a swap operation. The swap operation acts on a general state of the doubled
Hilbert space |ψ⟩1 ⊗ |ϕ⟩2 ≡ |ψ1, ϕ2⟩ ∈ H ⊗ H simply as S |ψ1, ϕ2⟩ = |ϕ1, ψ2⟩ [169, 186].
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We thus obtain the operator product from

I(X̂, Ŷ ) = Tr2((X̂ ⊗ Ŷ )S) (2.18)

=
∑

n1,m1,n2,m2

Tr2 (Xn1m1Yn2m2 |n1, n2⟩ ⟨m1,m2|S)

=
∑

n1,m1,n2,m2

Tr2 (Xn1m1Yn2m2 |n1, n2⟩ ⟨m2,m1|)

=
∑

n1,m1,n2,m2,k2

Xn1m1Yn2m2 |n1⟩ ⟨m2| δk2,n2δk2,m1

=
∑
n,m,k

XnkYkm |n⟩ ⟨m| = X̂Ŷ ,

where we denote the matrix element Xnm = ⟨n|X̂|m⟩. Note that performing the partial
trace over the first copy instead also leads to the product of two matrices but in a different
order, i.e., Tr1((X̂ ⊗ Ŷ )S) = Ŷ X̂.

ℋ
⊗
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Figure 2.4. Replica interpretation of the SOV. The SOV is the difference between two
protocols (left and right) on a doubled Hilbert space H ⊗ H . The interaction
(black dashed line) is given by I(•, •) (2.18) and the time evolution (vertical black

line) is given by the CPTP map eL
†t[•].

Figure 2.4 illustrates the SOV as a difference of two protocols on two replicas of a Hilbert
space. The first protocol, associated to the term eL

†t[Â2
0], starts by making the two copies

interact at time t = 0 to give Â2
0, and lets the squared operator evolve dissipatively in time

to produce E(Â2
t ) = eL

†t[Â2
0]. The second protocol lets each of the copies evolve in time

first, thus producing two copies of Ât = eL
†t[Â0], and makes them interact at time t to give

(Ât)
2 = (eL

†t[Â0])
2. The SOV then is the difference between these two protocols. This

interpretation also provides a simple intuition for why the SOV is positive semidefinite,
∆Â2

t ≥ 0, since the first protocol involves one dissipative time evolution, while the second
one involves two. So the second protocol will be subject to more decoherence.
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2.3 SOV uncertainty relation

As discussed in Sec. 2.2.2, the SOV contains the quantum variance and some extra infor-
mation. Perhaps the most interesting property of the quantum variance is Heisenberg’s
uncertainty relation [187] which states that the product of the variances of two non-
commuting operators cannot be arbitrarily close to zero, but there is a fundamental limit
to the precision with which the expectation value of two non-commuting operators can
be known. This section explores similar uncertainty relations for the SOV.

Before considering the case of operators, let us motivate our derivation by considering
functions. The variance of a function is defined as var(f) := ⟨f ∗f⟩ − ⟨f⟩∗⟨f⟩, where the
expectation value ⟨•⟩ =

∫
• dµ is to be understood with respect to a proper measure of

L2 functions. The covariance of two functions is defined as cov(f, g) := ⟨f ∗g⟩ − ⟨f⟩∗⟨g⟩.
The Cauchy-Schwarz inequality then gives an inequality between the variance and the
covariance, namely

var(f)var(g) ≥ |cov(f, g)|2.

We now turn to the operator case. As previously discussed, for the CPTP map E†t [•] =
eL

†t[•], the SOV is the variance of operators with respect to that map. Analogously, one
can define the covariance of two operators Â, B̂ with respect to the map [184] as

∆ÂBt := E†t [Â†B̂]− E†t [Â]†E†t [B̂], (2.19)

Note that the map preserves hermiticity, so we can drop the conjugation for Hermitian
operators. It is then possible to find an analogous statement to the variance-covariance
inequality [184, 188]. If E†t [•] is a completely positive, unital, linear map, the following
2N × 2N matrix is positive semidefinite(

∆Â2
t ∆ÂBt

∆ÂB
†
t ∆B̂2

t

)
≥ 0. (2.20)

The Heisenberg uncertainty relation involves a non-commuting pair of operators and a
quantum state. To find an expression closer to the uncertainty relation, we take the
expectation value of this inequality over a certain state ⟨•⟩ρ = Tr(•ρ̂), which gives the
2× 2 matrix (

⟨∆Â2
t ⟩ρ ⟨∆ÂBt⟩ρ

⟨∆ÂB†t⟩ρ ⟨∆B̂2
t ⟩ρ

)
≥ 0. (2.21)

Sylvester’s criterion states that a matrix is positive semidefinite X̂ ≥ 0 if and only if its
principal minors—the determinants of the matrix where the columns and rows with the
same index are removed—are positive. For our matrix, this implies the following three
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inequalities

⟨∆Â2
t ⟩ρ ≥ 0, ⟨∆B̂2

t ⟩ρ ≥ 0, ⟨∆Â2
t ⟩ρ⟨∆B̂2

t ⟩ρ − |⟨∆ÂBt⟩ρ|2 ≥ 0. (2.22)

The first two conditions are satisfied because of the positive semidefiniteness of the SOV
and the density matrix; thus, they do not impose extra conditions. The third condition
imposes an analog of the Cauchy-Schwarz inequality for the SOV and the stochastic
operator covariance

⟨∆Â2
t ⟩ρ⟨∆B̂2

t ⟩ρ ≥ |⟨∆ÂBt⟩ρ|2. (2.23)

Let us now re-express this inequality in terms of the commutator and anticommuta-
tor of the operators. To simplify the notation In particular, using the identities ÂB̂ =
1
2
({Â, B̂}+ [Â, B̂]) and B̂Â = 1

2
({Â, B̂} − [Â, B̂])

|⟨∆ÂBt⟩ρ|2 = (⟨E†t (ÂB̂)⟩ρ − ⟨ÂtB̂t⟩ρ)(⟨E†t (B̂Â)⟩ρ − ⟨B̂tÂt⟩ρ)

=
1

4

(
⟨E†t ({Â, B̂})⟩2ρ − ⟨E†t ([Â, B̂])⟩2ρ − 2⟨E†t ({Â, B̂})⟩ρ⟨{Ât, B̂t}⟩ρ

+ 2⟨E†t ([Â, B̂])⟩ρ⟨[Ât, B̂t]⟩ρ + ⟨{Ât, B̂t}⟩ρ − ⟨[Ât, B̂t]⟩2ρ
)

=
1

4

(
⟨E†t ({Â, B̂})⟩ρ − ⟨{Ât, B̂t}⟩ρ

)2
− 1

4

(
⟨E†t ([Â, B̂])⟩ρ − ⟨[Ât, B̂t]⟩ρ

)2
=

1

4

(
D2

+(Â, B̂)−D2
−(Â, B̂)

)
.

The expectation value of the covariance is thus determined by the following quantities

D±(Â, B̂) := ⟨E†t ([Â, B̂]±)⟩ρ − ⟨[E†t (Â), E†t (B̂)]±⟩ρ, (2.24)

where in this last line we used the common notation for commutators and anticommutators
[Â, B̂]± = ÂB̂ ± B̂Â such that [•, •]+ = {•, •} and [•, •]− = [•, •]. Therefore, the
uncertainty relation for the SOV reads

Tr(∆Â2
t ρ̂)Tr(∆B̂

2
t ρ̂) ≥

1

4

(
D2

+(Â, B̂)−D2
−(Â, B̂)

)
. (2.25)

The D± functions represent the expectation value of the difference between evolving an
(anti)commutator in time and taking the (anti)commutator of the time-evolved operators,
which is reminiscent of the replica interpretation of the SOV, cf. Sec. 2.2.3. Also note
that since the commutator of two Hermitian operators is anti-Hermitian, D− is purely
imaginary and thus D2

− < 0; while the anticommutator of two Hermitian operators is

Hermitian and thus D2
+ > 0. This implies that D2

+(Â, B̂)−D2
−(Â, B̂) ≥ 0. Also note that

when Â = B̂, the inequality is trivially saturated since ∆ÂA = ∆Â2. It is possible to
derive the Heisenberg uncertainty principle [187], depending only on the commutator of
the two operators, from the Robertson-Schrödinger uncertainty relation [189, 190], which



Stochastic Operator Variance 59

depends on both the commutator and anticommutator of the two operators. Similarly,
we can find a looser inequality which only depends on the commutator of operators, in
particular in the difference of the time evolution of the commutator and the commutator
of the time-evolved operators as

⟨∆Â2
t ⟩ρ⟨∆B̂2

t ⟩ρ ≥
1

4

∣∣∣D−(Â, B̂)
∣∣∣2 , (2.26)

≥ 1

4

∣∣∣⟨E†t ([Â, B̂])⟩ρ − ⟨[E†t (Â), E†t (B̂)]⟩ρ
∣∣∣2 ,

where we used the fact that D2
+(Â, B̂) ≥ 0 to derive this version of the inequality.

2.3.1 An operator version of the SOV uncertainty relation

A matrix of the form

(
X̂ Ŷ

Ŷ † Ẑ

)
≥ 0 is positive semidefinite if and only if X̂ ≥ 0, Ẑ ≥ 0

and X̂ ≥ Ŷ Ẑ−1Ŷ † [188, 191, 192], where the inverse is to be understood as the generalized
inverse if Ẑ is not invertible. This immediately implies an operator version of the variance-
covariance inequality [188]

∆Â2
t ≥ ∆ÂBt(∆B̂

2
t )
−1∆ÂB

†
t . (2.27)

In statistics it is common to introduce the Pearson Correlation coefficient between two
random variables as corr(x, y) = cov(x,y)

σxσy
. This quantity provides a normalized version of

the covariance of the two variables, normalized by the standard deviations of each of the
variables σx,y, and it is upper and lower bounded as −1 ≤ corr(x, y) ≤ +1. Interestingly,
it is possible to introduce a Pearson Correlation Operator for two observables under a
quantum channel, as

corrt(Â, B̂) := ∆Â−1t ∆ÂBt∆B̂
−1
t , (2.28)

where we introduced the Operator standard deviation ∆Ât :=

√
∆Â2

t , which is well

defined since the SOV is positive semidefinite ∆Ât ≥ 0. Assuming that the two SOV’s
are invertible, i.e., positive definite ∆Â2

t ,∆B̂
2
t > 0, the operator version of the variance-

covariance inequality implies that the operator correlation is upper bounded as

corrt(Â, B̂) corrt(Â, B̂)† ≤ 1̂. (2.29)
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2.3.2 Example: Stochastic Frequency Harmonic Oscillator

To illustrate the SOV uncertainty relation, we consider a harmonic oscillator with a
stochastically driven frequency, i.e.

Ĥt = (ω +
√

2γξt)â
†â, (2.30)

where we set the ground state energy to zero. Similar systems, with a stochastic position
of a harmonic trap V̂ (x̂) ∝ (x̂ − ξt1̂)

2, were studied for quantum control [193]. The
creation and annihilation operators in this model evolve as

ât = e−i(ωt+
√
2γWt)â, â†t = e+i(ωt+

√
2γWt)â†, (2.31)

where we introduced the Wiener process Wt =
∫ t
0
dW t′ ≡

∫ t
0
ξt′dt

′ as the integral of the
Wiener increment dW . This gives the evolution of these operators at the average level as

E(ât) = e−iωt−γtâ, E(â†t) = e+iωt−γtâ†. (2.32)

These expressions can be understood through a complex frequency ω − iγ and thus can
be thought of as a mapping to a non-Hermitian Hamiltonian, which provides a further
connection to the next Chapter 3. From these expressions, the noise-averaged evolution
of the position and momentum observables follows directly as

x̂t =
e−γt

2

(
e−iωtâ+ eiωtâ†

)
, p̂t =

e−γt

2i

(
e−iωtâ− eiωtâ†

)
. (2.33)

It is also simple to obtain the bilinears of the creation and annihilation operators as

E(â2t ) = e−2iωt−2γtâ2, (2.34a)

E(â†2t ) = e+2iωt−2γtâ†2, (2.34b)

E(â†t ât) = â†â, (2.34c)

E(âtâ†t) = ââ†. (2.34d)

The third of these equations implies that the photon number is conserved through the
evolution, which was expected since it commutes with the Hamiltonian [Ĥt, â

†â] = 0.
These expressions directly yield the SOV of the position and momentum to be

∆x̂2t =
1− e−2γt

4
{â, â†} = ∆p̂2t . (2.35)

We can also compute the covariance of the two operators and find

∆x̂pt = i
1− e−2γt

4
[â, â†] = i

1− e−2γt

4
, (2.36)
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which gives the SOV uncertainty relation for the stochastic frequency-driven HO as

⟨∆x̂2t ⟩ρ⟨∆p̂2t ⟩ρ ≥
(
1− e−2γt

4

)2

. (2.37)

Substituting the exact expressions for the time evolution of the SOV’s of the model, the
inequality reduces to

⟨2n̂+ 1⟩2ρ ≥ 1. (2.38)

Since the covariance is proportional to unity, the operator version of the uncertainty
relation provides the following operator inequality

∆x̂t∆p̂
2
t ≥

(
1− e−2γt

4

)2

1̂, (2.39)

or equivalently

(2n̂+ 1)2 ≥ 1̂. (2.40)

Several observations are apparent from this example:

• Since the noise affects only the frequency of the harmonic oscillator, it affects all the
Hamiltonian in the same way, and does not have any effect on the Fock basis |n⟩.
This may be the reason behind the SOV for the position and the momentum to be
the same.

• Expression (2.38) and its operator version (2.40) are always fulfilled since the number
operator is positive semidefinite n̂ ≥ 0.

• One of the most interesting features of the Heisenberg uncertainty relation is the
existence of coherent states which saturate the uncertainty principle. However, at
least in this case, the only state which saturates the SOV uncertainty relation (2.38)
is the ground state ρ̂ = |0⟩ ⟨0|. Any other state, no matter if pure or mixed, will
have Tr(n̂ρ̂) > 0 and the inequality will not be saturated.

2.4 Higher order moments and cumulants

In this section, we explore the behavior of higher-order moments and cumulants of the
time-evolved operator averaged over the noise. In particular, unitarity at single trajecto-
ries yields that the n-th moment over the noise is

M̂
(n)
t = E(Ânt ) = E(Û †t ÂÛtÛ

†
t ÂÛt . . . Û

†
t ÂÛt) = E(Û †t ÂnÛt), (2.41)
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and thus it follows the same adjoint GKSL master equation ∂tE(Ânt ) = L†[E(Ânt )], which
implies that the adjoint Liouvillian generates the evolution of all the moments through

M̂
(n)
t = E(Ânt ) = eL

†t[Ân]. (2.42)

Moments can also be computed by differentiation of the moment generating function φ̂(α)
as

M̂
(n)
t =

∂n

∂αn
φ̂(α)

∣∣∣∣
α=0

,

where the moment generating function φ̂(α) is defined as

φ̂(α) := E(eαÂt). (2.43)

Expanding this function gives all the moments

φ̂(α) =
∑
n=0

αn

n!
E(Ânt ) =

∑
n=0

αn

n!
eL

†t[Ân] = eL
†t[eαÂ], (2.44)

where we used the linearity of the CPTP map in the last equality.

In a similar spirit, it is possible to introduce the cumulant generating function K̂(α),
taking the natural logarithm, now understood in the operator sense, of the moment gen-
erating function

K̂(α) = log(φ̂(α)) = log(eL
†t[eαA]), (2.45)

which gives the n-th cumulant over the noise κ̂
(n)
t by simple differentiation

κ̂
(n)
t =

∂n

∂αn
K̂(α)

∣∣∣∣
α=0

. (2.46)

A natural extension of this analysis is to look at what properties of chaos show up in
the fluctuations beyond the (operator) variance. It is known that high order cumulants
are essential to understand the formation of topological defects through a quantum phase
transition [194], so it is expected that higher order moments over the noise characterize
certain information of the chaotic properties, such as generalized Lyapunov exponents
[195] characterizing the behavior of higher point OTOC’s, or spectral correlations.

2.5 Steady states of the SOV

2.5.1 General expression in terms of conserved quantities

The SOV ∆Â2
t is a time-evolving quantity; it is thus natural to wonder about the values

of the SOV in the long-time limit t → ∞, i.e., what is its steady state. This is not only
a theoretical curiosity; the preparation of non-trivial steady states is one of the possible
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approaches to dissipative quantum computing [196], which has been used experimentally
to prepare highly entangled states [197]. By computing the steady state of the SOV, we
can then characterize the effect of fluctuations around the steady state of a given operator.

Introducing the eigenvalues and eigenvectors of the adjoint Lindbladian L†[R̂i] = −λiR̂i,
where the eigenvalues are non-positive and thus we add a negative sign such that λi ≥ 0,
and the left eigenvectors of the adjoint Lindbladian3 L̂i, which are the right eigenvectors

of the Lindbladian L††[L̂i] = L[L̂i] = −λ∗i L̂i. The SOV in the Lindbladian eigenbasis reads

∆Â2
t =

N2∑
i=1

e−λit(L̂i, Â
2)R̂i −

N2∑
i,j=1

e−(λi+λj)t(L̂i, Â)(L̂j, Â)R̂iR̂j, (2.47)

where the inner product is defined as

(X̂, Ŷ ) := Tr(X̂†Ŷ ), (2.48)

Therefore in the long time limit the only contributions that survive are the ones with
λi = λj = 0, i.e. the projections over the kernel of L†. Therefore at long times the SOV
reads

lim
t→∞

∆Â2
t = ∆Â2

∞ =
∑

i∈ker(L†)

(L̂i, Â
2)R̂i −

∑
i,j∈ker(L†)

(L̂i, Â)(L̂j, Â)R̂iR̂j. (2.49)

Since the map eL
†t[•] is unital, i.e. eL†t[1̂] = 1̂, the identity lives in the kernel of the adjoint

Lindbladian L†[1̂] = 0. If there is a unique steady state of the Lindbladian L[ρs] = 0, the
identity 1̂may be understood as the left-eigenvector associated to the right-eigenvector ρ̂s,
or conversely, the identity is the right eigenvector of the adjoint lindbladian and ρ̂s is the
left eigenvector. In this case, the only eigenstate in the kernel of the adjoint Lindbladian
ker(L†) is the identity R̂1 = 1̂. In this case, the steady state of the SOV is simply

∆Â2
∞ =

(
Tr(ρ̂sÂ2)− Tr(ρ̂sÂ)2

)
1̂. (2.50)

This result implies that at long times, when the steady state is unique, the SOV converges
to a quantity proportional to the identity with a proportionality constant which is the
variance over the steady state ρ̂s.

Multiple steady states

The identity 1̂ is always in the kernel of the adjoint Lindbladian; therefore, even in the
case with multiple steady states, there will be a term proportional to the identity in the
same way as (2.50). The elements of the kernel of the adjoint Lindbladian ker(L†) are
the conserved quantities studied by Albert et al. [198, 199], also referred to as invariant

3Here we use a sans serif font to differentiate between the left eigenvectors L̂i and the jump operators
L̂i.
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observables by Baumgartner et al. [200]. Note that if the Lindbladian has a strong
symmetry Ŝ in the sense of Buča and Prosen [201] the operator Ŝ commutes with the
Hamiltonian and the jump operators

[Ŝ, Ĥ] = [Ŝ, L̂k] = 0, ∀k. (2.51)

The presence of a strong symmetry Ŝ implies that Ŝ is a conserved quantity, or invariant
observable, L†[Ŝ] = 0, but the converse is not true, i.e. there may be quantities Ĵ which
are conserved as a whole L†[Ĵ ] = 0 but not individually by the Hamiltonian and jump
operators [Ĵ , Ĥ] ̸= 0, [Ĵ , L̂k] ̸= 0, which are also referred as weak symmetries. Following
the notation of Albert [198], the right eigenvectors of the adjoint Lindbladian R̂i ↔ Ĵi,
while the left eigenvectors of the adjoint Lindbladian are L̂i ↔ M̂i.

Let J = {Ĵi} be the set of all conserved quantities, then the steady state of the SOV can
be written in terms of the conserved quantities as

∆Â2
∞ =

∑
Ji∈J

Tr(M̂ †
i Â

2)Ĵi −
∑
Ji,Jj∈J

Tr(M̂ †
i Â)Tr(M̂

†
j Â)ĴiĴj, (2.52)

unfortunately, in general J does not form a Lie algebra, see example 5.0.3 of [200]. This
implies that the product of ĴiĴj, and thus the whole SOV ∆Â2

∞, is not necessarily an
element of J. However, if we restrict the conserved quantities to the steady state subspace
ker(L), introducing the projection onto the steady state subspace Ps[•], we can find the
matrices ȷ̂i = Ps[Ĵi] and m̂i = Ps[M̂i] such that j = {ȷ̂i} forms a Lie algebra [198].
Therefore the SOV steady state ∆Â2

∞,s projected to the steady state subspace

∆Â2
∞,s =

∑
ji∈j

Tr(m̂†i Â
2)ȷ̂i −

∑
ji,jk∈j

Tr(m̂†i Â)Tr(m̂
†
kÂ)ȷ̂iȷ̂k, (2.53)

is an element of the Lie algebra j. Therefore, we have shown that the steady state of
the SOV depends only on the conserved quantities (also known as invariant observables
or simply elements of the kernel of the adjoint Lindbladian). Particularly through the
projections of Â, Â2 on the conserved quantities, and the products between the conserved
quantities. The steady state of the SOV is not a conserved quantity in general L†[∆Â2

∞] ̸=
0, but it becomes one when ∆Â2

∞,s is built from the conserved quantities projected on the

steady state subspace, i.e. L†[∆Â2
∞,s] = 0.

2.5.2 Example: Two qubit dissipation

To illustrate the above computation, we choose case III.2 of [198] based on a similar
Lindbladian considered by Barreiro et al. [197] to engineer a Lindbladian with a Bell
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steady state. The system has two qubits, no free Hamiltonian, and a single jump operator4

L̂ =
1

2
(1̂− Ẑ1Ẑ2)X̂2. (2.54)

Interestingly, this system has a decoherence free subspace (DFS) [202]. Since the jump
operator is Hermitian, the Lindbladian is of the form

L[•] = −γ
4
[(1̂− Ẑ1Ẑ2)X̂2, [(1̂− Ẑ1Ẑ2)X̂2, •]]. (2.55)

Note that, due to the absence of Hamiltonian and the hermiticity of the jump operators,
the adjoint Lindbladian is equal to the Lindbladian L = L†. The conserved quantities of
this Lindbladian read [198]

Ĵ00 =
1̂+ Ẑ1

2
, (2.56a)

Ĵ01 =
X̂1 + iŶ1

2
X̂2 = Ĵ†10, (2.56b)

Ĵ11 =
1̂− Ẑ1

2
= 1̂− Ĵ00, (2.56c)

which can be equivalently written in matrix form

Ĵ00 =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 , Ĵ01 =


0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0

 . (2.57)

In this case, the conserved quantities form a Lie algebra, so the steady-state subspace
projection is not necessary. The Bell-state representation of these conserved quantities is
[199]

Ĵkl = |Ψk⟩ ⟨Ψl|+ |Ψ⊥k⟩ ⟨Ψ⊥l | , M̂kl = |Ψk⟩ ⟨Ψl| , (2.58)

where the Bell states are defined as

|Ψk⟩ =
|01⟩+ (−1)k |10⟩√

2
, |Ψ⊥k⟩ =

|00⟩+ (−1)k |11⟩√
2

,

which naturally obey the orthonormality properties ⟨Ψk|Ψl⟩ = ⟨Ψ⊥k|Ψ⊥l ⟩ = δkl and ⟨Ψ⊥k|Ψl⟩ =
0. Using these properties, the product between two conserved quantities reduces to

ĴijĴkl = |Ψi⟩ ⟨Ψj|Ψk⟩ ⟨Ψl|+ |Ψ⊥i ⟩ ⟨Ψ⊥j |Ψ⊥k⟩ ⟨Ψ⊥l | = δjkĴil. (2.59)

4In this subsection, for convenience, we shift notation for the Pauli matrices from σz
i = Zi, . . .
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The steady SOV can be written in terms of the conserved quantities as

∆Â2
∞ =

∑
i,j

Tr(M̂ †
ijÂ

2)Ĵij −
∑
i,j,k,l

Tr(M̂ †
ijÂ)Tr(M̂

†
klÂ)ĴijĴkl, (2.60)

which, substituting the products between the Lie algebra of conserved quantities, gives

∆Â2
∞ =

∑
i,j

(
Tr(M̂ †

ijÂ
2)−

∑
k

Tr(M̂ †
ikÂ)Tr(M̂

†
kjÂ)

)
Ĵij. (2.61)

The projections of the initial operator Â and the operator squared Â2 can be written as
matrix elements between Bell states

Tr(M̂ †
klÂ) = ⟨Ψk|Â|Ψl⟩ , (2.62)

Tr(M̂ †
klÂ

2) = ⟨Ψk|Â2|Ψl⟩ . (2.63)

Using the completeness of the Bell-state basis
∑

k |Ψk⟩ ⟨Ψk| +
∑

k |Ψ⊥k⟩ ⟨Ψ⊥k| = 1̂ it is
possible to write the steady SOV as

∆Â2
∞ =

∑
i,j,k

⟨Ψi|Â|Ψ⊥k⟩ ⟨Ψ⊥k|Â|Ψj⟩ (|Ψi⟩ ⟨Ψj|+ |Ψ⊥i ⟩ ⟨Ψ⊥j |). (2.64)

The DFS is spanned by the Bell states {|Ψ⊥k⟩}. It is interesting to note that if the initial

operator Â is started either entirely in the DFS or entirely out of the DFS, the SOV in the
steady state will completely vanish. The first observation can be intuitively understood
in the following way, when restricted to the DFS P̂dfs =

∑
k |Ψk⟩ ⟨Ψk|, the evolution

generated by the Quantum channel is effectively unitary P̂dfsE†[•]P̂dfs ≡ Ûdfs • Û †dfs, and
the SOV of a unitary channel identically vanishes.

2.6 SOV-OTOC connection

2.6.1 Dephasing case: Classical noise

Throughout this Chapter, we have introduced the Stochastic Operator Variance and stud-
ied some of its properties. We show that this quantity is related to an Out of Time Order
Correlator (OTOC).

We begin by deriving the equation of motion, followed by the SOV. We know that
the second moment E(Â2

t ) evolves following the GKSL equation, see eq. 2.8 ∂tE(Â2
t ) =

L†[E(Â2
t )]. For the noise-average evolution squared, we have

∂tÂ
2

t = L†[Ât]Ât + ÂtL†[Ât]. (2.65)
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In deriving an equation of motion for the SOV ∆Â2
t , it is convenient to write the equation

with a homogeneous term of the form L†[∆Â2
t ] plus an inhomogeneous term. To bring it

to this form, we need a term of the form L†[Â2t ] in the equation for the evolution of the

second moment squared ∂tÂ
2

t . Let us see how this simplifies

∂tÂ
2

t − L†[Â2t ] = {L†[Ât], Ât} − L†[Â2t ], (2.66)

= −
Nc∑
n=1

γn

({
[L̂n, [L̂n, Ât]], Ât

}
− [L̂n, [L̂n, Â

2

t ]]
)
,

= −2
Nc∑
n=1

γn

(
ÂtL̂

2
nÂt + L̂nÂ

2

t L̂n − L̂nÂtL̂nÂt − ÂtL̂nÂtL̂n
)
,

= +2
Nc∑
n=1

γn[L̂n, Ât]
2. (2.67)

Interestingly, the right-hand side of this expression represents the dissipation function
introduced by Lindblad [30], which provides a partial order over Lindbladians.

The equation of motion for the SOV then reduces to

d(∆Â2
t )

dt
= L†[∆Â2

t ]− 2
Nc∑
n=1

γn[L̂n, Ât]
2. (2.68)

For simplicity, we now take the case with a single noise channel Nc = 1, in which the
SOV evolves according to

d(∆Â2
t )

dt
= L†[∆Â2

t ]− 2γ[L̂, Ât]
2. (2.69)

Taking the expectation value of this equation of motion over the maximally mixed state
ρ̂0 = 1̂/N , we find the SOV-OTOC connection. It states that the trace of the time-
derivative of the SOV is equal to a dissipative OTOC between the jump operator L̂ and
the noise-averaged operator Ât. The proportionality constant between these quantities is
nothing but the noise strength γ

1

N

dTr(∆Â2
t )

dt
= −2γ

N
Tr([L̂, Ât]

2) = 2γCt. (2.70)

The connection is illustrated in Fig. 2.5. The SOV (red) is related to the spread of
trajectories around the average; when this quantity is projected over the identity, its time
derivative gives the OTOC (blue). The dissipative OTOC Ct can then be written as

Ct =
1

2γN

dTr(∆Â2
t )

dt
∼ ϵeλqt, (2.71)
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t

1̂

X̂

SOV

GKSL

OTOC

Â0

Figure 2.5. Illustration of the SOV-OTOC connection: Illustration of the Stochastic
Operator Variance (red) and its connection to the Out-of-Time-Order Correlator
(blue). The projection over the identity of the time-derivative of the SOV gives a
dissipative OTOC (2.70). Figure adapted from [1].

where the exponential growth only applies in systems with scrambling, in the appro-
priate time window td ≪ t ≪ te between the dissipation td ∼ 1/λq and Ehrenfest
td ∼ log(ℏ−1eff )/λq times [128], recall Sec. 1.10. Due to the dissipation, the Lyapunov
regime in the dissipative OTOC may be more difficult to observe. If this regime is present,
it tells us that the trajectories are separating exponentially fast from the GKSL average
behavior, at least in their projection over the identity.

2.6.2 General GKSL case: Quantum noise

We consider now a setup slightly different from the rest of the chapter. We want to find
a SOV-OTOC connection for the most general GKSL equation with non-Hermitian jump
operators L̂†n ̸= L̂n, i.e., with Lindbladian

L†[•] =
∑
j

γj

(
2L̂†j • L̂j − {L̂†jL̂j, •}

)
.

This master equation can be derived considering a Stochastic Hamiltonian with quantum
noise [203], i.e. the white noise ξ̂t is now an operator such that [ξ̂t, ξ̂

†
t′ ] = δ(t − t′) ̸= 0.

Therefore, the stochastic Hamiltonian now is Ĥt = Ĥ0 +
√
2γξ̂tL̂ where now L̂ ̸= L̂.

Using quantum noise, we generalize the SOV and define the quantum Stochastic Operator
Variance (qSOV) as

∆Â2
t := Eq(Â2

t )− Eq(Ât)2. (2.72)
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where the vacuum conditional expectation map was defined by Hudson and Parthasarathy
[204] as

Eq(•) :B(H̃ ) → B(H ), (2.73)

⟨u|Eq(Ĵ)|v⟩ = ⟨u⊗ ψ0|J |v ⊗ ψ0⟩,

where u, v ∈ H , Ĵ ∈ B(H ). We now want to find its equation of motion. We can
introduce the analog of the Wiener increment dB̂t, which now obeys the following Itō
properties [203]

dB̂tdB̂
†
t = (N̄ + 1)dt, dB̂†tdB̂t = N̄dt, (2.74)

where all other products vanish and N̄ is the average number of photons. Even if noise
is quantum, the propagator

Q̂t = T← exp

∫ t

0

(
Ĥdt′ + L̂dB̂t′

)
,

is still unitary and thus respects Q̂†tQ̂t = Q̂tQ̂
†
t = 1̂. Unitarity implies that the second

moment over the noise reduces as

Eq(Â2
t ) = Eq(Q̂†tÂQ̂tQ̂

†
tÂQ̂t) = Eq(Q̂†tÂ2Q̂t) = eL

†t[Â2], (2.75)

which means that it still obeys the GKSL equation ∂tEq(Â2
t ) = L†[Eq(Â2

t )]. In the same

way as before, we want to express the derivative of the first moment squared ∂tÂ
2

t =

{L†[Ât], Ât}, as the adjoint Lindbladian acting on the first moment squared and extra
terms. In this case, we have

∂tÂ
2

t − L†[Â2t ] = {L†[Ât], Ât} − L†[Â2t ], (2.76)

=
Nc∑
j=1

({
(2L̂†jÂtL̂

†
j − {L̂†jL̂j, Ât}), Ât

}
− (2L̂†jÂ

2

t L̂
†
j − {L̂†jL̂j, Â

2

t})
)
,

=
Nc∑
j=1

2γj

(
L̂†jÂtL̂jÂt + ÂtL̂

†
jÂtL̂j − ÂtL̂†jL̂jÂt − L̂†jÂ

2

t L̂j

)
,

= −2
Nc∑
j=1

γj[L̂j, Ât]
†[L̂j, Ât], (2.77)

where we used the Hermiticity property of the observable Â
†
t = Ât to simplify the expres-

sion. Therefore, we find the equation of motion for the qSOV to be

∂t∆Â
2
t = L†[∆Â2

t ] + 2
Nc∑
j=1

γj[L̂j, Ât]
†[L̂j, Ât], (2.78)
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which averaging over the maximally mixed state ρ = 1̂/N gives the qSOV-OTOC
connection as

1

N
∂tTr(∆Â

2
t ) =

2

N

Nc∑
j=1

γjTr([L̂j, Ât]
†[L̂j, Ât]), (2.79)

or in the case of a single noise channel Nc = 1

1

N
∂tTr(∆Â

2
t ) = 2γCt, (2.80)

where the OTOC for non-Hermitian operators is defined as Ct := ⟨[B̂, Ât]†[B̂, Ât]⟩ [148].

2.6.3 Finding different OTOC’s

Unregularized thermal OTOC

There are many different versions of the OTOCs considered in the literature, used in
different contexts. First of all, one may be interested in considering the average over a
thermal state ρ̂β = e−βĤ/Zβ. This is a unregularized thermal OTOC C

(u)
β,t [160, 168] and

the SOV-OTOC connection reads

1

Zβ

dTr(∆Â2
t e
−βĤ)

dt
=

Tr(L†[∆Â2
t ]e
−βĤ)

Zβ

− 2γ

Zβ

Tr([L̂, Ât]
2e−βĤ),

= ⟨L†[∆Â2
t ]⟩β + 2γC

(u)
β,t . (2.81)

Note the appearance of an extra term in the SOV-OTOC relation. This additional term
comes from the fact that the expectation value over a maximally mixed state of the adjoint
Lindbladian acting on any operator vanishes due to trace preservation Tr(L†[•]) = 0,
but this is not the case for any general state. In the case of the qSOV however, if the
Lindbladian has a thermal steady state and we average over this state Tr(L†[∆Ât]e−βĤ) =
Tr(∆Â2

tL[e−βĤ ]) = 0 the extra term cancels out leaving the derivative of the thermal
expectation value of the qSOV directly related to the unregularized thermal OTOC.

Regularized thermal OTOC

In certain quantum field theories, the previous expression may give rise to diverging results
[128]. For this reason, when studying the Lyapunov exponent of a quantum system at
finite temperature, it is customary to introduce a certain regularization scheme. There
are many possible regularizations of the thermal OTOC, for instance one can split the
thermal factor e−βĤ in two to define an regularized thermal OTOC as

C
(r,2)
βt =

1

Zβ

Tr([B̂, Ât]e
−β

2
Ĥ [B̂, Ât]e

−β
2
Ĥ). (2.82)
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Perhaps the most commonly used way to regularize this quantity [128] is to split the
thermal factor in four and define the OTOC as

C̃
(r,4)
βt =

1

Zβ

Tr(Âte
−β

4
ĤB̂e−

β
4
ĤÂte

−β
4
ĤB̂e−

β
4
Ĥ), (2.83)

note that this expression involves only the out-of-time-order terms and thus not all of the
terms in the squared commutator, we add the tilde to the quantity C̃ to stress out this
difference.

If we transform the jump operators in the way L̂β = e−
β
4
ĤL̂e−

β
4
Ĥ and we trace over the

maximally mixed state we can find the SOV-regularized OTOC connection as

1

N

dTr(∆Ât)

dt
= −2γ

N
Tr([L̂β, Ât]

2) = 2γC
(r,4)
t , (2.84)

where the Liouvillian term vanishes since Tr(L†β[•]) ∼ −γTr([L̂β, [L̂β, •]]) = 0.

Fidelity OTOC

A certain class of OTOC’s, which is known as Fidelity OTOC (FOTOC) C
(ψ)
t , can be

written as a fidelity between two quantum states [205] and allows to map the OTOC
to a Loschmidt echo. It is customary to take the operator that does not evolve in time
to be a projector over a certain pure state B̂ = |ψ⟩ ⟨ψ|. Taking the jump operator in
the stochastic Hamiltonian to be a projector L̂ = |ψ⟩ ⟨ψ| directly gives a SOV-FOTOC
relation

1

N
∂tTr(∆Ât) = −2γ

N
Tr([|ψ⟩ ⟨ψ| , Ât]2) = C

(ψ)
t . (2.85)

Microcanonical OTOC

Lastly one other interesting OTOC is the microcanonical OTOC C
(En)
t [151, 206]. This

expression takes the expectation value over an energy eigenstate |En⟩. In a similar way
to what was done for the thermal OTOC, we find the connection to the microcanonical
one as

∂t⟨En|∆Â2
t |En⟩ = ⟨En|L†[∆Â2

t ]|En⟩ − 2γ⟨En|[L̂, Ât]2|En⟩
= ⟨L†[∆Â2

t ]⟩En + 2γC
(En)
t . (2.86)

2.6.4 Properties of Dissipative OTOC’s

In the previous subsection, we found a connection between different expectation values of
the Stochastic Operator Variance and different Out of Time Order Correlators. However,
there is something that all the different OTOC’s have in common: they are dissipative
OTOC’s, in which the time evolution is given by some dissipative dynamics of the form
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Ât = eL
†t[Â]. Dissipative OTOC’s have been studied previously in the literature [170–

172, 174, 207]. Crucially, dissipation alters their structure, and many of their defining
features, such as the Lyapunov regime, can be hidden due to the presence of dissipation.
In here, we study some generic features of dissipative OTOC’s, which provide further
understanding of the OTOC side of the SOV-OTOC connection.

Short time expansion of the Dissipative OTOC

The short-time expansion of the time evolution of the observable Â is

Ât = Â+ tL†[Â] +O(t2).

Substituting this expression in the Dissipative OTOC, which is related to the SOV gives

NCt = −Tr

([
L̂, Â+ tL†[Â] +O(t2)

]2)
, (2.87)

= −Tr
(
[L̂, Â]2 + 2t[L̂, Â][L̂,L†[Â]]

)
+O(t2).

≈ −Tr([L̂, Â]2)− 2t
(
iTr([L̂, Â][L̂, [Ĥ0, Â]])− γTr([L̂, Â][L̂, [L̂, [L̂, Â]]])

)
.

The first of the two linear terms provides some imaginary contribution, which induces
oscillations in the dissipative OTOC, while the second term provides an exponential decay
at short times. This is the dissipation time τD and using the property Tr(X̂[Ŷ , Ẑ]) =
Tr([X̂, Ŷ ]Ẑ) of the trace, with X̂ = [L̂, Â], Ŷ = L̂ and Ẑ = [L̂, [L̂, Â]], it can be rewritten
as the Hilbert Schmidt norm of the dissipator Tr([L̂, [L̂, Â]]2). Introducing the initial value

of the OTOC as C0 = −Tr([L̂,Â]2)
N

the dissipation time of the OTOC is given by

−C0
t

τD
= −2γtTr([L̂, [L̂, Â]]2), (2.88)

τD =
C0

2γTr([L̂, [L̂, Â]]2)
. (2.89)

Therefore the dissipative OTOC which connects to the SOV decays as Ct = C0(1− t
τD

+

O(t2)) at short times. Note that it is also possible to resum some of the terms in the
Taylor expansion to argue that it decays as Ct ≈ C0e

−t/τD .

Dissipative OTOC in dephasing dynamics

If we assume that the jump operator and the Hamiltonian commute [Ĥ0, L̂] = 0 they can
be diagonalized simultaneously in the eigenbasis Ĥ0 |n⟩ = en |n⟩ , L̂ |n⟩ = ln |n⟩. In this
eigenbasis, the operator evolves as

Ât =
∑
m,n

Âmne
i(Em−En)t−γ(lm−ln)2t |m⟩ ⟨n| , (2.90)
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where Âmn = ⟨m|Â|n⟩ is the matrix element of the operator between different eigenvectors
of the basis. Using this expression, we find that the OTOC is given by a term of the form

Tr([L̂, Ât]
2) =

N∑
m,k=1

(lm − lk)
2|Âkm(t)|2 =

N∑
m,k=1

(lm − lk)
2e−2γ(lm−ln)

2t|Âkm|2,

which yields the dissipative OTOC as

Ct =
1

N

∑
m,n

(lm − ln)
2e−2γ(lm−ln)

2t|Anm|2. (2.91)

The behavior of the dissipative OTOC for dephasing dynamics was studied originally by
Syzranov et al. [170]. One of their main results is that the dissipative OTOC should
show two different exponentially decaying regimes and a saturation at longer times. The
case of commuting Hamiltonian and jump provides dephasing since the dynamics’ effect
simply dampens all the coherences in the common eigenbasis. This decomposition of
the dephasing OTOC shows that the maximum difference between eigenvalues and the
minimum difference, respectively, gives the two decaying exponentials. At the transition
between the two exponentially decaying regimes, we expect to see a contribution from the
intermediate differences lm − ln.

2.7 The Stochastic Lipkin Meshkov Glick model

The Lipkin-Meshkov-Glick (LMG) model [208] describes the behavior of many two-level
systems interacting all-to-all through a collective operator. Initially introduced in the
context of nuclear physics, this model shows scrambling coming from the presence of a
saddle point, while still being integrable [151, 154, 209]. It has been realized experimen-
tally with trapped ions [210] where scrambling may improve certain tasks in quantum
metrology [211].

2.7.1 Quantum stochastic LMG

We begin our study by considering the fully quantum version of the model. The LMG
model describes the collective motion of N identical two-level systems interacting all-to-all
with the same coupling strength [208]. The Hamiltonian of the system reads

Ĥlmg = ΩŜz −
2

N
Ŝ2
x, (2.92)

where Ω is the frequency of the two-level systems in units of the coupling strength and
Ŝj are the spin S operators. The total spin S of the collective operators is related to
the number of two-level systems through S = N/2. The first term of the Hamiltonian
describes the energy of each of the two-level systems, while the second term describes the
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interactions between them through a σ̂
(i)
x σ̂

(j)
x coupling. The total spin Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z

commutes with all the operators [Ŝ2, Ŝj] = 0, and thus the total angular momentum is
conserved. Furthermore, due to time-translational symmetry, the energy of the system
is conserved. This implies that the system is integrable since it only has one degree
of freedom. When the continuous time-translational symmetry is broken through some
periodic kicks in Ŝ2

x, this model is the Quantum Kicked Top [113, 133], which displays
many of the features of quantum chaos. In here, we break time translational symmetry
by adding some stochastic terms to the Hamiltonian. In general, it reads

Ĥt = Ĥlmg +
Nc∑
n=1

√
2γnL̂nξ

(n)
t . (2.93)

However, for many of the results we will consider a simple case in which there is only one
source of noise Nc = 1 which affects the whole Hamiltonian L̂ = Ĥlmg, i.e.

Ĥt = Ĥlmg(1 +
√

2γξt). (2.94)

This stochastic Hamiltonian describes energy dephasing dynamics, i.e., dephasing in the
energy eigenbasis of Ĥlmg. To characterize the evolution of the SOV in time, it is helpful
to consider the eigenvalues and eigenvectors of the SOV

∆Â2
t |vk(t)⟩ = Λk(t) |vk(t)⟩ .

Since the SOV is hermitian and positive semidefinite its eigenvalues fulfill Λk(t) ∈ R, Λk(t) ≥
0. We order the eigenvalues in ascending order Λ0(t) ≤ Λ1(t) ≤ · · · ≤ ΛN−1(t). This eigen-
decomposition also allows to find the state minimally affected by the noise at long times
as the eigenstate with the smallest eigenvalue of the SOV in the t→ ∞ limit

|Ψ⟩ = lim
t→∞

|v0(t)⟩ . (2.95)

Starting in this state guarantees that at long times the SOV acquires its smallest value
and thus the dynamics is protected from the noise in a certain way, since this state only
“feels” the smallest possible value of the SOV.

Figure 2.6 (a) shows the evolution of the eigenvalues of the SOV. We see that the eigen-
values initially grow in time and then generally saturate to a given value, although some
still show non-trivial dynamics at long times. In this particular case, we have energy
dephasing; we observe that the smallest eigenvalue grows in time as Λ0(t) ∼ t3/2, which
is reminiscent of superdiffusive behavior in the context of quantum transport [212, 213].
However, most of the eigenvalues, especially the largest ones, show a diffusive scaling in
which the variance grows linearly in time Λk(t) ∼ t. Lastly, the expectation value of the
SOV in the |Ψ⟩ state ⟨Ψ|∆Â2

t |Ψ⟩ (black dash-dotted)

Interestingly, in the case where [Ĥ0, L̂] ̸= 0, shown in Fig. 2.7, it is possible to get ballistic
scalings Λk(t) ∼ t2, as well as diffusive and superdiffusive, for specific windows of time.
Another interesting feature of this case is that at long times all the eigenvalues collapse to
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Figure 2.6. Evolution of (a) the SOV eigenvalues, and (b) the OTOC Ct for the
quantum sLMG model. The operator Â = 1√

3
(Ŝx+ Ŝy + Ŝz) evolves under the

stochastic Hamiltonian (2.94) with γ = 2, Ω = 1, and S = 20. (a) Eigenvalues
of the SOV as a function of time (solid red, colorscale indicates k and can be
seen in Fig. 2.7) and expectation value of the SOV for the state which minimized
the deviation at long time, ⟨Ψ|∆Â2

t |Ψ⟩ (black dash-dotted). (b) Dissipative OTOC
obtained from the SOV-OTOC relation (2.70) (solid line) and short-time expansion
(dashed line) for different values of Ω (colorbar) across the phase transition—at
Ωc = 2. Figure adapted from [1].

Figure 2.7. Eigenvalues of the SOV as a function of time for noncommuting Hamiltonian and
Jump operator [Ĥ0, L̂] ̸= 0 (red colorscale), as well as the expectation value over
the minimum SOV state ⟨Ψ|∆Â2

t |Ψ⟩ (black dash-dotted). The parameters are
γ = 2,Ω = 1, S = 20, Â = (Ŝx + Ŝy + Ŝz)/

√
3 and L̂ = Ŝx.

the same value. This implies that all the initial states see the same value of the SOV and
that the SOV is proportional to the identity, as found in the case of a single steady state
(2.50), which was expected since in this case the Hamiltonian Ĥlmg is not a conserved
quantity.

Figure 2.6 (b) shows the behavior of the dissipative OTOC Ct = Tr([L̂, Ât]
2)/N , as com-

puted through the SOV-OTOC connection, for different values of the parameter Ω. As
will be discussed in the coming sections, the LMG model shows a transition from a double-
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well-like, ferromagnetic phase when Ω < 2 to a paramagnetic, single-well-like phase when
Ω > 2. This difference in behavior manifests in the dissipative OTOC, which shows some
decay for Ω below the transition, but above the transition, shows very clearly the two
exponential decays and saturation expected from [170], or from our previous analysis of
the dissipative OTOC when [Ĥ0, L̂] = 0 (2.91).

10−2 10−1 100

γt
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103
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t
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Figure 2.8. Short-time behavior of the OTOC as computed from the SOV-OTOC
relation. Full OTOC (solid line) and short-time expansion (2.89) (dashed line).
The crossover between the two exponentially decaying regimes is seen around γt ≈
0.1.

Furthermore, the short-time exponential decay C0e
−t/τD (2.89) (dashed line in Fig. 2.6

(b)) describes well the first exponential decay of the dissipative OTOC. This can be more
easily inspected from Fig. 2.8, which focuses on the early time decay of the dissipative
OTOC in a log-log scale.

Figure 2.3 illustrates the information in the SOV. Taking the stochastic LMG model
as a playground, we now build a more quantitative version of the previous figure. For
this, we compute the SOV exactly in the sLMG with energy dephasing, in the double
well phase of the model. Figure 2.9 shows the evolution of the SOV for two different
strengths of the noise (γ = 0.1 upper and γ = 2 lower). In particular, Fig. 2.9 (a)

shows the Stochastic Operator Standard deviation ∆Ât =

√
∆Â2

t as the error bar on top
of the GKSL evolution, in particular through all its projections, in the Hilbert-Schmidt
sense, over the three spin operators {Ŝx, Ŝy, Ŝz}. In particular, to ensure that different
spin operators are orthonormal, the normalization in the Hilbert-Schmidt inner product
is chosen as

(Â, B̂)s =
3

S(S + 1)(2S + 1)
Tr(Â†B̂), (2.96)

which ensures that (Ŝi, Ŝj)s = δij, however note that the identity is not normalized
(1̂, 1̂)s =

3
S(S+1)

̸= 1.

The flow of time is indicated by the colorscale (from black to yellow). We see that the weak
noise case γ = 0.1 shows underdamped dynamics in which the observables oscillate before
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Figure 2.9. Visualization for the evolution of the stochastic operator variance and
its standard deviation for the quantum sLMG model. (a) Projection over
the different spin operators of the noise averaged observable (Ât, Ŝj)s (solid line)
and the Stochastic Operator Standard Deviation (∆Ât, Ŝj)s (error bar), with the
flow of time indicated by the color scale and the red arrow. (b) Projections of the
noise-averaged observable (black line) (Ât, X̂)s and the SOV (∆Â2

t , X̂)s (error bar)
over X̂ ∈ {1̂, Ŝ}. The initial operator is Â = (Ŝx + Ŝy + Ŝz)/

√
3. The parameters

are S = 20 and Ω = 1.5, with γ = 0.1 (upper) or γ = 2 (lower). The times
for which the error bar vanishes correspond to the SOV being orthogonal to the
projected operator.

reaching the steady state, while the strong noise case γ = 2 shows overdamped dynamics
with direct convergence to the steady state, without showing oscillations. Figure 2.9 (b)
shows the projection of the SOV ∆Â2

t over different operators {1̂, Ŝ}. We see that the
projection of the SOV over the identity, related to the integral of the OTOC, grows in
time for both strengths of the noise. However, the projection of the SOV over the spin
operators shows a more non-trivial evolution, for instance, when the noise is weak the
projection over the operators Ŝx and Ŝy can become zero, which implies that the SOV is

orthogonal to the operator at that time, in the same case the projection over Ŝz quickly
grows, then decreases, stays almost constant, and then finally decreases at long times. The
strong noise case shows a simpler evolution; the projections of the SOV quickly grow and
decay. One further comment is in order, the z projection of the average (Ât, Ŝz)s shows
almost no dynamics, this makes the range spanned by the z projection much smaller
compared to the range spanned by the other coordinates, making the projection of the
SOSD over the z coordinate (∆Ât, Ŝz) appear much larger than the other projections.
Looking at the projection of the SOV with the same scale for all the axes, cf. Fig. 2.9,
we see that even if the projection of the SOV over Ŝz is larger than those over Ŝx, Ŝy for
weak noise, the difference is not as big as that apparent from (a). The large noise case
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has a SOV with similar projection over the three operators, and from (a) the projection
over Ŝx, Ŝy looks much smaller.

These results can be further understood in terms of the steady state analysis performed in
Sec. 2.5. The identity is always a conserved quantity, and therefore the projection of the
steady state SOV ∆Â2

∞ is non-zero; for this reason, its projection over the identity grows
until it reaches the steady state. The spin operators Ŝj are not conserved quantities, and
thus the projection of the SOV onto them decreases at long times, eventually reaching
zero. Lastly, even before performing a full analysis of the conserved quantities of the
model, in this case Ĥlmg is a strong symmetry of the system, and thus will be preserved.
Therefore, we expect the projection of the SOV over Ĥ, (Ĥ,∆Â2

t ) to have a similar
behavior at long times as the projection over the identity. It is also interesting to note
that since the operator Â is traceless, its projection over the identity (black solid line in
the leftmost plot of (b)) stays at zero.

2.7.2 Classical stochastic LMG model

Classical limit of the spin Hamiltonian

The classical limit of the LMG model captures some of the features expected from its
quantum counterpart[154, 209]. In particular, it explains the presence of an unstable
saddle point, which is the cause for the presence of scrambling in the system, despite
its integrability [151]. We will first detail how to take the classical limit of the spin
Hamiltonian, and then introduce noise in this model.

The coherent SU(2) states are defined as [214]

|ζ⟩ = eζŜ+

(1 + |ζ|2)S |S,−S⟩ , (2.97)

where Ŝ+ = Ŝx + iŜy is the raising operator and |S,−S⟩ is the common eigenstate of Ŝ2

and Ŝz with the smallest eigenvalue of Ŝz, furthermore eζŜ+ is the generalized displacement
operator of the SU(2) group. Physically, the states |ζ⟩ correspond to wavepackets with
the minimum width allowed by the uncertainty principle. The parameter ζ is a complex
number given by ζ = − tan θ

2
e−iϕ, where the angles θ, ϕ determine the location of the

coherent SU(2) state |ζ⟩ centered at coordinates n = (sin θ cosϕ, sin θ sinϕ, cos θ). Note
that ζ plays the role of a stereographic projection of the surface of the sphere into the
complex plane. The classical limit of the Hamiltonian is thus defined as the expectation
value of the Hamiltonian between coherent SU(2) states in the limit of large spin

Hlmg = lim
S→∞

⟨ζ|Ĥlmg|ζ⟩
S

. (2.98)

Note that since the collective spin was related to the number of two-level systems in the
fully connected spin chain model for LMG S = N

2
, the semiclassical limit is also a ther-

modynamical limit. This semiclassical limit has an effective Planck’s constant ℏeff = 1/S,
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which vanishes in the large spin limit. This can be understood as ℏeff provides a measure
for the separation between different quantized levels, and in the semiclassical limit, the
difference between quantum levels vanishes and becomes a continuum. Introducing the
rescaled variables ŝj = Ŝj/S we see that in the large spin limit the rescaled variables

commute since [ŝi, ŝj] = iℏeffϵijkŝk
S→∞−→ 0 and thus are classical [151].

To compute the expectation value of the Hamiltonian between coherent SU(2) states, we
will use the following results [214]

⟨n|Ŝz|n⟩ = −S cos θ,

⟨n|Ŝ2
x|n⟩ = S(S − 1

2
) sin2 θ cos2 ϕ+ S

2
,

from which we find that the classical limit of the Hamiltonian is

⟨ζ|Ĥlmg|ζ⟩
S

= −Ωcos θ − sin2 θ cos2 ϕ+O(S−1). (2.99)

where the sub-extensive terms vanish in the semiclassical limit. Following Pilatowsky-
Cameo et al. [154], we introduce two canonically conjugated variables Q, P , analogous
to the classical position and momentum, which characterize the real and imaginary part
of the ζ variable. In particular

ζ =
Q− iP√

4− (Q2 + P 2)
= − tan

θ

2
e−iϕ,

or more explicitly Q√
4−Q2−P 2

= − tan θ
2
cosϕ, P√

4−Q2−P 2
= − tan θ

2
sinϕ, from where it is

possible to express the angles as

tanϕ =
P

Q
, tan2 θ

2
=

Q2 + P 2

4− (Q2 + P 2)
, (2.100)

which yields the classical Hamiltonian expressed in position and momentum as

Hlmg(Q,P ) =
Ω

2
(Q2 + P 2)− Ω− 1

4
(4Q2 −Q2P 2 −Q4), (2.101)

which can be written in a more transparent way as

Hlmg(Q,P ) =
Ω
2
P 2 +

(
Ω
2
− 1
)
Q2 + 1

4
(Q2P 2 +Q4). (2.102)

Inspecting the quadratic term Q2 clearly shows that this Hamiltonian shows a transition
from a double-well potential, with a negative Q2 term, when Ω < 2, to a single-well
potential, when Ω > 2. In the two spin chain picture, these phases correspond to a ferro-
magnetic phase, where the ground state has non-zero magnetization, and a paramagnetic
phase, where the ground state has zero magnetization.
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The effects of noise

We now turn on the noise in this system, i.e., we consider the classical stochastic Lipkin-
Meshkov-Glick (sLMG) model. The most generic case is to consider Nc sources of noise

HsLMG(t, Q, P ) = Hlmg(Q,P ) +
∑
n=1

√
2γnξ

(n)
t Ln(Q,P ). (2.103)

But as already done previously for simplicity, we consider a single source of noise Nc = 1,
such that the jump operator is equal to the Hamiltonian, i.e.

HsLMG(t, Q, P ) = (1 +
√

2γξt)Hlmg(Q,P ), (2.104)

which physically describes fluctuations in the energy scale of the system. Introduc-
ing the Poisson bracket {f, g}p = ∂

∂Q
f ∂
∂P
g − ∂

∂P
f ∂
∂Q
g between two classical functions

f(Q,P, t), g(Q,P, t) of the phase space variables, which is related to the quantum com-
mutator through the correspondence principle {A,B}p ↔ −i[Â, B̂], we can write the
analogous classical evolution to energy dephasing dynamics

∂tAt = −{Hlmg,At}p + 2γ{Hlmg, {Hlmg,At}p}p, (2.105)

similar equations, in the classical limit of the Schrödinger picture, i.e. in terms of the
probability distribution over phase space ρ(x, p, t)“ = limℏ→0 ρ̂t”, have been considered to
describe the effect of decoherence due to clocks with errors, which does not only show up
in the quantum realm [215].

The most interesting feature of the LMG model for our purpose is that a very simple
system, integrable, and with a well-defined classical limit, shows scrambling and has a
positive quantum Lyapunov exponent. The existence of such integrable models is the
reason why the presence of a positive quantum Lyapunov exponent is not considered
sufficient to claim that a quantum system is chaotic. For this reason, we turn to computing
the value of the Lyapunov exponent λ for the sLMG model with energy dephasing. We
consider three different complementary approaches to compute this value.

Approach 1 (van Kampen’s method). The analytical approach of van Kampen [216, 217]
yields the Lyapunov exponent of the sLMG model to be

λ(vK) =
√
2Ω− Ω2 − γ(2Ω− Ω2). (2.106)

Proof. We consider a classical vector ut subject to deterministic and stochastic external
perturbations, referred to as Ad and As(t). Its equation of motion is described by the
stochastic differential equations

u̇t = [Ad +
√

2γAs(t)]ut. (2.107)
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Following van Kampen [217], we move to the interaction picture with respect to the
deterministic evolution, vt = e−Adtut. Expanding up to second order in

√
γ, the noise-

averaged evolution in the interaction picture, with vt = E(vt) reads

vt = v0 + 2γ

∫ t

0

dt1

∫ t1

0

dτe−t1AdE(As(t1)e
τAdAs(t1 − τ))e(t1−τ)Adv0, (2.108)

which is valid for
√
2γt≪ 1. We recognize the solution to order γ of the linear differential

equation, also known as Bourett’s integral equation, which gives an equation of motion
for the noise-averaged variable ut = E(ut) [216]

∂tut =
[
Ad + 2γ

∫ t

0

E(As(t)e
AdτAs(t− τ))e−Adτdτ

]
ut. (2.109)

This equation is derived by assuming the standard rules of calculus and, thus, assumes
Stratonovich formalism. In this formalism of Stochastic calculus, the integral of a delta
function in one of the boundaries of the integration contour is defined as

∫ t
0
δ(t− τ)f(τ)dτ = 1

2
f(t)

[39]. In the case thatAd andAs commute, and forAs(t) = ξtAs fluctuating with Gaussian
white noise, Eq. (2.109) simplifies to

∂

∂t
ut =

(
Ad − 2γA2

d

∫ t

0

E(ξtξτ ′)dτ ′
)
ut =

(
Ad − γA2

d

)
ut,

where the change of integration variable τ ′ = t − τ brings the minus sign. In systems
exhibiting chaos, the Lyapunov exponent gives the exponential divergence between neigh-
boring trajectories. We interpret this as the maximum eigenvalue of the matrix Ad−γA2

d.

The LMG at the origin, Q = P = 0, can be linearized into the harmonic oscillator
H = 1

2
[ΩP 2 + (Ω − 2)Q2]. Hamilton’s equation of motion gives a system of differential

equations for the variables Q̇t and Ṗt which read{
Q̇t = Pt

(
Ω + 1

2
Q2
t

)
Ṗt = −Q3

t −Qt

(
1
2
P 2
t + (Ω− 2)

) (2.110)

The Jacobian around a fixed point characterizes its Lyapunov exponent in the largest
eigenvalue [154]. Linearizing the system of equations around the origin Q∗ = P ∗ = 0, we
find the Jacobian to be given by

d

dt

(
Qt

Pt

)
=

(
0 2− Ω

Ω 0

)(
Qt

Pt

)
≡ Adut, (2.111)

whose eigenvalues are simply λlmg = ±
√

Ω(2− Ω). Note that the spectrum is real when
Ω < 2, thus describing the instability of the origin in the double well potential.
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It is also possible to find the evolution of the quadratic terms as [216]

d

dt

 Q2
t

P 2
t

QtPt

=

 0 0 Ω

0 0 −(Ω−2)

−Ω−2
2

Ω
2

0


 Q2

t

P 2
t

QtPt

 . (2.112)

The maximum eigenvalue of this matrix is λlmg =
√
2Ω− Ω2, agreeing with the largest

eigenvalue of the Jacobian Ad, and the Lyapunov exponent at the origin in the noiseless
LMG model [154]. For the sLMG, we add noise in the energy scale and consider an
evolution dictated by

u̇t = Ad(1 +
√

2γξt)ut,

where ξt is Gaussian white noise. The maximum eigenvalue of Ad − γA2
d thus gives the

average Lyapunov exponent as

λ =
√
2Ω− Ω2 − γ(2Ω− Ω2).

Approach 2 (Numerical implementation). A purely numerical approach consists in com-
puting the evolution of two trajectories in phase space (Qt, Pt) and (Q′t, P

′
t), from the

stochastic Hamilton’s equations{
dQt = Pt

(
Ω + 1

2
Q2
t

)
(dt+

√
2γdWt)

dPt = −Qt

(
Q2
t +

1
2
P 2
t + Ω− 2

)
(dt+

√
2γdWt)

(2.113)

ensuring that the noise realization dWt is the same for both trajectories. This system of
coupled SDE’s is solved through the stochastic Runge-Kutta method, cf. App. A.

The initial values of these trajectories are constructed in the way Q′0 = Q0 + εζ and
P ′0 = P0 + εζ, where the variable ε is very small, e.g. in Fig. 2.10 it is chosen as
ε = 10−20, and ζ ∼ N (0, 1) is a normal random variable. Defining the L2 distance in
phase space between the two trajectories as ℓ2t := (Qt − Q′t)

2 + (Pt − P ′t)
2, the Lyapunov

exponent is given by

λ(num) = lim
t→∞

E
(
1

t
log

ℓt
ℓ0

)
(2.114)

Approach 3 (SOV-OTOC connection). It is possible to compute the Lyapunov expo-
nent using the SOV-OTOC relation. In particular, taking the position as the observable
At = Qt, which is obtained from solving the stochastic Hamilton’s equations (2.113), and
computing the classical SOV ∆Q2

t = E(Q2
t ) − E(Qt)

2. This yields a Lyapunov exponent
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through the SOV-OTOC relation as

λ(sov-otoc) = lim
t→∞

1

2(t− tr)
log

(
∂t∆Q

2
t

∂t∆Q2|tr

)
. (2.115)

Note that the denominator acquires a factor 2 because the classical limit of the OTOC
grows as e2λt. Furthermore, the derivative of the classical SOV is compared to the deriva-
tive at a given reference time tr = 1 to ensure that the OTOC is in the Lyapunov regime.

Figure 2.10. Lyapunov exponent of the classical sLMG model at the saddle point
Q∗ = P ∗ = 0 as a function of Ω (a) for different values of the noise strength γ and
(b) over the phase diagram. (a) The Lyapunov exponent λ is computed through
the three approaches: Approach 1 analytically using van Kampen’s method λ(vK)

(solid lines), (ii) numerically as in Approach 2, λ(num)(circles with errorbar), and
(iii) from the SOV-OTOC connection as in Approach 3, λ(sov-otoc) (triangles).
The known results for the LMG correspond to γ = 0 (black). (b) Phase dia-
gram. The color scale represents the Lyapunov exponent λ(num) as a function of
the two-level frequency in units of the coupling strength Ω and the noise strength
γ. A positive value of λ (red) implies exponential divergence of close initial con-
ditions, while a negative value (blue) indicates exponential convergence. The
dotted horizontal lines represent the values of γ sampled in (a). The vertical
dashed gray line represents the transition between the double well (Ω < 2) and
single well (Ω ≥ 2) phase. Figure adapted from [1].

Figure 2.10 (a) compares the Lyapunov exponent using the three approaches. We observe
excellent agreement between the different approaches, which indicates their consistency.
The fact that the three approaches yield similar results indicates the validity of the SOV-
OTOC relation, even in the classical setup, in which it was not derived. Now, let us
analyze the physics that the system describes. In the noiseless limit γ = 0, the double
well (DW) phase of the model, Ω < 2, shows a positive Lyapunov exponent, because the
origin is an unstable fixed point of the model, while in the single well (SW) phase Ω > 2
the Lyapunov vanishes since the origin is a stable fixed point. Under the application
of a small noise, the Lyapunov exponent of the DW phase decreases slightly, while the
SW phase acquires a small but positive Lyapunov exponent. In particular, from the
analytical expression it is easy to show that the largest Lyapunov exponent of the DW
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phase, happening at Ω = 1 is equal to maxdw,γ< 1
2
λ(vK) = 1−γ. When the strength of the

noise is larger, like γ = 1, the Lyapunov of the DW phase is even smaller, with the point
Ω = 1, which had the maximum Lyapunov, now having the smallest Lyapunov, close to
zero. The SW phase acquires an even bigger Lyapunov exponent. A simple computation
of the second derivative with respect to Ω,

∂2λ

∂Ω2

∣∣∣∣
Ω=1

= −2

(
1

2
− γ

)
,

shows that the point Ω = 1 changes from the point with maximum Lyapunov of the DW
phase to a relative minimum of the Lyapunov at γ = 1/2. When γ > 1/2, the two points

with the largest Lyapunov exponent in the DW phase occur at Ω± = 1±
√

1− 1
4γ2

. Lastly,

when the strength of the noise is large γ > 1, see γ = 2 in Fig. 2.10 (a), the Lyapunov
exponent in the DW phase becomes negative in the interval

Ω ∈
(
1−

√
1− 1

γ2
, 1 +

√
1− 1

γ2

)
,

which covers the full DW phase in the limit γ → ∞. This implies that in this regime
of parameters, the origin becomes stable through the action of the noise. Trajectories
converge exponentially fast to the origin Q = P = 0.

This behavior is analogous to Kapitza’s pendulum [218, 219], in this setup, one considers
a rigid pendulum of length L in a gravitational field given by g, whose suspension point is
being periodically driven with an amplitude A and frequency ω. The standard pendulum
without driving has two fixed points, with the pendulum facing up and down; the former
is unstable, while the latter is stable. However, Kapitza realized that this does not have
to be the case in the driven pendulum. In particular, if the amplitude and frequency obey
A2ω2 ≥ 2gL, the pendulum being up becomes a stable fixed point [218]. This dynamical
stability has also been found in quantum and many-body systems [220, 221]. Here, we
find a similar behavior to dynamic stabilization but with stochastic driving instead of
periodic driving.

Heuristic reason for the dynamical stabilization of sLMG

It is possible to understand the noise-induced stabilization from a heuristic argument.
Let us consider the energy landscapes of the classical limit of the LMG Hamiltonian
Hlmg(Q,P ) as shown in Fig. 2.11. The noiseless Hamiltonian is shown in Fig. 2.11 (c)
for the DW phase and (e) for the SW phase. At all times, the Hamiltonian is multiplied
by the value 1 +

√
2γξt. When

√
2γ ≪ 1, the Hamiltonian is very rarely flipped, and

the majority of the realizations of the noise give a Hamiltonian that looks like (c) or (e)
with a different coefficient 1 +

√
2γξt, which is very close to 1. The small noise slightly

diminishes the Lyapunov exponent of the origin in the DW phase, and slightly increases
it in the SW phase.
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Figure 2.11. Visualization of the sLMG model. (a) Histogram of the possible values of
the white noise ξt. The horizontal blue line indicates the standard deviation
of the normal distribution. The vertical (black dashed) line indicates where
1 +

√
2γξt = 0, therefore 1 +

√
2γξt < 0 (blue region), and 1 +

√
2γξt > 0

(orange region). LMG Hamiltonian as a function of Q,P in the double well (b,c)
and single well (d,e) phases, multiplied by a negative (b,d) or positive (c,e) value
of 1 +

√
2γξt.

The large noise limit
√
2γ ≫ 1 allows us to understand the physics better; in this limit,

the noise distribution is so wide that almost half of the realizations flip the sign of the
Hamiltonian. Let us see now how this brings an important difference between the SW
and DW phases, consider the discretization of time {tn}

• Single Well phase:

– If 1 +
√
2γξtn > 1 +

√
2γξtn−1 all points in phase space (Q,P ) gain energy. The

points further away from the origin gain more energy than the points closer to
the origin. In the extreme case in which the prefactor is negative at tn−1 and
positive at tn, we go from (d) → (e) in Fig. 2.11.
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– If 1 +
√
2γξtn < 1 +

√
2γξtn−1 all points in phase space (Q,P ) lose energy. The

points further away from the origin lose more energy than the points closer to
the origin. In the extreme case in which the prefactor is positive at tn−1 and
negative at tn, we go from (e) → (d) in Fig. 2.11.

• Double Well phase:

– If 1 +
√
2γξtn > 1 +

√
2γξtn−1 , the points inside the wells lose energy, while the

points outside the wells gain energy. In the extreme case in which the prefactor
is negative at tn−1 and positive at tn, we go from (b) → (c) in Fig. 2.11.

– If 1 +
√
2γξtn < 1 +

√
2γξtn−1 , the points inside the wells gain energy, while the

points outside the wells lose energy. In the extreme case in which the prefactor
is positive at tn−1 and negative at tn, we go from (c) → (b) in Fig. 2.11.

This difference between the different points in phase space provides an intuitive view of
the difference between the two phases and may explain the stabilization.

2.8 Conclusions

Throughout this chapter, we have investigated the evolution generated by stochastic
Hamiltonians beyond the noise-average. The main quantity we have focused on is the
Stochastic Operator Variance, introduced in (2.7). Interestingly, leveraging the unitarity
of stochastic Hamiltonians at single trajectories, the SOV can be expressed as the variance
of a hermitian matrix over a CPTP linear map (2.9). This connection allows us to find
several formal mathematical properties of the SOV, cf. Sec. 2.2.1, show that the SOV
contains the information in the quantum mechanical variance plus transitions outside the
subspace spanned by the initial state, cf. Sec. 2.2.2, and provide an interpretation of the
SOV as an operation on two copies of the Hilbert space, cf. Sec. 2.2.3.

The first main result that we find in the chapter is that the expectation value of the
SOV’s of two different operators ⟨∆Â2

t ⟩ρ, ⟨∆B̂2
t ⟩ρ fulfill an uncertainty relation (2.25).

Interestingly, a stronger inequality directly on the SOV, without the need for expectation
value over any state, can also be derived, cf. eqs. (2.27) and (2.29). In Sec. 2.3.2,
we provided an example of these inequalities for the case of a Harmonic Oscillator with
stochastically driven frequency.

Section 2.4 investigates higher-order moments beyond the variance. We find that unitarity
at single trajectories brings the same simplification to higher order moments as it did to
the second moment (2.42); this implies that the adjoint Lindbladian characterizes the evo-
lution of all the moments for stochastic Hermitian Hamiltonians. We find expressions for
the moment and cumulant generating functions from where the moments and cumulants
may be found upon differentiation, only with knowledge of the propagator eL

†t[•].
In Section 2.5, we study the SOV at very long times, when the system has converged to
its steady state. We find that it can be written in terms of the elements of the kernel of
L†. In the case of a unique steady state, it simply gives the variance over the steady state
multiplied by the identity (2.50). In the case of multiple steady states, the long-time limit
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of the SOV can be written in terms of the conserved quantities of the system [199] (2.52).
In Sec. 2.5.2, we study two-qubit dissipation, which shows a non-trivial Decoherence Free
subspace, and compute the steady state of the SOV (2.64).

Section 2.6 introduces the second main result of our analysis, the SOV-OTOC relation.
This connection provides a deep link between the spread of trajectories in the Hilbert
space of operators with quantum information scrambling and the quantum Lyapunov
exponent. We showed explicitly that the connection holds for many different OTOC’s,
which shows that this is not a coincidence and that the SOV is encoding information
similar to the different OTOC’s. We exemplified this connection in the stochastic LMG
model, cf. Sec. 2.7 both in its quantum and classical limit. In the quantum case, we found
that the behavior of dissipative OTOC’s is drastically affected by dissipation and that the
eigenvalues of the SOV can show diffusive, superdiffusive, and even ballistic scaling. In the
classical limit, we showed several ways of computing the Lyapunov exponent, analytically,
numerically, and using the SOV-OTOC connection, all of these agree on the Lyapunov
exponent of the unstable point of sLMG, which becomes negative in the double well phase,
thus showing noise-induced stabilization, and becomes positive in the single well phase.

2.8.1 Open Questions

We list here several open questions and avenues for further study:

• Most of the analysis of the SOV comes from the great simplification brought by uni-
tary single trajectories. Can the SOV be computed in cases where single trajectories
are not unitary, such as a continuous measurement? What type of SOV-OTOC
connection holds in such systems?

• What information is carried in the higher-order moments and cumulants of the op-
erator over the noise?

• Can we explain the growth rates of the SOV eigenvalues through hydrodynamics?

• From the mathematical properties of the SOV we see that it is quite similar to a
Hamiltonian, also in the evolution of the eigenvalues, cf. Fig. 2.6, the spectrum
behaves similarly to the spectrum of a driven Hamiltonian. In this plot, we see a
few but not many avoided crossings, and we observe more avoided crossings in the
non-commuting case, Fig. 2.7. One natural question arises: do the eigenvalues of
the SOV show level repulsion? Is there a universal prediction for the SOV in the
context of random matrices?

• Given two operators Â and B̂ what are the states ρ̂ that saturate the SOV uncertainty
relation?

• Can we derive quantum speed limits for open systems [222, 223] from either the SOV
uncertainty relation or its operator version?

• The operator versions of the SOV uncertainty relation seem to be stronger, since they
set an inequality between operators instead of scalars, but what is the real advantage
of this? Can we find an extension of the operator correlation bound (2.28) to the
case where ∆Â or ∆B̂ are non-invertible?
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• What is the meaning of the SOV in a decoherence-free subspace in the case where
Â is not completely in or out of the DFS?

• Is it possible to find a relation to higher point OTOCs from the higher order cumu-
lants?

• The dissipative OTOC for dephasing seems to have a very different behavior than the
unitary one. Is it, however, possible to witness a Lyapunov regime in the dissipative
OTOC for small γ and large N? In principle, the saddle point is the only source of
scrambling in the LMG model. Can we then find a similar phase diagram for the
Lyapunov in the quantum case?

• What is the dynamics generated by the classical analog of energy dephasing (2.105)?

• Can van Kampen’s method be extended to the case with [Ad,As] ̸= 0?

• Can we find a quantitative theory that predicts under what conditions systems with
noisy driving will show a similar noise-induced stabilization? Can we prove that the
heuristic energetic argument is behind the stabilization?

• What is the complexity of measuring the SOV? Näıvely, one expects it to be as
complicated as doing full-state tomography. Is there a more efficient way to measure
this, such as using classical shadows [224]?

• What is the SOV of a system showing localization, either single-body or many-body?

• How does the SOV of an operator in Krylov space [5] look like?

• If the SOV and higher moments can be measured experimentally, can these provide
a more stringent test of the foundations of quantum mechanics, such as ruling out
different collapse theories [225]?

• In the post-quantum theory of gravity developed by Oppenheim [226], which proposes
a stochastic coupling between gravity and matter, in such theories, what does the
hybrid SOV with classical and quantum degrees of freedom look like?

• Different unravelings of master equations reproduce the same average evolution, us-
ing the SOV, can we differentiate between these different unravelings?

• What is the classical limit of the SOV uncertainty relation?

• Is it possible to squeeze the SOV such that two operators fulfill the SOV-uncertainty
relation but the expectation value of one of them is much larger than the other?

• The SOV, when properly re-normalized, fulfills all the properties of a quantum me-
chanical state. Can we exploit this connection and test whether non-classicality
shows up in the SOV, either in the form of Wigner negativity [227] or as non-
stabilizerness [7, 228]?

• Is it possible to compute the evolution of the SOV for random quantum circuits
[229, 230] or for systems showing noise-induced synchronization [231, 232]?

Recap of the results of Chapter 2
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• The stochastic operator variance (SOV) for a stochastic Hamiltonian Ĥ0+
√
2γξtL̂

can be expressed in terms of the adjoint Lindbladian L† simply as (2.9)

∆Â2
t = eL

†t(Â2)− eL
†t(Â) · eL†t(Â),

where L†(•) = +i[Ĥ0, •]− γ[L̂, [L̂, •]].
• The SOV is Hermitian, positive semidefinite, and bounded from above, cf. Sec.
2.2.1.

• The SOV and the quantum variance are related by (2.17), cf. Sec. 2.2.2

⟨ψ0|∆Â2
t |ψ0⟩ = Var(Ât, ψ0) +

d−1∑
n=1

| ⟨ψ0|Ât|ϕn⟩ |2.

• The SOV can be interpreted as a protocol on two replicas of a Hilbert space, see
Fig. 2.4.

• The expectation value of the SOV for two different operators fulfills the uncer-
tainty relation (2.25)

Tr(∆Â2
t ρ̂)Tr(∆B̂

2
t ρ̂) ≥

1

4

(
D2

+(Â, B̂)−D2
−(Â, B̂)

)
,

where D±(Â, B̂) = ⟨E†t ([Â, B̂]±)⟩ − ⟨[E†t (Â), E†t (B̂)]±⟩ Furthermore, we found
stronger, operator versions of this inequality, in which there is no notion of state
such as (2.27) and (2.29),

∆Â2
t ≥ ∆ÂBt(∆B̂

2
t )
−1∆ÂB

†
t ,

corrt(Â, B̂) corrt(Â, B̂)† ≤ 1̂,

where corrt(Â, B̂) = ∆Â−1t ∆ÂBt∆B̂
−1
t is an operator analog of Pearson’s cor-

relation coefficient (2.28). These inequalities were illustrated for a Stochastic
Frequency Harmonic Oscillator, cf. Sec. 2.3.2.

• We studied higher-order moments and cumulants. In particular, unitarity at
single trajectories implies (2.42)

M̂
(n)
t = E(Ânt ) = eL

†t[Ân],

we also compute formal expressions for the cumulant and moment generating
functions, cf. Sec. 2.4.

• We studied the long-time behavior of the SOV, cf. Sec. 2.5. If there is a unique
steady state of the dynamics, it simplifies to (2.50)

∆Â2
∞ =

(
Tr(ρ̂sÂ2)− Tr(ρ̂sÂ)2

)
1̂.
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In the general case, it is a superposition of the conserved quantities of the system;
we exemplified this in a system with a Decoherence Free Subspace, cf. Sec. 2.5.2.

• We found that the time derivative of the SOV is related to a dissipative OTOC
through the SOV-OTOC relation (2.70)

1

N

dTr(∆Â2
t )

dt
= −2γ

N
Tr([L̂, Ât]

2) = 2γCt.

This connection also holds in the case of a non-Hermitian jump operator and
quantum noise, cf. Sec. 2.6.2, and connects to many types of OTOCs, cf. Sec
2.6.3, such as: thermal, regularized, fidelity, and microcanonical.

• We characterize certain properties of dissipative OTOCs, cf. Sec. 2.6.4, such as
their dissipation time (2.89)

τD =
C0

2γTr([L̂, [L̂, Â]]2)
,

and found an exact expression for the dissipative OTOC in dephasing dynamics
(2.91)

Ct =
1

N

∑
m,n

(lm − ln)
2e−2γ(lm−ln)

2t|Anm|2

• We study the example of the stochastic LMG model, with Hamiltonian (2.94)

Ĥt =
(
ΩŜz − 2

N
Ŝ2
x

)
(1 +

√
2γξt). In this system, we find that the eigenvalues

of the SOV Λ(t) can scale: diffusively Λ(t) ∼ t, superdiffusively Λ(t) ∼ t3/2 or
ballistically Λ(t) ∼ t2, cf. Figs. 2.6, 2.7.

• If we know the spectrum and eigenstates of the SOV, it is possible to compute
the state minimally affected by the noise at long times |Ψ⟩ (2.95).

• In the classical or thermodynamic limit N → ∞, we study the stability of the
origin for the stochastic LMG model with Hamiltonian (2.104)

HsLMG = (1 +
√

2γξt)
(
Ω
2
P 2 +

(
Ω
2
− 1
)
Q2 + 1

4
(Q2P 2 +Q4)

)
We compute the Lyapunov exponent with three different, complementary ap-
proaches: analytically (Appr. 1)

λ(vK) =
√
2Ω− Ω2 − γ(2Ω− Ω2),

numerically (Appr. 2), and using the SOV-OTOC connection (Appr. 3). The
three approaches agree in their value for the Lyapunov exponent. The origin
becomes stable under the action of the noise in the DW phase, similarly to the
Kapitza pendulum, but under stochastic driving, while it becomes unstable in
the SW phase, cf. Fig. 2.10. We propose some heuristic energetic arguments for
why this stabilization could happen, cf. Fig. 2.11.



Chapter 3

Stochastic Non Hermitian Hamiltonians

“Ven aqúı, se rompe el telón con el ruido,
Ven aqúı, con cierta pasión por el ruido”

Barricada

Abstract of this chapter

• The basic problem that we are interested in here is to characterize the dynamics
of Stochastic Non-Hermitian Hamiltonians. In particular, we consider a Hamil-
tonian subject to noise in its anti-Hermitian part Ĥt = Ĥ0 − i(1 +

√
2γξt)L̂.

• The noise-averaged dynamics follows a nonlinear master equation beyond GKSL
form, which follows antidephasing dynamics, characterized by a dissipator with
a double anticommutator +γ{L̂, {L̂, •}}. We study the evolution of quantities
which showcase interesting phenomena arising in this new type of dynamics,
namely: the purity, the steady states, the dissipative gap, and the oscillating
frequency.

• We extensively study a physical system, namely the Dissipative Qubit, subject
to antidephasing dynamics. We find that this system has three possible phases
in its steady state: PT unbroken, PT broken, and Noise-Induced. The latter
phase was not observed or predicted before, and in it, the system converges to a
state with losses. We analyze the dynamics, the transitions between the phases,
the presence of Liouvillian Exceptional Points, and the evolution of purity, and
compare them with single trajectories of the noise. In the last section, we show
how this model can explain the residual damping rate of the PT unbroken phase
observed experimentally.

In this chapter, we introduce the general theory of Stochastic Non-Hermitian Hamiltoni-
ans. The axioms of Quantum Mechanics state that the Hamiltonian of a closed quantum
system is a Hermitian operator. Going beyond this axiom leads to Non-Hermitian Quan-
tum Mechanics, describing systems that can gain or lose energy and or particles, which
were introduced in Sec. 1.5. Furthermore, the Hamiltonian operator is typically assumed
to be known; this condition can be relaxed in the context of Stochastic Hamiltonians,
which naturally allow to include some level of uncertainty, or some fluctuations, in the
operator that generates the evolution. This provides a simple way to model certain open
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quantum systems, as introduced in Sec. 1.4, and to study the behavior beyond the noise
average, as we did in Chapt. 2. In this chapter, we consider the following situation: the
Hamiltonian is non-Hermitian, and thus gains or loses energy, but furthermore, we do
not have full knowledge of this generator, meaning that either some of its parameters are
unknown and subject to fluctuations.

3.1 Introducing Stochastic Non-Hermitian Hamiltonians

3.1.1 A story for the results of this chapter

Imagine that you are attending a magic show. The magician asks three different people,
who are named Alice, Bob, and Charlie, to come to the stage to assist him with his next
magic trick. There are two buckets on the stage, and the magician gives each person the
following instructions:

• Alice will take a hose and throw water into bucket 1 at a rate Γ. The hose throws
water at very high pressure, so that we are far from the equilibrium situation in
which water is added slowly.

• Bob will adjust the opening between the two buckets, allowing for more or less water
to pass from one to another. The amount of water that can flow from one bucket to
the other is J .

• Charlie will take water out of bucket 2 at exactly the same rate that Alice fills up
bucket 1 Γ so that the total amount of water on both buckets stays constant.

The two buckets [89, 233] are essentially analogous to a system described by a Non-
Hermitian Hamiltonian, in particular, it is a PT -symmetric Hamiltonian [234], introduced
in Sec. 1.5.1. In this particular case, the Parity transformation refers to exchanging box
1 for box 2, and the Time reversal symmetry refers to changing losses for pumps and
pumps for losses. If we perform both transformations at the same time, i.e., Charlie
pumps water into bucket 1 and Alice extracts water from bucket 2, the system remains
the same. These systems are also sometimes referred to as systems with Balanced Gain
and Loss. The special feature of these systems is that they can have real energies, meaning
that even when they are constantly gaining and losing energy, the system behaves in a
similar way to a closed system and thus shows oscillations between the two buckets. At a
particular point, we observe the so-called PT -breaking transition, at which the energies
stop being real and become imaginary, which introduces decay in the dynamics.

The magician starts the trick by showing these two possible behaviors. Alice starts pump-
ing water into bucket 1, Charlie removes water from bucket 2 at the same rate, and Bob
opens the pipe between the two buckets so that the pipe can transport more water than
what Alice is throwing. The water thrown by Alice is very fast and thus creates a wave1,

1The analogy originally considers two boxes in which some quantity, either matter or energy, is being
pumped in and out [233]. In here, I considered the case in which water is pumped, since it is a
case with which many people are familiar. This is a double-edged sword since water has dynamics in
which there is friction and viscosity, and thus the oscillations of the PT unbroken phase will be fastly



Stochastic Non Hermitian Hamiltonians 93

which can pass the pipe without deforming, fills up bucket 2, and then bounces back and
goes back to bucket 1, assuming no friction in the water or with the bucket walls, these
oscillations do not vanish. This is what we call PT symmetric, or unbroken phase, and
has oscillations which arise from the energies being real.

The magician now repeats the trick, but this time asks Bob to close the pipe between the
two buckets so that the water that flows between the buckets is smaller than the water
that Alice pumps in and the water that Charlie pumps out. This means that all the
water that passes through the pipe to bucket 2 is pumped out. The system then tends to
a state where all the water is in bucket 1, and bucket 2 is completely empty. This is what
is known as the PT -broken phase, and happens because the energies associated with the
system when Γ ≫ J are imaginary, and thus give exponential decay.

At this point, these two tricks may have surprised some of the audience, but in the last
row of the theater, there is a small group of physicists who work with non-Hermitian
Hamiltonians, who are not surprised at all. They start arguing that this is not anything
new and that has been predicted and observed in many different cases, e.g., [54, 80].

The magician then starts his third trick: He changes Alice’s and Charlie’s hoses for much
older ones, which cannot keep a constant flux of water, showing large fluctuations around
the average flux of water Γ, and tells Bob to keep the size of the pipe small compared
to the average flux of water. The water starts flowing and then, to everyone’s surprise,
including the group of physicists, the bucket 2 starts filling up. After a bit of time, the
system ends up in a state with Bucket 1 completely empty and Bucket 2 completely full.
Not only that, but this stationary situation, which we call steady state, is reached very
fast, much faster than what happened in trick 2. In the middle of everyone’s applause,
the magician clarifies that this behavior is only possible thanks to the presence of noise,
and especially the interplay between the noise and the gains and losses, and thus calls
this the Noise Induced phase of the system.

This story illustrates one of the main results, perhaps the most counterintuitive, of this
chapter. In the remainder of this chapter we will set up the stage, provide the mathe-
matical framework which models systems subject to noisy gains and losses, and study the
analogous quantum system to the two buckets of water with noisy gains and losses, the
Stochastic Dissipative Qubit, which shows three distinct phases, with similar behavior to
the three tricks performed by the magician.

3.1.2 Why studying Stochastic Non-Hermitian Hamiltonians?

We can study Stochastic and Non-Hermitian Hamiltonians, but why should we consider
them together? After much thought to this question, we have come up with several
different reasons, which we review now:

1. Consider first a pragmatic and practical point of view. Recently, it has become pos-
sible to generate purely quantum Non-Hermitian Hamiltonians in the lab. These use

suppressed. To get as close as possible to the case we are interested in, we set the water to be very
fast, so that the situation is far from equilibrium, and at least some oscillations may be seen.
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different cutting-edge platforms for their qubits, such as superconducting circuits
[80] or trapped ions [235]. However, we know that these platforms are currently very
noisy since we are in the NISQ era [175]. This is not only the case in quantum real-
izations of NH Hamiltonians; classical realizations of these dynamics, such as those
based on waveguides [54, 56], will also be subject to fluctuations in the parameters.
This means that generally, NH systems are subject to all sorts of environmental
noise, which needs to be included in the description to have a full model for the be-
havior of the system. One example of this need appears in Naghiloo et al. [80]. The
authors observed a residual decay rate in the PT symmetric phase of their model,
which is attributed to “charge and flux noise”, but which still remains unexplained
theoretically. In here, we provide the formalism to model the effect of noise, which
can even model the lack of information about certain terms of the generator, on
quantum systems subject to gains and losses.

2. From a quantum dynamicist2 From this perspective, we are looking for all sorts of
new, exotic, quantum evolution, and want to characterize their properties. In par-
ticular, the space of all possible dissipative quantum evolutions is vast and different
subfields of research prefer to stay in different corners of this space, as we already
discussed in Sec. 1.2. From this point of view we have Non-hermitian dynamics on
the one hand, showing that dissipative phenomena may be tamed and used to our
advantage in building new possible evolutions, and stochastic Hamiltonians on the
other, giving rise to: (i) a subclass of Lindblad master equations at the average level
and (ii) noisy quantum dynamics at single trajectory level. The evolution generated
by considering these two approaches together gives a new type of dynamics, which we
here name antidephasing, which constitutes a new kind of master equation, followed
by certain quantum systems.

3. A motivation more in line with some other chapters of this thesis comes from the
point of view of Random Matrix Theory, as already introduced in 1.6.1. In this
context, one typically considers for the model a full Random Matrix, with many ele-
ments sampled from a probability distribution. The number of real random variables
in this model will be N for the Poisson ensemble, N(N + 1)/2 for GOE, and N2

for GUE, 2N2 for Ginibre. Realistic physical models used in the study of Quantum
Chaos, such as the disordered XXZ chain, see Chap. 4, have a much smaller number
of random variables, since it typically is L ∼ log(N), a random potential for each
site, and the dimension of the Hilbert space would be N = 2L. Stochastic Non-
Hermitian Hamiltonians can help bridge this gap, going from full random matrices
to matrices in which only one of the elements is fluctuating. Indeed, the spectra of
these matrices show very interesting behavior since it does not follow the well-known
analytical results for full random matrices, such as the circular or semicircle law.

4. Lastly, one of the main limitations of classical noise Stochastic Hermitian Hamilto-
nians is that from them it is not possible to derive the most general GKSL master
equation. Instead, the equations you can derive have always the same decay rate,
i.e., the decay channel γL̂D[L̂] and the decay channel γL̂†D[L̂†] with the conjugate

2Taking the term dynamicist from Strogatz [236].
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jump operator will always have the same decay rate γL̂ = γL̂† . Therefore, with a
classical noise stochastic hermitian Hamiltonian, one can just describe dephasing dy-
namics. One of the main problems of this approach is that there is a big interest in
having a master equation that has a thermal steady state ρ̂β = e−βĤ/Tr(e−βĤ). The
condition that a master equation has to fulfill to show this interesting steady state is
named Kubo-Martin-Schwinger or quantum detailed balance, which imposes a sym-
metry on the rates of the Davies generator3 γαβ(−ω) = e−βωγβα(−ω). This condition
cannot be fulfilled for finite temperature β ̸= 0 if γL̂ = γL̂† and thus classical noise
Hermitian Hamiltonians do not have finite temperature steady states.

This is one of the motivations typically put forward for introducing quantum noise
[203], in which ξt is promoted to an operator ξ̂t such that [ξ̂t, ξ̂

†
t ] ̸= 0. This allows

us to find the most general GKSL master equation. However, this increases the
complexity of our model, losing the nice, simple properties of classical noise stochastic
Hamiltonians. There is another way to go around it, similar to what we do here. If
we give up the hermiticity condition of the dynamics and consider generic classical
noise stochastic non-Hermitian Hamiltonians, then we can find the most general
GKSL master equation, as was recognized by Burgarth et al. [237, 238]. This can
considerably reduce the complexity of simulating a generic Lindblad master equation,
since now, instead of dealing with superoperators of size N2×N2, with 2N4 degrees
of freedom, we can simulate a general non-Hermitian Hamiltonian of size N × N
with Nav noise realizations, which gives 2N2Nav degrees of freedom, giving a better
scaling.

In this chapter, we study the possible dynamics that a stochastic and non-hermitian
Hamiltonian can generate, thus building a path between the two types of evolution. We
will find that the dynamics described by such a system follows a master equation beyond
GKSL form, which we call antidephasing master equation. We first consider the case in
which the noise affects only the anti-Hermitian part of the Hamiltonian, which is due to
the anti-Hermitian part characterizing dissipation and non-unitary behavior, so that we
expect the most interesting behavior to manifest in this case. For simplicity and analytical
tractability of the formalism, we will also consider gaussian, white and classical noise.

3The Davies generator is written in the energy eigenbasis as D[•] =∑
ω

∑
α,β γαβ(ω)

(
Âβ(ω) • Â†α(ω)− 1

2{Â†α(ω)Âβ(ω), •}
)

where the jump operators are eigenop-

erators of the unitary Liouvillian [Ĥ, Âα(ω)] = −ωÂα(ω), [Ĥ, Â†α(ω)] = +ωÂ†α(ω) which additionally
fulfill Â†α(ω) = Âα(−ω) [17, 18].
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3.2 Dynamics under general anti-hermitian fluctuations

3.2.1 The unnormalized Stochastic Master Equation

The most general Stochastic Non-Hermitian Hamiltonian with classical Gaussian white
noise on its anti-hermitian part reads

Ĥt = Ĥr − iĤi − i

Nc∑
n=1

√
2γnL̂nξ

(n)
t , (3.1)

whereNc represents the number of noise channels, {L̂n}Nc
n=1 represents the set of Hermitian

L̂†n = L̂n and positive semi-definite L̂n ≥ 0 jump operators, γn is the noise-strength

and ξ
(n)
t are the different classical real white noises. These are characterized by zero

mean E(ξ(n)t ) = 0 and with correlations given in the most general form by E(ξ(m)
t ξ

(n)
t′ ) =

δ(t−t′)Mmn, whereMmn is a Nc×Nc matrix that defines the correlations. In the simplest
case, it will be the identity Mmn = δmn describing independent sources of noise. Even in
the case in which the noises are correlated, they can always be mapped to independent
noise channels through the transformation described by Jacobs (cf. Sec. 3.8 [40]).

We now want to find an equation that allows us to describe the evolution of the state of
the system under one particular realization of the Stochastic Non-Hermitian Hamiltonian,
i.e., the Stochastic Master Equation (SME). To derive the SME associated with this
Hamiltonian, we follow the simple approach described in Sec. 1.4.4, and shift the focus
from the Hamiltonian to its associated propagator. We first express the propagator over
a short time dt as

Ûdt = exp

(
−iĤrdt− Ĥidt−

Nc∑
n=1

√
2γnL̂ndWt

(n)

)
, (3.2)

where dWt
(n) are Wiener processes that obey Itō’s rules, cf. Sec. 1.4.2. The evolution

that this propagator generates for density matrices is given by ϱ̃t+dt = Ûdtϱ̃tÛ
†
dt. After

expanding the propagator according to Itō’s rules, we find the SME associated with the
Stochastic Non-Hermitian Hamiltonian (3.1) to be

dϱ̃t =

(
−i[Ĥr, ϱ̃t]− {Ĥi, ϱ̃t}+

Nc∑
m,n=1

√
γmγnMmn{L̂m, {L̂n, ϱ̃t}}

)
dt

−
Nc∑
n=1

√
2γn{L̂n, ϱ̃t}dWt

(n) (3.3)

= L̃ad
Ĥr,Ĥi,L̂

[ϱ̃t]dt+
Nc∑
n=1

M̃L̂n
[ϱ̃t]dW

(n)
t
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This evolution involves a unitary and deterministic evolution with Ĥr, a nonunitary de-
terministic evolution with Ĥi, a dissipative term involving a double anticommutator with
two jump operators, L̂m and L̂n, and lastly a stochastic, non-unitary evolution with the
jump operator L̂n. Here a comment on the notation is needed; we use the tilde •̃ to denote
the objects that are either: not normalized, such as the density matrices ϱ̃, ρ̃, or do not
generate a trace-preserving evolution, such as the superoperators L̃, M̃. Furthermore, we
use ϱ̂ to denote that the density matrix depends on the single realization of the noise, in
contrast to ρ̂, which is averaged over the noise.

We will refer to this equation as the anti-dephasing (AD) SME since the dissipator involves
dephasing with a double anticommutator, instead of a double commutator as is typically
the case with dephasing. We have introduced the antidephasing Liouvillian

L̃ad
Ĥr,Ĥi,L̂

[•] := −i[Ĥr, •]− {Ĥi, •}+
Nc∑

m,n=1

√
γmγnMmn{L̂m, {L̂n, •}}, (3.4)

characterizing the drift term of the SME, where L̂ ≡ (
√
γ1L̂1, . . . ,

√
γNcL̂Nc) represents

a vector of the jump operators, weighted by their dissipation rates. Furthermore, the
measurement superoperators

M̃L̂n
[•] := −

√
2γn{L̂n, •} (3.5)

characterize the stochastic term associated to noise dWt
(n) in the SME.

In the case that the noises are uncorrelated Mmn = δmn the antidephasing Liouvillian
simplifies to

L̃ad
Ĥr,Ĥi,L̂

[•] := −i[Ĥr, •]− {Ĥi, •}+
Nc∑
n=1

γn{L̂n, {L̂n, •}}. (3.6)

This form can always be achieved, in a similar way to standard OQS theory derivations
of the diagonal form of the Lindblad equation [17]. In particular, the strategy is to diag-
onalize the matrix (Mmn), and rotate the jump operators

√
γ′mL̂

′
m =

∑
n umn

√
γnL̂n into

the eigenbasis, where (umn) is a unitary matrix. The matrix (Mmn) has to be symmetric
Mmn = Mnm because of Onsager reciprocity [239], if we impose the extra condition that
its elements are realMmn ∈ R, the matrix (Mmn) is diagonalizable and thus this argument
is justified.

3.2.2 Imposing Trace Preservation

The dynamics generated by (3.3) is, in general, not Trace Preserving (TP). This means
that the solution of the SME, ϱ̃t, is not a proper density matrix since its populations do not
sum to identity Tr(ϱ̃t) ̸= 1. Physical dynamics must be trace preserving; for this reason,
we will transform the dynamics to some associated nonlinear evolution, which is TP, in
the same way as Brody and Graefe [92] did for standard non-Hermitian Hamiltonians.
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However, since we include noise in the evolution, there are two possible approaches that
can be followed to arrive at physical TP dynamics:

• We can impose that all trajectories, i.e., all possible realizations of the noise, show
physical dynamics which preserve the trace of the density matrix. This is, in princi-
ple, the approach that will best describe the evolution of a Stochastic Non-Hermitian
Hamiltonian in the lab. If our focus is to find an equation for the noise-averaged
density matrix, this approach has a great disadvantage. A non TP evolution, e.g.
∂tρ̃ = L̃[ρ̃] is associated to a nonlinear master equation ∂tρ̂ = L̃[ρ̂]− Tr(L̃[ρ̂])ρ̂ such
that the trace of ρ̂ is preserved [92]. If we now apply this approach to single trajec-
tories and then take an expectation value over the noise, the evolution of the first
moment E(ϱ̂t) depends on the second moment through E(Tr(L̃[ϱ̂t])ϱ̂t). This creates
a hierarchy of equations in which every moment E(ϱ̂nt ) depends on higher order mo-
ments E(ϱ̂mt ), with m > n. This hierarchy is not closed and, thus, very difficult to
deal with. For this reason, we will study the behavior of single trajectories, solving
directly the full SME, and only then averaging the results.

• The second possibility is to first take the average over the noise and then impose trace
preservation. Even if this does not generate normalized single-trajectory dynamics,
it allows us to find closed equations for the noise-averaged density matrix. We will
follow this approach here and in Sec. 3.4.4 we will provide a justification for this
choice, and a careful study of its range of validity.

We follow the latter approach; for this, we first take the noise-average of the SME, trans-
forming it to a simpler ODE, which we will call the antidephasing master equation. We
thus find that

∂tρ̃t = L̃ad
Ĥr,Ĥi,L̂

[ρ̃t], (3.7)

= −i[Ĥr, ρ̃t]− {Ĥi, ρ̃t}+
Nc∑
n=1

γn{L̂n, {L̂n, ρ̃t}},

where we use the diagonal representation of the channels, since, as argued before, such an
expression can always be found, even for correlated noise. Note that the noise-averaged
density matrix ρ̃t = E(ϱ̃t) is still not unit trace. To solve this issue, we can renormalize
the noise-averaged DM at all times as ρ̂t =

ρ̃t
Tr(ρ̃t)

. Since this quantity is not stochastic,
we can apply the standard rules of calculus to derive an auxiliary equation for ρ̂t

∂tρ̂t =
˙̃ρt

Tr(ρ̃t)
− ρ̃tTr( ˙̃ρt)

Tr(ρ̃t)2
, (3.8)

= L̃ad
Ĥr,Ĥi,L̂

[ρ̂t]− ρ̂tTr(L̃ad
Ĥr,Ĥi,L̂

[ρ̂t]).

Thus, to every non-TP linear evolution, we can associate a non-linear evolution, in the
density matrix, such that the evolution is TP. Note that the second term involves the
product of two density matrices. In particular, the most general antidephasing nonlinear
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master equation reads

∂tρ̂ =− i[Ĥr, ρ̂t]− {Ĥi, ρ̂t}+
Nc∑
n=1

γn{L̂n, {L̂n, ρ̂t}}

− ρ̂t

(
−2Tr(Ĥiρ̂t) + 4

Nc∑
n=1

γnTr(L̂
2
nρ̂t)

)
. (3.9)

When dealing with non-TP generators, the nonlinear master equation provides a phys-
ical TP evolution. There are, however, other approaches, such as the Quantum Doob
Transform [240–242], which constructs a physical CPTP generator associated with the
non-trace-preserving one. To the best of our knowledge, it remains an open question
whether these two strategies generate the same or markedly different dynamics.

On the Positivity of the antidephasing channel

The unnormalized infinitesimal evolution generated by the antidephasing Liouvillian L̃ad
Ĥr,Ĥi,L̂

can be written in terms of non-TP linear map

ρ̃t+dt = Ẽdt[ρ̃t] = eL̃dt[ρ̃t] =
Nc∑
j=0

K̂j(dt)ρ̃tK̂
†
j (dt), (3.10)

where the operators read [243, 244]

K̂0(dt) = 1̂− iĤrdt− Ĥidt+
Nc∑
n=1

γnL̂
2
n, (3.11)

K̂n(dt) =
√

2γndtL̂n, n ∈ [1, 2, . . . , Nc]. (3.12)

This map generates the evolution over an infinitesimal time dt, and thus for longer times
a different set of Kraus gives better results [243].

Since the map admits this Kraus decomposition and the rates are positive γn ≥ 0, it is
completely positive, but not necessarily trace preserving since

Nc∑
j=0

K̂†j (dt)K̂j(dt) = 1̂− 2Ĥidt+ 4
Nc∑
n=1

γnL̂
2
ndt+O(dt2), (3.13)

which is in general not equal to the identity and thus the map is in general not TP.

The evolution of the normalized density matrix then follows as

ρ̂t+dt =

∑Nc

j=0 K̂j(dt)ρ̃tK̂
†
j (dt)

Tr(
∑Nc

i=0 K̂
†
i (dt)K̂i(dt)ρ̃t)

. (3.14)
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Now we see that the numerator is a completely positive linear map, and the denominator
is a number, which at first order in time will always be positive since the terms that
change sign are first order in dt

Tr

(
Nc∑
j=0

K̂†j (dt)K̂j(dt)ρ̃t

)
= Tr(ρ̃t)− 2Tr(Ĥiρ̃t)dt+ 4

Nc∑
n=1

γnTr(L̂
2
nρ̃t)dt > 0, (3.15)

as long as the averages Tr(Ĥiρ̃t),Tr(L̂
2
nρ̃t) are finite, which is guaranteed in the finite

dimensional case, and in the infinite dimensional case can be achieved by taking these
operators to be bounded ĤI , L̂n ∈ B(H ).

Therefore, we can claim the nonlinear antidephasing map is positive since it is the ratio
between a completely positive linear map and a positive scalar, which depends on the state
ρ̃t. Determining whether the antidephasing channel is also completely positive requires an
extension of complete positivity to nonlinear maps and thus is non-trivial, although Geller
[245] has claimed that nonlinear maps that are “nonlinear in normalization only”, such
as the antidephasing one, are only positive trace-preserving (PTP) and not completely
positive.

3.2.3 Antidephasing master equation in Stratonovich sense

The formalism of stochastic calculus has two different inequivalent approaches, which
were properly introduced in Sec. 1.4.2. Throughout this chapter, we will consider only
Itō calculus for convenience in the analytical results. However, the same results would
follow for the noise average dynamics if we considered Stratonovich calculus, as done in
[35, 37]. Here, for completeness, we provide a derivation of the same master equation in
the Stratonovich convention. The antidephasing SME in Stratonovich reads

˙̃ϱt = −i[Ĥr, ϱ̃t]− {Ĥi, ϱ̃t} −
Nc∑
n=1

√
2γn{L̂n, ϱ̃t} ◦ ξ(n)t , (3.16)

where ◦ denotes that the product is to be understood in the Stratonovich sense, and for
notational convenience, we use ξt instead of dW t.

In the Stratonovich convention, the variable is not stochastically independent of the noise,
i.e., E(ϱ̃t ◦ ξ(n)t ) ̸= E(ϱ̃t)E(ξ(n)t ), instead the average of their product is given by Novikov’s
theorem [41], also known as Furutsu-Novikov formula

E(ϱ̃t ◦ ξ(n)t ) =
Nc∑
m=1

∫ t

0

dτE(ξ(n)t ξ(m)
τ )E

(
δϱ̃t

δξ
(m)
τ

)
. (3.17)

The functional derivative [35, 37], reads

δϱ̃t

δξ
(m)
τ

= −
√
2γmV̂t,τ{L̂m, ϱ̃τ}V̂ †t,τ , (3.18)
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where the propagator with the stochastic Hamiltonian reads V̂t,τ = T e−i
∫ t
τ dτ ′Ĥτ ′ , where

T is the time ordering operator. Now we substitute the properties of white noise with
uncorrelated channels E(ξ(n)t ξ

(m)
τ ) = δmn δ(t − τ) and the identity V̂t,t = 1̂, and we

find that the expression for the average simplifies to

E(ϱ̃t ◦ ξ(n)t ) = −1

2

√
2γn{L̂n, ϱ̃t}, (3.19)

where we used that in Stratonovich convention the integral of Dirac’s delta in one of the
integrand limits obeys

∫ t
0
dτf(τ)δ(τ − t) = 1

2
f(t), cf. Sec. 1.4.4. This gives the expression

for the noise-averaged unnormalized density matrix in the Stratonovich sense to be the
same antidephasing master equation as in Itō

˙̃ρt = −i[Ĥr, ρ̃t]− {Ĥi, ρ̃t}+
Nc∑
n=1

γn{L̂n, {L̂n, ρ̃t}}. (3.20)

3.2.4 Gauge transformations of the antidephasing master equation

We now want to characterize the Gauge transformations of the antidephasing master
equation, since, as is well-known in OQS theory [17], the Lindbladian does not uniquely
determine the Hamiltonian and jump operators in the GKSL equation. In other words,
we want to find the ways in which we can transform Ĥr, Ĥi, L̂ such that the master
equation remains invariant. The gauge transformations are:

• Shifting the hermitian part of the hamiltonian as Ĥr → Ĥr + E0 1̂, i.e., choosing
a different zero of energy, does of course leave the master equation invariant since
[1̂, ρ̂] = 0∀ ρ̂.
Perhaps less trivial is the realization that one can shift the zero of the antihermitian
part of the Hamiltonian Ĥi → Ĥi+a1̂. Note that this transformation does not leave
the Liouvillian L̃ad

Ĥr,Ĥi,L̂
[•] invariant since

L̃ad
Ĥr,Ĥi+a1̂,L̂

[•] = L̃ad
Ĥr,Ĥi,L̂

[•]− 2a • .

However, the full nonlinear master equation is invariant, since the extra term cancels
out with the term coming from the nonlinear renormalization. Both of these condi-
tions show that a complex zero of energy does not affect the renormalized dynamics
of the NHSH master equation (3.9).

Note that this invariance is also present if we renormalized the single trajectories, as
will be done in Sec. 3.4, because the previous transformation of the Liouvillian does
not depend on what matrix it acts on, in particular, it could be ϱ̂, ϱ̃, ρ̃ or ρ̂, and as
long as the dynamics is renormalized, i.e., considering either ρ̂ or ϱ̂, the extra term
will be cancelled.
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• The jump operators do not uniquely determine the Liouvillian. In particular, con-
sider an orthogonal transformation of the jump operators as√

γ′nL̂
′
n =

∑
m

Onm
√
γmL̂m, (3.21)

where O is an orthogonal matrix4 obeying O⊺O = OO⊺ = 1, or equivalently ex-
pressed in components as

∑
k(O

⊺)nkOkm =
∑

kOknOkm = δnm. The transformed
Liouvillian then reads

L̃ad
Ĥr,Ĥi,OL̂

[•] = −i[Ĥr, •]− {Ĥi, •}+
∑
m,l=1

√
γmγl

δml︷ ︸︸ ︷∑
n

OnmOnl{L̂m, {L̂l, •}}

= L̃ad
Ĥr,Ĥi,L̂

[•]. (3.22)

Therefore, the Liouvillian is invariant under orthogonal transformations of the jump
operators. Note that for a general GKSL equation, the gauge freedom is unitary
transformations of the jump operators [17], which reduces to orthogonal transfor-
mations if we impose hermiticity of the jump operators, i.e., restrict to dephasing
processes.

Since the Liouvillian is invariant under the transformation, this is a symmetry of the
antidephasing SME, which will be inherited by any renormalization strategy.

• Let us now consider a shift of the jump operators as L̂′n = L̂n+ bn1̂, where bn ∈ R to
respect their hermiticity. This is called a inhomogeneous transformation [17]. The
Liouvillian transforms to

L̃ad
Ĥr,Ĥi,L̂+b1̂

[•] = −i[Ĥr, •]−
{
Ĥi − 4

Nc∑
n=1

γnbnL̂n, •
}

+
Nc∑
n=1

γn{L̂n, {L̂n, •}}.

Therefore, if the anti-hermitian Hamiltonian is shifted so as to cancel the extra terms{
L̂n → L̂n + bn1̂,

Ĥi → Ĥi + 4
∑Nc

n=1 γnbnL̂n,
(3.23)

the Liouvillian remains invariant. Defining b = (
√
γ1b1, . . . ,

√
γNcbNc) for notational

convenience, we find that the following transformation does not change the Liouvil-
lian

L̃ad
Ĥr,Ĥi+4b·L̂,L̂+b1̂

[•] = L̃ad
Ĥr,Ĥi,L̂

[•]. (3.24)

4O is a transformation of the vector of jump operators into the jump operators, i.e., O : L̂ ∈ L (H )Nc 7→
L (H )Nc where L̂

′
= OL̂. Therefore O ∈ MNc×Nc . Since it is not an operator on the Hilbert space,

but rather a transformation over jump operators, we do not use the standard notation for quantum
operators •̂.
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This invariance, as in the standard GKSL case, always allows to choose traceless
jump operators. Again, since the Liouvillian is invariant under the transformation,
both the unnormalized antidephasing master equation and its normalized nonlinear
version have this gauge invariance.

We have seen that there are two possible classes of transformations: those that leave the
Liouvillian invariant, like the orthogonal transformation of jumps, or the inhomogeneous
transformation, and those that only leave the nonlinear master equation invariant, such
as the shift of the anti-hermitian Hamiltonian.

In principle one could consider some more transformations of the master equation which
would only be a symmetry for certain possible dynamics, i.e., Ĥr → Ĥr + Âρ or Ĥi →
Ĥi+B̂ρ with the extra condition that the shift operator always commutes [Âρ, ρ̂t] = 0 ∀t or
anticommutes {B̂ρ, ρ̂t} = 0 ∀t with the density matrix. But these transformations would
have to be fine-tuned to respect the full dynamics, and thus we do not consider them
here.

3.2.5 Evolution of the purity

One of the key differences between Non-Hermitian Hamiltonians and GKSL dynamics is
that while the latter generally decoheres most states and makes them mixed, the former
keeps pure states pure while only changing the purity of mixed states. In here, we consider
the dynamics generated by (3.9) and find the differential equation for the evolution of the
purity of any state Pt = Tr(ρ̂2t )

dPt
dt

= 2Tr(L̃ad
Ĥr,Ĥi,L̂

[ρ̂t]ρ̂t)− 2Tr(L̃ad
Ĥr,Ĥi,L̂

[ρ̂t])Pt, (3.25)

= 4Tr
(
Ĥi(ρ̂tPt − ρ̂2t )

)
+ 4

Nc∑
n=1

γn

(
Tr(L̂2

nρ̂
2
t ) + Tr(L̂nρ̂tL̂nρ̂t)− 2Tr(L̂2

nρ̂t)Pt

)
.

Interestingly, this expression contains out-of-time-order terms reminiscent of OTOC’s [1]
and generalizes the known evolution for NH Hamiltonians [246]. This expression is related
to the decoherence time 1

τP
= dPt

dt

∣∣
t=0

[247], but generalizes the concept by describing the
evolution of the purity for any general state ρ̂t. If the state ρ̂t is pure at any given time
t, ρ̂2t = ρ̂t = |ψt⟩ ⟨ψt|, i.e., Pt = 1, the first term vanishes, as expected because pure
NH evolution keeps a pure state pure, and the contribution from the second term greatly
simplifies to

dPt
dt

= −4
Nc∑
n=1

(
⟨ψt|L̂2

n|ψt⟩ − ⟨ψt|L̂n|ψt⟩
2
)
, (3.26)

which means that the change in purity is given by the sum of the variances of the jump
operators over the particular state. This result is identical to the decoherence time of
pure states in a dephasing channel and quantum Brownian motion [8, 17, 248].
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Note that, since a pure state cannot get more pure, this expression in non-positive dPt

dt
≤ 0;

furthermore, each of the terms in the sum is non-positive, due to the properties of the
variance. The equality, dPt

dt
= 0, is found when |ψt⟩ is an eigenstate to all the jump opera-

tors {L̂n}Nc
n=1. But, under what conditions can Nc matrices share a common eigenvector?

A sufficient condition is that they all pairwise commute; however, this is too strong a
requirement if we are interested in a single common eigenvector. For two matrices, this
is answered by the Shemesh criterion [249], which is generalized to N matrices by Jami-
olkowski and Pastuszak [250]. Beyond pure states and for a single noise channel, there
are many mixed states whose purity will be preserved; in Sections 3.3.1 and 3.3.3, we
will provide a full characterization of all the mixed states fulfilling this property for a
particular physical system.

3.2.6 Long time dynamics: Steady states

The solution of the master equation (3.9) can be formally written in terms of the antide-
phasing Liouvillian L̃ simply as

ρ̂t =
eL̃t[ρ̂0]

Tr(eL̃t[ρ̂0])
. (3.27)

Now, assuming that the antidephasing Liouvillian can be diagonalized, we can write the
right and left eigendecomposition

L̃[ρ̂ν ] = λ̃ν ρ̂ν , L̃†[ρ̂(l)ν ] = λ̃∗ν ρ̂
(l)
ν , (3.28)

where, importantly, the eigenmatrices are biorthogonal [90]

(ρ̂(l)µ , ρ̂ν) ∝ δµν . (3.29)

Furthermore, we introduce the following renormalization of the eigenbasis asσ̂ν =
ρ̂ν

Tr(ρ̂ν)
if Tr(ρ̂ν) ̸= 0,

σ̂ν = ρ̂ν if Tr(ρ̂ν) = 0.
(3.30)

Furthermore, we order the basis in a way such that we have Np physical eigenstates, i.e.,
σ̂µ ≥ 0 and Tr(σ̂µ) = 1 for 1 ≤ µ ≤ Np. Then, we have Nt −Np traceful but unphysical
states, i.e., σ̂µ ≱ 0 and Tr(σ̂µ) = 1 for Np < µ ≤ Nt. Lastly, we have N2 −NP traceless
states, i.e., Tr(σ̂µ) = 0 for µ > Nt. Furthermore, inside these three sets of indices, the
eigenvectors are ordered by decreasing eigenvalue.

The solution can simply be written in this basis as

ρ̂t =

∑N2

µ=1 cµe
λ̃µtσ̂µ∑Nt

κ=1 cκe
λ̃κt

, (3.31)
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where the coefficients are given by cµ =
(σ̂

(l)
µ ,ρ̂0)

(σ̂
(l)
µ ,σ̂µ)

=
Tr(σ̂

(l)†
µ ρ̂0)

Tr(σ̂
(l)†
µ σ̂µ)

. Note that there is a key

difference between the dynamics generated by these dynamics and by solving the GKSL
equation. In the standard GKSL master equation, all eigenvectors are traceless, except
for those with λν = 0, which are the steady states. In the dynamics described by (3.37),
all the traceful states, no matter if they are unphysical, contribute to the renormalization.
This changes the possible dynamics described by the evolution, in particular, as we shall
see next, it can lead to an oscillating trace, like in the PT symmetric phase of Dissipative
Qubit [80].

Let us introduce the sets M1 as the set of indices with the largest real part over which
the initial state has support, i.e.,

M1 := {m such that Re(λ̃µ) = max
κ

Re(λ̃κ), cµ ̸= 0},

as well as the same set but with the extra condition that the eigenstate is traceful

M(t)
1 := {m such that Re(λ̃µ) = max

κ
Re(λ̃κ), cµ ̸= 0, Tr(σ̂µ) = 1}.

Also the set of the second largest real part

M2 := {m such that Re(λ̃µ) = max
κ/∈M1

Re(λ̃κ), cµ ̸= 0}.

The dissipative gap is defined as the difference in the real part of the eigenspaces with the
two largest real parts

∆ := Re(λ̃M1)− Re(λ̃M2) > 0

and the oscillating eigenfrequencies are defined as the imaginary part of any eigenvalue

ων = Im(λν).

Note that all of the notions, including the sets Mn, depend on the initial state of the
system since they are subject to the condition cµ ̸= 0.

Assuming a single eigenvalue with the largest real part, the long-time dynamics follows
from expanding the trace as

∑Nt

κ=1 cκe
λ̃κt ∼ c0e

λ̃0t and gives the evolution

ρ̂t
t→∞∼ σ̂0+e

−∆t
∑
ν∈M2

cνe
iωνt

c0
σ̂ν . (3.32)

The state σ̂0 is the stable steady state; we provide a proof for its stability in the next
section.

In the case where there are several states in M1 a similar approach applies changing the
expansion of the trace of the state to

Nt∑
κ=1

cκe
λ̃κt ∼ eRe(λ̃0)t

∑
κ∈M(t)

1

cκe
iωκt,
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where interestingly we find that the trace can oscillate, given that ωµ ̸= 0 for some

µ ∈ M(t)
1 . This yields a stable steady state

ρ̂t
t→∞∼

∑
ν∈M1

cνe
iωνt∑

µ∈M(t)
1
cµeiωµt

σ̂ν+e
−∆t

∑
ν∈M2

cνe
iωνt∑

µ∈M(t)
1
cµeiωµt

σ̂ν . (3.33)

From this expression, it is apparent that the steady state can show oscillations and even
an oscillating trace, given that the number of states in M1 is larger than one, and they
have nonzero oscillating eigenfrequencies. This is equivalent to the behavior displayed in
the standard Lindblad case by the oscillating coherences [198], with the difference that
the oscillating coherences have no effect on the trace of the state, and thus only affect the
off-diagonals of the density matrix, while the oscillating trace affects the whole DM.

The dissipative gap ∆ characterizes the decay towards the steady state eigenspace of
the density matrix. One possible situation is that if we measure a certain expectation
value in the lab ⟨χ|ρ̂t|χ⟩ the expectation value of all the eigenstates in the second largest
eigenspace M2 vanishes ⟨χ|σ̂ν |χ⟩ = 0. If this is the case, the dynamics of that expectation
value will seem to have a faster convergence to the steady state than the one predicted
by ∆, with a larger χ-dependent effective dissipative gap given by

∆
(χ)
eff = Re(λM1)− Re(λMn), where n = min

m
{m| ⟨χ|σν |χ⟩ ≠ 0, σν ∈ Mm} . (3.34)

By construction, this effective dissipative gap is always larger or equal to the dissipative
gap ∆

(χ)
eff ≥ ∆ and thus the dissipative gap in this case can still serve as the slowest

possible speed of convergence to the steady state.

Dynamics at a Liouvillian Exceptional Point

So far, we have considered the simple case in which the Liouvillian was diagonalizable. If
this is not the case, we necessarily are at a Liouvillian Exceptional Point (LEP) [251, 252].
In this case, the Liouvillian can be brought to a Jordan block form in which the exponential
reads (see eq. (27) in [57])

eL̃t =
J∑
j=1

eλ̃jt

Pj +
mg

j∑
α=1

njα−1∑
p=1

tp

p!
N p
jα

 , (3.35)

where mg
j is the geometric multiplicity of the eigenvalue, i.e., how many blocks are there

with the λ̃j eigenvalue, njα is the size of each of those blocks, Pj is a rank njα projector
and Njα is a nilpotent matrix. Note that we use calligraphic letters because these are to
be understood as matrices only in the vectorized space.

For the sake of simplicity, we consider first the case in which we have a single LEP of order
2. In this case the matrix is block diagonal with all blocks of size one except for one of size
2, and let us denote: λlep the eigenvalue associated to the LEP and let MLEP the set of
indices whose eigenvectors are in the LEP. This means that the equation (L̃−λlep)σ̂lep = 0
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only admits one solution σ̂
(1)
lep. However, one can introduce a generalized eigenmatrix σ̂

(2)
lep

[251] defined as (L̃−λlep)σ̂
(2)
lep = σ̂

(1)
lep, which can be reexpressed in matrix notation in the

Jordan block as (
λlep 1

0 λlep

)(
0

1

)
=

(
1

λlep

)
, (3.36)

and clearly shows the role of the generalized eigenmatrix as an eigenstate of the diagonal
part of the Liouvillian.

In this case, the dynamics reads

ρ̂t =

∑N2

µ=1/∈MLEP2
cµe

λ̃µtσ̂µ + eλ̃lept(c
(1)
lepσ̂

(1)
lep + tc

(2)
lepσ̂

(2)
lep)∑Nt

κ=1/∈MLEP2
cκeλ̃κt + eλ̃lept(c

(1)
lepTr(σ̂

(1)
lep) + tc

(2)
lepTr(σ̂

(2)
lep))

, (3.37)

where the coefficients are given by the inner product with the left generalized eigenmatrices

c
(n)
lep = (σ̂

(L,1)†
lep ,ρ̂0)

(σ̂
(L,n)†
lep ,σ̂

(n)
lep )

. We see that the effect of the LEP in the dynamics is to introduce a

polynomial contribution multiplying the exponential. In the case of a general order n
LEP, the evolution of the unnormalized DM is given by

ρ̃t =
N2∑

µ=1/∈MLEPn

cµe
λ̃µtσ̂µ + eλ̃lept

n−1∑
k=0

c
(k)
lep

tk

k!
σ̂
(k)
lep, (3.38)

so we see that the evolution acquires a polynomial of degree n− 1.

If the LEP is not in the eigenspace with the largest real part, it will have an effect
on the dynamics, but not in the steady state. This can be seen using the fact that
the exponential grows faster at large t than any polynomial, i.e., limt→∞ e

bt − tneat =
limt→∞ e

at(e(b−a)t− tn) > 0 if b > a; no polynomial can make the exponential with smaller
exponent win at long times over the exponential with larger exponent. The example in
which this will be most apparent is in the case where the LEP lives in the eigenspace with
the second largest real part; the dynamics will not be characterized only by the dissipative
gap ∆ and the oscillation frequencies ων in that eigenspace, but there will also be a
polynomial contribution affecting the convergence to the steady state. The convergence
to the steady state, considering only the highest order contribution, is changed to

t ∼ n− 1

∆
w

(
∆e−

1
n−1

n− 1
Γ(n)

1
n−1

)
, (3.39)

where w(z) is the principal branch of the Lambert or product logarithmic function. In-
terestingly, the polynomial causes the contribution from the eigenspace with the second
largest real part of the eigenvalue to be small for short times, but that gives a revival at
larger times before it finally dies out.
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The steady states can be affected in the case in which the LEP lives in the eigenspace with
the largest real part, and the eigenvectors that coalesce are physical and traceful. In this
case we will observe a convergence at times t ∼ ∆−1 to the eigenspace with largest real
part of the eigenvalues, but the dynamics in this eigenspace will not remain constant or
oscillatory, it will show a power law convergence to one of the eigenstates of the diagonal
part of the Liouvillian. In particular, after the inverse dissipative gap t ≳ ∆−1, the only
contribution to the dynamics will come from the eigenspace with the largest real part. If
a LEP is present and the eigenmatrices of the LEP are traceful, the term with the largest
trace at long times will be tn−1

(n−1)!c
(k−1)
lep Tr(σ̂

(n−1)
lep ). This will cause a power law convergence

to ρt → σ̂
(n−1)
lep where the contributions from other states in the LEP σ̂k, k < n − 1 are

suppresed by a power law of the form ∝ t−(n−1−k).

Properties of the steady states

Lemma 1. Let the Liouvillian L̃ be diagonalizable. All steady states of the nonlinear
Master Equation are eigenvectors of the non-Trace Preserving Liouvillian L̃[•].

Proof. To prove this, we proceed by contradiction. Assume that there exists a density
matrix ς̂ such that:

(i) It is a steady state of the nonlinear Master equation ∂tς̂ = L̃[ς̂]− ς̂Tr(L̃[ς̂]) = 0,

(ii) Is not an eigenstate of the nTPL L̃[ς̂] ̸= λς̂

Expressing such operator in the operator eigenbasis gives ς̂ =
∑

n cnσ̂n, where the unit

trace condition imposes
∑Np

n=1 cn = 1. The (i) condition can be stated as

∂tς̂ =
N2∑
n=1

cn

(
λn −

Np∑
m=1

cmλm

)
σ̂n = 0. (3.40)

Since the nTPL is diagonalizable, the eigenbasis elements are linearly independent and
thus the (i) condition is equivalent to

cnλn = cn

Np∑
m=1

cmλm, ∀n. (3.41)

Now by virtue of (ii) we look for at least two non-zero coefficients ck, cl ̸= 0 and different
eigenvalues λk ̸= λl such that L̃[ckσ̂k + clσ̂l] = ckλkσk + clλlσl ̸= λ(ckσ̂k + clσ̂l). However,
from (3.41) both of these eigenvalues should be equal to

∑Np

m cmλm and thus λk = λl so we
arrive at a contradiction and thus all the steady states of the nonlinear Master Equation
need to be eigenstates of the non Trace Preserving Liouvillian L̃[•].

Lemma 2. The only stable steady states ρ̂s are those with largest real part of their eigen-
value



Stochastic Non Hermitian Hamiltonians 109

Proof. Consider a physical state steady state, ρ̂s such that L̃[ρ̂s] = λsρ̂s and Tr(ρ̂s) = 1,
that is slightly perturbed as ρ̂s + ϵδρ̂, where the pertubation δρ̂ is traceless—the latter
ensures physicality. As commonly done in the study of nonlinear dynamical systems [236],
we linearize the dynamics around this steady state,

dtδρ̂ ≈ L̃[δρ̂]− Tr(L̃[ρ̂s])δρ̂− Tr(L̃[δρ̂])ρ̂s ≡ A[δρ̂], (3.42)

and define the linear superoperator A by discarding quadratic terms in ϵ. Diagonalizing
this super-operator, A[Âν ] = aνÂν , gives the stability with respect to perturbations along
Âν , as determined by the eigenvalue aν ; specifically, the system is stable for Re(aν) < 0
and unstable otherwise.

We first consider traceless directions along the zero-trace eigenstates, that is, δρ̂ = σ̂ν for
ν > Np. Then A[σ̂ν ] = (λν − λs)σ̂ν , so the perturbations are stable for Re(λs) > Re(λν).
This implies that the only stable steady state with respect to perturbations along the
traceless eigenvectors is the one whose eigenvalue has the largest real part. However,
the choice of the traceless σ̂ν does not cover all the possible traceless perturbations. For
example, the perturbation δρ̂ = σ̂κ − σ̂µ, written from the difference of two physical
and traceful eigenstates σ̂κ and σ̂µ, may lead to an unstable steady state. To study
perturbations in these directions, we compute the action on σ̂ν − ρ̂s

A[σ̂ν − ρ̂s] = (λν − λs)(σ̂ν − ρ̂s), ν ≤ Np, (3.43)

and find it is diagonal—the eigenvalues of the A superoperator are λν − λs and their
associated eigenvectors are σ̂ν− ρ̂s. The stability condition thus is as in the previous case,
namely Re(λs) > Re(λν).

In conclusion, only the eigenstates whose eigenvalues have the largest real part are stable
under all possible perturbations. This result generalizes the well-known result that the
eigenvalues of the Lindbladian have a negative real part and that the zero eigenvalue
subspace, the one with the largest real part, contains the steady states.

Lemma 3. All physical eigenstates have real eigenvalues of L̃

Proof. Consider a physical DM ρ̂ ≥ 0, ρ̂ ̸= 0, and let us assume that it is an eigenstate
of the nTPL L̃[ρ̂] = λρ̂. We consider the most general form of a non-TP Liouvillian
L̃[•] = −i[Ĥ, •] +∑Nc

n=1 L̂n • L̂†n + {Γ̂, •}. Due to the positivity of the DM, it can be

written as ρ̂ = Â†Â, then the trace of the eigenstate condition gives

λTr(ρ̂) = Tr(2Γ̂ρ̂) +
Nc∑
n=1

Tr(L̂nρ̂L̂
†
n),

where we introduced the first term is real since Tr(Γ̂ρ̂) = Tr(ÂΓÂ†) and ÂΓ̂Â† is a
hermitian operator, with real trace. The second term is positive since it is the product of
positive operators L†L ≥ 0 and ρ̂, and thus its trace is positive. This implies that λTr(ρ̂) ∈
R but since ρ̂† = ρ̂ the trace is real, therefore λ ∈ R. Furthermore, if the antihermitian
part of the generator is positive semidefinite Γ̂ ≥ 0, the eigenvalue is positive.
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3.3 The Stochastic Dissipative Qubit

The simplest example showing the properties of Non-Hermitian Quantum Mechanics is
the Dissipative Qubit. There are several possible physical realizations of this system; here,
we will follow the approach by Naghiloo et al. [80]. In it a 3-level system described by
the states {|g⟩ , |e⟩ , |f⟩} undergoes dissipative evolution, with continuous measurements
(photodetection) of the |e⟩ → |g⟩ channel. After this, only the trajectories with no jumps
to the |g⟩ state are post-selected, effectively “killing” the jump term and leaving only
non-Hermitian dynamics. The effective Non-Hermitian Hamiltonian

Ĥdq = Jσ̂x − iΓ |e⟩ ⟨e| =
(
0 J

J −iΓ

)
, (3.44)

describes the no-jump dynamics. This system has passive PT symmetry, which means
that a shifted version of the Hamiltonian Ĥdq+ i

Γ
2
1̂ has PT symmetry. The phenomenol-

ogy and dynamics described by both hamiltonians are the same, given that the state is
renormalized. This shift can be thought of as moving to a frame with a constant decay on
both levels such that the state |e⟩ has losses and the state |f⟩ has the same amount of gain,
showing balanced Gain and Loss. The reason for this is that gains, i.e., positive imaginary
terms in the diagonal, are unstable and hard to achieve in a quantum mechanical setup.

Our aim here is to study a stochastic version of this model, which we call the Stochastic
Dissipative Qubit (SDQ), with white noise in the anti-hermitian part. This physically
corresponds to noise in the parameter Γ, which is known to be present in the experimental
setup of Naghiloo et al. [253], see Sec. 3.5 for a discussion of the experimental details
of the implementation. Considering a single noise channel, the Hamiltonian for the SDQ
reads

Ĥsdq = Jσ̂x − iΓ(1 +
√

2γξt)Π̂, (3.45)

where for convenience we introduced the projector over state |e⟩ as Π̂ = |e⟩ ⟨e|. This
corresponds to choosing Nc = 1, and Ĥi = L̂ = ΓΠ̂. Therefore, we can directly write the
unnormalized Liouvillian as

L̃sdq[•] : = L̃ad
Jσx,ΓΠ̂,ΓΠ̂

[•] (3.46)

= −iJ [σ̂x, •]− Γ{Π̂, •}+ γΓ2{Π̂, {Π̂, •}}.

This superoperator can be conveniently written as a matrix in a doubled Hilbert space
using the Choi-Jamiolkowski isomorphism [33, 34], which reads

L̃sdq = J


0 i −i 0

i Γ
J
(γΓ− 1) 0 −i

−i 0 Γ
J
(γΓ− 1) −i

0 −i i 2Γ
J
(2γΓ− 1)

 , (3.47)
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where the basis is ordered as {|ff⟩ , |fe⟩ , |ef⟩ , |ee⟩}, which means that the first and last
element act on the populations of the density matrix, and the second and the third act
on the coherence.

Note that the dynamics generated by this Liouvillian depend on two dimensionless param-
eters Γ/J quantifying the strength of the Non-hermiticity and γJ quantifying the strength
of the noise. Both of these are given in units of the coupling strength J , which gives the
frequency scale, and thus τ = Jt is the dimensionless time. Note that dimensionally, the
strength of the non-Hermiticity has units of frequency [Γ] = T−1 while the strength of
the noise has units of time [γ] = T . For notational convenience we define the quantities
A = Γ

J
(γΓ − 1) and B = 2Γ

J
(2γΓ − 1), which describe, respectively, the evolution of the

coherence ρ̃ef and of the population ρ̃ee.

The master equation for the normalized DM reads

∂tρ̂t =− iJ [σ̂x, ρ̂t]− Γ(1− γΓ){Π̂, ρ̂t}+ 2γΓ2Π̂ρ̂tΠ̂

+ 2Γ(1− 2γΓ)Tr(Π̂ρ̂t)ρ̂t, (3.48)

where we used the property of projector Π̂2 = Π̂. This equation can be rewritten in
dimensionless form as

∂τ ρ̂ =− i[σ̂x, ρ̂] + A{Π̂, ρ̂}+ (B − 2A)Π̂ρ̂Π̂−Bρeeρ̂, (3.49)

where we used the identity Tr(Π̂ρ̂) = ⟨e|ρ̂|e⟩ = ρee. The trace of the unnormalized
Liouvillian is given by Tr(L̃sdq[ρ̂]) = 2Γ(2γΓ − 1)ρee = JBρee, which characterizes the
non-linear term of the dynamics, and only depends on the population of the |e⟩ state. In
particular, when 2γΓ − 1 < 0 the dynamics inhibits the state |e⟩ and when 2γΓ − 1 > 0
the dynamics favours the |e⟩ state.
Therefore, the dynamics shows a change in behavior at γ∗ = 1

2Γ
. Interestingly, at this

point, the trace of the Liouvillian vanishes, and the dynamics is CPTP, generated by the
standard GKSL master equation

∂tρ̂t = −iJ [σ̂x, ρ̂t] + Γ
(
Π̂ρ̂tΠ̂− 1

2
{Π̂2, ρ̂t}

)
. (3.50)

Furthermore, since ρee ≥ 0, the dynamics of the unnormalized Liouvillian L̃sdq[•] is Trace
Decreasing if γ < 1

2Γ
and Trace Increasing if γ > 1

2Γ
. However, since Trace Increasing

dynamics are sometimes deemed “unphysical” [13] we stress that with a proper shift of the
Liouvillian L̃sdq[•] → L̃sdq[•]−2a such as the one described in Sec. 3.2.4 the dynamics can
always be made Trace-Decreasing (TD). In particular, the shift has to obey the condition

a ≥ 2Γ(2γΓ− 1)ρee. (3.51)

This is a state-dependent bound giving the minimum choice of the shift which ensures
TD dynamics for every value of the population ρee. Since ρee ≤ 1 we can find a state-
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independent condition that a has to fulfill to give TD dynamics as

a ≥ 2Γ(2γΓ− 1). (3.52)

Another interesting feature that we observe in the SDQ model is the effect of the noise
on the success rate. The success rate is defined as the amount of trajectories with no
quantum jumps, and comes directly from the continuous measurement + post-selection
realization of NH dynamics, therefore, since we do not have a full theory of post-selection
in stochastic non-Hermitian Hamiltonians, we will assume that the success rate is still
given by the trace of the unnormalized state SRt = Tr(ρ̃t), which represents the ratio
of trajectories with no quantum jumps up to time t, divided by the total number of
trajectories.

Under this assumption, we find that the trace of the unnormalized state evolves as

∂tTr(ρ̃) = ρ̇ee + ρ̇ff = 2Γ(2γΓ− 1)ρee = Bρee. (3.53)

This can be written as an inhomogeneous differential equation in the success rate

∂tSRt = B(SR− ρff (t)), (3.54)

whose solution reads

SR = eBt(c0 −B

∫ t

−∞
e−Bsρff (s)ds). (3.55)

When approaching the γΓ = 1/2 line, B is negative and approaches zero, which makes
the exponential decay slower since the exponent gets close to zero.

The previous analysis relies on the assumption that the success rate is simply the trace
of the unnormalized state, a more in-depth theory would entail considering the full three
level system {|g⟩ , |e⟩ , |f⟩} and doing post-selection of the quantum jumps in a master
equation of the form

∂ρ̂t = −i[Ĥ0, ρ̂t] + Γ(1 +
√

2γξt)D|g⟩⟨e|[ρ̂], (3.56)

where DL̂[•] = L̂ • L̂† − 1
2
{L̂†L̂, •} is the standard GKSL dissipator. Doing post-selection

in this setup has the added difficulty of the rate Γ(1 +
√
2γξt) acquiring negative values

at some times, therefore it is a non-Markovian master equation. Pure state unravelings
of master equations were originally introduced by Diosi et al. [254] for the diffusive
case, and extended to jump processes by Gambetta et al. [255]. However, their physical
interpretation [256] has been contested by Wiseman and Gambetta [257].

A theory of post-selection for stochastic non-Hermitian Hamiltonians may be hindered
by these interpretational issues. If this were the case, a possibility to overcome these
interpretational difficulties is to study the “no-Pump” version, as studied in Sec. 3.4.3,
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of this master equation, which is Markovian

∂ρ̂t = −i[Ĥ0, ρ̂t] + Γ(1 +
√
2γζt)D|g⟩⟨e|[ρ̂], (3.57)

since the rate Γ(1 +
√
2γζt) is always positive. The main issue is that this would provide

only a similar model to the full white noise, only for the small noise regime.

3.3.1 Evolution of the Purity

We will now study how the purity of the dynamics of the SDQ evolves in time. In
particular, we are interested in studying how different states gain or lose purity. Any
state of a qubit is characterized by its Bloch coordinates r = (x, y, z) which give the state
as ρ̂ = 1

2
(1̂ + r · σ̂) where σ̂ = (σ̂x, σ̂y, σ̂z) denotes the vector containing all the Pauli

matrices. Substituting our model in the general expression for the evolution of the purity
(3.25) and introducing spherical coordinates in the Bloch sphere, we find

∂tPt = Γrt
(
(2γΓ− 1)(r2t − 1) cos(θt)− γΓrt sin

2(θt)
)
. (3.58)

This is closely related to the decoherence time of the purity, in particular ∂tPt|t=0 = τ−1P .

Let us analyze the behavior of this equation, which is illustrated in Fig. 3.1. The first
property that we observe is that, apart from the common factor Γ which just sets the
scale of how strong the decoherence is, the expression for the evolution of the purity
only depends on the product γΓ, in particular it has no dependence on J . The second
interesting property is that it only depends on r and θ but not on the azimuthal angle
ϕ, which allows us to study a cross-section of the Bloch sphere, since we know that the
evolution of the purity will be the same for all the other states with different ϕ.

We now check for consistency with deterministic NH dynamics, for γ = 0, the equation
reduces to

∂tPt = Γr(1− r2) cos(θt), (3.59)

which vanishes for r = 1, as expected for deterministic NH Hamiltonians, which is shown
in white in the surface of the Bloch sphere in Fig. 3.1. Furthermore, due to the cosine
function, it is positive when θ ∈ (−π

2
, π
2
) and r ∈ (0, 1), represented by blue in the north

hemisphere in Fig. 3.1, and negative (red) in the southern hemisphere. This is consistent
with what is known about the PT broken phase of this model, there are two steady
states if the dynamics, |e⟩ and |f⟩, with |e⟩ and unstable point and |f⟩ the attractor of
the dynamics. Note that for θ = ±π

2
the rhs also vanishes due to the cosine function.

When γ > 0, both of the terms in the rhs are nonzero; however, the second one is always
negative since γ > 0, Γ > 0, rt > 0, sin2(θ) > 0. When 0 < γ < γ∗ = 1

2Γ
, we see that some

of the states in the northern Hemisphere have decreasing purity. This can be understood
in the following way, if γ < γ∗ the term 2γΓ − 1 < 0 is still negative, which means that
the previous argument still applies and it purifies states in the north pole, however, the
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∂tP/Γ

Figure 3.1. Purity evolution for different strengths of the noise as given by (3.58) in a cross-
section of the Bloch sphere. Figure adapted from [2].

second term, always negative, now has a more relevant contribution and thus “shrinks”
the purifying region with respect to the noiseless case.

Exactly at γ = γ∗, the first term completely vanishes and thus there are no purifying
regions in the Bloch sphere, in particular, the equation for the evolution of the purity
reduces to

∂tPt = −Γ

2
r2 sin2(θ), (3.60)

which can only vanish at r = 0 or θ = 0, π. This means that all the Bloch sphere loses
purity, i.e., decoheres, except for the z axis, whose purity stays constant. We will come
back to this point in the next section when we study the dynamics generated in the Bloch
sphere.

When γ > γ∗, the first term changes sign and thus the purifying states move to the
southern hemisphere. We see that as we increase γ, the region with purifying states
grows in size.

3.3.2 Spectral and steady state Properties

A key part of the previous general analysis of the dynamics relied on the eigenvalues and
eigenvectors of the Liouvillian. The Liouvillian reads

L̃ = J


0 i −i 0

i A 0 −i
−i 0 A i

0 −i i B

 , (3.61)
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whose eigenvalues Λ are the solutions to the characteristic polynomial

(A− Λ)(Λ3 − Λ2(A+B) + Λ(4 + AB)− 2B) = 0. (3.62)

This equation already tells us that Λ = A is an eigenvalue. To compute the remaining
eigenvalues, we define the cubic polynomial as

f(Λ) = Λ3 − Λ2(A+B) + Λ(4 + AB)− 2B.

We want to compute the roots of the polynomial. We start by shifting the variable, using
z = Λ − (A + B)/3, which yields a depressed cubic, i.e., a cubic equation without the
quadratic term, of the form

f(z) = z3 + 3Cz +D = 0, (3.63)

where we have introduced the constants

C = −
(
A+B
3

)2
+ 4+AB

3
, D = A+B

3
(4 + AB)− 2B − 2

(
A+B
3

)3
.

We then use Cardan’s trick [258], also known as Vieta’s substitution, that is, we set
z = U + a

U
, choosing a such that it exactly cancels the terms in U and 1/U , i.e., a = −C.

This leads to a quadratic equation in U3,

(U3)2 +DU3 − C3 = 0, (3.64)

with solutions

Um,± = emi
2π
3

[
−D

2
±
√(

D
2

)2
+ C3

]1/3
,

where m = (0,±1). With this, we find the Liouvillian eigenvalues to be given by

Λm,± = J

(
Um,± − C

Um,±
+
A+B

3

)
. (3.65)

Note that we seem to have obtained six solutions from a cubic equation, which would
be wrong. However, three pairs of solutions are the same. To show this, let V = −D

2
±√

D2

4
+ C3 ≡ U3

m,± denote any nonzero root of the quadratic equation (3.64). If V is a

root then −C
3

V
is also a root, since

V 2 +DV − C3 = 0
×−C3

V 2
=⇒ −C3 +D(−C3

V
) + (−C3

V
)2 = 0.

Therefore, if we change + → − in Λm,± we exchange the terms Um,± with the term − C
Um,±

.

This implies that it is enough to consider the eigenvalues Λm,+.
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Therefore the spectrum of the Liouvillian reads

{λ0 ≡ Λ0,+, λ1 ≡ Λ1,+, λ2 ≡ Λ−1,+, λ3 = AJ}. (3.66)

Assuming that the Liouvillian is diagonalizable, i.e., we are out of any Liouvillian Excep-
tional Point [259], it can be written as (3.61),

L̃ =
3∑

ν=0

λν |Bν)(Bν |, (3.67)

where we denote |Bν) the eigenvectors of the vectorized Liouvillian, which are vectors on
the double Hilbert space |Bν) ∈ H ⊗H , or equivalently linear operators over the original
Hilbert space B̂ν ∈ L (H ).

10−3 10−1 101

γJ

10−2

100

102

Γ
/J

maxν≥1 Re(λν − λ0)

−10−5

−10−2

−101

−104

−107

Figure 3.2. Maximum difference of the real part of λν , ν ≥ 1 with λ0. The difference is
always negative for the displayed range of parameters. Therefore, λ0 is always the
eigenvalue with the largest real part. The transitions between the PT u, PT b, and
NI phases are shown in the dashed and solid line for reference.

When γ > 0,Γ > 0 the eigenvalue with the largest real part is always λ0. This can
be checked for a large range of parameters in Fig. 3.2 where the maximum difference
maxν≥1Re(λν − λ0) is always negative.

Figure 3.3 shows the position of the four eigenvalues in the complex plane for different
values of the strength of the noise γ and the decay rate Γ. A first check is that always the
eigenvalue with the largest real part is λ0 as we have already argued. For weak decay rate
(c1-4) the plot shows that the eigenvalues with the second largest real part are λ1, λ2,
which are complex conjugates. Lastly the eigenvalue with the smallest real part is λ3. In
all of these, the imaginary part is close to Im(λn) ≈ 2, much larger than the difference
between real parts in (c1-3). This implies that in these regime the dynamics will show
oscillations, which is a key property of the PT symmetric phase. Note that we observe
a similar positioning of the eigenvalues in (b3), and in (b1) and (b2) the pair λ1, λ2
are complex conjugates of each other, but they have the smallest real part. The reader
should also note that (b3) is exactly in the line γ = γ∗ and thus the generator follows the
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Figure 3.3. Spectrum of the SDQ Liouvillian for different locations in the phase diagram of
the system. The parameters span the different phases: (a1) PT broken, (c1-3) PT
unbroken, and (a3, a4, b4) Noise Induced; as well as the transitions between them:
(b1,2) PT breaking transition, (a2,b3) TD-TI transition and (c4) transition from
mixed state to |e⟩ state. Note that the x-axis has been rescaled by Γ/J .

standard GKSL master equation and has the eigenvalue with the largest real part equal
to exactly zero. Note that this also happens in (a2) with the difference that in there the
eigenvalues λ1, λ2 are not complex conjugates. In the cases (a1, 3, 4) and (b4) we see that
the eigenvalues λ2 and λ3 are degenerate, and that λ1 is the eigenvalue with the smallest
real part.

We now investigate the two most relevant spectral properties of the SDQ L,iouvillian
which will determine the dynamics, namely the dissipative gap and the the maximum
oscillating frequency maxν(ων). These are shown in the phase diagrams of Fig. 3.4 (a)
and (b) respectively. The dissipative gap is defined as

∆ = min
ν≥1

(Re(λ0)− Re(λν)), (3.68)

since, as we have already argued, λ0 is the eigenvalue with the largest real part. This
quantity encodes how fast the convergence to the steady state occurs, in particular the
corrections to the steady state are suppressed by a factor e−∆t, which implies a convergence
to the steady state at times t ∼ ∆−1. Unfortunately, to the best of our knowledge, there is
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not a simple expression for the dissipative gap, and one has to resort to direct computation
from the analytic expression of the eigenvalues (3.66).

Inspecting Fig. 3.4 (a) we observe the very wide range of values that this quantity can
take, from 10−7 to 106. The three different phases: PT unbroken (PT u), PT broken
(PT b) and Noise Induced (NI) have very different behavior of this quantity. In the
PT u phase the dissipative gap is very small, of O(10−7) to O(10−3), which implies a
convergence to the steady state at very long times, and a small exponential decay on top
of the oscillations observed in the PT u phase. As we will discuss in Sec.3.5, this residual
exponential damping has been observed in the experimental setup, and a Stochastic Non-
Hermitian Hamiltonian with white noise on the anti-hermitian part, i.e., the SDQ model
here presented, can provide a quantitative explanation for this behavior.

The PT b phase has a larger dissipative gap, of O(1), which implies a faster convergence to
the steady state than in the PT u phase. Interestingly, the dissipative gap stays relatively
constant dep on the PT b phase. In the transition to the NI phase, at γ = γ∗, the
dissipative gap diminishes, which means that the GKSL dynamics takes longer to reach
the steady state. Lastly, in the NI phase, the dissipative gap is extremely large, and grows
as we progressively go deeper in the NI phase, reaching values of O(106).

Figure 3.4 (b) shows the maximum value of the oscillating frequency. Recall that the
oscillating frequency is defined as the imaginary part of the eigenvalues of the Liouvillian,
defined as

ων = Im(λν). (3.69)

Since we know the exact expressions for the spectrum, we know that there can only be
two eigenvalues with a non-zero oscillating frequency, i.e., λ1, λ2, and they have opposing
imaginary parts because they are complex conjugates of each other. Fig. 3.4 (b) shows
that the PT u phase has a constant maximum oscillating frequency close to ω = 2. This
means that in this range of parameters the most important contribution is the oscillating
frequency, and thus the dynamics shows the oscillations characteristic of the PT u phase
of the noiseless model. These oscillations are attenuated by a very small oscillating gap,
as discussed previously, which allows us to see the oscillations. This is not the situation
in the PT b or NI phases, where the dissipative gap is larger and thus no oscillations
will be seen, even if the eigenvalues of the Liouvillian have an imaginary component.
Interestingly, in a small portion of the PT b and the NI phases the oscillating frequency
does not vanish, this happens when γ = 1

3Γ
and γ = 1

Γ
, which are respectively in the PT b

and NI phases. This can be clearly seen in Fig. 3.4 (b) where the oscillating frequency
is non-zero close to the dotted orange lines, representing the aforementioned power laws.
Out of these power laws, the oscillating frequency of the Liouvillian eigenvalues vanishes.
Interestingly, it also vanishes at the γ = γ∗ transition at large values of the decay rate
10 ≲ Γ, and does not vanish at small values Γ ≲ 10, a difference clearly seen in Fig. 3.3
(b3) and (a2) which show a non-zero imaginary part, and a vanishing imaginary part,
respectively. Lastly, the last boundary of the region with non-zero oscillating frequency
happens at strong noises. Due to the double logarithmic scale, we can directly see that
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this boundary is characterized by the power law γ = 2JΓ−2. In the next section, we find
this same power law.
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Figure 3.4. Spectral and steady-state phase diagrams: (a) dissipative gap ∆, (b) max-
imum imaginary part of the eigenvalues ων , (c) z, and (d) y components of the
Bloch vector for the stable steady state. The relevant parameters are the strength
of the noise γ and the decay rate Γ. The transition to the noise-induced phase
is at γ∗ = 1/(2Γ) (black). The transition from PT broken to the PT unbroken
phase happens at Γ/J = 2 (gray dashed). In (b) the power laws γ = 1/(3Γ) and
γ = 1/Γ are also shown (orange dotted). Figure adapted from [2].

Eigenvectors: Steady states

The steady state is described by the eigenvector |B0) = (b
(0)
0 , b

(0)
1 , b

(0)
2 , b

(0)
3 )⊺ which is

associated to the eigenvalue λ0. It can be computed from the system of equations
+iJ(b

(0)
1 − b

(0)
2 ) = λ0b

(0)
0 ,

+iJ(b
(0)
0 − b

(0)
3 ) = (λ0 − AJ)b

(0)
1 ,

−iJ(b(0)0 − b
(0)
3 ) = (λ0 − AJ)b

(0)
2 ,

−iJ(b(0)1 − b
(0)
2 ) = (λ0 −BJ)b

(0)
3 .

(3.70)

Taking the ratio between the second and third equations, we find

b
(0)
1 = −b(0)2 . (3.71)
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Given that we know that for the relevant range of parameters λ0 > A, and thus λ0−A ̸= 0.
From the first equation, we now find

b
(0)
1 = −i λ0

2J
b
(0)
0 ,

which, substituting in the second one, gives

b
(0)
3 = b

(0)
0

(
1 +

λ0(λ0 − AJ)

2J2

)
.

We now choose b
(0)
0 such that, for real λ0, the eigenvector has trace unity when written

as a matrix

|B0) =
1

2 + λ0
λ0−AJ
2J2


1

− i
2J
λ0

i
2J
λ0

1 + λ0
λ0−AJ
2J2

 , (3.72)

or equivalently in matrix form

B̂0 =
1

4J2 + λ0(λ0 − AJ)

(
2J2 −iJλ0

+iJλ0 2J2 + λ0(λ0 − AJ)

)
= ρ̂s. (3.73)

We will characterize this steady state by its coordinates in the Bloch sphere. The z
coordinate reads

z(ρ̂s) = − λ0(λ0 − AJ)

4J2 + λ0(λ0 − AJ)
, (3.74)

characterizing the population imbalance in the state. This quantity is shown in Fig.
3.4 (c), where we see three different behaviors defining the PT u, PT b, and NI phases.
The PT u phase has z coordinate equal to zero, this is because the steady state is close
to the maximally mixed state. The convergence to this steady state is dictated by the
dissipative gap ∆ discussed previously, which implies that the convergence to the steady
state happens at very long times. Therefore, the dynamics converges to the steady state
with very lightly damped oscillations. For this reason, we name this phase PT unbroken,
for its similarity to the PT unbroken phase of the noiseless model. The PT b phase shows
a value of z close to unity. This means that the steady state is close to the |f⟩ state. This
phase has also been observed in the noiseless Dissipative Qubit, the decay rate is large
compared to the hopping Γ/J > 2 which makes the population of the |e⟩ state decay,
and J is not able to counteract it, thus the stable steady state is |f⟩. Lastly, we observe
the NI phase, in which the z coordinate goes to z ≈ −1. This means that for strong
enough noise, in particular γ > γ∗, the steady state becomes |e⟩, which was the state that
originally had losses. This is a noise-induced transition [260] to stability, reminiscent of
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the one discussed in the previous chapter [1]. Note that, interestingly, the transition from
PT b to NI follows perfectly well the γ = γ∗ line (black solid), but the transition from
PT u to NI at larger noise has some corrections and the transition happens for a slightly
higher value of Γ than expected, also there are corrections to the power law γ = 1

2Γ
. The

double logarithmic scale allows to see that the transition from the PT u phase to the NI
phase happens at a different power law given by γ = J√

3Γ2 (green dashed line), note the
different proportionality constant to the boundary of the non-zero oscillating frequency.
This implies that the region γ > γ∗, which we have so far referred to as NI, has a richer
structure, showing a steady state with Bloch coordinate z very close to zero (also y is
close to zero, so the state is close to the maximally mixed state) when 1/(2Γ) < γ < J√

3Γ2 .

We now provide a justification for this power law. We begin by taking the asymptotic
expansion for strong noise of the eigenvalue with the largest real part, which reads

λ0 ∼ 4γΓ2 − 2Γ− 2J2

3γΓ2
+O(γ−2). (3.75)

Taking only the first order term and substituting in the expression for the z coordinate
gives

z(ρ̂s) ∼ −1

1 +
J2

γΓ2(3γΓ2 − Γ)

∼ −1

1 +
J2

3γ2Γ4

, (3.76)

where in the last step we discarded terms of lower order in γ. Now we assume that γ ≫ 1
so that J2/(3γ2Γ4) ≪ 1 and the expression admits the Taylor expansion

z(ρ̂s) ∼ −1 +
J2

3γ2Γ4
+O(γ−3). (3.77)

We want to find the edge of the z(ρ̂s) = 0 region, which is equivalent to setting the
previous expression to zero

J2

3γ2nΓ
4
= 1 ⇒ γn =

J√
3Γ2

. (3.78)

This expression agrees with the boundary observed in Fig. 3.4 (c). Note that there is a
region that interpolates between the γ∗ = 1

2Γ
and the γn = J√

3Γ2 power laws. This means
that the transition to z = −1 close to γJ = 0.25 is slightly above the two power laws.

A function that approximately interpolates between the two power laws can be derived.
In order to do this, we take the expansion of λ0 (3.75) discarding terms of order O(γ−2).
Substituting in the expression for the z coordinate yields

z(ρ̂s) ∼ −1 +
18γ2Γ4J2

3γΓ3 (γΓ (3Γ2(2γΓ− 1)(3γΓ− 1)− J2) + 3J2) + 2J4
, (3.79)
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which, when equated to zero, factorizes in the simple form

(3γΓ3(2γΓ− 1)− J2) · (3γΓ3(3γΓ− 1)− 2J2) = 0, (3.80)

which has four solutions

γ =
Γ3 ±

√
8Γ4J2 + Γ6

6Γ4
, (3.81)

γ =
3Γ3 ±

√
3(8Γ4J2 + 3Γ6)

12Γ4
. (3.82)

From all these solutions, the one that correctly reproduces the expected power law γ =
1/(2Γ) at large Γ is

γinterp =
3Γ3 +

√
3(8Γ4J2 + 3Γ6)

12Γ4
, (3.83)

and also reproduces the γ = J/(
√
3Γ2)

This expression is shown in Fig. 3.4 (c,d) (violet dash-dotted line). We see that it
correctly reproduces the large Γ behavior but slightly underestimates the transition5 to
the NI phase from the PT b phase. Apart from the slight offset, the curve seems to
correctly characterize the shape of the transition region from the PT u to the NI phases.
Also note that it captures quite well the region where y starts to be large and positive
(see Fig. 3.4 (d)).

Before continuing, let us discuss how to “move” in this phase diagram. When we change
J at a fixed value of Γ and γ we will follow a diagonal parallel to the transition line
γ = γ∗, in particular increasing J will take us down and to the right while decreasing
J will take us to the left and up. Note that since it is parallel, we cannot go into the
noise-induced phase by changing the hopping strength J . The only possibility to go in
the NI phase by changing J is to start in the part of the PT u phase which has γ > γ∗

(the white zone over the black solid line), and since this transition no longer follows the
same power law but the alternative one γ = JΓ−2, it can be crossed by decreasing J . The
other two possibilities to move in the phase diagram are to change the decay rate Γ at
fixed J and γ, which moves vertically, or to change the noise strength γ at fixed Γ and
J , which moves horizontally. Since changing the strength of the noise seems to be quite
challenging, we think that changing the decay rate Γ is probably the most feasible way of
observing the three phases.

The y component reads

y(ρ̂s) =
2λ0J

4J2 + λ0(λ0 − AJ)
, (3.84)

5We stress that here we use the notion of transition between phases as simply referring to going between
different regimes with different steady state properties. A more careful study of the nature of the
transitions is carried out in Sec. 3.3.4.
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characterizing the imaginary part of the coherences in the σ̂z basis. Note that since λ0 is
real, the coherence ∝ −iλ0 is purely imaginary and thus the x coordinate of the steady
state vanishes. Figure 3.4 shows the y Bloch coordinate of the stable steady state as a
function of the dimensionless noise strength γJ and the dimensionless decay rate Γ/J .
We see that deep in the three phases, PT u,b and NI, the y coordinate of the stable steady
state vanishes, meaning that the state is almost diagonal in the σ̂z basis. However, in
the transitions between the phases, the y coordinate is non-zero. Particularly, in the PT
breaking transition, the state gets close to the left side of the Bloch sphere with y ≈ −1,
i.e., the |−y⟩ state, a feature already experimentally observed [80]. Note that the y value
remains close to y ≈ −1 for different values of the strength of the noise, not too close to
the transition to the NI phase γ = γ∗. Close to the transition, the stable steady state
has a small but non-zero coherence. The sign of this quantity sharply changes when we
have γ > γ∗, and we observe that in the transition from PT u to NI, the state acquires
a positive y component. However, this component is not as large as in the PT breaking
transition, only reaching y ≈ 0.5. Interestingly, the region with largest y component is
around the transition γ = Γ−2, and closely follows that power law.

We now compute the remaining eigenstates. Consider first the case of λ1 and λ2, let
m = 1, 2, therefore the system of equations reads

+i(b
(m)
1 − b

(m)
2 ) = λmb

(m)
0 ,

+i(b
(m)
0 − b

(m)
3 ) = (λm − A)b

(m)
1 ,

−i(b(m)
0 − b

(m)
3 ) = (λm − A)b

(m)
2 ,

−i(b(m)
1 − b

(m)
2 ) = (λm −B)b

(m)
3 .

(3.85)

To compute the largest eigenvector, we assumed that λ0 ̸= A; this is not necessarily the
case anymore. Summing the first and the last equations, we find

λm(b
(m)
0 + b

(m)
3 ) = Bb

(m)
3 , (3.86)

from where we can find a relation between b
(m)
0 and b

(m)
3

b
(m)
3 =

λm
B − λm

b
(m)
0 , (3.87)

where we have assumed that λm < B, a reasonable assumption for λ1,2. Summing the

second and third equation we find (λm − A)(b
(m)
1 + b

(m)
2 ) = 0 which gives b

(m)
1 = −b(m)

2 .
Note that if λm = A, the condition is already fulfilled without the need for the components
of the eigenvector to be of opposite sign. However, in the case λm = A, the argument
that we use in the next paragraph for λ3 applies, and we find that |Bm) = |B3). Under
the condition λm ̸= A we thus find that

2ib
(m)
1 = λmb

(m)
0 (3.88)
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and thus

|Bm) =
BJ − λm
BJ


1

−iλm
2J

+iλm
2J

λm
BJ−λm

 , (3.89)

where this choice ensures that |Bm) is traceful.

Lastly, consider the case of λ3 = A, therefore the system of equations reads
+i(b

(3)
1 − b

(3)
2 ) = Ab

(3)
0 ,

+i(b
(3)
0 − b

(3)
3 ) = 0,

−i(b(3)0 − b
(3)
3 ) = 0,

−i(b(3)1 − b
(3)
2 ) = (A−B)b

(3)
3 .

(3.90)

From the second and third equations, we find b
(3)
0 = b

(3)
3 . Summing the first and last, we

find
(2A−B)b

(3)
0 = 0,

which implies that b
(3)
0 = 0. Therefore, the only remaining part is b

(3)
1 = b

(3)
2 , which can

be set to unity, and the eigenvector is simply

|B3) =


0

1

1

0

 , B̂3 =

(
0 1

1 0

)
= σ̂x. (3.91)

Therefore, this eigenmatrix only has off-diagonal elements and cannot be a physical den-
sity matrix by itself.

Liouvillian Exceptional Points of the SDQ

One of the most interesting features of non-Hermitian matrices is the appearance of Ex-
ceptional Points (EPs). These are interesting from many points of view, perhaps the
most interesting one is that the system shows an enhanced sensitivity close to an ex-
ceptional point [59]. When these exceptional points happen in a Liouvillian generator,
they are called Liouvillian Exceptional Point (LEP). In Sec. 3.2.6, we already introduced
the concept of LEPs and studied their effect in the dynamics, particularly in the steady
states and the approach to steady states. In here, we study the LEPs of the antidephas-
ing Liouvillian of the SDQ. At an exceptional point, the eigenvalues and eigenvectors
of the matrix coalesce, and typically, a real difference of eigenvalues becomes imaginary.
For this reason, the maximum non-orthogonality of eigenstates, i.e., maxµ ̸=ν | ⟨B̂µ, B̂ν⟩ |2,
showcases the appearance of a LEP. Figure 3.5 shows the behavior of this quantity along
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Figure 3.5. Maximum non-orthogonality between eigenstates of the antidephasing
Liouvillian.

the phase diagram. For very small noise, there are five LEPs, one at Γ/J = 2, two around
Γ = 1/(3γ), one slightly below and one slightly above the power law, and other two at
Γ = 1/γ, again, slightly below and above the power law. All of these LEPs are of order
two, for non-zero strength of the noise, except for Γ/J = 2, which is of order four, as we
shall see now.

As the strength of the noise is increased, the LEP at Γ/J = 2 shifts to a higher value of
the decay rate, and eventually converges with the one at Γ = 1

3γ
− ϵ at a strength of the

noise γJ ≈ 0.03. After this there are 3 LEP’s, the LEP at Γ = 1
3γ

+ ϵ and the one at

Γ = γ−1 − ϵ converge at γJ ≈ 0.1. After this, there is only a single LEP. Furthermore,
this LEP now occurs at a different power law γ ∼ 2Γ−2. Note that this boundary exactly
agrees with the boundary describing the region having a non-zero oscillating frequency in
Fig. 3.4 (b). This is not a coincidence since around an exceptional point, the eigenvalues
change behavior; i.e., if the difference between eigenvalues is real below the EP, it becomes
imaginary above and vice versa. Therefore, Fig. 3.4 (b) makes sure that there is a spectral
degeneracy at the LEP, and Fig. 3.5 indicates coalescence of the eigenstates.

Figure 3.6 (left) shows the second maximum of the non-orthogonality between eigenvec-
tors. We see that the second maximum is only close to 1 around Γ/J = 2, and it is close to
zero otherwise, except on a power law γ ∼ Γ−2, also present in Fig. 3.5, where it is close
to 0.5. Lastly, Fig. 3.6 (right) shows the third maximum value of the non-orthogonality,
which is only non-zero close to Γ/J = 2, and furthermore it is much narrower than the
second maximum around this point. This analysis indicates that the LEP’s at γ = 1

3Γ
± ϵ,

and γ = 1
Γ
± ϵ are of order 2, with only two eigenvectors coalescing, but the LEP at

Γ/J = 2 is of order 4 with 4 eigenvectors coalescing.

Figure 3.7 shows the maximum and second maximum value of the non-orthogonality as a
function of the inverse dimensionless decay rate J/Γ. A similar quantity | ⟨+|−⟩ |, where
|±⟩ are the eigenstates of the DQ, was measured experimentally in [80] and surprisingly,
the data shows qualitatively similar behavior to the second maximum value of the overlap
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Figure 3.6. Second maximum (left) and third maximum (right) of the non-orthogonality
between eigenstates of the antidephasing Liouvillian.
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between eigenstates of the antidephasing Liouvillian, in particular a similar dip to the one
seen in Fig. 3.7 (right) below J/Γ = 1/2, was observed in the data.

3.3.3 Bloch sphere dynamics

The dynamics generated by the antidephasing master equation can be written for the
three coordinates of the Bloch sphere x, y, z. Introducing the Bloch decomposition of the
density matrix ρ̂ = 1

2
(1̂+ r · σ̂) and using the (anti)commutation properties of the Pauli
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matrices {σ̂i, σ̂j} = 2δij1̂, [σ̂i, σ̂j] = 2iϵijkσ̂k we find

ρ̇ = J(yσ̂z − zσ̂y)− (Γ− γΓ2)(ρ̂− 1
2
σ̂z − 1

2
z1̂) + γΓ2(1− z) 1̂−σ̂z

2

+ (Γ− 2γΓ2)(1− z)ρ̂ (3.92)

= J(yσ̂z − zσ̂y)−
(
γΓ2 x

2
Γ(1− 2γΓ)x

2
z
)
σ̂x

−
(
γΓ2 y

2
+ Γ(1− 2γΓ)y

2
z
)
σ̂y +

(
Γ
2
(1− 2γΓ)− z

2
(2γΓ2 + zΓ(1− 2γΓ))

)
σ̂z. (3.93)

Note that the only nonlinearity comes from the second line of the first equation, and
that the terms in the identity vanish since the nonlinear antidephasing dynamics is TP.
Using the fact that the Pauli matrices and the identity {1̂, σ̂} form a basis of the Hilbert
space of operators, the operator equation can be written as a system of coupled nonlinear
differential equations for the Bloch coordinates as

ẋ = −(γΓ2 + zΓ(1− 2γΓ))x,

ẏ = −2Jz − (γΓ2 + zΓ(1− 2γΓ))y,

ż = 2Jy − Γ(1− 2γΓ)(z2 − 1).

(3.94)

We see that the equation for the coordinate x is linear in x; this means that choosing
x = 0 ensures that the x coordinate does not evolve and lets us simplify our analysis
to a cross-section of the Bloch sphere, with just the y, z plane. This is equivalent to
the observation made before that ρ̂s = B̂0 had purely imaginary coherences, and thus
vanishing x coordinate. The equation for the y coordinate involves a term in J coupling
it to the z coordinate, a term −γΓ2y describing a decay of the y coordinate and a nonlinear
term −zΓ(1 − 2γΓ)y which is negative if γ < γ∗ and z > 0 and positive if γ > γ∗ and
z < 0. This nonlinear term describes a decay or a growth of y which depends on the
z value. Lastly, the equation of motion for z has a linear term in J coupling it to the
equation for y and a term proportional to z2−1, which has a negative coefficient if γ < γ∗

and a positive coefficient if γ > γ∗.

The dynamics generated by this system is illustrated in Fig. 3.8 where the streamlines of
the vector field are shown for different values of the non-hermiticity and the strength of
the noise. Furthermore, the analytically computed stable steady state is indicated with a
red diamond.

When the strength of the noise is very weak (cf. Figs. 3.8 (a1,b1,c1)), we observe a
behavior close to the behavior of the Dissipative qubit. When the strength of the NH drive
is small (c1), the dissipative qubit is in the PT u phase, and thus we see that the dynamics
generate oscillations. From the previous analysis, we know that these oscillations can be
seen because in the PT u phase, the maximum oscillating frequency is non-zero, while
the dissipative gap is very small. Unlike the noiseless system, these oscillations are not
centered around the center of the Bloch sphere but are slightly shifted towards the left,
i.e., a negative value of y. From the phase diagram analysis, we predicted this behavior
by observing that Fig. 3.4 (d) is not exactly zero if we are in the proximity of the PT
breaking transition. Exactly at PT -braking transition (b1), the dynamics shows orbits
similar to the ones before, but the center of the orbits has shifted towards the left-most
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Figure 3.8. Streamlines of the vector fields in the cross-section of the Bloch sphere with x = 0.
The parameters span the different phases: (a1) PT broken, (c1-3)PT unbroken,
and (a3, a4, b4) Noise Induced; as well as the transitions between them: (b1,2)
PT breaking transition, (a2,b3) TD-TI transition and (c4) transition from mixed
state to |e⟩ state. The analytical steady state (3.72) is shown as the red diamond.
The color and linewidth represent the Euclidean speed (3.95), divided by the max-
imum of the two main frequency units: the dissipative gap ∆ and the maximum
imaginary part of the eigenvalues ω = maxν(Im(λν)).

part of the Bloch sphere with y ≈ −1, as expected from Fig. 3.4 (d). Lastly, when the
strength of the decay rate is strong (a1), we see a convergence to a state very close to
the |f⟩ state. This is well-known to be the PT broken phase of the model, where the
non-Hermiticity completely kills all the population of the |e⟩ state and thus the steady
state is the |f⟩ state. Interestingly, here there is a small but non-zero y component which
moves the steady state slightly to the left, i.e., a small but negative y.

Now we consider a slightly stronger noise (cf. Figs. 3.8 (a2,b2,c2)). The dynamics for
weak non-Hermiticity (c2) is quite similar to the one seen before (c1) with one difference.
In here, it is more apparent that the oscillations are damped. This happens because the
dissipative gap is larger than it was in (c1). This convergence to the steady state was
also present in (c1), but since the convergence happened at extremely long times, the
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trajectories looked as if they were closed. At the PT -breaking transition of the noiseless
model, we observe an oscillatory convergence to the steady state, which is now close to
the west of the Bloch sphere with a small z component. Figure (a2) shows the behavior
exactly at the transition from PT broken to the Noise Induced (NI) phase, i.e., exactly
at γ = γ∗. At this transition point, the dynamics is CPTP and the antidephasing master
equation reduces to the standard GKSL master equation. Interestingly, the steady state
is the maximally mixed state in the center of the Bloch sphere. This happens because
exactly at the transition point the dynamics is generated by a Lindbladian (3.50) which
obeys the property

L[1̂] = −iJ [σ̂x, 1̂]− Γ[Π̂, [Π̂, 1̂]] = 0,

which implies that the maximally mixed state, or infinite temperature Gibbs state ρ̂ =
1̂/N , is the steady state of the dynamics. The convergence happens in an interesting way,
from Fig. 3.3 (a2), we know that the oscillating frequency is zero, but from the previous
discussion on the purity, we know that at the γ = γ∗ transition, the purity remains
constant at first order in the z axis. For this reason, the dynamics is perpendicular to the
z axis, giving a state with the same purity, which is related to the radius on the Bloch
sphere. Interestingly, the convergence to the maximally mixed state happens through a
tilted axis.

Considering a stronger noise γ = 0.25 we find that for a small decay rate Γ = 0.5 Fig. 3.8
(c3) the behavior is qualitatively similar to Fig. 3.8 (c1) and Fig. 3.8 (c2), with a larger
dissipative gap and thus faster damping on the oscillations. When Γ = 2 we are exactly
at both the transitions, PT breaking and γ = γ∗. Since the master equation reduces to
GKSL, we converge to the maximally mixed state in the center of the Bloch sphere. This
convergence happens reasonably fast with ∆ ≈ 0.25, but this convergence is slow enough
to see the oscillatory convergence, which happens because Fig. 3.3 (b3) has a non-zero
oscillating frequency. Again, as in (a2), note that the streamlines are perpendicular to the
z axis, since we know that at the transition γ = γ∗ all the Bloch sphere decreases purity,
except for the z axis, which stays with constant purity. When the decay rate is large
Γ = 10, we are in the NI phase, and we see a convergence to the |e⟩ state. Note that now
there is a small but non-zero positive component of y since we are over the transition line
γ > γ∗. The reader should also note the difference in the trajectories converging to the
stable steady state in this phase and in the PT b phase, which had trajectories following
the surface of the sphere, and then trajectories closely resembling an ellipse inside of the
sphere. In the NI phase, this convergence does not follow ellipses and instead seems to
happen more abruptly.

Considering a large noise γ = 3 and a small decay rate Γ = 0.5 the system is in the
transition from the PT u to the NI phase, which we know from the steady state analysis
that happens with a positive value of the y coordinate (cf. Fig. 3.4 (d)). Furthermore,
in this case, the convergence to the steady state is also oscillatory since the maximum
oscillating frequency is non-zero (cf. Fig. 3.4 (b)). For large values of the decay rate
Γ = 2, 10 we are in the NI phase, and we observe a convergence to the |e⟩ state as
expected.
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The last piece of information contained in Fig. 3.8 is the speed of the trajectories, which
is represented in the color and in the width of the streamlines. We simply took the
Euclidean speed

vE :=
√

(ẏ)2 + (ż)2. (3.95)

The spectral analysis of the dynamics indicated that there are two main quantities respon-
sible for the speed at which the dynamics happen: the dissipative gap and the oscillating
frequency. Here, to compare the speed throughout the whole phase diagram of parame-
ters, we take the speed and divide it by the maximum of the two quantities: the dissipative
gap and the maximum oscillating frequency. Interestingly, almost all the speed of the dy-
namics is well understood in terms of one of the two components, because the dynamics
is around vE/max(∆, ω) ∼ 1. However, there is one speed that is not well explained by
any of these quantities. Figure 3.8 (b1), exactly at the PT breaking transition, has a
speed that is one order of magnitude larger than any of these two quantities. Therefore,
the speed of the dynamics at the PT breaking transition remains to be explained; it is
probably related to the difference in convergence to the steady state. We think that the
cause for this is the structure of the eigenvalues in Fig. 3.3 (b1), which has the conjugate
eigenvalues as the ones with the smallest real part. Maybe in that case λ3 is not relevant
to the dynamics and the relevant dissipative gap has to be defined as the difference with
the real part of the complex conjugate eigenvalues.

Polar coordinates: Nullclines

The equations for the Bloch coordinates can be transformed to spherical coordinates
simply by using the transformation between the coordinates

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ,

and the chain rule, we can obtain the following system of equations
ṙ = Γ

(
(2γΓ− 1)(r2 − 1) cos θ − γΓr sin2 θ

)
,

θ̇ = −Γ sin θ
r

(1− 2γΓ + γΓr cos θ)− 2J sinϕ,

ϕ̇ = −2J cosϕ cot θ.

(3.96)

Note that the equation of motion for r is very similar to the equation for the derivative
of the purity (3.58). This is because the purity is related to the radius by Pt = (1+ r2t )/2
and thus its derivative is Ṗt = rtṙt. In a similar way to the x, y, z case, starting with
ϕ = π/2 ensures that the ϕ coordinate does not evolve, and thus we can effectively reduce
the system of equations to{

ṙ = Γ
(
(2γΓ− 1)(r2 − 1) cos θ − γΓr sin2 θ

)
,

θ̇ = −Γ sin θ
r

(1− 2γΓ + γΓr cos θ)− 2J.
(3.97)
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The analysis of the steady states previously done from the spectral properties of the
Liouvillian can also be made from the equations of motion of the Bloch coordinates. In
the study of nonlinear dynamics [156] the nullclines of a system of equations ẋ = f(x) are
defined as the curves where the derivative of each of the coordinates vanishes, i.e., for the
coordinate xj the nullcline is the curve x

nj which makes the equation vanish fj(x
nj) = 0.

The steady states of the system then live in the intersections of the nullclines.

Radial nullclines: State purification

The nullcline for the radial coordinate can be found as

rnr
θ =

γΓ sin2 θ ∓
√

4(1− 2γΓ)2 cos2 θ + γ2Γ2 sin4 θ

(4γΓ− 2) cos θ
. (3.98)
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Figure 3.9. Nullclines of the radial coordinate.

Note that this equation only depends on the dimensionless product γΓ; in particular,
there is no dependence on J . Furthermore, this equation characterizes the white region
in Fig. 3.1, i.e., the region with vanishing derivative of the purity, which separates the
regions that purify from the regions whose purity decreases. Figure 3.9 shows the radial
nullclines for different values of γΓ. For γ = 0, we see that (3.98) reduces to unity.
Therefore, the surface of the Bloch sphere does not lose purity, i.e., the radius states
constant, and pure states remain pure, as is well-known to happen for a deterministic NH
Hamiltonian. However, by inspecting the differential equation

ṙ = −Γ(r2 − 1) cos θ,

we see that there is another way of making this function vanish and that is choosing
θ = ±π/2. This extra line is shown in Fig. 3.9, and corresponds to the dynamics being
exactly perpendicular to the y axis and thus keeping r constant at first order in time.

Considering 0 < γΓ < 1/2, we see that the nullclines progressively shrink from covering
half of the Bloch sphere (dark blue) to a narrow area around the upper half of the z axis
(cyan). Exactly at the transition γΓ = 1/2, we see that (3.98) is ill-defined, so resorting
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to the original equation of motion, we find

ṙ = −γΓ2r sin2 θ,

which vanishes for r = 0 or for θ = 0, π. This gives the nullcline to be exactly the z
axis. From the previous dynamical analysis, we know that exactly at this transition, the
dynamics is CPTP, the maximally mixed state is a steady state, and the dynamics is
perpendicular to the z axis, thus keeping the r coordinate constant. When γΓ > 1/2, the
nullclines shift to the southern hemisphere of the Bloch ball (cyan to green lines). This
was known from the previous analysis of the derivative of the purity.

By checking (3.98), we see that we have two nullclines corresponding to the two possible
values of ∓. The most important nullcline is the one with −, since it is the one that
generates most of the curves in Fig. 3.9. However, the nullcline with + contributes to the
southern hemisphere of the circle at γΓ = 0, to the north pole for γΓ > 1/2, and to the
south pole for γΓ < 1/2. These two points have each an unstable steady state, because
no matter if the stable steady state is |f⟩ in the PT b phase, if the dynamics start with
|ψ0⟩ = |e⟩ there will not be any way of reaching |f⟩. However, the moment that |ψ0⟩ has
even the smallest contribution of |f⟩, the dynamics will take us there.

If we take the limit γΓ → ∞ we find the nullcline

rnr
θ =

1− cos(2θ)− 2
√
16 cos2 θ + sin4 θ

8 cos θ
, (3.99)

which is also shown in Fig. 3.9 (black solid line). We see that the convergence happens
quickly with γΓ = 3 being very close to the limiting curve.

The radial nullclines enclose the area of the cross-section of the Bloch sphere with states
that purify. We can compute this area as

Ap =
1

2

∫ π

0

r2θdθ, (3.100)

where rθ is given by eq. (3.98). This can be understood in the following way: the area of
a section with angle θ of a circle with radius r is θ

2π
πr2. Summing many small intervals

dθ of a changing radius rθ gives the previous formula.

The integral does not admit a closed form, and we have to resort to numerical integration.
The results are shown in Fig. 3.10 (left), which shows the portion of the area of the Bloch
sphere’s cross section that purifies. When γΓ = 0 exactly half of the Bloch sphere purifies,
but this area quickly shrinks, and when γΓ = 1/2 the dynamics is given by the GKSL
master equation, and the portion of purifying states completely vanishes. For stronger
noise, the portion of the Bloch sphere that purifies grows, until it saturates at a value of

Ap → 0.3095π,

when γΓ → ∞. Which means that in the infinitely strong noise limit, around 31% of
the Bloch sphere purifies. Even if the integral does not admit a closed form, Figure 3.10
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Figure 3.10. Area of the purifying region of the Bloch sphere (left) in units of the area of the
cross section of the Bloch sphere π as a function of the dimensionless product γΓ
(blue solid line). The numerical limiting value 0.3095 is also shown (gray dashed
line). Difference between the limiting value and the area of the Bloch sphere
(right) in a log-log scale. The power law ∼ 1/(γΓ) is also shown (gray dotted
line).

(right) shows that the convergence to the steady state value happens with a power law
1
γΓ
.

Angular nullclines

In a similar way, we can compute the nullcline associated with the angular coordinate.
The expression simply reads

rnθ
θ =

Γ(2γΓ− 1) sin θ

2J + γΓ2 cos θ sin θ
. (3.101)

Note that this equation does depend on J , and so do the steady states of the system.
Figure 3.11 shows the angular nullclines for different values of J (blue) as well as the
radial nullcline (red). The radial nullclines represent physically where the vector field in
the Bloch sphere is perpendicular to the radial unit vector, and the angular nullclines
where the vector field is perpendicular to the angular unit vector. The steady states are
thus in the intersection of both. Note that interestingly, the nullclines do not only cross at
one point, but in two. One of these is the stable steady state or attractor of the dynamics,
and the other is the maximally mixed state. However, this is an unstable fixed point; if
the dynamics starts slightly away from the maximally mixed state, it will go to the stable
steady state predicted by the spectral analysis. This stable steady state is also shown
in the figure (blue circles), which we see agrees perfectly with one of the crossing points
of the nullclines. When γΓ < 1/2, therefore the unstable steady state is close to the |e⟩
state for small J , which corresponds to the radial nullcline (3.98) in the + branch.
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Figure 3.11. Angular nullclines (blue) for different values of J (colorbar) with the radial null-
clines (red) for increasing values of γΓ (left to right). Different stable steady
states computed from the eigenvector analysis of the system (blue dots). The
smallest value of J considered is J = 0.05, and there are 15 evenly spaced values
up to J = 2.

Let us now investigate the behavior of the angular nullclines. When γΓ = 0, we see that
the angular nullcline reduces to

rNθ
θ = − Γ

2J
sin θ,

which describes a circle of radius Γ/(4J) centered at r = Γ/(4J), θ = −π/2. We see that
this gives an arc of a big circle which does not close inside the Bloch ball when Γ/J > 2,
i.e., the PT broken phase, and a circle completely inside the Bloch sphere when Γ/J < 2,
i.e., the PT unbroken phase. The steady state analysis, and the crossing points of the
nullclines give the steady states to be on the surface of the Bloch ball when Γ/J > 2 and
on the θ = −π/2 line with r = Γ/(2J) when Γ/J < 2. In the noiseless case, it is known
that at the EP the steady state is the |−y⟩ state, which was even observed experimentally
[80]. This does not happen abruptly, but as Γ decreases, we see that the steady state gets
closer and closer to the equator. In the PT u phase, the steady state from this analysis is
inside the Bloch sphere, but it takes an infinite time to reach the steady state due to the
oscillations coming from the PT symmetry not showing any decay.

When γΓ is small (see γΓ = 0, 0.26) the radial coordinate is negative6 meaning that
the angular nullclines live of the western hemisphere of the Bloch ball. We see that the
nullclines deform slightly, taking a shape similar to an ellipse, and tilting slightly upwards.
One could think that the angular nullclines always live of the western hemisphere when
γΓ < 1/2 but this is not the case since sin θ cos θ is negative for θ ∈ (π/2, π), therefore
if 2J − γΓ2/2 < 0 is negative we can have the behavior shown for γΓ = 0.46 where
the angular nullcline has a component in the θ ∈ [π/2, π] quadrant. When we cross the
γΓ > 1/2, the shape of the nullclines is similar but flips, with most of the angular nullclines
being in the θ ∈ [π/2, π] quadrant. The ellipses of the nullclines widen progressively as

6Due to the spherical coordinates chosen θ ∈ [0, π] so a negative radial coordinate corresponds to an
angle outside that range
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we increase γΓ until they cover most of the eastern hemisphere of the Bloch ball for large
γΓ. This change in behavior of the angular nullclines is what gives the change in the y
coordinate of the steady state around the γ = γ∗ transition.

3.3.4 Transitions between the different phases of the model

The formal definition of a phase transition requires a thermodynamic limit; for this reason,
although the SDQ phase diagram (cf. Fig. 3.4) shows different phases with markedly
characteristic behavior, and changing the parameters, we can observe transitions between
the phases, we will not refer to these as phase transitions in the strict sense. Even if we
avoid using such terminology in here, we study the transitions more in depth, in particular,
in a similar spirit to the study of phase transitions, we ask whether the transitions in the
SDQ model are continuous or discontinuous. We will take as the “order parameter”
describing the different phases z(ρ̂s) which has three different values for the different
phases z = 0 (PT u), z = +1 (PT b) and z = −1 (NI).

10−2 100 102

Γ/J

−1

0

1
z(ρ̂S)
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Figure 3.12. z coordinate in the Bloch sphere as a function of the dimensionless decay rate
Γ/J for different values of the strength of the noise γJ . The plots are shown on
a linear-log scale (left) and a symmetric log-log scale (right). The plot shows the
power law at small decay rate (Γ/J)3 (dashed black)

Figure 3.12 shows the z coordinate of the steady state as a function of the dimensionless
decay rate Γ/J in two scales: linear-log (left) and symmetric logarithmic7-log (right) for
different values of the strength of the noise γJ . Let us analyze first the lin-log case:
For very weak noise the z coordinate goes from zero to +1, when the noise is increased
we observe a transition to the z = −1 after the z = +1 phase, this transition may
look discontinuous, but it is not since as we consider more and more points closer to
the transition the transition becomes smooth. A case in which the transition is not
continuous will be discussed in the forthcoming section. As we increase the strength

7The symmetric log scale uses a linear threshold, in this case ϵthres = 10−11 such that the scale between
[−ϵthres, ϵthres] is linear.
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of the noise, the transition becomes smoother, and we stop seeing the PT b phase with
z = +1, transitioning directly to the NI phase with z = −1.

The plot with the symmetric logarithmic scale (right) provides further insight into this
behavior. We see that for finite noise γJ the z coordinate starts growing with a power
law z ∼ Γ3/J3, whose prefactor increases with γJ , then at Γ/J = 2 the small noise curves
go towards z = +1 in the PT b phase, and then transition to the NI phase z = −1 at
Γ = 1/(2γ) (stars). For the stronger noise cases, particularly when 1/(2γJ) < 2, we see
that the system transitions directly to the NI phase, however it does so by first growing
with the power law z ∼ Γ3, then exactly at Γ = 1/(2γ), because we see the perfect
agreement with the star symbols, the z coordinate vanishes, and for bigger values of the
decay rate the z coordinate is negative. Note that for very strong noise γJ there is a
second power law implying that z first becomes slightly negative, and then decreases as8

z ∼ −(Γ/J)α until it reaches z = −1. Note that a value close to z = −1 takes a while to

be reached, with the second power-law in the phase diagram Fig. 3.4 (c) Γ =
√
J/
√√

3γ
(crosses) characterizing the onset of the z ≈ −1 region.
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Figure 3.13. Convergence to the PT b z = +1 (left) and NI z = −1 (right) phases as a function
of the dimensionless decay rate Γ/J for different strengths of the noise γJ .

Figure 3.13 shows the rate at which the system converges to the PT b (left) and NI (right)
phases. In particular we look at the difference dz,+1 = |z(ρ̂s− 1| for the PT b phase (left),
which shows that for the noise strengths γJ for which the PT b is present, i.e., γJ < 1/4,
the z coordinate approaches 1 with an inverse quadratic power law dz,+1 ∼ J2Γ−2, before
slowing down and transitioning to the NI phase at Γ = 1/(2γ).

To study the convergence to the NI phase (right), we introduce the difference dz,−1 =
|z(ρ̂s + 1|. For the weak noises in which a PT b phase is present, the difference fastly
decreases at the NI transition Γ = 1/(2γ) (stars) and acquires a power law behavior
at bigger values of the decay rate. As we consider stronger noise the system directly
transitions to the inverse quartic power law dz,−1 ∼ J4Γ−4 and the starting value of the

8This power seems to be in the range α ∈ [4, 5] with α ≈ 4.5 from numerical inspection.
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transition agrees with Γ =
√
J/
√√

3γ (crosses). The inverse quartic power law implies a
much faster convergence to the limiting value when we enter the NI phase.

A non-analytic transition

For all the values of the parameters studied before the transitions between the different
phases seem to be smooth, by this we mean that considering values of Γ/J very close to
the transition point between any two phases, e.g. the order parameter z goes continuously
between z = +1 and z = −1 when transitioning from the PT b to NI phases. There is
one exception to this behavior, which appears in the case J = 0, which does not follow
naturally from the previous discussion since J was taken as the unit of frequency.

In this case, the antidephasing Liouvillian reads

L̃sdq =


0 0 0 0

0 Γ(γΓ− 1) 0 0

0 0 Γ(γΓ− 1) 0

0 0 0 2Γ(2γΓ− 1)

 . (3.102)

This matrix is trivially diagonal with eigenvalues

{0,Γ(γΓ− 1),Γ(γΓ− 1), 2Γ(2γΓ− 1)},

and eigenvectors given by the vectors of the canonical basis


1

0

0

0

 ,


0

1

0

0

 ,


0

0

1

0

 ,


0

0

0

1


 .

Note that when understood as vectorized density matrices the first and fourth eigenvectors
are physical, representing the states |f⟩ ⟨f | and |e⟩ ⟨e|, respectively, while the second
and third eigenvector are unphysical since they have zero trace and are not positive
semidefinite.

The parameter Γ may be taken as the unit of frequency, and the only free parameter is
the dimensionless product γΓ. The structure of eigenvalues is as follows:

• When γΓ ∈ (0, 1
3
), the zero eigenvalue is the largest one, the pair of eigenvalues

γΓ− 1 is the second largest and 2(2γΓ− 1) is the smallest eigenvalue.

• When γΓ = 1
3
the zero eigenvalue is the largest one but the pair γΓ−1 and 2(2γΓ−1)

are triply degenerate.

• When γΓ ∈ (1
3
, 1
2
) the largest eigenvalue is zero, 2(2γΓ− 1) is the second largest and

the pair γΓ− 1 are the smallest eigenvalues.
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• When γΓ = 1
2
at this point, the zero eigenvalue and 2(2γΓ− 1) are degenerate and

are the largest eigenvalues, while the pair γΓ− 1 are the smallest eigenvalues.

• When γΓ ∈ (1
2
, 1) 2(2γΓ−1) is the largest eigenvalue, zero is the second largest, and

γΓ− 1 are the smallest.

• When γΓ = 1, the smallest eigenvalue is triply degenerate between the zero eigen-
value and γΓ− 1.

• When γΓ > 1 2(2γΓ− 1) is the largest eigenvalue, the doubly degenerate eigenvalue
γΓ− 1 is the second largest, and zero is the smallest eigenvalue.

Note then that when γΓ = 1/2 we have a non-analytic transition, if γΓ < 1/2, no matter
how close the parameter is to 1/2, the stable steady state is |f⟩ and if γΓ > 1/2 the stable
steady state is |e⟩. The transition is discontinuous in the order parameter z(ρ̂s), which
abruptly changes from +1 to −1, and no perturbation theory in γΓ − 1/2 can explain
this behavior. The dissipative gap close to this point γΓ ∈ (1

3
, 1) is ∆ = |2(2γΓ − 1)|

and it characterizes the time-scale t ∼ ∆−1 at which the stable steady state is reached.
At γΓ = 1/2 we have a dissipative gap closing, another feature reminiscent of phase
transitions, and any linear combination of the two eigenvectors, i.e., any diagonal matrix
of the form ρee |e⟩ ⟨e| + ρff |f⟩ ⟨f |, is a steady state. In particular the maximally mixed
state ρee = ρff = 1/2 is a steady state, a feature which we already expected since at
γΓ = 1/2 the dynamics is known to obey a standard GKSL master equation with the
property L[1̂] = 0. Both of the phases shown at J = 0 give exactly the PT b and NI
behavior9, although the transition becomes smooth at finite values of J , and a small gap
is opened at the avoided crossing of the eigenvalues. Note that the points in which the
eigenvalues become degenerate are not exceptional points because the eigenvectors do not
coalesce; instead, they are the so-called diabolical points [261] due to their double cone or
diabolo shaped energy surface.

Interestingly, the two parameters at which the second largest eigenvalue becomes triply
degenerate give the power laws γ = 1/(3Γ) and γ = 1/Γ at which the oscillating frequency
is non-zero outside of the PT u phase. Note that this observation does not explain the non-
zero oscillating frequency since all the eigenvalues are purely real. However, a perturbative
expansion in small J may explain how the eigenvalues acquire an imaginary part here.

Lastly, the J = 0 limit provides an analytical explanation for the presence of the noise-
induced phase when γΓ > 1/2, in which the stable steady state is |e⟩. In this case, the
eigenvalues and especially the eigenvectors are much simpler to analyze and understand.
In the next section, we provide an alternative physical explanation for the preference of
the |e⟩ state over the |f⟩ state.

9No PT u phase can ever be observed for J = 0 since the hopping J can be understood as “counteracting”
the decay rate and giving an overall real spectrum.
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A physical reason for the Noise-Induced Phase for J = 0

When the hopping between the two levels vanishes, J = 0, the stochastic Hamiltonian
describing the evolution of the system

dĤ = −iΓΠ̂dt− iΓ
√

2γΠ̂dWt =

(
0 0

0 −iΓ(dt+√
2γdWt)

)
, (3.103)

where, as before, we have introduced the projector over the |e⟩ state Π̂ = |e⟩ ⟨e|. The

evolution of this system is generated by the propagator e−idĤ and we can study the effect
it has on components over |e⟩ and |f⟩, i.e., we evolve for a small period of time and look at
what is the effect that this has over the two components of the state. For the component
over |e⟩ this is

⟨e|ψdt⟩ =
⟨e|e−idĤ |ψ0⟩
||e−idĤ |ψ0⟩ ||

=
⟨e|ψ0⟩

(
1−√

2γΓdWt + Γ (γΓ− 1) dt
)√

1 + 2Γ| ⟨ψ0|e⟩ |2((2γΓ− 1)dt−√
2γdWt)

, (3.104)

and for the component over |f⟩

⟨f |ψdt⟩ =
⟨f |e−idĤ |ψ0⟩
||e−idĤ |ψ0⟩ ||

=
⟨f |ψ0⟩√

1 + 2Γ| ⟨ψ0|e⟩ |2((2γΓ− 1)dt−√
2γdWt)

. (3.105)

Note that the renormalization affects equally both of the coordinates, even if it depends
only on the projection of |ψ0⟩ over the |e⟩ state. A simple way to compare these two
quantities and determine where the dynamics prefers to go is to look at the ratio between
the two, assuming that the initial state is pure and that it has support over both states
⟨e|ψ0⟩ , ⟨f |ψ0⟩ ≠ 0 the ratio reads

⟨e|ψdt⟩
⟨f |ψdt⟩

=
⟨e|ψ0⟩
⟨f |ψ0⟩

(
1−

√
2γΓdWt + Γ (γΓ− 1) dt

)
. (3.106)

In the noiseless limit γ → 0, we recover the standard non-Hermitian results

⟨e|ψdt⟩
⟨f |ψdt⟩

=
⟨e|ψ0⟩
⟨f |ψ0⟩

(1− Γdt), (3.107)

which means that we are inhibiting the component over the state |e⟩ due to losses, and
thus the stable steady state (or attractor) of the dynamics is |f⟩. This is still the case
when the noise γ is weak, since the term γΓ− 1 < 0. When we consider the strong noise
limit γ ≫ 1, the |e⟩ state is favored

⟨e|ψdt⟩
⟨f |ψdt⟩

≈ ⟨e|ψ0⟩
⟨f |ψ0⟩

(
1 + γΓ2dt−

√
2γΓdWt

)
, (3.108)
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and thus, the attractor of the dynamics becomes the |e⟩ state; however, note that the
stochastic term dWt gives subleading O(

√
γ) terms, which do not need to be positive or

negative. On average E
(
⟨e|ψdt⟩
⟨f |ψdt⟩

)
this transition ⟨e|ψdt⟩ = ⟨f |ψdt⟩ happens exactly when

γΓ− 1 = 0,⇒ γ =
1

Γ
. (3.109)

Interestingly, even if we know that γ = Γ−1 is in the NI phase, it is not the transition
point, which we know is at γ = 1/(2Γ). This means that when γ > Γ−1, the dynamics
prefers to go to the |e⟩ state because the projection over the |e⟩ state grows in time faster
than the projection over the |f⟩ state. But in the range 1/(2Γ) < γ < 1/Γ this is not the
case, the dynamics still inhibits the |e⟩ state compared to the |f⟩ state.
The reason for the NI phase in this range does not come from the numerator but rather
the denominator of the expression, and thus cannot be seen by studying the ratio between
the two components. One problem in understanding the behavior of these expressions is
the presence in the denominator of a stochastic contribution. This problem is similar in
spirit to the problem found when imposing trace preservation, which led us to take the
average over the noise first, and only then impose TP or renormalize. If we do so here,
we find

E(⟨e|e−idĤ |ψ0⟩)
E(||e−idĤ |ψ0⟩ ||)

=
⟨e|ψ0⟩ (1 + Γ (γΓ− 1) dt)√
1 + 2Γ| ⟨ψ0|e⟩ |2((2γΓ− 1)dt

, (3.110)

E(⟨f |e−idĤ |ψ0⟩)
E(||e−idĤ |ψ0⟩ ||)

=
⟨f |ψ0⟩√

1 + 2Γ| ⟨ψ0|e⟩ |2((2γΓ− 1)dt
. (3.111)

Inspecting these functions, we see that ⟨e|ψ0⟩ sets the starting values and the functional
shape, but neither of these is the most important for us. What is the most important
feature is whether the functions grow or decrease at first order in time (since anyhow dt
is infinitesimal). We see a change as a function of the parameters, when γΓ < 1/2 the
projection over |f⟩ grows and the projection over |e⟩ decreases, when, 1/2 < γΓ < 1 both
of the projections decrease. It thus remains to be understood how the NI phase appears
in this regime of parameters; it may be through the effect of the hopping J , which we did
not take into account here.

3.3.5 Dynamics of the SDQ

Up to now, we have analyzed the spectral and eigenvector properties of the antidephas-
ing Liouvillian and the steady-state features of the equations of motion for the Bloch
coordinates. Our main focus so far has been finding the steady states of the dynamics
happening for different parameters. We found that apart from the PT u and PT b-like
phases, there exists a third phase which is Noise Induced, and which has the unstable
state |e⟩ as a steady state. Now we will turn to fully simulating the dynamics of the SDQ.
To this end we will numerically solve the nonlinear system of equations for the Bloch
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coordinates yt, zt. We will use a standard Runge-Kutta algorithm of 4th order, which we
compare to other approaches at the end of this section.
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Figure 3.14. Dynamics of the Bloch z coordinate for different values of the decay rate
Γ/J and the noise strength γJ = 0.05, 0.15, 0.8 (left to right). The initial value
of the coordinates are x0 = 0, y0 = sin θ0, z0 = cos θ0 and θ0 = 1.43. The time
axis has a time-step of J∆t = 0.0025. The dotted lines correspond to the inverse
dissipative gap t ∼ ∆−1 (white dotted) and to the period of oscillation T = 2π/ω
(red dotted). We also show the values of Γ/J at which the transitions between
the different phases happen: the PT u to PT b transition at Γ/J = 2 (gray dashed
horizontal line), the PT b to NI transition at Γ = 1/(2γ) (black dashed) and the

PT u to NI transition at Γ =
√

J/(
√
3γ) (green dashed). Note that γJ = 0.8 is

still not in the second power law region, and this is why the transition happens
for a larger value of Γ/J .

We first study the evolution of the zt coordinate. In Fig. 3.14 we show the time evolution
of zt for different values of Γ/J (vertical axis) and three different strengths of the noise
γJ = 0.05, 0.15, 0.5. For weak noise γJ = 0.05, the system is in the PT u-like phase
for low Γ/J , and we see the characteristic oscillations of this phase. The oscillation
period agrees perfectly with 2π/ω (red dotted line), where ω is the maximum oscillating
frequency of the SDQ. We see that after the time scale dictated by the gap t ∼ ∆−1

(white line), the oscillations in the z coordinate vanish and give a vanishing z Bloch
coordinate. Note that the period of the oscillating slightly increases when Γ/J gets close
to the original PT breaking transition of the model. Increasing the decay rate Γ/J in
the range 2 < Γ/J < 10 gives the behavior expected from the PT b phase, after the
inverse dissipative gap, the system converges to the |f⟩ state, i.e., zt ≈ 1. The oscillating
frequency does not completely vanish in this case, because we are in the part of the PT b
phase with a nonzero value of ω (note the minima of 2π/ω at γ = 1/(3Γ)). However, since
∆ ≫ ω, the exponential decay dominates and the oscillations are not seen. At Γ/J = 10,
we are exactly at the γ = γ∗ transition, the dynamics is CPTP, and the convergence
happens to the maximally mixed state, but with a larger time-scale, indicating a smaller
dissipative gap. Lastly, when the decay rate is large Γ/J > 10, we see that the system
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is fully in the NI phase, with a convergence to the |e⟩ state, z ≈ −1, in a very fast time
scale Jt ≈ 10−2. Note that even in this phase, the oscillating frequency is non-zero at
γ = 1/Γ, but the dynamics has long stabilized before the oscillation could be seen.

The behavior is similar with a slightly stronger noise γJ = 0.15, particularly for both the
PT u and NI phases, which show damped oscillations and fast exponential convergence,
respectively. However, in this case since the limits of the PT b phase are close 1/(2γ) =
3.33 . . . , the dynamics does not converge to the |f⟩ state but rather get a very small
z ≈ 0 coordinate, after the inverse dissipative gap. When we considerlarger values of the
noise γJ = 0.8 we see that there is no PT b phase, as expected, and the transition to
z = −1 phase happens with the second power law γ = JΓ−2 (green dashed line). The
convergence to the steady state is perfectly characterized by the inverse dissipative gap.
Also note that the oscillation period stays constant as Γ/J changes because the oscillation
frequency only vanishes well in the NI phase, in particular γ = 2JΓ−2.
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Figure 3.15. Dynamics of the Bloch z coordinate with linear scale on the time axis.
Parameters as in Fig. 3.14.

The reader may note that the oscillations of the PT u phase look strange when plotted
in logscale for very large Jt. Figure 3.15 shows the same quantity as before, but in
a linear scale on the time axis. This shows that indeed the oscillations are perfectly
explained by the multiples of the oscillation period 2πn/ω (red dotted lines) and that
for the weaker noises γJ = 0.05, 0.15, the period clearly grows as we approach the PT
breaking transition.

Figure 3.16 shows the evolution of the y coordinate of the Bloch sphere. At weak noise
(left), we observe oscillations, as expected from the PT u phase, and a convergence to a
state with a small but negative y coordinate after the inverse dissipative gap. At the PT
breaking transition, the dynamics show convergence to a steady state with y ≈ −1. In
the rest of the PT b phase, the steady state has a negative y component (also seen for
slightly stronger noise γJ = 0.15) but exactly at the γ = γ∗ transition this changes and
the steady state acquires a small but positive y component. This y component canishes
as we go inside the NI phase. For strong noise γJ = 0.8, there is no PT b phase, and
the y coordinate becomes positive in the NI transition, and vanishes as we progressively
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Figure 3.16. Dynamics of the Bloch y coordinate. Parameters as in Fig. 3.14.

enter the NI phase. Note that even the second power law Γ = 1/
√√

3γ underestimates
the point at which we enter the NI phase, because γJ = 0.8 is in the interpolating region
between the two power laws.

Comparison of different numerical approaches

The 4th order Runge-Kutta algorithm finds the numerical solution to a system of differ-
ential equations ṙ = f(r, t) subject to the initial condition r0. Taking a timestep ∆t, the
numerical solution to the system of equations reads

rn+1 = rn +
∆t

6
(k1 + 2k2 + 2k3 + k4), tn+1 = tn +∆t, (3.112)

where the auxiliary variables are defined as

k1 = f(rn, tn), (3.113a)

k2 = f

(
rn +

k1

2
∆t, tn +

∆t

2

)
, (3.113b)

k3 = f

(
rn +

k2

2
∆t, tn +

∆t

2

)
, (3.113c)

k4 = f (rn + k3∆t, tn +∆t) . (3.113d)

Since any quantum state of a qubit is fully characterized by its Bloch coordinates (x, y, z)
and the coordinates follow a system of ordinary differential equations this method gives
the solution for the dynamics.

A more general approach, which is practical for quantum systems with small Hilbert space
dimension, is the following. We first vectorize the Liouvillian using the Choi-Jamiolkowski
isomorphism (in our case this is given by (3.46)), i.e., we find Lvec as a N

2 ×N2 matrix
acting on vectors which represents density operators. Given the vectorized Liouvillian,
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we can compute the evolution generated by that Liouvillian by Trotterizing the time
evolution as

eLvect = eLvec∆t . . . eLvec∆t = (eL∆t)Nt , (3.114)

where t = ∆tNt. Note that this identity is exact since Lvec is time independent and
trivially commutes with itself at different times. Therefore given an initial state ρ̂0 → |ρ0)
we can compute the infinitesimal propagator eL∆t and the time evolution of the state
follows as

|ρt) =
(eL∆t)Nt |ρ0)

(1̂|(eL∆t)Nt |ρ0)
, (3.115)

where we have used the identity Tr(ρ̂t) = Tr(1̂ρ̂t) = (1̂|ρt), where the Euclidean inner
product of vectorized operators (A|B) =

∑
n,mA

∗
nmBnm = Tr(Â†B̂) is the same as the

Hilbert-Schmidt inner product for operators.
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Figure 3.17. Evolution of the purity computed in two different ways: using a 4th order Runge-
Kutta integrator on the Bloch coordinates dynamics (black solid line), and using
the vectorized Liouvillian (red dotted line). As a further check, we compare
with the 1st order purity evolution (3.58) (blue dashed lines). The parameters
for the simulation are γ = 0.5,Γ = 0.5 and the initial (mixed) state has Bloch
components r = (0.2, 0.8, 0.4). The absolute value of the difference between the
two solutions is of order 10−11 with a timestep J∆t = 0.004.

Figure 3.17 shows a comparison between these two methods: Runge-Kutta (black) and the
Trotterized evolution of the Liouvillian (dotted red), for solving the evolution of the purity
of the SDQ model. We see perfect agreement between the two curves; indeed, the maxi-
mum difference between the purity in both of them is maxt |P (RK4)

t −P (Liouv)
t | = O(10−11).

Furthermore, the evolution of the purity agrees well with the first order approximation
for the purity at different times given by the ∂tPt equation for the SDQ (3.58). In prac-
tice, we choose to solve the dynamics numerically using the Runge-Kutta method since
the vectorized Liouvillian is computationally harder since we have to compute the matrix
exponential of a 4× 4 matrix and then compute Nt matrix products.
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3.3.6 Approach to steady states

We now want to study how the convergence to the stable steady state ρ̂s happens. In
order to do this, we will study the behavior of the Uhlmann fidelity F (ρ̂t, ρ̂

s) between
the time-evolved state and the stable steady state. The fidelity gives a natural “distance”
between two given states, cf. Sec. 1.1. The Uhlmann fidelity [15, 262] between two general
mixed states F (ρ̂, σ̂) reads

F (ρ̂, σ̂) = Tr

(√√
ρ̂σ̂
√
ρ̂

)2

. (3.116)

This expression is cumbersome since it involves many matrix square roots. However,
when ρ̂ and σ̂ are two states of a qubit, there is a simpler expression due to Jozsa [16]
and Hubner [263] which reads

F (ρ̂, σ̂) = Tr(ρ̂σ̂) + 2
√
det ρ̂ det σ̂. (3.117)

For different values of the parameters of the SDQ, we have found different phases, char-
acterized by different steady states and a different route to the steady state. We want to
characterize the convergence to the steady state in a unified way in all phases. For this
reason, we study the fidelity between the time-evolved state and the stable steady state
to which the dynamics converges F s

t := F (ρ̂t, ρ
s) for the given parameters γJ, Γ/J .
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Figure 3.18. Fidelity between the time-evolved state and the stable steady state as a
function of the loss parameter Γ and time for noise strengths γJ = 0.05, 0.15, 2.
The transitions are shown between the PT u to PT b phases Γ/J = 2 (gray
dashed) and PT b to NI phases Γ = 1/(2γ) (black dashed) and PT u to NI phases

Γ = 1/
√√

3γ. The time-scales of the inverse dissipative gap ∆−1 (white dotted)
and the oscillation period 2π/ω (red dotted) are also shown. The simulation
solves the system of equations for the Bloch coordinates using the Runge-Kutta
method.
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Figure 3.18 shows the evolution of the fidelity F s
t as a function of time and the decay

rate Γ/J , which, as we discussed previously, seems to be a feasible parameter to change
on the experimental setup, at least more than the strength of the noise. We first show a
weak noise case γJ = 0.05, in which we see that in the PT u phase the convergence to the
steady state is oscillatory, and after the inverse dissipative gap the dynamics converges to
the stable steady state, which we know is close to the center of the Bloch ball, i.e., a mixed
state. Note that the period of the oscillations is perfectly characterized by 2π/ω. The PT b
has a faster convergence towards the stable steady state, which does not allow for seeing
the oscillations since ∆−1 ≪ 2π/ω. In the transition to the NI phase, the dissipative gap
decreases, and thus the time for stabilization increases, although the fidelity between the
time-evolved state and the maximally mixed state, the stable steady state when γ = γ∗, is
larger than for the rest of the decay rates. This means that Lindblad dynamics happen in
a way that keeps the state closer to the steady state than the rest of the SDQ dynamics.
Lastly, the convergence in the NI phase is very fast, much faster than in any of the other
phases.

The behavior for slightly stronger noise γJ = 0.15 is similar, with oscillatory convergence
in the PT u phase, very fast convergence in the NI phase. However, for this value, the
dissipative gap does not decrease much around the γ = γ∗ transition. This means that the
dissipation time-scale t = ∆−1 does not have a peak around γ = γ∗. However, the fidelity
is bigger for this transition, which, interestingly, happens slightly over γ = γ∗. When we
consider strong noise γJ = 2, there is no PT b phase; we transition directly from PT u
to NI. We see that γ = γ∗ largely underestimates the decay rate at which the transition
happens, and even γn underestimates this value, although it is much closer, because the
noise strength is not strong enough to be in the region where the second power law fits
well, but rather in the interpolating region between both power laws.

3.4 Single trajectory dynamics

3.4.1 General Equation of motion

If we first make sure that all single trajectories, i.e., realizations of the noise ξ
(j)
t , represent

normalized trajectories, the dynamics will in general be different. This can be obtained
by modifying the SME (3.3) to obtain a nonlinear SME given by

dϱ̂t =
(
L̃ad
Ĥr,Ĥi,L̂

[ϱ̂t]− Tr(L̃ad
Ĥr,Ĥi,L̂

[ϱ̂t])ϱ̂t

)
dt (3.118)

+
Nc∑
n=1

(
M̃L̂n

[ϱ̂t]− Tr(M̃L̂n
[ϱ̂t])ϱ̂t

)
dWt

(n),

which if we average over the noise ρ̂t = E(ϱ̂t) yields

∂tρ̂t = L̃ad
Ĥr,Ĥi,L̂

[ρ̂t]− E
(
Tr(L̃ad

Ĥr,Ĥi,L̂
[ϱ̂t])ϱ̂t

)
. (3.119)
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As previously discussed, this master equation is not closed; the evolution of the first
moment ρ̂t depends on the second moment E(ϱ̂2t ), and the one for the second depends on
the third and the fourth, and so on, leading to a hierarchy of equations. For this reason,
when dealing analytically with the average over the noise, we did not follow this approach.
However, since this is actually the protocol that describes properly single trajectories, we
will now focus on the properties of the nonlinear SME (3.118).

The SDE for the purity can be obtained from dTr(ϱ̂2) = 2Tr(ϱ̂dϱ̂)+Tr(dϱ̂dϱ̂), which gives

dPt =

{
2Tr(L̃[ϱ̂t]ϱ̂t)− 2Tr(ϱ̂2t )Tr(L̃[ϱ̂t]) (3.120)

+
Nc∑
n=1

(
Tr(M̃n[ϱ̂t]

2)− Tr(M̃n[ϱ̂t])
2Tr(ϱ̂2t )

)}
dt

+ 2
Nc∑
n=1

(
Tr(M̃n[ϱ̂t]ϱ̂t)− Tr(M̃n[ϱ̂t])Tr(ϱ̂

2
t )
)
dWt

(n),

where we omitted the Ĥr, Ĥi . . . dependence on the Liouvillian and introduced M̃L̂n
≡

M̃n. Now we assume that the state ϱ̂t is pure, so we find

dPt =

{
2Tr(L̃[ϱ̂t]ϱ̂t)− 2Tr(L̃[ϱ̂t]) (3.121)

+
Nc∑
n=1

(
Tr(M̃n[ϱ̂t]

2)− Tr(M̃n[ϱ̂t])
2
)}

dt

+ 2
Nc∑
n=1

(
Tr(M̃n[ϱ̂t]ϱ̂t)− Tr(M̃n[ϱ̂t])

)
dWt

(n).

Consider a generic superoperator S[•] = Ŝ(l) •+ • Ŝ(r) +
∑

n Ĵ
(l)
n • Ĵ (r)

n , it is easy to check
that for this superoperator

Tr(S[|ψ⟩ ⟨ψ|] |ψ⟩ ⟨ψ|)− Tr(S[|ψ⟩ ⟨ψ|]) =
∑
n

(
⟨Ĵ (l)

n ⟩ψ⟨Ĵ (r)
n ⟩ψ − ⟨Ĵ (r)

n Ĵ (l)
n ⟩ψ

)
.

Since the superoperator in the stochastic term dWt
(n) does not have jump terms, it van-

ishes, and we are left with an ordinary differential equation for the purity

dPt =
Nc∑
n=1

γn

{
4⟨L̂n⟩2ψ − 4⟨L̂2

n⟩ψ + 2Tr({L̂n, |ψ⟩ ⟨ψ|}2)− 2Tr({L̂n, |ψ⟩ ⟨ψ|})2
}
dt

=
Nc∑
n=1

γn

(
�
���4⟨L̂n⟩2ψ −H

HHH
4⟨L̂2

n⟩ψ +
�
���4⟨L̂n⟩2ψ +

H
HHH

4⟨L̂2
n⟩ψ −

�
���8⟨L̂n⟩2ψ

)
dt

dPt = 0. (3.122)



148 Stochastic Non Hermitian Hamiltonians

Therefore, the SME keeps pure states pure at single trajectories. This was expected since
Non-Hermitian Hamiltonians keep the rank of states constant [264], which in particular
implies that a pure state remains pure. This result holds for arbitrary time-dependent
NH Hamiltonians.

3.4.2 Single trajectory dynamics of the SDQ

The single trajectory dynamics of the SDQ poses the perfect playground to study the
validity of the analytical results obtained in the rest of the chapter, since in experiments
such as [80] there is, in principle, access to single realizations of the noise. For this reason,
we also studied the single trajectory dynamics in [7]. The nonlinear stochastic master
equation for the SDQ reads

dϱ̂t =
(
−iJ [σ̂x, ϱ̂t]− Γ{Π̂, ϱ̂t}+ γΓ2{Π̂, {Π̂, ϱ̂t}}+ (2Γ− 4γΓ2)Tr(Π̂ϱ̂tΠ̂)ϱ̂t

)
dt

−
(√

2γΓ{Π̂, ϱ̂t} − 2
√
2γnΓTr(Π̂ϱ̂t)ϱ̂t

)
dWt. (3.123)

We now introduce the single trajectory Bloch coordinates ϱ̂t =
1
2
(1̂ + r · σ̂) where r =

(x, y, z) and σ̂ = (σ̂x, σ̂y, σ̂z). The antidephasing SME can then be written equivalently
as 

dx = (−(γΓ2 + zΓ(1− 2γΓ))x) dt−√
2γΓxzdWt,

dy = (−2Jz− (γΓ2 + zΓ(1− 2γΓ))y) dt−√
2γΓyzdWt,

dz = (2Jy− Γ(1− 2γΓ)(z2 − 1)) dt−√
2γΓ(z2 − 1)dWt.

(3.124)

The first equation is linear in x, which implies that starting from x = 0 ensures that
this coordinate is stationary in time. Using the Itō lemma, the y, z coordinates can be
equivalently expressed in terms of the polar coordinates y = r sin θ, z = r cos θ as
dr(y, z) = ∂yr(y, z)dy+ ∂zr(y, z)dz+

1

2

∂2r(y, z)

∂y2
dy2 +

1

2

∂2r(y, z)

∂z2
dz2 +

∂2r(y, z)

∂y∂z
dydz,

dθ(y, z) = ∂yθ(y, z)dy+ ∂zθ(y, z)dz+
1

2

∂2θ(y, z)

∂y2
dy2 +

1

2

∂2θ(y, z)

∂z2
dz2 +

∂2θ(y, z)

∂y∂z
dydz,

which simplify to
dr =

Γ (r2 − 1)
(
r(2γΓ− 1) cos(θ)− γΓ sin2(θ)

)
r

dt−√
2γΓ (r2 − 1) cos(θ)dWt,

dθ = −
√
2γΓ sin(θ)

r
dWt −

(
Γ sin(θ) (γΓ (3r2 − 2) cos(θ)− 2γΓr + r)

r2
+ 2J

)
dt.

If the dynamics starts from a pure state r = 1, we find that the radial coordinate does not
evolve in time dr = 0, as we proved generally in the previous section, since pure states
remain pure. In this case, the dynamics is completely determined by a single SDE for the
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angle θ in the Bloch sphere

dθ = −
√

2γΓ sin(θ)dWt − (2J + Γ(1− 2γΓ + γΓ cos(θ)) sin(θ)) dt. (3.125)
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Figure 3.19. Different instances of single trajectory dynamics in the PT u (left), PT b (center),
and NI (right) phases. The plots show the time evolution of the Bloch coordinates
zt and yt (gray lines) as well as their average zt = E(zt), yt = E(yt) (blue line)
and their standard deviation (shaded blue area). There are Nav = 50 realizations
of each trajectory, and each time array has 2000 time-steps. The parameters are
γJ = 0.02 and Γ/J = 1, 10, 50. The initial state has parameters r0 = 1, θ0 =
0.9438rad.

Figure 3.19 shows the time evolution of the Bloch coordinates for three different choices of
parameters in the PT u, PT b, and NI phases. The PT u dynamics show the characteristic
oscillations, which as was observed experimentally are not perfectly sinusoidal but each
period is slightly asymmetric [80], the PT b phase converges to the |f⟩ state with z =
+1, y ≈ 0, keeping some fluctuations around this value, and the NI phase converges fastly
tp the |e⟩ state z = −1, y = 0. Interestingly, the single trajectories show that in the limit
of large Γ the trajectories behave similar to Poissonian quantum jumps, and in the NI
phase there are no fluctuations at long times in the zt value.

Figure 3.20 shows the evolution of the average of single trajectories, which shows a good
agreement with the similar plots in Figs. 3.14, 3.16 (left) although here the dynamics
was solved for a shorter overall time. We see that the PT u phase shows oscillations at
the frequency predicted by the spectral analysis (red dotted line). In the PT b phase, the
dynamics converges close to z ≈ +1, although here the dynamics shows more fluctuations,
which we already saw in Fig. 3.19 (center). Lastly, the NI phase is very clearly observed,
the dynamics converges fast to z = −1 and y = 0, and it shows very little fluctuations
around this value. The transitions between the three phases occur at the predicted value
Γ/J = 2 (gray dotted) and γΓ = 1 (black line).

Figure 3.21 shows the phase diagrams of the Bloch coordinates for the steady state ob-
tained numerically. Except for the PT u phase for very small decay rate, which is not
sampled reliably, the phase diagrams show good agreement with what we expect from the
values obtained analytically. To check this, we compute the remainder as the difference
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Figure 3.20. Plot of the evolution of the average Bloch coordinates zt = E(zt) (left) and
yt = E(yt) (right) for a fixed value of the noise-strength γJ = 0.055 as a function
of time and the decay rate Γ/J .
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Figure 3.21. Single trajectory steady state phase diagrams for the Stochastic Dis-
sipative Qubit. Each data point shows the last slice of the time evolution
of trajectories where the time array has 300 time-steps and the final time is
tfin = 10/∆. This means that the evolution is more reliable for the NI and PT b
phases since the PT u phase shows oscillations which need not be well sampled
through this approach.

between the single trajectory and the average result

R̂ = E(ϱ̂t)− ρ̂
(av)
t , (3.126)

whose Hilbert-Schmidt norm follows as

∥R̂∥2 = Tr(R̂†R̂) =
(z(st) − z(av))2 + (y(st) − y(av))2

2
, (3.127)

which is shown in Fig. 3.21 (right) and shows that, except for the region deep in the PT u
phase, the solution obtained from averaging single trajectories and from first averaging
and then renormalizing, agrees quite well, and is mostly largest at the transitions, which
happen at slightly different values for the two approaches.



Stochastic Non Hermitian Hamiltonians 151

3.4.3 Noise-Induced phase in No-Pump dynamics

One conceptual problem with including white noise on a quantum non-Hermitian Hamil-
tonian is that since ξt has support over the whole real line, the Hamiltonian

Ĥt = Ĥ0 − iL̂(1 +
√

2γξt), (3.128)

is not guaranteed to have a negative imaginary part, since 1 +
√
2γξt can always be

negative. This could provide a simple explanation for the emergence of the NI phase,
since the times when 1+

√
2γξt < 0, the noise can be understood as pumping population

in one of the states. In here, we develop a formalism that prohibits the existence of these
pumps, and we show that the NI phase still happens without them.

For this reason, we impose the constraint 1+
√
2γξt ≥ 0, which “cuts off” part of the tail of

the distribution. To have it symmetric, we also get rid of the right tail of the distribution.
Therefore we introduce an associated stochastic process ζt which is Gaussian in the range
[− 1√

2γ
, 1√

2γ
], and zero outside of that range.

How to deal with truncated Gaussian noise?

The Itō rule comes from the property∫ ∞
−∞

ξ2P(ξ)dξ = t, (3.129)

whereP(ξ) = 1√
2πt
e−ξ

2/(2t) is a normal distribution. Now, the truncated Gaussian stochas-

tic process ζ has a probability distribution P(ζ) given by

P(ζ) =
1

erf((2
√
γt)−1)

√
2πt

e−
ζ2

2t ,

which ensures that
∫ 1/
√
2γ

−1/
√
2γ
P(ζ)dζ = 1. Clearly, when γ → 0, the cutoffs diverge and we

recover the normal distribution. Now, the analogous result that leads to Itō’s rule is∫ Λ

−Λ
ζ2P(ζ)dζ = t

(
1− e−

1
4γt

erf( 1
2
√
γt
)
√
πγt

)
, (3.130)

where we introduced the cutoff Λ = (
√
2γ)−1. From this expression, we see that when

ϵ = γt≪ 1, we recover the linear dependence. This shows that considering small noise γ
and small times dt, the stochastic process ζt, and its Itō version dVt := ζtdt also have a
non-zero value of dV 2

t , but it is not necessarily equal to dt.
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Numerically solving a truncated Gaussian SDE

To simulate the no-pump dynamics, we choose a very simple Euler-Maruyama integrator
and adapt it for our purposes. The SDE is

dY = a(Y )dt+ b(Y )dVt + c(Y )dV 2
t , (3.131)

where following the previous analysis, we keep the terms dV 2
t , since they are non-zero,

but do not enforce them to be equal to dt. The numerical solution is given by

Yn = Yn−1 + a(Yn−1)∆t+ b(Yn−1)∆Vn + c(Yn−1)∆V
2
n , (3.132)

where ∆Vn is sampled from a truncated Gaussian with variance ∆t, zero average, and
cutoffs given by Λ. The SDE that we are simulating is obtained by re-expressing the angle
SDE without assuming that dV 2 = dt, i.e.,

dθ = −(2J + Γ sin θ)dt−
√

2γΓ sin θdVt + γΓ2 sin θ(2− cos θ)dV 2
t . (3.133)
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Figure 3.22. No pump dynamics of the SDQ. The figure shows single trajectories in the NI
phase (left) and the behavior of the average for a fixed noise strength γJ = 0.05.

Figure 3.22 shows the evolution of the Bloch coordinates (left). We observe a clear
convergence to z = −1, from where we can already conclude that the NI phase is still
present when we enforce no pump dynamics. Fig. 3.22 (right) shows the average evolution
of the zt coordinate for different values of the decay rate, and we observe that the transition
from the PT b to NI phase is similar to the one obtained before, and that the NI phase,
also when no pumps are present, shows little fluctuations around its steady state value.
This analysis shows that the pumps are not the physical reason behind the NI phase, we
however found out that if the terms dV 2

t were removed, no NI phase could be found, and
we can thus conclude that the property of Itō’s process which makes dV 2

t non-zero, causes
the existence of the NI phase.
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3.4.4 Justifying Trace Preservation at average level

The formalism that leads toa closed antidephasing master equation for the average den-
sity matrix assumes that we first average and then impose trace preservation, i.e., we are

using E(ϱ̃t)
E(Tr(ϱ̃t)) as an approximation of E

(
ϱ̃t

Tr(ϱ̃t)

)
which is the physical one happening in

the lab, since the trajectories remain pure, normalized states. One could shift thr focus,
and consider certain physical situations where we have access to the average of the unnor-
malized DM E(ϱ̃t), such as for example with an ensemble of systems which may or may
not have decayed, such as is done in certain quantum optical realizations of NH Hamilto-
nians [265], in which we do not have access to the normalized single trajectory dynamics.
However, the recent experiments [80, 85] have access to single trajectories and thus when

averaging over realizations they have access to E
(

ϱ̃t
Tr(ϱ̃t)

)
. A similar issue is encountered

in the spectral form factor at finite temperature which requires the computation of an
“annealed” average [124, 126] ⟨|Zβ+it|2⟩/⟨Z2

β⟩ as an approximation of ⟨|Zβ+it|2/Z2
β⟩. In

this case, it is known that in the limit β → 0 the approximation becomes exact. For the
types of averages that we have here, the validity of this approximation is not known, and
thus, we develop a formal treatment of this approximation in this section.

Let us take the argument in [266] and extend it to our case with density matrices. We
begin by writing the density matrix as its noise average plus a perturbation

ϱ̃ = E(ϱ̃) + δϱ̃ ≡ ρ̃+ δϱ̃, Tr(ϱ̃) = E(Tr(ϱ̃)) + Tr(δϱ̃). (3.134)

By construction, these objects obey

E(δϱ̃) = 0, E(Tr(δϱ̃)) = 0

Noticing that now E(ϱ̃) ≡ ρ̃,E(Tr(ϱ̃)) = Tr(ρ̃) are not random variables anymore, and
they can come out of the expectation value, the relevant expectation value can be written
as

E
(

ϱ̃

Tr(ϱ̃)

)
= E

(
ρ̃+ δϱ̃

Tr(ρ̃) + Tr(δϱ̃)

)
(3.135)

=
ρ̃

Tr(ρ̃)
E

(
1

1 + Tr(δϱ̃)
Tr(ρ̃)

)
+

1̂

Tr(ρ̃)
E

(
δϱ̃

1 + Tr(δϱ̃)
Tr(ρ̃)

)
.

Which, assuming the trace of the perturbation to be small compared to the trace of the
average |Tr(δϱ̃)/Tr(ρ̃)| ≤ 1, can be expanded in power series giving

E
(

ϱ̃

Tr(ϱ̃)

)
=

ρ̃

Tr(ρ̃)
+

ρ̃

Tr(ρ̃)

∞∑
n=2

(−1)n
E(Tr(δϱ̃)n)
Tr(ρ̃)n

+
∞∑
n=1

(−1)n
E(δϱ̃Tr(δϱ̃)n)
Tr(ρ̃)n+1

, (3.136)

where we have used the properties of zero averages to cancel some of the terms. Now
what remains to be found is how small the correction term is; for this, we assume that
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the corrections δϱ̃ are in some sense small. For the trace, this means

|Tr(δϱ̃)| ≪ Tr(ρ̃), ϵ :=
|Tr(δϱ̃)|
Tr(ρ̃)

≪ 1.

For the operator itself, we have to introduce the matrix norm

∥δϱ̃∥ ≪ ∥ρ̃∥, δ :=
∥δϱ̃∥
∥ρ̃∥ ≪ 1.

Furthermore, since ρ̃ ≥ 0 is positive semidefinite10 ∥ρ̃∥ ≤ Tr(ρ̃). The remainder R̂ :=
E( ϱ̂t

Tr(ϱ̂t)
)− ρ̃t

Tr(ρ̃t)
reads

R̂ :=
ρ̃

Tr(ρ̃)

∞∑
n=2

(−1)n
E(Tr(δϱ̃)n)
Tr(ρ̃)n

+
∞∑
n=1

(−1)n
E(δϱ̃Tr(δϱ̃)n)
Tr(ρ̃)n+1

. (3.137)

By virtue of sub-additivity of the matrix norm, the norm of this quantity can be upper-
bounded as

∥R̂∥ ≤ ∥ρ̃∥
Tr(ρ̃)

 ∞∑
n=2

E(|Tr(δϱ̃)n|)
Tr(ρ̃)n

+
∞∑
n=1

E
(
∥δϱ̃∥
∥ρ̃∥ |Tr(δϱ̃)n|

)
Tr(ρ̃)n

 , (3.138)

which using ∥ρ̃∥ ≤ Tr(ρ̃) yields

∥R̂∥ ≤

 ∞∑
n=2

E(|Tr(δϱ̃)n|)
Tr(ρ̃)n

+
∞∑
n=1

E
(
∥δϱ̃∥
∥ρ̃∥ |Tr(δϱ̃)n|

)
Tr(ρ̃)n

 . (3.139)

Focusing only on the lowest order contribution, the first term is ϵ2 and the second is ϵδ;
therefore, the remainder is upper bounded by a term of order

∥R̂∥ ≲ ϵ2 + ϵδ (3.140)

which already gives an argument that the remainder is small. If we do not use the
subadditivity property, we may be able to find a better bound. The lowest order terms
of the remainder can be written as

R̂′ =
1

Tr(ρ̃)2
E
(
(ρ̃Tr(δϱ̃)− Tr(ρ̃)δϱ̃)

Tr(δϱ̃)

Tr(ρ̃)

)
.

10We did not specify here the norm that we choose, hwoever from a practical point of view we are
interested in either the operator norm ∥Â∥2op = maxn λn or the Hilbert-Schmidt or Frobenius norm

∥Â∥2hs = Tr(Â†Â). For a positive semidefinite operator, both of these norms fulfill this property since

maxn λn ≤∑n λn and
∑

n λ
2
n ≤ (

∑
n λn)

2
for λn ≥ 0.
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This shows that the remainder’s lowest order terms are traceless Tr(R̂′) = 0, even without
the noise average. These terms have opposite signs, and using the subadditivity property
removes these signs; thus, the bound derived using this property may be worse.

It is also possible to show that taking the Hilbert Schmidt norm of this remainder (3.126),
it can be expressed as the difference of Bloch coordinates for a qubit (3.127). In Fig. 3.21,
we show that, except for the lower left corner for which the integrator is not well-suited,
the norm of the difference between the two averages is small for the steady states.

3.5 Experimental results

We first review several possible platforms in which a realization of the Stochastic Dissi-
pative Qubit could be feasible; then we turn to analyze data from the residual decay rate
of the Dissipative Qubit [80], for which the SDQ provides a model for the effect of the
noise.

3.5.1 Possible experimental implementations of the Stochastic
Dissipative Qubit

Superconducting circuit realization of the Non-Hermitian Qubit

The first purely quantum experimental realization of a Non-Hermitian Hamiltonian was
done by Naghiloo et al. [80]. In their experimental setup, they leverage superconducting
circuits to engineer a NH Hamiltonian, in particular the Dissipative Qubit. We now review
the basics of the experimental setup and some of their observations, particularly the most
relevant ones for the aim of this chapter.

The setup uses a transmon circuit, which is made from two Josephson Junctions in a
SQUID geometry, with a capacitor connected in parallel. The transmon has several
energy levels which can be addressed individually with a microwave pulse, in particular,
the energy levels that will be used are {|g⟩ , |e⟩ , |f⟩}. The spacing between these energy
levels is tuned by applying a magnetic flux Φ through the SQUID loop, and the coupling
between two of them J(|e⟩ ⟨f | + |f⟩ ⟨e|) is obtained by a “coherent resonant drive of
variable amplitude and detuning” [80].

The transmon is embedded in a 3D cavity, which introduces dissipation in the system
modelled by the standard GKSL master equation. In particular, the interaction between
the transmon and the fundamental mode of the cavity gives a state-dependent shift of the
cavity frequency, which can be probed with a microwave tone, and then the phase-shift
is detected through homodyne measurement with a Josephson parametric amplifier [80].
The idea to build the Dissipative Qubit is to consider the sub-manifold of states {|e⟩ , |f⟩}
as the qubit system, and |g⟩ as a stable ground state, effectively acting as a continuum,
outside of the qubit states. Each of the energy levels |e⟩ , |f⟩ has an associated decay
rate Γe, Γf , the effective description as a NH Hamiltonian is only valid when Γe ≫ Γf so
that the decay rate of the |f⟩ state can be disregarded. Furthermore, the cavity has an
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impedance mismatch element that allows tuning the density of states of the cavity. By
changing the magnetic flux the frequency of the transition between |g⟩ and |e⟩ can be tuned
to one of the regions where the cavity density of states is enhanced, thus giving a larger
decay rate γe, so that the condition Γe ≫ Γf can be fulfilled [80]. The transition |e⟩ → |g⟩
is continuously monitored and trajectories showing a quantum jump are discarded to
obtain the effective NH Hamiltonian.

The ideal behavior of the Dissipative Qubit has two phases corresponding to PT unbroken,
with real energy difference, and the PT broken, with imaginary energy difference. These
two phases give purely oscillatory and purely decaying dynamics, respectively. However,
the experiments show that in the PT unbroken phase, there is a residual damping term
ΓR. In one of the experiments, it is estimated to be ζR = 0.6µs−1, too large to be
explained by the small decay rate Γf . The authors thus conclude that this finite decay
rate is associated to “charge and flux noise” [80]. The magnetic flux is used to set the |g⟩
to |e⟩ transition frequency in one of the regions with high density of states, therefore noise
in the flux translates to noise in the anti-hermitian part of the Dissipative Qubit, therefore
the real experiment may be modelled by the Stochastic Dissipative Qubit introduced here.
One of the reasons for this is that the SDQ has a PT u-like phase in which the dissipative
gap is non-zero. This will be investigated in detail in Sec. 3.5, which gives supporting
evidence of the SDQ correctly reproducing the observed residual decay for a particular
value of the strength of the noise γ.

Trapped Ion realization

A recent alternative realization of a Non-Hermitian Hamiltonian, particularly the Dis-
sipative Qubit, has been recently reported. In here, the platform used is a trapped
ion [235]. The basic setup uses a single 40Ca+ ion in a linear Paul trap [267]. The
setup considers four relevant energy levels {|↑⟩ , |↓⟩ , |A⟩ , |g⟩} where the qubit levels
|↑⟩ = |m = +5/2⟩ , |↓⟩ = |m = +3/2⟩ live in the meta-stable D5/2 manifold, the aux-
iliary level |A⟩ lives in the P3/2 manifold and the ground state |g⟩ lives in the S1/2 man-
ifold. Firstly, a Rabi drive Jσx = J |↑⟩ ⟨↓| + h.c. is introduced through resonant radio
frequency pulses at the qubit frequency [235]. The |↓⟩ state is coupled to the auxiliary
state |A⟩ using π-polarized light with pulse-strength JA implementing the second drive
JA |↓⟩ ⟨A|+h.c.. The population in the |A⟩ state fastly decays to |g⟩ through spontaneous
emission 93.5% of the time, which is described by a GKSL dissipator with jump operator√
Γg |g⟩ ⟨A|. When Γg ≫ JA the auxiliary level can be adiabatically eliminated [268] and

post-selection of the quantum jumps gives the anti-hermitian term in the Hamiltonian as
iΓtiσz = iΓti(|↑⟩ ⟨↑| − |↓⟩ ⟨↓|), where the decay rate is Γti = J2

A/Γg ≪ Γg.

One advantage of this experimental setup is that the decay rate depends on a quantity
that can in principle be tuned, such as the pulse strength JA, and thus it could be
possible to modulate it in a noisy way JA(1 +

√
2γξt) which could provide a way to

experimentally manipulate the strength of the noise γ. One limitation of this experimental
platform is that the |A⟩ level decays back to the D5/2 manifold 5.87% of the times [235]

which effectively limits the time that the NH descripton is valid to t ∼ 2π/|
√
J2 − Γ2

ti|.
Experimentally, this means that only a couple or one Rabi oscillations can be seen before
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the description breaks down. However, our main result, the presence of the NI phase,
happens very fast, much faster than the Rabi oscillations since ∆ ≫ ω in the NI phase.
This means that it should be possible to observe the NI phase, i.e., convergence to the
|↓⟩ state, in this experimental platform.

3.5.2 Modelling noise in the Dissipative Qubit

The antidephasing dynamics of the Stochastic Dissipative Qubit naturally lead to an
exponential decay, i.e., a nonzero dissipative gap, caused by the presence of noise, even
in the PT -unbroken-like region, as we already discussed in Fig. 3.4 (a). The explicit
expression of the dissipative gap is quite cumbersome, however, in the large J limit it is
simplifies to

lim
J→∞

∆(γnJ,
Γ
J
)J =

γnΓ
2

2
, (3.141)

where the factors of J make sure that this quantity has dimensions of frequency. And the
large J limit ensures that the dynamics is in the PT u phase, considering that the noise
is not too large, in particular γ < 1/(2Γ).
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Figure 3.23. Fitting strategy for the experimental data in the PT -symmetric phase.
Normalized population Pn

f (t) of the |f⟩ state (black circles) for the full range of
times, at some point the results become very noisy, so we only fit the first data
points (red circles). The data in that range is fitted to the damped exponential
fΓR,b,c,ω(t) (blue line), which also naturally describes the exponential envelope
ce−ΓRt + b (3.142) (green dashed line).

The main observation that cannot be explained in the framework of the Dissipative Qubit
is the presence of the residual damping rate estimated to be in one case ζR = 0.6µs−1.
Using the simplified expression for the dissipative gap at large J , we can easily extract the
value of the strength of noise γn = 2ζR

Γ2 needed to explain the residual decay rate. Using
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the experimental parameter, Γ = 6.7/2µs−1, we find that γn = 0.107µs matches, at large
J , the value Γ0 = 0.6µs−1.

The value for the residual decay rate is, however, not as simple as the value ζR = 0.6µs−1.
We will devote this section to a more careful exploration of this residual damping from
an analysis of the data for the evolution of the DQ in Naghiloo et al. [80]. Figure
3.23 presents the evolution of the normalized population of the |f⟩ state P n

f (t) in time
in the PT unbroken phase of the DQ. We observe the characteristic oscillations from
the real spectrum associated with PT symmetric systems. However, careful observation
shows that this evolution has a small exponential envelope, which makes the oscillations
progressively decay. This is the residual decay rate that cannot be explained in the
deterministic non-Hermitian framework. We will fit the experimental data to a damped
exponential

fΓR,b,c,ω(t) = ce−ΓRt cos(ωt) + b. (3.142)

Algorithm 1 Fitting strategy of Experimental Populations

1: for J ∈ Jarr do
2: for t ∈ tarr do
3: if P n

f (t) > 1 or P n
f (t) < 0 then

4: Append t to tout
5: else
6: tout = max tarr
7: end if
8: end for
9: Set tphys = min tout

10: Fit P n
f (t) to fΓR,b,c,ω(t) (3.142) in the range t ∈ [0, tphys−20]

11: end for

There is, however, one problem when dealing with the real data: some of the populations
are out of the range where the populations are physical 0 ≤ P n

f (t) ≤ 1, e.g., see t > 1.5µs
in Fig. 3.23. To deal with this, we developed Algorithm 1 to decide the range of times
kept for the fit. The idea is to compute the minimum time at which the normalized
population is out of the physical range tphys, and fit the evolution in the range before this
time, where we set the offset 20 sites before tphys in the array.

Figure 3.24 shows the results for the residual decay rate extracted from the experimental
data (circles with errorbar), the dissipative gap as function of the qubit coupling J for
different values of the noise γn (solid lines), the noiseless results (dashed black) and the
single value ζR = 0.6µs−1 in [80] (dotted gray). Let us first comment on the experimental
data. We see that the extracted values are not too far from the estimated value ζR =
0.6µs−1. However, they are not constant. In particular, they are lower than ζR in the
PT -symmetric phase, and far from the theoretical noiseless prediction (dashed black)
in the PT -broken region. The dissipative gap reduces to the noiseless result when the
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Figure 3.24. Residual damping as a function of the hopping strength J fitted from
experimental data (blue points). The noiseless result (γn = 0, dashed black line)
expected from a NH Hamiltonian Im(

√
4J2 − (γe/2)2) differs from the constant

value argued in the paper Γ0 = 0.6µs−1 (gray dotted line). However, adding noise
leads to a better match with the data. The solid lines represent the dissipative
gap of the SDQ model at (i) very small noise (γn = 0.001 purple), (ii) at a noise
level that reproduces the Γ0 = 0.6µs−1, given by γn = 2Γ0/Γ

2
e, and (iii) lastly the

fitted value to the experimental data which gives γ∗n ≈ (0.055 ± 0.004)µs. The
95% confidence interval of ±2σ in this parameter is also shown (shaded green
region).

strength of the noise is very small (purple line), with the only caveat that the exceptional
point is smoothened due to the fact that at very small, but non-zero, noise strength the
exceptional point is not present. The dissipative gap at the value of the strength of the
noise estimated from ζR is seen to fastly converge to ζR (pink solid line).

Given the exact expression for the dissipative gap, it is possible to fit the experimental
results for ΓR. Through a least-square minimization, we find an estimate for the strength
of the flux noise in the experimental setup γ∗N ≈ 0.055± 0.004µs, which is shown (green
solid line) to model reasonably well the residual decay rate in Fig. 3.24. Even when a
±2σ deviation of the optimal value of the strength of the noise is considered, the results
stay very close to the prediction (green dashed region).

Hermitian vs Anti-hermitian noise

We can extend our model to a case where we have both Hermitian and anti-Hermitian
noise in the Hamiltonian

Ĥt = Ĥr − iĤi +
√
2γrL̂rξ

r
t − i

√
2γiL̂iξ

i
t, (3.143)
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where the classical white real and imaginary noise are uncorrelated E(ξαt ) = 0, E(ξαt ξα
′

t′ ) =
δα,α′δ(t− t′) with α ∈ {R, I}. In this case, the nonlinear master equation reads

∂tρ̂t =− i[Ĥr, ρ̂t]− {Ĥi, ρ̂t} − γr[L̂r, [L̂r, ρ̂t]] + γi{L̂i, {L̂i, ρ̂t}}
+ 2Tr(Ĥiρ̂t)ρ̂t − 4γiTr(L̂

2
i ρ̂t)ρ̂t, (3.144)

which has both a dephasing and an antidephasing contribution. The non-TP Liouvillian
for this master equation has exactly the same form as (3.61), with the only difference that
the constants are slightly modified to include both the real and imaginary noises

A = Γ((γi − γr)Γ− 1), B = 2Γ(2γiΓ− 1).

As expected, the real noise only appears in A since this is the one modelling the decay of
the coherence ρef , and does not affect the populations ρee, ρff .

This means that we can directly use the formulas for the eigenvalues and the dissipative
gap, only slightly modifying the A, B constants. We consider three possible models,
fitting the strengths of the noise to the experimental data, and we find

• Both noises :

γi = (0.046± 0.004)µs, γr = (0.010± 0.003)µs.

• Antidephasing, i.e., only anti-Hermitian noise:

γi = (0.055± 0.004)µs.

• Dephasing, i.e., only Hermitian noise:

γr = (0.028± 0.003)µs.
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Figure 3.25. Comparison between real and imaginary noise models for the residual
decay rate of the dissipative qubit as a function of the hopping J .
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Figure 3.25 compares the three possible models, with their respective R2 value showing
a better fit for R2 closer to 1. We find that the antidephasing model provides the best
model, with the largest R2, and the model with both noises closely follows with a similar
value for R2. This model with both noises fits a higher value for γi than for γr, almost
5 times larger. The dephasing model performs quite poorly, with a much smaller value
of R2, from which we can claim that the anti-Hermitian noise has a more important
effect on the residual decay rate than its hermitian counterpart. Further work in this line
necessarily involves introducing an indicator for the goodness of the fit, which is well-
suited for non-linear fits, and a further data analysis to test whether the outlier data is
really needed.

These results provide the first physical application of the formalism developed in this
chapter. They show that the SDQ can correctly reproduce the residual exponential decay
in the PT symmetric phase of the dissipative qubit, and give a tool to determine the
strength of the noise in a physical setup. The fact that the residual exponential decay
is not consistent with the ζR value provided in [80] does not pose a problem, since it
was extracted from a different experiment, namely changing the detuning ∆, done at a
different time. We expect that the strength of the noise in our model greatly depends on
the specific conditions of the experiment, such as temperature.

Note that here we do not claim that this provides an experimental validation of our theory
or of our model; to do that, a more careful experiment should be done. We think that
observing the NI phase could provide a strong experimental confirmation of the theory
here developed. The aim of this section is thus to showcase that our theory has predictive
power beyond the current theoretical understanding of Non-Hermitian Hamiltonians.

3.6 Discussion

3.6.1 Comparison to other dynamics

The original formal approach to OQS theory considered mostly CPTP maps [29, 30].
In recent years, refined experiments have managed to implement post-selection [80] and
a variety of different CPTD maps [84, 269]. This has been motivated by a variety of
master equation generating different CPTD situations, such as the hybrid Liouvillian
[252]. Furthermore, considering a biased ensemble of trajectories, where we assign different
weights or probabilities to different trajectories, allows us to even create CPTI maps [240,
270], which appear in the context of tilted Liouvillians or generalized master equations
[271], whose classical limit is described by the Lebowitz-Spohn operator [272].

The dynamics generated by the anti-dephasing master equation presented here is more
general than these approaches, but it can reduce to them in proper limits. We believe
this could be of interest to provide different ways of engineering antidephasing dynamics
and for this reason we provide the map between the equations.

The hybrid Liouvillian describes a situation in which the experimentalist makes post-
selection on a given quantum jump, but the detector has a finite efficiency η ∈ [0, 1] at
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detecting the quantum jumps. Consider, for now, a single decoherence channel

L̃hyb

Ĥ0,µ,q,Â
[•] = −i[Ĥ0, •] + µ(qÂ • Â† − 1

2
{Â†Â, •}), (3.145)

which nicely interpolates between Non-Hermitian evolution when the detector is totally
efficient q = 1 − η = 0 and Lindblad dynamics when the detector is totally inefficient
q = 1 − η = 1. This hybrid Liouvillian only has a physical interpretation in terms of
post-selected trajectories when q ∈ [0, 1]. The dynamics is always trace-decreasing when
q ∈ [0, 1) and trace-preserving for q = 1.

Let us consider the simple case of antidephasing used in the SDQ in which L̂ ∝ Π̂ when
Π̂ is a projector, i.e., Π̂2 = Π̂. The antidephasing Liouvillian then reads

L̃ad
Ĥr,ΓΠ̂,

√
γΓΠ̂

[•] = −i[Ĥr, •] + 2γΓ2Π̂ • Π̂− Γ(1− γΓ){Π̂, •}. (3.146)

Note that this equation is valid for any d-dimensional quantum system and not necessarily
a qubit. The two equations are the same when we impose the conditions

Ĥ0 = Ĥr, (3.147a)

µqÂ • Â† = 2γΓ2Π̂ • Π̂, (3.147b)

1

2
µÂ†Â = Γ(1− γΓ)Π̂2. (3.147c)

This mapping is only valid when Γ(1 − γΓ) ≥ 0, i.e., we need to impose γΓ ≤ 1. Both
conditions can be satisfied by setting Â = Π̂ and

q =
γΓ

1− γΓ
, µ = 2Γ(1− γΓ). (3.148)

Note that the restriction 0 ≤ q ≤ 1 imposes a further constraint on γΓ, which has to be
smaller than γΓ ≤ 1/2 so that q ≤ 1. Therefore

L̃ad
Ĥr,ΓΠ̂,

√
γΓΠ̂

= L̃hyb

Ĥr,Γ(1−γΓ), γΓ
1−γΓ

,Π̂
, γ ≤ 1

2Γ
. (3.149)

Interestingly the mapping to the hybrid Liouvillian is only valid outside of the NI phase,
which means that by using post-selection of quantum jumps we cannot observe the NI
phase.

This mapping is also valid in the case of many noise channels which on the gybrid Liou-
villian would be characterized by the set of decay rates {µk}Nc

k=1, the set of parameters

quantifying how much of each jump is kept {qk}Nc
k=1 and the set of jump operators Âk. The

antidephasing master equation with jump operators proportional to a set of projectors
is characterized by the set of decay rates {γk}Nc

k=1, and the jump operators L̂k = ΓkΠ̂k.
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Therefore setting

qk =
γkΓk

1− γkΓk
, µk = 2Γk(1− γkΓk), Âk = Π̂k, (3.150)

under the extra condition γkΓk ≤ 1/2 gives a mapping between the antidephasing and
hybrid Liouvillians with an arbitrary number of channels.

Another commonly considered master equation beyond GKSL form involves the tilted
Liouvillian. This generator describes the dynamics of a biased ensemble of trajectories
and, in its simplest form, reads

L̃Ĥ0,µ,s,
[•] = −i[Ĥ, •] + µ(e−sL̂ • L̂† − 1

2
{L̂†L̂, •}). (3.151)

This generator describes the dynamics of the biased ensemble of trajectories ρ̃s(t) =∑∞
K=0 ρ̃

(K)(t)e−sK , where ρ̃(K) represents the density matrix of the dynamics with K

events after time t, i.e., jumps with operator L̂. The variable s represents the conjugate
field to K. The dynamics generated by this equation is not trace-preserving if s ̸= 0, if
s < 0 the system is in the active phase, in which the trajectories with jumps are favored,
and the dynamics is trace-increasing, and if s > 0 the system is in the passive phase with
less jumps than usual, and the dynamics is trace-decreasing [270]. A similar calculation
gives

e−s =
γΓ

1− γΓ
, µ = 2Γ(1− γΓ), (3.152)

which does not have the restriction e−s ≤ 1 and thus the mapping is valid for as long
as γΓ ≤ 1, the argument naturally extends to the case of many channels. This mapping
covers a bit of the NI phase of the SDQ, which means that in principle it should be possible
to observe some features of the NI phase, like the convergence to the unstable state |e⟩,
by biasing quantum trajectories. However, one possible problem with this connection is
that the approach in tilted Liouvillians typically uses the quantum Doob transform to
map a non-CPTP map to a CPTP map, instead of using a nonlinear equation as we do.

Note that although the antidephasing Liouvillian is “more general” in the sense that
it does not need to fulfill the constraint γkΓk ≤ 1/2 ∀k for the hybrid Liouvillian or
γkΓk ≤ 1 ∀k for the tilted Liouvillian, and can describe a larger range of parameters, the
hybrid and tilted Liouvillians account for possibly not hermitian jumps, which is a feature
not present for antidephasing dynamics.

3.6.2 What did we learn in this chapter?

In this chapter, we have provided a general theory for the dynamics of Stochastic Non-
Hermitian Hamiltonians. We started by writing a generic Stochastic Master Equation for
the dynamics of the unnormalized density matrix ϱ̃t. Remarkably, this equation differs
from other standard Stochastic Master equations since the drift term possesses an exotic
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dissipator. We term this new dissipator the anti-dephasing Liouvillian since it is composed
of a double anti-commutator, and it is not of GKSL form. The dynamics generated by the
antidephasing Liouvillian are not trace preserving, and thus not physical by themselves,
so we introduced a nonlinear term to make the dynamics physical. The choice of when to
impose trace preservation can lead to several different equations, in here we first focused
on describing the average dynamics of the master equation, so we took the choice of first
averaging over the noise to find a non-TP master equation, which now does not depend
explicitly on the noise, and impose TP to the average dynamics finding the nonlinear
antidephasing master equation. This is the main result of our general theory; this master
equation describes the average evolution of the density matrix under general white noise
fluctuations in the anti-hermitian part of a non-Hermitian Hamiltonian. It describes an
entirely new form of dissipative quantum dynamics, which allows for certain interesting
phenomena illustrated afterwards.

After deriving the nonlinear master equation, we analyze the gauge transformations that
leave the master equation invariant. In particular, we find that: a shift of the deter-
ministic anti-hermitian part leaves the ME invariant, but not the Liouvillian; orthogonal
transformations of the jump operators leave the antidephasing Liouvillian invariant, and
a shift of the jump operators leaves the Liouvillian invariant when properly cancelled in
the antihermitian deterministic part. To show the possibilities opened by the antidephas-
ing dynamics, we compute an equation of motion for the evolution of the purity, which
reduces to the known results for a dephasing channel and quantum brownian motion for
a pure state, and involves out-of-time-order terms [1]. Furthermore, we characterized the
steady states, with special focus on the stable steady state of the dynamics, in terms of
the Liouvillian eigendecomposition. For a diagonalizable Liouvillian, i.e., without Liou-
villian Exceptional Points [251], the stable steady states live in the subspace spanned by
the eigenvectors whose eigenvalues have the largest real part. In particular, the conver-
gence towards this steady state is characterized by the dissipative gap, characterizing the
exponential damping of the contribution of the states living in the eigenspace with the
second largest real part, and the oscillating eigenfrequencies characterizing how each of
these contributions oscillates. When the system displays a Liouvillian Exceptional Point,
we found that the evolution acquires an extra polynomial of time, which can change the
convergence to the steady states and the steady states themselves.

To illustrate the general theory, we considered an experimentally realizable model, a
stochastic version of the Dissipative Qubit [80]. We can directly find the antidephasing
master equation for this system, as well as explicitly write the evolution for the purity for
all the different states in the Bloch ball. The expression for the purity shows a change
in behavior when γ < γ∗, with purifying states in the northern hemisphere, and γ > γ∗,
with purifying states in the southern hemisphere. The spectrum of the Liouvillian can
be exactly computed, which gives all the spectral information needed to understand the
convergence to steady states in this model, the dissipative gap ∆, and the oscillating
frequency ω.

The SDQ model shows three different phases: In the PT u phase the dissipative gap is
very small and the oscillating frequency is large, which explains the oscillations seen in the
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dynamics of this phase; in the PT b phase the dissipative gap is larger and the oscillating
frequency vanishes except for the line γ = 1/(3Γ); and the NI phase has a very large gap
and no oscillating frequency, except for γ = 1/Γ and the transition from the PT u to NI.
Even if a non-zero oscillating frequency is present for a small part of these regions (PT b
and NI), the dissipative gap is larger and thus the dynamics has converged before there
is a chance to see the oscillations.

The phases of the SDQ are better characterized in terms of the stable steady state prop-
erties, which follow from the properties of the eigenvector with the largest real part of
the eigenvalue. The stable steady state analysis yields the main properties of the three
phases: the PT u shows oscillatory convergence at very long times (very small dissipative
gap) to a mixed steady state close to the center of the Bloch ball, the PT b phase con-
verges the |f⟩ state and the NI phase converges to the |e⟩ state, the one that has losses
in the NH Hamiltonian. The stable steady states at the transitions between the phases
can also be characterized: At the PT u to PT b transition Γ/J = 2, the state approaches
|−y⟩, a feature already observed in the experiment [80], at the PT u to NI transition
γ = J/(

√
3Γ2) the stable steady state acquires a positive y coordinate, and at the PT b to

NI transition γ = 1/(2Γ) the stable steady state is the maximally mixed state ρ̂s = 1̂/N .
Furthermore, the eigenstates of the Liouvillian can also tell us where the antidephasing
Liouvillian has an Exceptional Point. We found that there can be up to 5 different LEP’s
in this model, two around each of the power laws γ = 1/Γ and γ = 1/(3Γ), all of order 2,
which have a non-zero oscillating frequency, and one at Γ/J = 2, of order 4. Furthermore,
the non-orthogonality of the eigenstates of the Liouvillian around the LEP Γ/J = 2 shows
similar behavior to the experimental data in [80].

The dynamics of the qubit can be equivalently recast in terms of the Bloch coordinates.
These provide a tool to explore the dynamics of the Bloch sphere as a vector field in
the Bloch ball, and agree with the steady states predicted from the spectral analysis. In
particular, the nullclines of the vector field and their intersections characterize the stable
and unstable steady states of the evolution. Furthermore, from these expressions, we can
compute how much of the Bloch ball is purified.

We have also studied the transitions between the different phases of the model. For finite
J , all these transitions are continuous, meaning that, by zooming in on the transition
point, the analogous quantity to the order parameter, i.e., the z coordinate in our case,
passes through every single value. We could also compute the power law with which
we converge to the z = +1 in the PT b phase and to z = −1 in the NI phase; these
power laws are, respectively, an inverse quadratic and an inverse quartic function of
the dimensionless decay rate Γ/J . Considering the limit J = 0, the system shows a
discontinuous transition at γΓ = 1/2; it also provides a simpler understanding of the
steady states, which discontinuously change from |f⟩ below the transition to |e⟩ over the
transition. This limit also provides an explanation of why the dynamics prefers to go to
|e⟩ instead of |f⟩; however, this analysis does not explain the full extent of the NI phase,
only providing a physical reason for it when γ > Γ−1.
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The dynamics of the SDQ shows that the predictions from the spectral and steady state
analysis are correct, and that the dissipative gap and oscillating frequency correctly predict
the main time-scales of the dynamics.

We also considered the dynamics renormalized at single trajectories, where we showed that
pure states remain pure under this dynamics and provided a justification for the validity
of the approach followed in the first section of the chapter. The single-trajectory dynamics
agree with the predictions from the average formalism, and extending this analysis, we
can show that the noise-induced phase does not arise from the pumps.

Once the dynamics of the SDQ were fully understood, we considered the experimental
implementation of our results. We first review two possible physical approaches to realize
the Dissipative Qubit in the lab [80, 235]. After this, we show that the SDQ can correctly
reproduce the residual decay rate observed in the PT symmetric phase of the Dissipative
Qubit in [80], and provide a method to find the noise strength in the experimental setup.
We finished the chapter by providing the regions in which the antidephasing Liouvillian
for the SDQ can be mapped to the hybrid and tilted Liouvillian.

3.6.3 Open Questions

We now state and discuss several directions for further research:

• One possible direction of study involves the study of the spectral statistics and the
distribution of the eigenvalues λn(t) of the stochastic non-Hermitian Hamiltonian

(Ĥr + iĤi + i
∑Nc

n=1 ξ
(n)
t L̂n) |nt⟩ = λn(t) |nt⟩. When Nc is extensive we expect their

distribution to follow some of the distrbutions for complex random matrices, but in
the intermediate regime with a few but not too many sources of noise, the spectrum
shows very interesting behavior already for simple cases, such as point gaps [64, 65]
and strange shapes of its distribution. One possible direction in this line is to extend
the topological classification of non-hermitian Hamiltonians [65, 66] to stochastic
Hamiltonians.

• One disadvantage of the formalism developed in this chapter is that we take a non-
hermitian Hamiltonian as our starting point, and add noise to it. A possible direction
would be to consider how post-selection behaves when one of the decay rates is
fluctuating. In this line, it may be useful to consider the truncated noise case, cf.
Sec. 3.4.3, since enforcing the decay rate of a certain channel µt = Γ(1+

√
2γζt) ≥ 0

ensures that the master equation is Markovian and does not run into the conceptual
issues posed by non-Markovian unravelings [257]. This would make the notion of
success rate in stochastic non-Hermitian dynamics clear.

• We observed that noise opens up state preparation to many different steady states.
We leveraged this in the qubit case to prepare non-stabilizer or magic steady states
[7], but the extension to more complicated many-body systems and highly entangled
states remains an exciting venue for further research.

• One of the most counterintuitive results that we found in this chapter is the appear-
ance of the noise-induced phase, where the system stabilizes to the lossy state due to
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the action of the noise. We already ruled out the possibility of this phase happening
due to the pumps, cf. Sec. 3.4.3, we now understand that it happens because of the
property of Itō processes that dW 2

t ̸= 0, but a simple intuitive explanation for the
appearance of this state remains to be found.

• From a practical point of view, a comparison between all the possible different ap-
proaches to explain the decay in the NH qubit, namely: open dissipative qubit [269],
hybrid Liouvillian [252], anti-Hermitian noise [2] and Hermitian noise, is needed to
determine what are the most important sources of noise in the experimental setup.

• Comparing with the dynamics generated by the tilted Liouvillian, we find that in
this context they make their dynamics physical through a quantum Doob transform
[240, 241, 270, 273] while we make them physical simply by renormalization. What
is the difference between these two approaches, can the Doob tranform provide a
linear alternative to renormalization?

• A line of research which connects with the theory developed in Chap. 2 is to study
a variant of the SOV, particularly that where the operator is the density matrix, for
stochastic non-Hermitian dynamics.

• A more formal line of research involves the study of the properties of the eigenvectors
and eigenvalues of a non-TP generator, continuing with what we found in Sec. 3.2.6.

• The single trajectory dynamics for strong noise and decay rate show a behavior
reminiscent of quantum spikes [274, 275], see Fig. 3.19. Can we prove that these
are spikes? For this, we need to locate first the regimes of parameters with many
“pre-spikes” so that we can study whether they fulfill the statistical properties of
spikes.

• Another intriguing direction is to study the behavior of the evolution when there
is a Liouvillian exceptional point, where the dynamics seem to change much and
cannot be described by the dissipative gap. In a similar line, it would be interesting
to provide an extensive characterization of the effective dissipative gap introduced
in Eq. (3.34).

• Lastly, a direction of study which could connect to quantum computing is to leverage
this approach to model the stability to perturbations of imaginary time evolution
algorithms [276] and to study their general computational power [277].

Results of Chapter 3

• We derived the nonlinear antidephasing master equation in the general setup
(3.9)

∂tρ̂t = −i[Ĥr, ρ̂t]− {Ĥi − ⟨Ĥi⟩, ρ̂t}+ γ{L̂, {L̂, ρ̂t}} − 4γ⟨L̂2⟩ρ̂t,

and applied it to the case of the SDQ (3.48)

∂tρ̂t = −iJ [σ̂x, ρ̂t]− Γ(1− γΓ){Π̂, ρ̂t}+ 2γΓ2Π̂ρ̂tΠ̂ + 2Γ(1− 2γΓ)⟨Π̂⟩ρ̂t
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• We derived the equation of motion for the purity in the generic case (3.25)

Ṗt = 4Tr
(
Ĥi(ρ̂tPt − ρ̂2t )

)
+ 4γ

(
Tr(L̂2ρ̂2t ) + Tr(L̂ρ̂tL̂ρ̂t)− 2⟨L̂2⟩Pt

)
and in the SDQ case (3.58)

∂tPt = Γrt
(
(2γΓ− 1)(r2t − 1) cos(θt)− γΓrt sin

2(θt)
)
.

• We computed analytically the spectrum of the SDQ exactly (3.66). This gives
analytically the dissipative gap ∆ governing exponential decay, and the oscillat-
ing frequency ω of the SDQ.

• We find that the steady state of the SDQ has three possible phases: PT u,
PT b, and NI, characterized by z ≈ 0, z ≈ 1, z ≈ −1, respectively. The Exact
expression (3.74) is given by

z(ρ̂s) = − λ0(λ0 − AJ)

4J2 + λ0(λ0 − AJ)

• The Stochastic Dissipative Qubit in the Noise Induced phase converges to the
lossy |e⟩ state, which is stabilized by the action of the noise. See Fig. 3.4

• We characterized the Liouvillian Exceptional Points of the SDQ antidephasing
Liouvillian. See Figures 3.5, 3.6.

• Characterized transitions between different phases, all are continuous, see Fig.
3.12, except for the one at J = 0, which is discontinuous, cf. Sec. 3.3.4

• We checked that single trajectory dynamics show good agreement with the av-
erage dynamics, cf. Sec. 3.4. Furthermore, the NI phase is also present when
we restrict to no pump dynamics.

• We showed that the SDQ model can correctly model the residual decay rate in
the experimental realization of the Dissipative Qubit, see Fig. 3.24.



Chapter 4

Decomposing the spectral form factor

Abstract

• In this chapter, we will be concerned with understanding the role that each k-th
neighbor level spacing has on the universal shape of the SFF. To this end, we
will introduce the k-th neighbor Spectral Form Factor S

(k)
t .

• We will compute analytical expressions for the k-th neighbor Spectral Form Fac-
tors (knSFFs) for the basic ensembles of quantum chaos theory, i.e., Gaussian
Random Matrices, and Poisson. We will compute both exact and approximate
expressions, which will show better numerical stability. Furthermore, through-
out the chapter, we will use a physical many-body system, the disordered XXZ
spin chain, to compare our results with a system that transitions from chaos to
integrability.

• We will first compute some properties of individual knSFF’s, such as their mini-
mum and maximum time, as well as the deepest knSFF. Both of these properties
show markedly different behavior between Poisson and RMT, which implies that
they may be used as a signature for Quantum Chaos. For this reason, we study
them along the transition from chaos to integrability.

• We will focus next on the properties of sums of knSFF’s and what they can tell us
about the universal ramp of the SFF. To this end, we first study the partial SFF
which only has neighbors up to range K. We study the time-scale of the onset
of the ramp, characterized by either the Thouless or the dip time, as a function
of the maximum range of neighbors. Interestingly, we find that all neighbors are
needed to explain the full extent of the ramp, but the very short-range and the
very long-range ones have a greater impact on its length.

• Another striking property that we find is that when we only consider knSFF’s
with even or odd k, the two behave very differently. Almost all of the ramp
is built by the even neighbors, while the biggest contribution of the odds is to
cancel a resonance.

The goal of this chapter is to provide a decomposition of the spectral form factor (SFF),
which highlights its relation to all the different k-th nearest neighbors level spacing dis-
tributions of its spectrum. To this end, we isolate the contribution from the k-th nearest

— 169 —
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neighbors to the SFF. This quantity will be computed analytically for the different en-
sembles of Random Matrices. We will study their properties and use this construction to
build the full SFF progressively, and thus distinguish the role of each spectral range in its
universal shape.

4.1 Introduction

4.1.1 A story for the results

Imagine that a thousand people are asked to place a small stone in a line, and we compare
two different situations:

1. The first group of people will place a stone somewhere on the line, we annotate where
they placed it, and then remove it before the next participant places the stone,

2. The second group of people will place the stone, and we will keep the stone in the line.
The position of the previous stones thus affects the position that a given participant
will choose, and probably the next stone will be placed in one of the gaps of the
previous stones.

Group 1 is generating positions in a random1 and independent way. By independent, we
mean that the position chosen for one of the stones does not depend on the position of the
previous stones, and it does not affect the position of the future stones. Group 2, on the
other hand, is also generating a random pattern, but now this pattern is not independent;
we say it is correlated, since the position of one stone depends on the previous stones, and
will affect the future stones.

We now see the configuration of the stones by the two groups, not knowing which one is
which, and we want to determine which group is independent and which is correlated. A
first option is to measure all the distances between adjacent stones and count how many
of these are between 0 and 0.1, between 0.1 and 0.2, and so on. This is what statisticians
call a histogram, and for this particular case, we call it the spacing distribution. When
the positions are independent, we expect many gaps with a small distance, and a smaller
number of gaps with a smaller distance between adjacent stones. When the positions are
correlated, we expect very few small gaps, more gaps at an intermediate distance, and few
gaps at a very long distance. The key question for us here is “what model reproduces these
distributions?”, especially in the case where the positions are correlated. Interestingly,
many correlated patterns can be described in an easy way through what we call a random
matrix. Remember that a matrix is nothing but a table of numbers, and here we choose
each of these numbers randomly. Interestingly, when we compute a thing called the
eigenvalues2 of this random matrix, they are correlated, and their distribution explains
many correlated patterns, such as the thought experiment with the stones.

1Let us assume that this is a random uniform process, although it is known that humans are notoriously
bad at generating random uniform patterns.

2From a geometric point of view, a matrix can be understood as a transformation over vectors, a vector
is an arrow of a certain length pointing in a certain direction. A matrix transforms a vector into a
new one, for example, it can rotate it by 45◦. You can think of it as stretching, contracting, and
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Although we do not know that an experiment like this one was realized, and we doubt
that it would even be interesting to do so, there are many examples arising in nature of
random patterns that show the correlations of a random matrix. These examples include:
the times of arrival of buses in Cuernavaca (Mexico) [278], a city which had a structureless
bus system with autonomous bus drivers, this made each bus driver “space out” from the
other; the distances between parked cars [279, 280], between birds perched on a power
line [281], or even between the nests of birds of prey [282]. In the quantum world, these
examples are far from anecdotal; they are so common that they are used to distinguish
whether a quantum system shows chaos or not. In this framework, chaotic quantum
systems have energy levels that are correlated in the way predicted by a random matrix,
like Group 2 of the thought experiment, while non-chaotic systems present energy levels
that behave independently, like Group 1. This characterization applies to systems as
different as heavy nuclei, such as that of uranium, quantum systems such as the building
blocks of quantum computers, or even models related to black holes. These examples show
that correlated random patterns are ubiquitous in nature, especially in the quantum world,
and thus it is very important to characterize and understand them.

In developing a more careful study of these systems, we can take several different ap-
proaches; let us mention here two particularly relevant ones:

• We can investigate the distribution of distances between stones with a given number
of stones between them, for example, the distribution of distances between two stones
with five stones between them. These objects are called the k-th nearest neighbors
level spacing distributions. We can compute each of these distributions and compare
with what we expect for independent and correlated positions. However, to do this
accurately, we have to keep track of all the positions of the stones, which may be
hard to do in a real experiment, and compare many of these distributions.

• Another possibility is to assign a musical note to every stone, where the note’s pitch
is given by its position in the line, with the smallest positions having a low pitch and
the highest positions having a high pitch. These musical notes can be understood
as an arrow rotating on a circle at different speeds of rotation. We then combine
all the notes and look at the length squared of the combined arrow as time passes,
which physically corresponds to the amplitude, i.e., the loudness, of the sound. This
quantity is what we call the Spectral Form Factor and shows a big distinction between
the two cases. At the beginning, the arrows point in a similar direction, so their sum
is big, and thus the sound is very loud. Still, as time passes, if the positions are
independent, the frequencies have no relation to each other. They simply cancel
out, leading to a constant value at long times, which we call the plateau, so we hear
that the signal dims out and stays around a constant value that we hear as noise.
However, if the positions are correlated, the story is quite different. We see that
the sum of the frequencies first decreases and then increases. This part is called the
ramp, before saturating to the plateau. This means that the sound dims out much

twisting a rubber band. Most of the directions of this rubber band will get twisted, but a few ones do
not; they just get stretched or contracted, but do not change direction. These directions are what we
call the eigenvectors of the matrix, and the eigenvalues are a number that tells you how much they
get stretched or contracted.
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more and then increases until it reaches the plateau. The presence of the ramp is an
indicator of correlations in the positions and can help distinguish between the two
situations. This measure is easier to compare; we just need to “hear” or look at the
signal and see if it increases, and it is also more robust to missing data.

What we do in this chapter is to combine these two approaches: we decompose the spectral
form factor according to the spectral distance, i.e., we isolate the contribution coming from
stones which have one, two, or three . . . neighbors in between. And especially, we compute
how each of them will “sound” when we assign musical notes to the positions; in a sense,
each of these corresponds to a different harmonic. As a result, we get a more detailed
understanding of the spectral form factor. Using this new construction, we then study
how the ramp is built progressively as we consider neighbors further and further apart
in the line. For example, we see the sound that the SFF would have if we only included
the first, second, and third neighbors, and so on. By doing this, we find one of the main
results of this chapter: we see that the neighbor ranges that have the biggest effect on
the length of the ramp in the spectral form factor are the very short range and the very
long range, those going almost from end to end of the line.

4.1.2 Why do we decompose the SFF?

The spectral form factor’s characteristic shape for a chaotic system: decay, correlation
hole, linear ramp, and plateau, makes it a very appealing quantity to use as a signature
of quantum chaos. The BGS conjecture states that quantum chaotic systems have the
spectral statistics of random matrices. This conjecture was developed in systems with a
well-defined semiclassical limit, such that by quantum chaotic systems, what is meant is
a quantum system with a chaotic semiclassical limit [110]. However, in recent times, this
conjecture is usually applied, and surprisingly still works in many situations, to quantum
systems without a well-defined semiclassical limit, such as spin chains.

There has been great effort in trying to prove the BGS conjecture, much of it through
the lens of the SFF. In the semiclassical limit, the linear ramp is proven using periodic
orbit theory [283, 284] by Berry [118]. However for systems with time reversal symmetry
the SFF has logarithmic corrections for Random Matrices, the first of these corrections
was derived for chaotic systems by Sieber and Richter [134, 285], and the remaining
corrections were proven by Müller et al. [135, 286, 287]. In the many-body case, there
was a recent breakthrough by Kos et al. [136] which could prove the linear ramp and
quadratic correction for a kicked Ising spin chain with no semiclassical limit, as well as
introduced a minimal model of many-body quantum chaos [288–290].

Our motivation in this chapter is different; we stay mostly on the RMT side of the BGS
conjecture and unveil the structure of the SFF. In particular, we focus on writing the
SFF in terms of the k-th neighbor level spacing distributions. It has been argued in the
literature that one can take a Wigner-surmise-like expression for them. The knSFFs that
we study throughout the chapter represent a decomposition of the SFF which highlights
the role of the spectral distance. This is of great relevance because it is widely known
that long-range spectral measures of quantum chaos stop agreeing with the predictions
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from RMT. This phenomenon is known as RMT universality breaking. With the tools
we develop here, we are able to test the regimes in which this universality breaking is
particularly apparent, which quantities are more sensitive to it, and which are less. One
of the main results of the chapter is that very long-range spacings, albeit highly non-
universal, are key to explain the full extent of the ramp of the SFF. This highlights that
there are quantities which are not very sensitive to the breakdown of RMT universality.

The study of chaos generally involves two different types of quantities: those that char-
acterize short-range spectral correlations, and those that characterize long-range energy
correlations. Although the long-range measures can capture some short-range correlations
in certain limits, e.g., number variance with L ≈ 1, the two are quite different in their
definitions. This creates a division between the two limits, where the simple quantities,
like the level-spacing distribution or the spacing ratios, are studied for a wide variety of
problems due to their simplicity, while the long-range measures, which are usually more
delicate, are less investigated. A noteworthy exception to this is the spectral form factor,
since its characteristic shape and simple definition make it appealing to compute in many
different systems. The k-th neighbor level spacing distribution offers a conceptually sim-
ple interpolation between the short-range and long-range spectral measures, where the
parameter is simply the neighbor range k. Our formalism introduces the knSFF as the
time evolution associated with the k-th neighbor level spacing (knLS), thus interpolating
more naturally between short and long-range spectral correlations, only now measured in
time, instead of in frequency space.

4.2 A Wigner-surmise for the k-th neighbor level spacing
distribution

Random Matrices play a defining role in the theory of quantum chaos, cf. Sec. 1.7. In
particular, the BGS conjecture states that the spectral correlations of quantum systems
with a chaotic classical limit will follow the predictions from RMT. When spectral cor-
relations are studied, the most common is to study the nearest-neighbor Level Spacing
(nnLS) distribution P(s), which measures correlations between neighboring energies in
the spectrum. However, it is important to note that correlations extend all over the
spectrum. In here, we want to study long-range correlations in the spectrum, which are
encoded in the joint probability density of eigenvalues of a Gaussian Random Matrix,
given exactly by

ρβ(E1, . . . , EN) = C
∏

1≤i<j≤N

|Ei − Ej|β e−A
∑N

i=1 E
2
i , (4.1)

where β is the Dyson index distinguishing Orthogonal β = 1, Unitary β = 2 and Symplec-
tic β = 4 symmetry classes (cf. Sec. 1.6.1, the product of the differences of the energies
is called the Vandermonde determinant, the constant A sets the energy scale, while the
constant C ensures normalization of the distribution but will not be relevant in our study.
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In what follows, we will sometimes denote E = (E1, . . . , EN) the vector of all eigenvalues
of the random matrix.

A key feature of a Random Matrix is that its eigenvalues are correlated. To characterize
the correlations all over the spectrum {En}Nn=1, we can define the k-th neighbor level
spacing (knLS)

s(k)n := En+k − En, (4.2)

which characterizes the difference between any energy level En and its k-th neighbor En+k.
We want to study the knLS distribution, which can be obtained from the Joint probability
distribution simply as

P
(k)
β (s) =

∫ ∞
−∞

dE1

∫ ∞
E1

dE2 · · ·
∫ ∞
Ek

dENρβ(E1, . . . , EN)

× 1

N − k

N−k∑
n=1

δ
[
s− (Ek+n − En)

]
. (4.3)

Note that this expression averages over all possible levels in the spectrum that have a
k-th neighbor. This expression can be obtained by generalizing the nnLS distribution of
a 3× 3 random matrix [116, 291], which has two nearest neighbor level spacings that are
averaged.

The exact analytical computation of the knLS distribution for a general matrix dimension
and a general neighbor distance k is unknown. There is a generalization of the Wigner
surmise which provides a good approximation [292, 293]

P
(k)
β (s) ≈ Cα s

α e−Aαs2 . (4.4)

The parameter α depends on the spectral distance k and the ensemble index β through

α =
k(k + 1)

2
β + k − 1. (4.5)

The power law and the functional form of α were derived analytically in [293] and the
appendix of [6]. Furthermore, in [6] we argue that this power can be corrected using the
exact variance of the knLS distribution which is known analytically for random matri-
ces. This correction introduces logarithmic corrections in the power and its asymptotic
expansion is α ∼ π2βk2

4 ln(k)
at large k [6]. The values of Aα and Cα are

Aα =

[
Γ
(
α
2
+ 1
)

k Γ
(
α+1
2

)]2, Cα =
2

Γ
(
α+1
2

) [Γ (α2 + 1
)

k Γ
(
α+1
2

)]α+1

. (4.6)
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While the k-th neighbor level spacing for Poissonian random matrices follows the distri-
bution

P
(k)
0 (s) =

1

(k − 1)!
sk−1e−s . (4.7)

4.2.1 Validity of the generalized Wigner-like surmise

Let us now comment on the validity and history of derivations of a Wigner-like surmise
for the knLS distribution. The first derivation of such an expression that we are aware
of is by Engel et al. [294], which assumes an ansatz like the Brody distribution [295]
and leaves the power law α as a free parameter. Abul-Magd et al. [296] found the
power α that we will use here through a small s expansion, the Wigner-like surmise then
follows by assuming Gaussian behavior at large s. There are formal expressions for the
knLS by Mehta [103] (the Eβ(n, S) functions) which are nonetheless not explicit and thus
would not allow us to perform the same kind of computations that we do in this chapter,
nonetheless several connections between different neighbor ranges k and ensembles β were
proven by Forrester [297]. Using approximate, but closed, expressions is typical in the
physics literature since even the Wigner surmise for nearest neighbor level spacings is
well-known to be an approximation for N > 2, to which corrections can be computed
in the N → ∞ limit [101]. Rao proposed a first-principle derivation of the Wigner-like
surmise [293], but since the spectrum {Ei} is not ordered Ei+k − Ei is not guaranteed
to be a k-th neighbor level spacing and thus the arguments used are not valid. In the
Appendix of [6] we introduce a formal derivation which does not suffer from this issue;
it does however, lead to an integral over a large dimensional simplex, which cannot be
computed analytically, so we find the Wigner-like surmise, with the previously predicted
power α [296], under a certain assumption to the behavior of the simplicial integral, and
thus only as an approximation. This expression was generalized to two dimensions in
[298] and to spacing ratios in [299]. Interestingly, this last article observes that the power
α does not apply for large k. This is also something that we observed in our analysis [6],
in which we proposed to correct the power to α̃ so that the value of the variance of the
knLS distribution agrees with its known value analytically [6, 98, 300], this leads to the
corrected power [6]

α̃ =
π2βk2

2 (π2βcβ + 2 ln k)
− 3

4
+O(k−2), (4.8)

where the constant is given by

cβ =


4
π
− 1 β = 1,

3π
8
− 1 β = 2,

45π
128

− 1 β = 4.

We found that comparing the knLS distributions, this corrected power fits much better
the numerical data, both for random matrices and for the chaotic phase of disordered
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XXZ [6]. However, in the rest of the chapter, we will always use the value of the power
α as in (4.5), since surprisingly for the SFF analysis it gives better results than some of
the corrected versions α̃. This seems to suggest that a more accurate expression for the
knLS does not have to imply more accurate expressions for the SFF analysis, which is an
observation that requires further study. However, most of our formulas depend on α as
a parameter, so they allow us to modify α(β, k) to any function, and there may be some
choice of the function which provides a more accurate SFF results than (4.5).

4.3 The k-th neighbor SFF

The Spectral Form Factor at infinite temperature is defined from the spectrum of the
system {Ei}Ni=1 as

St :=
1

N2

N∑
i,j=1

e−i(Ei−Ej)t. (4.9)

Other customary definitions of this quantity involve a finite temperature T or other fil-
tering functions g(Ei), cf. Sec. 1.9. Here, however, we stay with the definition at infinite
temperature since it will be the simplest to analyze. As it is apparent from its definition,
the SFF depends on all the energy differences in the system {Ei − Ej}Ni,j=1. The SFF is
a real quantity, an expression in which this is manifestly clear reads

St =
1

N
+

2

N2

∑
i>j

cos ((Ei − Ej)t) . (4.10)

This expression can be decomposed according to all the different spectral distances k,
which is characterized by the k-th neighbor Level spacing s

(k)
i = Ei+k −Ei. In this spirit,

we can define the k-th neighbor Spectral Form Factor (knSFF) as the contribution from

the knLS’s with a fixed spectral range k, {s(k)i }N−ki=1 to the whole SFF

S
(k)
t :=

2

N2

N−k∑
i=1

cos(s
(k)
i t), (4.11)

which, when summed over all the different spectral distances k, gives the full SFF, as
expected

St =
1

N
+

N−1∑
k=1

S
(k)
t . (4.12)
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4.3.1 The ensemble averaged knSFF

The SFF is not self-averaging [127], which means that it shows oscillations due to quantum
noise, which do not cancel each other. For this reason, it is customary to take an additional
average. There are many possible averages that can be taken; the most common ones are

• Average over an ensemble of matrices. In the context of random matrix theory, this
is the most natural since the RMT ensembles are very well-known and taking an
average over them is easy. This average will be denoted Eβ(•) ≡ EE∼ρβ(E)(•), where
β is the Dyson index characterizing the symmetry of the ensemble over which we
average.

• Average over disorder given by some parameter in the Hamiltonian of the system.
For the case of disordered XXZ, the disorder is in the parameters h = (h1, . . . , hL),
which physically represents an onsite random magnetic field. This average will be
denoted by EW (•) ≡ Eh∼U(−W

2
,W
2
)(•), where W determines the width of possible

values that the disorder takes

• If there is no ensemble of matrices or a parameter to represent disorder the average
can be performed by doing some time-averaging, i.e. over a window time ∆t the SFF

is averaged as E∆t(•) = 1
∆t

∫ t+∆t/2

t−∆t/2 • dt, we will however not need the time-averaging

in this chapter, a discussion on this average and other averages found by different
filtering functions g(Ei) can be found in [131].

In here, we will focus mostly on the first two averages. Therefore, the SFF averaged over
a RMT ensemble can be expressed in terms of the ensemble-averaged knSFF as

St =
1

N
+

N−1∑
k=1

Eβ(S(k)
t ), (4.13)

where the ensemble average knSFF, or simply knSFF from now on can be computed as

S
(k)
t = Eβ(S(k)

t ) =
2

N2

N−k∑
i=1

∫
dNE ρ(E) cos(s

(k)
i t), (4.14)

where we assume the array of energies E = (E1, . . . , EN) to be ordered Ej ≥ Ei if j ≥ i,
and thus the measure of this integral is a short-hand notation for∫

dNE ρ(E) ≡
∫ ∞
−∞

dE1

∫ ∞
E1

dE2· · ·
∫ ∞
EN−1

dENρ(E1, . . . , EN). (4.15)

Dealing with the exact ensemble average of the knSFF is still a hard task. For this, we
will consider the following assumption:

We consider that the energy spacing s
(k)
i = Ei+k−Ei is independent of the energy level Ei.

This implies that the k-th neighbor level spacing has the same distribution all throughout
the spectrum. This is, of course, not true because of the density of states of the spectrum,
which will have regions with more levels and regions with fewer levels. It is, however,
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customary in studies of spectral statistics to unfold the spectrum such that the density of
states is flat, and the statistics of the spacings in different parts of the spectrum can be
studied jointly. Under these conditions, s

(k)
i → s

(k)
1 and the sum gives a (N − k) factor.

Under this assumption, and considering the knLS distribution to be well approximated
by the Wigner surmise (4.4) the knSFF is given by

S
(k)
t ≈ 2(N − k)

N2

∫ ∞
0

ds(k)P(k)(s(k)) cos(s(k)t) ≡ C
(k)
N f

(k)
t , (4.16)

where we have introduced the function f
(k)
t as the Fourier transform of the knLS distri-

bution and the constant C
(k)
N

f
(k)
t :=

∫
dsP(k)(s) cos(s t) , (4.17a)

C
(k)
N :=

2(N − k)

N2
. (4.17b)

General Autocorrelation functions

Interestingly, this approach can be extended to a general autocorrelation function such as

Ct ≡
Tr(ÔÔt)

Tr(Ô2)
=

1

N2

N∑
i,j=1

|Oij|2 cos [(Ei−Ej)t] , (4.18)

where the normalization factor is simply given by N2 =
∑N

i,j=1 |Oij|2. The time evolution
can be re-expressed in terms of different neighbor ranges k as

Ct =
1

N2

N∑
i=1

|Oii|2+
2

N 2

N−1∑
k=1

N−k∑
i=1

|Oi,i+k|2 cos(s(k)i t). (4.19)

The ensemble average of this quantity is

Eβ(Ct) =
1

N2

N∑
i=1

|Oii|2 +
N−1∑
k=1

Eβ(C(k)
t ), (4.20)

where the contribution from k-th neighbors in the spectrum has the same time dependence
as for the knSFF but with a different prefactor

Eβ(C(k)
t ) = O

(k)
N f

(k)
t . (4.21)

where the coefficient is given by O
(k)
N = 2

N2

∑N−k
i=1 |Oi,i+k|2. The autocorrelation functions

and their connection to the knSFF will play a role in Sec. 4.6 where we introduce a
dissipative protocol to measure the k-th neighbor SFF. For this reason we focus on au-
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tocorrelation functions, but note that under the substitution |Oij|2 ↔ AijBji it is also

possible to obtain a more general two point correlation function Tr(ÂtB̂)/Tr(ÂB̂).

4.3.2 knSFF for Gaussian Random Matrices

We now turn to compute the time-dependent functions f
(k)
t which characterize the evo-

lution of the knSFFs. Introducing the series expansion of the cosine function in (4.17a),
we find

f
(k)
t ≡

∫ ∞
0

dsP
(k)
β (s)

∞∑
n=0

(−1)n

(2n)!
s2nt2n. (4.22)

The integrals of the even powers of the spacing give∫ ∞
0

ds s2nP
(k)
β (s) = Cα

∫ ∞
0

ds s2nsαe−Aαs2 =
Γ(α+1

2
+ n)

Γ(α+1
2
)

1

Anα
, (4.23)

where the result follows from the integral∫ ∞
0

sze−As
2

ds =
1

2

∫ ∞
0

x
z−1
2 e−Axdx =

1

2
Γ(
z + 1

2
)A−

z+1
2 .

The ratio of Gamma functions is also called Pochhammer symbol (a)n = a(a+ 1) . . . (a+

n− 1) = Γ(a+ n)/Γ(a). Therefore, the f
(k)
t function is determined by the series

f
(k)
t =

∞∑
n=0

Γ(α+1
2

+ n)

Γ(α+1
2
)(2n)!

(
− t2

Aα

)n
, (4.24)

which converges to a hypergeometric function

f
(k)
t = 1F1

(
α + 1

2
;
1

2
;− t2

4Aα

)
(4.25a)

= e−
t2

4Aα 1F1

(
−α
2
;
1

2
;
t2

4Aα

)
. (4.25b)

It is now convenient to introduce a frequency ωk in terms of the Aα constant as

ω2
k :=

α

2Aα
, (4.26)

This frequency sets the inverse time-scale for oscillations of this function. Furthermore,
it can be written in terms of a Laguerre function

f
(k)
t =

√
πα

2

k

ωk
e−

ω2
kt2

2α L
− 1

2
α
2

(
ω2
kt

2

2α

)
. (4.27)
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The Laguerre function Laµ(z) is an extension of the generalized Laguerre polynomial Lam(z)
for non-integer µ /∈ N [301] and a > −1, it is defined by the series

Laµ(z) =
∞∑
k=0

(
µ+ a

µ− k

)
(−z)k
k!

=
∞∑
k=0

Γ(µ+ a+ 1)

Γ(µ− k + 1)Γ(a+ k + 1)

(−z)k
k!

. (4.28)

This expression naturally reduces to a finite sum given by the generalized Laguerre Poly-
nomial when µ ∈ N

Lam(z) =
m∑
k=0

(
m+ a

m− k

)
(−z)k
k!

. (4.29)

Laguerre polynomials are numerically easy to deal with, but the Laguerre functions pose a
greater challenge due to the infinite sum. This means that in practice, when the arguments
of the function are large and non-integer, the numerical evaluation fails. For this reason
we introduce the large n expansions of the Laguerre functions3:

Lan(x) =
na/2−1/4√
πxa/2+1/4

ex/2
[
cos(θa,n(x))

(
1 +O

(
n−1
))

+ sin(θa,n(x))

(
ba(x)√
n

+O
(
n−1
)) ]

(4.30)

where the auxiliary functions are defined as

θa,n(x) := 2
√
nx− a

π

2
− π

4
, (4.31a)

ba(x) :=
4x2 − 12a2 − 24ax− 24x+ 3

48
√
x

. (4.31b)

Note that in the case relevant for us a = −1/2, n = α/2 and x = ω2
kt

2/(2α) the function
in the trigonometric functions simplifies greatly θ− 1

2
,α
2
(x) = ωkt and the second function

reduces to b−1/2(x) =
√
x

12
(x−3). This yields the approximation for the Laguerre functions

appearing in the expansion of the knSFF

L
− 1

2
α
2

(
ω2
kt

2

2α

)
≈
√

2

πα
e

ω2
kt2

4α

[
cos(ωkt) +

√
2

α
b− 1

2

(
ω2
kt

2

2α

)
sin(ωkt)

]
. (4.32)

This approximation neglects terms of order O(α−1). When plugging this expression back

into the expression for f
(k)
t , we have a prefactor k/ωk which also needs to be approximated

to the same order. If we expand all the terms explicitly, we find

k

ωk
=

1√
α/2

Γ(α/2 + 1)

Γ(α/2 + 1/2)
= 1 +O(α−1). (4.33)

3See Digital Library of Mathematical Functions https://dlmf.nist.gov/18.15#iv

https://dlmf.nist.gov/18.15#iv
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All these approximations lead to an expression of the knSFF function f
(k)
t of the form

f
(k)
t = e−

ω2
kt2

4α

[
cos(ωkt) +

√
2

α
b− 1

2

(
ω2
kt

2

2α

)
sin(ωkt)

]
+O(α−1). (4.34)

Note that we do not expand terms involving time in large α, since we only assume α ≫ 1,
but we impose no condition on the relation between ω2

kt
2 and 2α, since it would render

our approximation valid only for a certain window of times. The frequency ωk can be
expanded a large k as

ωk ≈ k − 1

2βk
+O(k−2), (4.35)

which physically means that the knSFFs linearly increases their frequency as we consider
further and further apart neighbors k.

Let us now make several remarks on the nature of f
(k)
t in (4.34):

1. The initial value of the function is equal to unity f
(k)
t=0 = 1,

2. For long times t → ∞ the guassian envelope e−ω
2t2/(4α) makes the function vanish

limt→∞ f
(k)
t = 0,

3. The sine and cosine terms oscillate at the same frequency ωk, which scales linearly
with k at large k,

4. The prefactor multiplying the cosine is simply the Gaussian envelope. For the sine
term, there is an extra prefactor, which is time-dependent and less relevant for large
k since it is of order O(k−1). This prefactor is more important for large t, since it
vanishes identically at t = 0. This can be easily understood since small k terms are
more significant at long times.

5. Let us compute the number of oscillations in the standard deviation of the envelope.
For this, we compute the ratio between the width of the envelope τ

(env)
k =

√
2α/ωk

and the period of the oscillations Tk = 2π/ωk to be

τ
(env)
k

Tk
=

√
2α

2π
∼

√
β

2π
k. (4.36)

This means that the number of oscillations per width of the envelope grows linearly
with k, which is apparent from Figure 4.1. Furthermore, it also grows as we consider
a RMT ensemble with a larger value of the Dyson parameter β.

6. If the distribution of knLS was a pure Gaussian function centered at s(k) = k the
knSFF would only involve a Gaussian envelope and the cosine term, i.e. f

(k)
t =

e−k
2t2/(4α) cos(kt), since the Fourier transform of a Gaussian is another Gaussian.

This implies that the sine contribution comes directly from the non-Gaussianity of
the knLS distribution.
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Figure 4.1. Time evolution of the knSFF for Poisson (black), GOE (red), GUE (green)
and GSE (blue) for different spectral neighbors, k = 1, 5, 20, 40 in systems of
dimension N = 100. The plots for k = 5, 20, 40 show analytical results (thin lines)
from (4.39) and (4.37), while for k = 1 we show the exact expression (4.27), and
numerical results for random matrices averaged over Nav = 1000 realizations (thick
transparent lines). While we do not expect the approximation (4.37) to be good
for small k, it works already quite well for GSE and k = 1 and less so for GUE and
GOE, in that order. Note the different scales in the time axis, chosen to better
represent the increasing number of oscillations with the spectral neighbor k, see
Eq. (4.36). Figure adapted from [3].

The approximation to order O(α−1) of the knSFF then is given by

S
(k)
t ≈ 2(N − k)

N2
e−

ω2
kt2

4α

[
cos(ωkt) +

1

12α
ωkt
(ω2

kt
2

2α
− 3
)
sin(ωkt)

]
. (4.37)

Figure 4.1 shows the comparison of the analytical approximation with the numerical
simulation of Random Matrices. In particular, the plots for k ≥ 5 show very good
agreement with the approximate expression. While k = 1 uses the exact form of the
knSFF, which shows very good agreement with the numerical computation of the knSFF

4.3.3 knSFF for the Poisson ensemble

The knLS distribution for Poisson (4.7) is given by a power-law, with a smaller power
than the corresponding RMT distribution, multiplied by a decaying exponential, instead
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of a Gaussian. The f
(k)
t function for Poisson is then given by

f
(k)
t =

∫ ∞
0

P
(k)
0 (s) cos(st)ds =

1

(k − 1)!

∫ ∞
0

sk−1e−s cos(st)ds

=
1

2(k − 1)!

∫ ∞
0

sk−1e−(1−it)sds+ c.c. =
Γ(k)

(k − 1)!

1

2(1− it)k
+ c.c.

=
1

2(1− it)k
+

1

2(1 + it)k
=

(
√
1 + t2)k(eik arctan(t) + e−ik arctan(t))

2(1 + t2)k

=
cos(k arctan(t))

(1 + t2)
k
2

, (4.38)

where c.c. denotes the complex conjugate, and we used the definition of the Euler’s Gamma
function Γ(z) =

∫∞
0
xz−1e−xdx, its connection to the factorial Γ(n) = (n− 1)! for n ∈ N,

and lastly expressed it in terms of manifestly real quantities using the polar decomposition
of the complex number 1 + it =

√
1 + t2ei arctan(t)

The knSFF for the Poisson ensemble has a Lorentzian envelope to a power k/2, which
grows as we consider neighbors further apart, multiplied by the cosine of the inverse tan-
gent function multiplied by k. Introducing the prefactor C

(k)
N accounting for the number

of k-th spacings and the normalization of the SFF, we find the knSFF for the Poisson
ensemble to be given exactly by

S
(k)
t =

2(N − k)

N2

cos(k arctan t)

(1 + t2)
k
2

. (4.39)

Figure 4.1 shows the knSFF for the Poisson ensemble for different spectral ranges k =
1, 5, 20, 40 in black and compares it to numerical realizations of uncorrelated levels (thick
transparent black lines). Compared to the random matrix case, we observe that Poisson
has:

• The k = 1 knSFF shows no dip, simply a monotonic decay towards zero. This is
due to the fact that the nnLS of Poisson does not vanish at s = 0, but rather it is
maximal at s = 0.

• For neighbors further apart k ≥ 2 in the spectrum, the knSFF of Poisson does
show a dip, and even oscillations, arising from the small s behavior P

(k)
0 (s) ∼ sk−1.

Furthermore, note that the oscillations show the same frequency as for RMT since
the average oscillation frequency is set by the average level spacing E0,β(s

(k)) = k in
both Poisson and RMT.

• The Lorentzian envelope 1/(1 + t2)k/2 attenuates the oscillations very fast, much
faster than the Gaussian envelope. Note that this is not a feature of the Lorentzian
nature of the envelope, which would typically have heavier tails than a Gaussian,
but of the high power k/2. For this reason, we do not see a faster convergence to
zero for k = 1, but only for larger spectral ranges.
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4.3.4 Comparison with the disordered XXZ spin chain

A typical example of a many-body system showing a transition between chaos and inte-
grability is the disordered XXZ spin chain. This system has been extensively studied in
the context of many-body localization [130, 302, 303] and is described by the Hamiltonian

ĤdXXZ =
L∑
n=1

(σ̂xnσ̂
x
n+1 + σ̂ynσ̂

y
n+1 + Jzσ̂

z
nσ̂

z
n+1 + hnσ̂

z
n), (4.40)

where hn ∼ U[−W
2
,W
2
] corresponds to random local disorder, representing physically an

onsite magnetic field, with a strength of the uniform disorderW . WhenW = 0, the model
is integrable through the Bethe ansatz. At small but non-zero values of the disorder,
the system is chaotic, following RMT statistics, thus obeying the BGS conjecture. As
W increases, the spectrum becomes integrable following Poisson statistics, which has
spurred interest in this phase as potentially being a Many-Body Localized phase, in which
the eigenvectors become localized. We will not investigate eigenstate properties in this
thesis, nor investigate in depth the physics of the transition or crossover from chaotic to
integrable statistics. See [302, 304, 305] for reviews on the topic, and [306, 307] for formal
mathematical work towards a proof of many-body localization.

The knSFFs are computed for the disordered XXZ spin chain of length L in the following
way:

• We generate the random on-site magnetic field h = (h1, . . . , hL) where hn ∼ U[−W
2
,W
2
]

with a fixed value of the width of the disorder W . We set the parameter Jz = 2.21
and impose periodic boundary conditions.

• We compute ĤdXXZ for that realization of the noise. We want to restrict our analysis
to the zero magnetization sector, i.e., the subspace with the same number of spins
up as spins down, which has dimension d =

(
L
L/2

)
. For a spin chain of length L = 16

spins, the dimension of this subspace is d = 12, 870

• We diagonalize the Hamiltonian and find the set of energies of the system {En}dn=1.
In practice, the states close to the ground state or the highest excited state will not
follow the random matrix prediction, so we restrict the N ≡ Nen = 200 energy levels
around the densest part of the spectrum.

• We perform a numerical unfolding of the energies, as described in Sec. 1.6.2, to
remove the dependence on the density of states ρ(E). This gives the set of unfolded
energies {en|en = η̄(En)}Nen

n=1.

• From the set of unfolded energies, we compute the set of all the knLS {s(k)n |s(k)n =

en+k − en}N−kn=1 . From this we compute the knSFF S
(k)
t .

• Lastly, we perform an average over different realizations of the local disorder hn to
find the disorder-averaged knSFF for the XXZ model

S
(k)
t = EW (S

(k)
t ). (4.41)



Decomposing the spectral form factor 185

0.0 2.5 5.0
t

−0.01

0.00

0.01

S
(k

)
t

k = 1

0 2 4
t

k = 10

0 1 2
t

k = 30

0 1 2
t

k = 70

Figure 4.2. k-th neighbor Spectral Form Factor for the disordered XXZ spin chain
for different neighbor levels k = 1, 10, 30, 70 in the chaotic (W = 1, light blue dots)
and the integrable (W = 20, dark blue dots) phases along with the Poissonian
(black line) and GOE (red line) curves. The disordered XXZ model has Jz = 2.21
and PBC. The deviation between the integrable phase and the Poissonian results is
apparent starting from k = 10, and increases for larger k. Note that the oscillations
differ only in their amplitude, not in their frequency. We emphasize the different
scales on the time axis. Figure adapted from [3].

In Figure 4.2 we compare the GOE and Poisson knSFFs for different spectral ranges
k = 1, 10, 30, 70 to the knSFFs computed numerically for the disordered XXZ spin
chain in the chaotic W = 1 and integrable W = 20 regimes. We observe very good
agreement between the small k = 1, 10 numerical results and the GOE and Poisson limit.
However, when we study longer range spectral ranges k = 30 70, we observe deviations
from GOE and Poisson. These deviations happen particularly in the width of the knSFF
envelope, since the frequency of the oscillations agrees well with Poisson and RMT. This
is a well-known occurrence in studies of long-range spectral correlations, which is known
as the breakdown of RMT universality. In systems with a semiclassical limit, it can
be understood from short periodic orbits, which do not follow the universal behavior
[135, 287], but in the many-body setting, we think it still lacks a clear explanation.
Interestingly, after the analytical knSFF from Poisson has converged to zero, the numerical
computation still shows some small amplitude oscillations.

4.4 Properties of the k-th neighbor SFF

We now focus on studying some of the properties of the knSFFs. In particular, we first
focus on computing the minimum and minimum-time of each knSFF, we then explore the
neighbor range k∗ with the deepest knSFF, and finally, we show that the knSFF is also
not a self-averaging quantity.
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4.4.1 Minimum and minimum time

In here, we find analytical expressions for the minimum value attained by the knSFF S
(k)
tm

and the time at which this minimum is reached tm(k) for Random Matrices and Poisson.

Random Matrices

In principle, it would be possible to compute the minimum time tm(k) by minimizing either
the exact (4.25) or approximate (4.37) expression. This is, however, quite challenging in
practice. For this reason, we take the approximation (4.37) and realize that for short
times the sine term is attenuated by a polynomial, which vanishes at t = 0; therefore,
most of the contribution at short times comes from the cosine term. We also know that
for large k, the oscillations are much faster than the envelope, so that we can assume that
the Gaussian envelope is effectively constant.

From this argument, we easily find that the minimum of the cosine term appears when
ωktm(k) = π, which gives

tm(k) ≈
π

ωk

(4.35)∼ π

k
. (4.42)
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Figure 4.3. Minimum time as a function of the neighbor degree for (a) ideal ensembles:
Poisson (black), GOE (red), GUE (green) and GSE (blue) computed numerically
from the unfolded spectrum along with the approximate expression (4.42) (dashed
grey). (b) Results for the XXZ spin chain for different values of the disorder (blue
colorscale) along with the analytical result tm(k) = π/k (dashed gray). Figure
adapted from [3].

So we find that the minimum times decay inversely proportional to the neighbor range k,
and, interestingly, does not depend on the symmetry of the ensemble β. This is shown in
Fig. 4.3 (a) which shows that the numerical minimum time for the three RMT ensembles
is very similar, except for k = 1, and that it follows the approximate expression (4.42),
which clearly shows a power law tm ∼ k−1 decay (see inset). Note that for k = 1
the approximate expression is not valid. Furthermore, for small k, the period of the
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oscillations is comparable to the characteristic time-scale of the envelope and thus the
Gaussian envelope contributes to the time at which the minimum occurs.

Let us now evaluate the minimum value attained by the knSFF S
(k)
tm , we substitute ωktm =

π and find

S
(k)
tm = −2(N − k)

N2
e−

π2

4α . (4.43)

The approximate expression for the knSFF is known to not hold for small k, there is
however a minimal change to the expression of α, dropping the −1 factor, which gives the
expression

S
(k)
tm ∼ −2(N−k)

N2
e−

π2

2k(βk+β+2) , (4.44)

which reproduces the RMT results well for the full range of k, and for all the ensembles.
Figure 4.4 (left) shows the minimum value of the knSFF min(S

(k)
t ) ≡ S

(k)
tm obtained

numerically (transparent solid lines) and from the analytical expression (4.44) (dashed
lines) showcasing the agreement between the two. We see that the three ensembles show
different minima for small k, with the minima of GSE being the deepest, GUE the second
deepest, and GOE the shallowest. Interestingly, after k ≳ 10 the three ensembles show
equally deep knSFFs, a feature which can also be observed in Fig. 4.1. The reason behind
this is that the function − π2

2k(βk+β+2)
∼ − π2

2βk2
quickly converges to zero for large k, giving

a value of the exponential close to unity, and the only contribution is that of the prefactor
−2(N − k)/N2 accounting for the number of knLS N − k.

This modification can be justified in the following way. If we evaluate the exact expres-

sion for the knSFF (4.25) f
(1)
t =1 F1(

β+1
2
, 1
2
,−ω2

1t
2

2β
) for k = 1 where the approximated

expression does not hold, the minimum does not happen at ω1tm = π but rather for a
smaller value ω1tm < π. This value can be found numerically to be

ω1tm ≈ 2.124, S
(1)
tm ≈ −0.285 for β = 1,

ω1tm ≈ 2.449, S
(1)
tm ≈ −0.446 for β = 2,

ω1tm ≈ 2.711, S
(1)
tm ≈ −0.618 for β = 4,

(4.45)

and evaluating (4.44) for k = 1 gives

S
(1)
tm ≈


−0.291 for β = 1,

−0.439 for β = 2,

−0.610 for β = 4,

(4.46)

which provides a much better approximation for k = 1, and thus corrects the behavior
for small k. The large k behavior is guaranteed to work since the difference between α
and α + 1 vanishes for large k.
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Figure 4.4. (left)Minimum value of knSFF S
(k)
t as a function of the spectral distance

k. Approximate analytical results (dashed lines) for the RMT ensembles (4.44)
and Poisson distribution (4.48), and numerical results (solid lines). Colors are as
in Fig. 4.1, i.e., Poisson (black), GOE (red), GUE (green), and GSE (blue). The
numerical results are obtained from matrices of dimension N = 200 and averaged
over Nav = 2000 elements of the ensemble. Note that the function at large k is
linear, even if the choice of logarithmic scale in the k axis does not allow a simple
visualization. (right) Scaling of the deepest neighbor k∗ as a function of
the system size N computed numerically for RMT and Poisson ensembles (circles)
and the analytical approximations (4.53) and (4.58) rounded to the nearest integer
(lines). Numerical results are averaged over Nav = 200 matrices. We show a guide
for the eye at N = 200 (gray dotted line), which agrees with the values of k∗ used
in Figure 4.6 for the Poissonian and GOE endpoints of W . Figure adapted from
[3].

Poisson ensemble

In order to find the minimum time of the knSFF in the Poisson ensemble, we begin by
differentiating the explicit expression (4.38) in terms of (1 − it)−k and setting it to zero
to find

∂tf
(k)
t =

ik

(1 + t2)k+1

(
(1− it)k+1 − (1 + it)k+1

)
= 0,

(
√
1 + t2)k+1ei(k+1) arctan(t) = (

√
1 + t2)k+1e−i(k+1) arctan(t).

There are many values of t that solve this equation, which give all the relative maxima
and minima of the knSFF. If we set the argument of the exponential to zero, we find the
first relative maxima at t = 0; if we set it to π, we find the first relative minimum—which
is the absolute minimum since the Lorentzian envelope is monotonously decreasing for
t ∈ (0,∞). Therefore we find the condition (k + 1) arctan(tm(k)) = π which leads to

tm(k) = tan

(
π

1 + k

)
. (4.47)
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Note that this expression diverges at k = 1 because the k = 1 knSFF for Poisson does not
have a minimum and simply decreases monotonically towards zero; this is a consequence of
the nnLS distribution for Poisson not vanishing at the origin P

(1)
0 (s = 0) = 1 [120]. When

k becomes large the argument π/(k+1) becomes small and thus tm(k) ∼ π
k+1

∼ π
k
, i.e. the

minimum time shows the same asymptotic value as Random Matrices. This suggests that
the minimum time of the knSFF does not distinguish between chaos and integrability for
k ≥ 2, but rather shows an almost (except for k = 1) constant behavior in the transition
from chaos to integrability, as will be discussed in the following section. Figure 4.3 (left)
shows the behavior of the minimum time computed analytically for Poisson (black solid
line), which shows a divergence for k = 1, but quickly converges, at k = 2, to the results
from the other random matrix ensembles.

Given the analytical value of the minimum time tm(k) it is easy to compute the minimum

value of the knSFF S
(k)
tm , which yields

S
(k)
tm =

2(N − k)

N2
cosk

(
π

1 + k

)
cos

(
kπ

k + 1

)
, (4.48)

where the term with the k-th power is obtained from the Lorentzian envelope using the
identity 1 + tan2(x) = cos−2(x). Figure 4.4 (left) shows the comparison between the
analytical expression (4.48) and numerical realizations of the Poisson ensemble. We see
that the depth of the first knSFF is zero, since it has no dip. Interestingly, the knSFF
for the Poisson ensemble can be quite deep, deeper than k = 1 for GOE and GUE, for
example. This is an effect coming purely from the fact that when we have many levels in
between two levels, they acquire a considerable level repulsion, even if the individual levels
are uncorrelated. It is also interesting to note that the minimum of the knSFF for Poisson
also converges to the linear expression −2(N−k)/N2; this regime stems from the fact that
there is a small number of knLS’s for large k. Note that this transition happens at larger
values of k, k ≳ 30, which comes from the fact that cos( kπ

k+1
) cosk( π

k+1
) ∼ −1+ π2

2k
+O(k−2)

converges to −1 with a power ∼ k−1 instead of the power ∼ k−2 found for Random
Matrices.

From this analysis, an argument as to why the Poisson ensemble shows no correlation
hole readily follows. Figure 4.5 shows the minimum value attained by each knSFF for
Poisson in the interval in which they show a minimum at finite time k ∈ [2, 3, . . . , N − 1].

We show that none of these minima S
(k)
tm is deep enough to compensate the first knSFF

which has no dip, i.e. ∄ k such that S
(k)
tm + S

(1)
tm < 0.

XXZ spin chain

We now turn to discuss how the minimum of the knSFF and its minimum time show up
in the disordered XXZ spin chain, which is well known to show a transition from chaos
to integrability as the strength of the disorder W increases. Figure 4.3 (right) shows the
minimum time as a function of k for different values of the disorder strength W . We
see that in the integrable phase, large W (dark blue), the first spacing shows a larger
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Figure 4.5. Justification for lack of correlation hole in the Poisson ensemble. The

image shows the minimum value S
(k)
tm at the minimum time tm(k) (circles) for the

spectral range in the interval k ∈ [2, 3, . . . , N − 1] obtained analytically where

N = 200. The plot also shows the first knSFF for Poisson with a minus −S
(k=1)
t .

This highlights that no knSFF is deep enough to compensate for the value of the

S
(1)
t , which does not show a dip.

minimum time, but it quickly converges to the ∼ π/k behavior. The chaotic phase, small
W (light blue), follows the prediction from the first spacing quite well.

Figure 4.6 (left) shows the minimum of the knSFF as a function of k for different values
of the disorder. This quantity shows a different behavior in the chaotic or integrable
phases, given respectively by GOE (red dashed line) and Poisson (black dashed line).
We observe a transition between the two regimes as the strength of the disorder W is
increased. Remarkably, the numerical results for XXZ in both phases show very good
agreement with GOE and Poisson, respectively. This is due to two main reasons:

• The minimum of the knSFF happens at very short times tm ∼ π
k
which for large

k are tm ≪ 1. As we previously discussed, deviations from RMT happen in the
envelope of the knSFF, and at short times, the envelope has not had time to change
much.

• The second reason is that the breakdown of RMT universality happens for long-
range spacings, with k ≪ 1. However, for very long-range spacings, the behavior of
the minimum as a function of k is dominated by the prefactor 2(N − k)/N2 coming
from the finite number of spacings. Therefore, even if deviations from universality
could be seen in quantities relating to the minimum of f

(k)
t , this prefactor hides their

effect.

4.4.2 Deepest knSFF

We now investigate the spectral distance k∗ at which the knSFF shows the deepest min-
imum. For small k, considering neighbors further away, i.e., increasing k increases the
depth of the knSFF, but at large k, increasing k has the opposite effect, it decreases the
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Figure 4.6. (a) Minimum of the knSFF as a function of the neighbor degree k, the
colored dots mark the deepest knSFF, (b) deepest k-th neighbors SFF k∗ as
a function of the disorder strength, the colorscale marks the ⟨r⟩ parameter
[115]. The values of k∗ for GOE and Poisson are k∗ = 11 and k∗ = 28 respectively,
which can be obtained from the expansions for k∗ (4.53), (4.58) respectively, with
N = 200, which is the energy window size. Figure adapted from [3].

depth of the knSFF. The spectral distance k∗ marks the transition between these regimes:
shorter-range neighbors k < k∗ increase the depth as k grows, and longer-range neighbors
k > k∗ decrease the depth as k grows.

Random Matrices

To compute the k∗ with the deepest knSFF we differentiate expression (4.44) to find

∂S
(k)
tm

∂k
=
e−

π2

2k(βk+β+2) (2k2(βk + β + 2)2 + π2(2βk + β + 2)(k −N))

k2N2(βk + β + 2)2
, (4.49)

where the minimum k∗ will be given by the condition

2k∗2(βk∗ + β + 2)2 + π2(2βk∗ + β + 2)(k∗ −N) = 0, (4.50)

Now let us consider the following limit N ≫ k ≫ 1 in which k is large, but much smaller
than the number of levels N . This mesoscopic regime of k is indeed the relevant one in
which the minimum happens, as can be seen from Fig. 4.4. The large k limit k ≫ 1
allows us to perform the approximation

2βk + β + 2

βk + β + 2
∼ 2 +O(k−1).

On the other hand, since the number of levels is much larger than the neighbor range
N ≫ k, we can approximate k −N ≈ −N(1 +O(k/N)). In the mesoscopic regime of k,
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the deepest k∗ can be found from the solutions of

k∗2(2 + β + βk∗) = Nπ2. (4.51)

This polynomial has one real root, given by the analytical expression

k∗ =− β + 2

3β
+

3
√
2(β + 2)2

3β 3

√√
g2β,N − 4(β + 2)6 + gβ,N

(4.52)

+

3

√√
g2β,N − 4(β + 2)6 + gβ,N

3 3
√
2β

,

where the auxiliary function gβ,N is defined as

gβ,N := −2β3 − 12β2 − 24β + 27π2β2N − 16.

This expression is quite cumbersome and does not bring any physical insight. For this
reason, taking a large N expansion, we can find the asymptotic behavior

k∗ ∼ C 1
3
N

1
3 + C0 + C− 1

3
N−

1
3 +O(N−

2
3 ), (4.53)

where the coefficients are given by

C 1
3
=

(
π2

β

) 1
3

, C0 = −β + 2

3β
, C− 1

3
=

(2 + β)2 − 3βπ2

9β
5
3π

2
3

.

Therefore, we have found that the deepest knSFF for Random Matrices scales as the
cube root of the system’s dimension N . Figure 4.4 shows (right) shows the analytical
expression obtained from (4.53) where we plot the nearest integer nint(k∗) since k∗ ∈ N.
This result is then compared to the numerical result (dots) obtained numerically from
Random Matrices. We observe a slight deviation between the analytical prediction and
the numerical value for small N , which is to be expected due to the large N expansion.
Otherwise, the cube root function seems to fit quite well the behavior of k∗, especially for
large N . This figure also shows that for a fixed N the neighbor range with the deepest
knSFF, k∗, increases as we decrease β, i.e. k∗gse < k∗gue < k∗goe.

Poisson ensemble

Let us consider again the mesoscopic limit in which 1 ≪ k ≪ N , expanding the knSFF
for the Poisson ensemble in large k leads to the expression

S
(k)
tm = −2(N − k)

N2

(
1− π2

2k
+

4π2 + π4

8k2
+O(k−3)

)
, (4.54)
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whose minimum is given by the real solutions of the cubic equation

8k3 − π2k
(
4N + π2 + 4

)
+ 2π2

(
4 + π2

)
N = 0, (4.55)

given by

k∗ =

3

√√
4g30,N + h20,N + h0,N

24 3
√
2

− g0,N

12 22/3 3

√√
4g30,N + h20,N + h0,N

, (4.56)

which depends on the auxiliary functions

g0,N := −96π2N − 24π4 − 96π2, (4.57a)

h0,N := −(3456π4 + 13824π2)N. (4.57b)

The exact solution is again quite involved and cumbersome; however, taking the large N
limit, we find

k∗0 ∼
π√
2
N

1
2 −

(
1 +

π2

4

)
+O(N−

1
2 ). (4.58)

Therefore, the deepest knSFF scales faster than for the Gaussian ensembles, in particular
for the Poisson ensemble, it scales as the square root of the dimension of the system. This
can be observed in Fig. 4.4 (right), where we see that the deepest k∗ is much larger for
Poisson than for the RMT ensembles. We can also observe good agreement between the
numerical results and the predicted growth at large N .

XXZ spin chain: Transition from chaos to integrability

The value of k∗ shows a markedly different behavior in Poisson and RMT ensembles and
thus can be used to probe the transition between chaos and integrability. In a similar
way to the average level spacing ratio ⟨r⟩ [115] [cf. Sec. 1.8.1], k∗ is a scalar indicator of
the transition between chaos and integrability. Restricting to a system of size N = 200,
the predicted values of k∗ from (4.53) and (4.58) are k∗goe = 11 and k∗p = 28. Figure 4.6
(b) shows the transition between these two values as we increase the strength of the noise
W , we observe that the chaotic phase agrees very well with the analytical prediction (red
dashed line), at W = 3 we start to see k∗ growing, notably this deviation happens at a
smaller value of W than for the average spacing ratio ⟨r⟩ (colorscale) which still remains
close to the chaotic value until W ≈ 5. This implies that the transition from chaos to
integrability is not as sharp when using this indicator. When W ≳ 8, the system is in
the integrable phase. This phase has a larger deviation of the numerical data around k∗p,
which may come from the shallower minimum, making the determination of the deepest
knSFF less precise, cf. Fig. 4.6 (a).
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Figure 4.7. Relative variance of the plateau of the knSFF as a function of the neighbor degree
k, for GUE random matrices of dimension N (colorscale). The results are averaged

over Nav = 1000 ensemble realizations and R̄plat
k := 1

T

∫ tp+T
tp

Rk(τ)dτ is the time

averaged relative variance on the plateau. Solid lines correspond to (4.61). Figure
adapted from [3].

4.4.3 The knSFF is not self-averaging

The SFF is well-known to not be self-averaging [127]. This property refers to the oscilla-
tions present in the SFF that do not vanish as we take larger and larger system sizes N .
In this section, we study whether or not the knSFFs are self-averaging, and we find that
they are not, which was to be expected since if they were self-averaging, the full SFF, a
mere sum of them, would also be self-averaging.

A given physical quantity is self-averaging if its relative variance decreases as the system
size N is increased. In here we follow Schiulaz et al. [308] and define the relative variance

Rk(t) of the knSFF S
(k)
t as

Rk(t) :=
Eβ((S(k)

t + cN)
2)− Eβ(S(k)

t + cN)
2

Eβ(S(k)
t + cN)2

, (4.59)

where cN = 1
N(N−1) is the value of the plateau divided equally between all the N − 1

possible neighbor ranges. We have added this value to ensure that the average of the
knSFF is non-zero Eβ(St + cN) > 0, and thus the ratio is well-defined. The time regime
in which the lack of self-averaging of the SFF is particularly apparent is the plateau; for
this reason, we introduce the time-averaged relative variance in the plateau as

R̄plat
k :=

1

T

∫ tp+T

tp

Rk(τ)dτ. (4.60)

Figure 4.7 shows the relative variance of the plateau for each knSFF as a function of
k for GUE ensembles of different dimensions N . We observe that the relative variance
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decreases approximately linearly with k following the scaling law

R̄plat
k = (N − k)

N − 1

2N
. (4.61)

This equation shows that the knSFF are not self-averaging since increasing the dimension
of the system N increases linearly the relative variance of the plateau, which means that
quantum noise shows up in the individual knSFFs S

(k)
t and thus they need to be averaged,

as we have done in the rest of the chapter.

In this analysis, there is a paradoxical effect; we “guessed” the scaling law (4.61) from
the numerical data. If, however, we try to compute it analytically, we find a different
scaling that does not agree with the numerical results. If t is in the plateau Eβ(S(k)

t ) = 0,
therefore the Relative variance simplifies to

Rk(t ≥ tp) = N2(N − 1)2
(
Eβ(S(k)

t

2
) +

1

N2(N − 1)2
− 1

N2(N − 1)2

)
,

= N2(N − 1)2Eβ(S(k)
t

2
). (4.62)

Now, assuming that all spacings behave equally, which they should since we unfolded the
spectrum, we can write S

(k)
t = 2(N−k)

N2 cos(st). At this point, we can either compute the
ensemble average analytically as

Eβ(S(k)
t

2
) =

(
2(N − k)

N2

)2 ∫ ∞
0

cos2(st)Pβ(s)ds (4.63)

= 2(N − k)2
1F1

(
α+1
2
, 1
2
,− t2

A

)
+ 1

N4

t→∞−→ 2(N − k)2

N4
,

or exchange the ensemble and time-average to compute

1

T

∫ tr+T

tr

dτS
(k)
t

2
=

(
2(N − k)

N2

)2
1

T

∫ tr+T

tr

dτ cos2(sτ)
T→∞−→ 2(N − k)2

N4
, (4.64)

where tr is a reference time in the plateau tr > 2π. Both approaches yield the time-
averaged relative variance at the plateau to be given by

R̄plat
k =

2(N − 1)2(N − k)2

N2
. (4.65)

This scaling decays quadratically while the numerical results suggest a linear decay, im-
plying an inconsistency between the numerical and analytical approaches, which requires
further study to be solved.
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4.5 Building the full SFF

In this section we consider how the formalism developed in the previous sections that
introduced the knSFF, can help in explaining the behavior of the full SFF. In particular
we study how each spectral range k affects the build-up of the correlation hole.

4.5.1 The partial SFF

The quantities studied in the previous section, i.e., the properties of single knSFFs, do
not help in describing the features of the full SFF. This is because the SFF is the sum
of many fastly oscillating functions, and its particular shape comes from cancellations of
these oscillatory functions.

In order to overcome this obstacle, whilst keeping information of the k-th spectral range,
we introduce the partial K-neighbors SFF, which considers only the first K neighbors
k ∈ [0, 1, . . . , K]

St,K :=
1

N
+

K∑
k=1

S
(k)
t . (4.66)

Note that when K → N − 1, the partial SFF recovers the standard SFF. We now turn to
study how the ramp is built as we consider longer-range neighbors.

Time-scales of the Ramp: Dip and Thouless times

To characterize the extent of the ramp, the first requirement is to introduce a time-scale
that determines the start of the ramp, without the need for human observation. In here
we consider two different characteristic times, which we define and study below.

The general behavior of the SFF involves: decay, dip, ramp, and plateau. This behavior
will also be present in the partial SFF. One may think of defining the dip time as the time
at which the SFF reaches the absolute minimum. This is, however, not a good definition
for the particular definition of the SFF used here, although it may work reasonably well at
finite temperature or with a particular filter function, since the oscillations in the decay
can reach smaller values than the dip. For this reason, we define the dip time for the
partial K-neighbors SFF St,K in the following way:

1. We first compute the set of relative maxima of the partial SFF

t
(K)
rel−max := {t′ ∈ R such that Ṡt,K |t′ = 0, S̈t,K |t′ < 0}, (4.67)

2. The dip time then is given by the absolute minimum of the SFF evaluated at the
relative maxima, i.e., the dip time t

(K)
dip fulfills

S
t
(K)
dip ,K

= min
τ∈t(K)

rel−max

Sτ,K (4.68)
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This definition is illustrated in Fig. 4.8 (bottom). The partial SFF shows some oscillations
before the onset of the ramp, and, due to quantum noise, shows small fluctuations in the
ramp. The relative maxima trel−max are highlighted (dark green dots), and they show
clearly an absolute minimum around the onset of the ramp (red line). This definition

ensures that after the dip time t > t
(K)
dip the relative maxima of the partial SFF grow, i.e.,

after the dip time the SFF grows on average, which can be taken as a definition of the
beginning of the ramp.
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Figure 4.8. Visualization of the Thouless (blue) and dip (red) times for the partial SFF with
K = 150, N = 200 for the GUE, constructed from the analytical expressions for
the knSFF’s derived in the main text. (top) Visualization of the logarithm of the
ratio of SFF and the connected SFF ∆St,K . The tolerance parameter ϵ = 0.1
(turquoise horizontal line) and the Thouless time (blue vertical line). (bottom)
Partial SFF for the GUE (light green solid line), along with the relative maxima
(green circles), and the connected SFF (black dotted line). The shaded area shows
the interval [bt10

−ϵ, bt10
+ϵ] for visualization of the condition ∆St,K = ϵ. We stress

that the defining condition of the Thouless time is more clearly seen in the behavior
of ∆St,K and not in this area. Figure adapted from [3].

The second natural time-scale comes from the universality of the ramp of the SFF and is
known as the Thouless time. This timescale was originally proposed in the single-particle
context by Edwards and Thouless [309] and studied extensively for many-body spectral
form factors by Šuntajs et al. [130], which is the definition that we will follow4. Let us
begin by introducing the logarithmic ratio of the partial K neighbors SFF St,K and the
connected SFF bt (see Sec. 1.9.2)

∆St,K =

∣∣∣∣log10(St,Kbt
)∣∣∣∣ . (4.69)

4If K < N − 1, the partial SFF is not necessarily positive. This poses a problem for the smoothing
of the SFF since it has very pronounced oscillations, which may become negative. For this reason,
contrary to the approach in Ref. [130], we decide not to smooth the SFF through a time average.
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The Thouless time t
(K)
Th for the partial SFF is then defined as the time such that

∆S
t
(K)
Th ,K

= ϵ, and ∆St,K < ϵ, ∀ t > t
(K)
Th . (4.70)

This time thus characterizes the time after which the partial K SFF stays close—with
a tolerance set by ϵ—to the connected universal SFF bt. Figure 4.8 (top) shows the
logarithmic ratio ∆St,K for the partial SFF for GUE with K = 150 neighbors, computed
from the approximation of the knSFFs. The Thouless time (blue vertical line) is defined
as the time when the logarithmic ratio remains smaller than the tolerance parameter ϵ
(horizontal turquoise line). This plot also showcases another interesting phenomena, the
logarithmic ratio, although smaller than the tolerance ϵ, decreases in the ramp and has
a relative maximum exactly at the Heisenberg time tp = 2π, this relative maximum is
not seen in the logarithmic ratio between the full SFF and the connected SFF ∆St,N−1
(cf. Fig. 4.14 β = 2 bottom) which suggests that the neighbors k > 150 play a role in
smoothing the transition from the ramp to the plateau. In the same figure we observe
that the log ratio ∆St,N−1 in the plateau for GUE fastly decreases and is ∆St,N−1 < 10−5

at t = 10 which implies that the very long-range neighbors k > 150 also play a role in
suppressing the oscillations of the full SFF in the plateau. Figure 4.8 (bottom) shows the
connected SFF for GUE bguet (dotted black line), along with the interval [bt10

−ϵ, bt10
+ϵ]

intended to visualize the condition ∆St,K = ϵ.
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Figure 4.9. Time scales for the partial K-neighbors SFF. The plots show the dip (pink),
Thouless (turquoise), and plateau tp = 2π (black) times as a function of the
maximum number of neighbors K considered, for the three Gaussian ensembles.
The shaded regions represent the part where the SFF grows in a non-universal way
(pink) and where it grows with the universal ramp of the connected SFF (light
blue). The results are computed with Nen = 400 from the analytical expressions of
the SFF for Random Matrices (4.37). For the Thouless time, we used the partial
SFF without smoothing, taking ϵ = 0.1 for GOE and GUE and ϵ = 0.25 for GSE.
This choice is due to the challenge in building the full spike of the GSE from
summing knSFFs (cf. Sec. 4.5.3). Figure adapted from [3].

Figure 4.9 shows the dip (pink) and Thouless (turquoise) times, along with the Heisenberg
time tp = 2π at which the plateau starts. These time-scales are computed for the partial
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SFF and thus depend on the maximum number of neighbors K considered. When the
time is larger than the dip time t > tdip the relative maxima grow (pink shaded area) but
in a non-universal way, and when the time is larger than the Thouless time t > tTh the
partial SFF follows the universal ramp of the connected SFF (turquoise shaded area), up
to a tolerance of ϵ. Interestingly, in the case of RMT, we find that the dip time precedes
the Thouless time, i.e., tdip < tTh < tplat. The time-scale of the start of the ramp generally
shows a fast decrease whenK is smallK ≲ 5, because adding a new neighbor range affects
drastically the start of the ramp, in whichever definition of its characteristic time. After
this initial decay, we find that the decay slows down, i.e., adding one more neighbor range
when K is already large, say K = 100, does not change much the start of the ramp.
However, this is not the case when K is very large; in this regime, the decay speeds up
for the further apart neighbors K ≳ 350, and we see that the very long-range neighbors
are key to explaining the full extent of the ramp in the SFF.
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Universal ramp

Figure 4.10. Thouless and dip times for the knSFF as a function of the maximum neighbor
range K for the XXZ model in the chaotic phase. The results use ϵ = 0.2 [130]
considering Nen = 400 energy levels and averaged over Nav = 150 realizations of
the disorder. Figure adapted from [3].

Figure 4.10 shows the dip and Thouless times for the disordered XXZ spin chain in the
chaotic phase W = 1. The qualitative results agree with the prediction from random
matrices, considering the short-range K ≲ 50 neighbors start to form the ramp. The
extent of the ramp does not change, and actually stays flatter than in the RMT case, as
we consider neighbors 100 ≲ K ≲ 300, which means that these are not key to explain
the extent of the ramp, and lastly considering the furrthest apart neighbors K ≳ 350
decreases the starting time of the ramp. Therefore, we find that the neighbors who are
more responsible for the full extent of the ramp are the short- and the very-long-range
neighbors, and that the intermediate neighbors do not affect the ramp much. In the
particular case of disordered XXZ, we see that actually the Thouless time precedes the
dip time, contrary to what was observed in RMT, but since the definitions measure slightly
different properties of the start of the ramp, i.e., when maxima start to grow and when
the partial SFF is ϵ-close to the connected SFF, there is no general argument to say which
one should happen first and it will depend on particular features of the underlying system.
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4.5.2 Contribution from even and odd neighbors

One may wonder what the effect is of considering only even or odd values of k, i.e., a
system with only the even or odd level spacings. The ensemble average of the even and
odd knSFFs is given by

Eβ
(
S

(even)
t

)
=

1

2N
+
∑
k even

Eβ
(
S

(2k)
t

)
, (4.71a)

Eβ
(
S

(odd)
t

)
=

1

2N
+
∑
k odd

Eβ
(
S

(2k−1)
t

)
. (4.71b)

The reader should also note that the plateau value 1/N was split equally between both
quantities.
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Figure 4.11. Odd vs even neighbor contributions to the SFF and their sum for
Poisson, GOE, GUE and GSE; computed numerically from Nav = 1000
matrices of dimension N = 100. For visualization of the data in a log-log scale,
an extra factor of 1/2N was added to the even and odd contributions. The
even contributions construct a ‘resonance’ while the odd ones construct an ‘anti-
resonance’. The vertical lines highlight the time at which the resonance and
anti-resonance happen, t∗ = π (dashed gray), and at which the plateau starts for
the Gaussian ensembles, tp = 2π (dotted gray). Figure adapted from [3].

Figure 4.11 shows the time evolution of the even and odd SFFs computed numerically for
Poisson and the different RMT ensembles along with their sum, or total SFF. Inspecting
these plots, we find an interesting phenomenon, the even neighbors build most of the ramp
of the SFF, and then constructively interfere—showing a ‘resonance’— at t = π, in the
middle of the ramp. The odd neighbors, however, stay almost constant during most of
the ramp and only constructively interfere to build a negative peak—which we will call an
‘anti-resonance’—which exactly cancels the resonance in the even neighbors. The simi-
larity between the even SFF in GOE and the total SFF in GSE is also noteworthy. Mehta
and Dyson discovered that “ the probability distribution of a set of N alternate eigenvalues
of a matrix in the orthogonal ensemble of order 2N is identical with the probability dis-
tribution of the set of all eigenvalues of a matrix in the symplectic ensemble of order N”
[310]. This is exactly the reason why the even SFF in GOE is so similar to the full SFF
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in GSE, up to the detail that since the connection is between GOE(2k, 2N) ≡ GSE(k,N),
the time at which the spike happens is t = π for the even SFF of GOE and t = 2π for
GSE. This deep connection can be easily justified from the power αβ,k since the two power
laws coincide for all k

α1,2k = k(2k + 1) + 2k − 1 = 2k(k + 1) + k − 1 = α4,k, (4.72)

Therefore we can conclude that the emergence of the resonance is very similar to the
emergence of the spike in GSE, in light of our formalism, we will propose an intuitive
explanation for the spike in the next subsection.

The emergence of the resonance and antiresonance can be simply motivated from our
analytical results

S
(even/odd)
t =

1

2N
+

∑
k even/odd

C
(k)
N f

(k)
t . (4.73)

If we take the large k approximation for the frequency of the oscillations ωk ≈ k and we
discard the corrections to the cosine term the even and odd SFF’s are, respectively, of the
form

∑
n cos(2nt) and

∑
n cos((2n+1)t), when t = π the terms of the form cos(2nπ) = 1,

while the odd terms cos((2n + 1)π) = −1, which explains the observed resonance and
anti-resonance. This simple argument does not explain, however, why most of the ramp
is built from the even neighbors, nor why this anti-resonance appears in the middle of the
ramp. To the best of our knowledge, these remain unanswered questions.

4.5.3 The full SFF

In the previous sections, we have studied how the different spectral distances k contributed
to either individual kNSFFs or to their role in building progressively the ramp as more
and more neighbors are considered. In here we consider the sum of all the knSFFs, and
study how well it reproduces the numerical and connected SFF.

Using the approximation for the knSFFs, we can find an approximation to the total SFF
as

St =
1

N
+

N−1∑
k=1

2(N − k)

N2
e−

ω2
kt2

4α

[
cos(ωkt) +

ωkt

12α

(
ω2
kt

2

2α
− 3

)
sin(ωkt)

]
. (4.74)

Figure 4.12 compares the analytical approximation to the full SFF (solid thin lines) given
by (4.74) to the numerical simulation (thick transparent lines) to the connected SFF
(dotted black lines). We see that, even without using any exact knSFF, the analytical
approximation works quite well and reproduces the expected behavior for the full SFF.
In particular, the analytical approximation correctly reproduces the transition from the
ramp to the plateau, with the characteristic smooth transition for GOE, the kink for GUE,
and the spike for GSE. The plateau time is given by t

2πD̄
= 1 [121], where D̄ denotes the

average density of states D̄ =
∫
EDEdE whereDE := 1

N

∑N
j=1 δ(E−Ej). Therefore, given
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Figure 4.12. Spectral Form Factor for: Poisson (black), GOE (red), GUE (green) and GSE
(blue) computed numerically (thick transparent line) and using the analytical
results (thin solid line) given by (4.75) (black) and (4.74) (red, green, blue).
The connected SFF for each of the ensembles, see Sec. 1.9.2, is also shown (black
dotted line). The plots show results for random matrices with dimension N = 100
and the numerics have been averaged over Nav = 1000 matrices. The dotted gray
line marks the start of the plateau at tp = 2π. Figure adapted from [3].

that we have unfolded our spectrum, D̄ = 1, and the plateau time is tp = 2π. Under
careful observation of Fig. 4.12, we can see that the analytical approximation slightly
overestimates the numerical results, which is more pronounced in the ramp for GOE. In
the next subsection, we will characterize this deviation.

The exact SFF for Poisson reads

S
(Poisson)
t =

1

N
+

N−1∑
k=1

2(N − k)

N2

cos(k arctan t)

(1 + t2)k/2
, (4.75)

interestingly, this sum can be performed to yield

S
(Poisson)
t =

1

N
+

2

N2t2
− 2

t sin (N arctan(t)) + cos (N arctan(t))

N2t2 (t2 + 1)N/2
. (4.76)

Let us comment on the role of the terms in the expression:

• 1/N sets the plateau value.

• 2
N2t2

ensures that the expression is positive in the short-time oscillations.

• The trigonometric functions give the oscillatory behavior. The fact that they contain
the inverse tangent function does not modify much the behavior, especially for large
N , since the first oscillation happens at t = 2π/N , which for large N is very small and
the arctangent function admits the expansion arctan(x) = x +O(x3). Therefore, if
we were to approximate arctan(t) ≈ t in the argument of the trigonometric functions,
the SFF still would look very similar.

• The cosine contribution dominates the oscillations.
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• The contribution of the sine term is attenuated due to the fact that it is multiplied
by a linear term t. Indeed the main contribution of the sine term is to ensure
that S

(Poisson)
0 = 1, if that contribution is remove the starting value of the SFF is

(N + 2)/N , i.e. the effect of the sine term is only apparent for small N .

Interestingly, since the cosines dominate the oscillations, the sine contribution can be
discarded and the oscillations of the SFF for the Poisson ensemble are approximately
bounded between the two functions

1

N
+

2

N2t2

(
1− 1

(t2 + 1)
N
2

)
≲ St ≲

1

N
+

2

N2t2

(
1 +

1

(t2 + 1)
N
2

)
. (4.77)

The knSFF for Poisson shows a dip when k > 1, and it oscillates before converging to zero.
However, as can be seen in Fig. 4.12 (left), these oscillations do not give a correlation hole
and a ramp for the full SFF. The structure of the sum of knSFFs for RMT (4.74) and
for Poisson (4.75) is very different: the former has a Gaussian envelope while the latter
has a Lorentzian envelope, the time parameter appears inside an inverse tangent function
in Poisson, RMT has the extra contribution from the cosines. One natural question that
then arises is why does Poisson not show a correlation hole? Which is the most relevant
feature to prevent the build-up of the correlation hole?

As already argued before, the arctan(t) argument does not matter much, since the time
is small, it may be simply approximated by a linear function. The difference between a
Lorentzian envelope and a Gaussian envelope is also not the main reason for the difference
because a Lorentzian will have a broader tail than a Gaussian with the same width, and
thus the oscillations would be less suppressed. The main difference is that the Lorentzian
in Poisson (4.75) appears to a power k/2; this gives an envelope with decreasing width as
we increase k. If we are to manually change the envelope for a Gaussian with decreasing
width, such as e−kt

2
or e−k

2t2 , the correlation hole is also not present. This ensures that
the contribution from large k neighbors is attenuated and only contributes at very short
times, which restricts their ability to interfere with building a ramp.

The behavior of the width of the envelope is very different for RMT. The width of the
envelope τ (env) can be expanded at large k as

τ (env) =

√
2α

ωk
= 2
√
Aα = 2

Γ(α
2
+ 1)

kΓ(α+1
2
)
,

=
√
β +

2 + β

2
√
βk

+O(k−2). (4.78)

We see that this width decays as 1/k, but saturates to a constant
√
β at large k. This

means that long-range neighbors have an envelope wide enough so that they can interfere
and build up the correlation hole. The characteristic time of the envelope is compared to
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the plateau time in Fig. 4.13 (b) as tp/τ
(env). We see that at small k the growth is linear5,

implying τ (env) ∼ 1/k, and it progressively saturates to a constant.

An intuitive argument for the appearance of the spike in GSE
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Figure 4.13. (a) knSFF for GSE for k = 1, 40, 90 (solid thin lines) and Gaussian envelope
(dashed thick line), standard deviation of the Gaussian envelope

√
2α/ωk (solid

horizontal lines) and plateau time tp = 2π (dotted gray line). (b) Ratio between
the plateau time tp = 2π and the width of the Gaussian envelope

√
2α/ωk as a

function of the neighbor degree k for the three Gaussian ensembles: GOE (red),
GUE (green), and GSE (blue). Figure adapted from [3].

The study of the width of the envelope τ (env) can also help to explain the spike in GSE.
The Gaussian Symplectic Ensemble is the one with the largest τ (env) ∼ 2, and this allows
the existence of the spike. Figure 4.13 (a) shows several knSFFs for GSE. Interestingly,
the first knSFF, with k = 1, has a positive oscillation around tp. Figure 4.13(b) shows the
ratio tp/τ

(env), i.e., how many widths of the envelope fit in the plateau time, or in other
words, how many standard deviations of the Gaussian are the plateau away. We see that
for the GSE (blue), the plateau is two standard deviations at k = 1, and progressively
grows to being tp/τ

(env) ∼ 2π/
√
β = π standard deviations. This ensures that the knSFFs

are not too attenuated and allows them to interfere in building the characteristic spike
of GSE. For the GUE, the plateau is from slightly under three standard deviations to√
2π ≈ 4.44 standard deviations, which lets the knSFFs construct the kink, but prevents

any further interference. Finally, GOE is the most attenuated of the Gaussian ensembles,
which makes the transition from the ramp to the plateau smooth, as expected.

How well do the approximations reproduce the full SFF

We performed several approximations to achieve expressions for the knSFFs. Here we
study the validity of the full expression for the SFF as obtained from sums of approxi-

5Here there is a small subtlety since the x-axis is in logarithmic scale, for the purpose of visualizing a
wider range of k, so strictly we cannot claim that linear in lin-log scale implies that the function grows
linearly. When the same data is plotted in a linear scale, we still see the small k linear behavior.
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mate knSFFs (4.74). To this end, and following Suntajs et al. [130], we introduce the

logarithmic distance d(•, •) between two SFF’s S
(1)
t , S

(2)
t as

d(S
(1)
t , S

(2)
t ) :=

∣∣∣∣∣log10
(
S
(1)
t

S
(2)
t

)∣∣∣∣∣ , (4.79)

which is positive d(•, •) ≥ 0 and vanishes if the two SFF’s are equal at time t, i.e.

S
(1)
t = S

(2)
t ⇒ d(S

(1)
t , S

(2)
t ) = 0.
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Figure 4.14. Comparisons of the approximate analytical SFF with numerical (top)
and connected (bottom) SFF’s for (left to right): Poisson, GOE, GUE and
GSE. The dashed line marks the ϵ = 0.1 difference between the two quantities.
We observe that the difference with the numerics stays bounded by 0.1, i.e. a
10% difference between the two SFF’s. The colored regions indicate the universal
ramp (light blue), from the Thouless time to the Ehrenfest time, and the plateau
(light yellow), after the Ehrenfest time. Figure adapted from [3].

Figure 4.14 (top) shows the comparison between the numerical SFF computed for random
matrices and the analytical approximation (4.74) (β ≥ 1) and the same comparison
for numerical realizations of the Poisson ensemble with (4.75) (β = 0). For random
matrices β ≥ 1 we also highlight the ramp of the analytical approximation of the SFF
tTh ≥ t ≥ tp = 2π (light blue) as well as the plateau t ≥ tp = 2π (light yellow). At

t = 0 both SFF’s start with S
(i)
t=0 = 1, therefore their distance at short times is always

very small for all the possible ensembles. Comparing to the numerical results implies that
S
(num)
t has some numerical fluctuations, even if we perform an ensemble average. This

causes the distance between the analytical and numerical SFF to show oscillations and to
not vanish. The most interesting feature can be observed for the RMT ensembles, specially
for GOE, where the analytical approximation slightly overestimates the ramp of the SFF
(blue region). We see that this discrepancy is of around 10%. The distance remains
bounded by d ≤ 0.1 (gray dashed line), which justifies the validity of the approximations
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performed in deriving the expressions for the knSFF. Lastly, it is notworthy that we have
not included any exact knSFF in the description, and that even without any of the special
functions the analytical approximation captures well the behavior of the full SFF.

Figure 4.14 (bottom) shows the distance between the analytical approximation of the SFF
and the connected SFF bt. For Poisson we take bβ=0

t = 1/N , i.e. the plateau value, while
for RMT we take the connected SFF (see Sec. 1.9.2). Note that at short times bt is very

small while S
(an)
t=0 = 1 which implies that the distance starts decaying from d ≈ 1. It starts

to decay, it shows the characteristic short-time oscillations of the infinite Temperature
SFF, and fastly goes below d ≤ 0.1. For Poisson it decreases monotonically after this
first oscillations and decays with a power law d ∼ t−2, indicating fast convergence to the
plateau. For GOE we see that during the ramp starts the distance doess not decrease
much, and remains constant, a feature coming from the overestimation of the analytical
approximation of the ramp, and then starts to decrease before the plateau starts, and
decreases again as d ∼ t−2 during the plateau. A similar behavior is observed for GUE
and GSE, although the distance between the analytical approximation and the connected
SFF decreases as we increase β, which ensures that the terms of O(α−1) discarded are
more negligible. For these two ensembles we observe a non-monotonic behavior in the
transition from the ramp to the plateau, a feature probably arising from the difficulty of
building exactly the kink or the spike from finitely meany oscillatory function, after this
the distance between the two vanishes very fast, much faster than the previous power law,
in the plateau, indicating a much faster convergence to the 1/N value.

The non-monotonic spiky behavior observed in the transition from the ramp to the
plauteau in GSE implies that the value of ϵ should be chosen carefully to character-
ize the onset of the ramp, and not only the plateau, which would happen if a smaller
value of ϵ was to be chosen.

4.5.4 What is the simplest form of the knSFF which gives rise to a
ramp?

The purpose of the previous sections was to find exact and approximate expressions for
the knSFFs of random matrices, this lead to the exact expressions (4.25) (4.27) and the
approximation (4.37), find their properties, and show how one can build the SFF from
summing more and more of these knSFFs. In this section, however, we take an orthogonal
point of view and instead of focusing on an accurate description of the knSFF we want
to find the simplest knSFF expression which can give rise to a ramp.
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Figure 4.15. Cosine contribution (purple) and sine contribution (pink), full analytical SFF
(green) obtained as the sum of the cosine and sine contributions. Lastly, we also
show the connected SFF (dotted line) for the GUE ensemble. To show them on
a log-log scale, all the contributions include the same plateau value 1/N .

Only the cosine contributions do not give a linear ramp

We begin our analysis from the approximate analytical expression (4.37). We separate
the cosine and sine contributions as

S
(k,cos)
t =

2(N − k)

N2
e−

ω2
kt2

4α cos(ωkt), (4.80)

S
(k,sin)
t =

2(N − k)

N2
e−

ω2
kt2

4α
1

12α
ωkt
(ω2

kt
2

2α
− 3
)
sin(ωkt), (4.81)

and compute the sum of all the contributions, such that S
(cos)
t =

∑
k S

(k,cos)
t , S

(sin)
t =∑

k S
(k,sin)
t . Fig. 4.15 shows both of the contributions, we observe that the ramp generated

by summing only the cosine terms (purple) is not linear, and does not agree with the full
or connected SFF. This highlights the importance of the sine contribution, which arises
from the non-gaussianity of the distribution, and without which the linear ramp cannot
be built, we see that its biggesst effect is at the start of the ramp, and right before the
onset of the plateau.

Accounting for the non-gaussianity in a sum of cosines

We have just argued that the non-gaussianity is necessary to achieve the linear ramp of
the SFF, however, there is a way to approximately include this contribution in the cosine
such that the SFF can be understood as a Fourier transform. Let us begin by expanding
the trigonometric functions in the approximation for the knSFF (4.37) to find

S
(k)
t ≈ N − k

N2
e−

ω2
kt2

4α

(
1− i

ωkt

12α

(
ω2
kt

2

2α
− 3

))
eiωkt + c.c. (4.82)
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The parenthesis can then be approximated by an exponential, which gives an approxima-
tion for the knSFF as

S
(k)
t ≈ 2

N − k

N2
e−

ω2
kt2

4α cos

(
ωkt+

ωkt

4α
− ω3

kt
3

24α2

)
. (4.83)
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Figure 4.16. Full SFF obtained analytically as a sum of cosines with: full expression with
cubic terms (4.83) (left) and modified frequency (4.84)(right) for GUE.

Figure 4.16 (left) shows the full SFF obtained analytically as a sum of only cosines con-
tributions with this expression, we observe that the ramp we recover is linear and is very
close to the universal value predicted by the connected SFF (dotted line). Therefore, it is
possible to obtain a SFF with a linear ramp only from cosine contributions, but the cubic
term is necessary for showing a linear ramp.

We can discard the O(t3) term and we find that the knSFF can be expressed simply as

S
(k)
t ≈ 2

N − k

N2
e−

ω2
kt2

4α cos(ω̃kt), (4.84)

where the modified frequency is simply ω̃k = ωk(1+
1
4α
). The advantage of this expression

is that now the SFF can be expressed as a single discrete Fourier transform as

St =
1

N
+ 2

N−1∑
k=1

N − k

N2
e−

ω2
kt2

4α cos

(
ωk

(
1 +

1

4α

)
t

)
. (4.85)

Figure 4.16 (right) shows the full SFF obtained from this expression, we observe that it
reproduces much better the full SFF than the one without the modified frequency, but
worse that the expression with cubic terms, the biggest difference happens at around the
onset of the plateau. From here we can conclude that the corrections to the frequency
are those responsible for the starting part of the ramp, while the cubic contributions are
those responsible for the transition from the ramp to the plateau.
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Toy model: A system with correlations only to nearest-neighbors

The nearest neighbor level spacing distribution P(1)(s(1)) is an indicator of quantum chaos
but is not enough to claim that the system is chaotic. This is in agreement with what
we have studied in the previous part of this chapter, one needs to take into account the
correlations at all possible spectral ranges k, to explain the full extent of the ramp of the
SFF. In here, we build a toy model of a system which only contains correlations to nearest
neighbors in energy, but not to the remaining neighbors, and compute the SFF of such
system.

Recall that given two uncorrelated random variables x, y the probability distribution of
their sum is given by their convolution, i.e. the second k = 2 level spacing s(2) would be
s(2) ≡ s(1) + s(1). The level spacing distribution for s(2) can thus be computed as

P(2)(s(2)) = P(1)(s(1)) ∗P(1)(s(1)) =

∫ s(2)

0

P(1)(s)P(1)(s(2) − s)ds, (4.86)

where ∗ denotes the convolution of two probability distributions and we have introduced
in the integral the constraint that s(1), s(2) ≥ 0, which reduces the integration domain
to s ∈ [0, s(2)]. The convolution theorem states that the Fourier transform F[•] of a
convolution is the product of the Fourier transforms, therefore the knSFF for this toy
model reads

ς
(k)
t = Re(F[P(1)]k(t)), (4.87)

where the Fourier transform of the nnLS distribution, F[P(1)](t), admits the exact expres-
sion

ς
(1)
t = F[P(1)] =1F1

(
β + 1

2
,
1

2
,− t2

4Aβ

)
− it 1F1

(
β

2
+ 1,

3

2
,− t2

4Aβ

)
. (4.88)

The full SFF can be built from the sum of the knSFFs

ςt =
∑
k

2
N − k

N2
Re((ς

(1)
t )k). (4.89)

Figure 4.17 shows this expression (purple) and compares it with the numerical SFF for
the GUE (green). We see that the uncorrelated SFF shows a correlation hole, which was
to be expected since the probability distribution of all the spacings P (s = En − Em)
vanishes at s = 0 [120], but does not show a linear ramp. Non-linear ramps have been
observed in SFF’s for integrable models, such as SYK2 [311, 312], and thus cannot be
used as a signature of chaos.



210 Decomposing the spectral form factor

10−2 10−1 100 101

t

10−2

100

S
t

Figure 4.17. SFF computed numerically for the GUE (green) and for the toy model with
energy correlations to nearest neighbors only ςt (purple), Eq. (4.89). Figure
adapted from [3].

4.6 A dissipative protocol to measure the knSFF

The previous parts of this chapter have implicitly assumed that we had access to the
spectrum of the system {Ej} and that from there one can compute all the k-th neighbor
level spacings and from the knowledge of the knLS find the knSFF. This is indeed the
approach that we have followed to compute numerically knSFFs, but it is far from the
approach that one would follow experimentally. Although originally the SFF was devised
as a tool to measure chaos which would not be very affected by imperfect spectral data
[119], there has been some recent efforts in trying to devise a quantum protocol to measure
the SFF [313, 314] or closely related quantities [315] in experiments directly. This is
especially challenging since measuring the SFF involves very long times, and a very faint
signal, which is precisely what needs to be used to determine whether the system is
integrable or chaotic. Even though these problems make it tough to measure, the first
direct measurement of the SFF has been recently reported [316].

In here, in a similar spirit to [315], we consider a way of computing a related quantity to

the knSFF, in particular the k-th neighbor autocorrelation function C
(k)
t

C
(k)
t =

1

N2
Tr(Ô(k)Ô

(k)
t ) (4.90)

=
∑
i

|Oii|2
N2

+
N−k∑
i=1

|Oi+k,i|2
N 2

cos[(Ek+i − Ei)t)],

where N is simply a normalization factor. This autocorrelation function reduces exactly
to the knSFF when |Oi+k,i|2 = |Oj+k,j|2, ∀i, j. If this is not the case it gives a different
weight to each of the starting energies Ei, and gives a differently weighted average of the
knSFF.

It crucially depends on our ability to prepare such an operator Ô(k). We propose a dissi-
pative protocol to prepare such an operator as the long time limit of a certain evolution.
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We consider the adjoint GKSL master equation with a single hermitian jump operator

∂tÔt = i[Ĥ0, Ôt]− γ
[
L̂, [L̂, Ôt]

]
. (4.91)

Furthermore, let us assume that L̂ and Ĥ0 commute [Ĥ0, L̂] = 0 so that they share a
common eigenbasis. In this case the solution of the adjoint master equation is simply

Ôt =
∑
m,n

Omne
−i(Em−En)t−γ(lm−ln)2t |m⟩ ⟨n| . (4.92)

Now consider that we could engineer a jump operator of the form

L̂ = diag(l1, . . . , lk, l1, . . . , lk, l2k+2, . . . , lN), (4.93)

which has a repeated string of k eigenvalues l1, . . . , lk. If we do not consider the Hamilto-
nian evolution, or equivalently go to the interaction picture with respect to it the evolution
up to time tf is

Ôtf =
∑
m,n

Omne
−γ(lm−ln)2tf |m⟩ ⟨n| . (4.94)

All off-diagonal elements decay exponentially fast with time, except for those in which
|m − n| = k and m,n ∈ {1, . . . , k} which do not decay due to the structure of L̂. Thus
we see that the infinite time limit reads

lim
tf→∞

Ôtf = Ô(k) =
N∑
i=1

Ôii |i⟩ ⟨i|+
2k∑
i=1

Oi+k,i |i+ k⟩ ⟨i|+ h.c.

=



O11 0 . . . O1,k+1 0 . . .

0 O22 . . . 0 O2,k+2 . . .
...

...
. . . . . .

Ok+1,1 0 Ok+1,k+1

0 Ok+2,2 Ok+2,k+2

...
...

. . . . . .


. (4.95)

This is intended to be a theoretical example to show that it is possible to devise a protocol
to find a correlation function that encodes similar information to the k-nSFF. It is hard
to conceive a physical mechanism to engineer a jump operator such as (4.93) in a realistic
many-body system since it involves a highly structured decoherence-free subspace [202].

Another possible approach builds on the work of Joshi et al. [314]. In this work a SFF for
a subsystem of a physical system was introduced, which introduces a certain dependence
on the eigenstates on the SFF. Consider a bipartite Hilbert space H = HA ⊗ HB, if we
could find a bipartition over which TrB(ρ̂B(Ei)ρ̂B(Ej)) ∝ δ|i−j|,k holds, where ρ̂B(Ei) =
TrA(|Ei⟩ ⟨Ei|) is the reduced density matrix of subsystem B. If such a subsystem can be
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found, then the randomized measurement protocol devised in [314] can be readily applied
to measure the k-nSFF.

4.7 Conclusion

In this chapter, we have studied the role that each k-th neighbor level spacing plays in
building the full SFF. In doing this, we have computed exact and approximate expressions
for the k-th neighbor SFF for the different ensembles of random matrices and Poisson.
This provides a simple decomposition of the SFF which highlights how each of the different
long-range correlations shows up in the full SFF.

We then focused on understanding the properties of individual k-nSFF’s, focusing first
on the minimum and minimum time of the knSFF. We find that the minimum time
tm(k) does not distinguish Poisson and RMT if k ≥ 2, in the same way it also does not
distinguish the different phases of the disordered XXZ spin chain. This means that for
all systems, whether chaotic or integrable, the knSFF with k ≥ 2 shows a dip whose time
does not depend on the correlations of the ensemble, which have been removed through
the unfolding. The minimum value of the knSFF is markedly different in random matrix
and Poisson ensembles. In a similar way, the deepest knSFF k∗ also shows different
scaling which implies that it can be used to distinguish between chaotic and integrable
systems. We used this to monitor the transition between chaos and integrability in the
disordered XXZ model. In a similar way to the full SFF, the individual knSFFs are not
delf-averaging.

We then turned to the study of properties of combinations of knSFFs. We first introduced
the partial K neighbors SFF, which considers a cutoff in the neighbor range. By studying
the dip and Thouless times as a function of K, we concluded that the neighbors with
the biggest effect in the length of the ramp are the short-range (K ≲ 5 for RMT and
K ≲ 50 for disordered XXZ) and the very long-range (K ≳ 350 for RMT and K ≳ 300
for disordered XXZ). This conclusion is counterintuitive since we expect the very long-
range correlations to not be universal. However, as we already discussed when studying
the individual knSFFs as in Fig. 4.2, the strength of the deviations from universality in
the knSFF depends on the time-scale, these are specially apparent in the envelope of the
knSFF, and at short times a correction to the width of the envelope has not had enough
time to be very noticeable. This provides a possible explanation for this counterintuitive
effect: at short times, even if the deviations from universality are big for very long-range
spacings, these have not had enough time to have a big contribution that takes the SFF
out of its universal ramp, and thus they still contribute to the universal ramp of the SFF.
Another possible effect that could be taking part here is that when several long-range
knSFFs are combined, their non-universal contributions partially cancel each other, and
thus we cannot observe the deviations from RMT universality in the full SFF.

We found that when the sum of even or odd neighbor ranges behaves in a strikingly
different way. We find that the even neighbors build most of the ramp, and have a
constructive interference in the center of the ramp at t = π. The contribution from the
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odd neighbors is almost constant, and only cancels the constructive interference, yielding
the linear ramp. This gives a ‘resonance-antiresonance’ behavior, which is characteristic
of the RMT ensembles. Our analysis provides an intuitive exaplanation for the presence
of the spike in the GSE. We computed the full SFF and compared it to numerical and
analytical expressions for it, seeing that in the plateau regime our approach converges to
the analytical expression.

We then study the simplest form of the knSFF that give rise to a ramp, trying to discern
what are the features that give rise to a linear ramp. Instead we find several approaches
that do not give a linear ramp, such as only taking the cosine term in the expression
for the knSFF, or considering a toy model where there are only correlations to nearest
neighbors. Lastly, we finish the chapter by introducing a dissipative protocol to measure
a correlation function related to the knSFF.

4.7.1 Open questions

In light of the results of this chapter there are a number of possible directions for further
research, let us name here a few:

• The analysis of knSFFs has been done so far at infinite temperature, extending to
nonzero β, as introduced for the SFF in Sec. 1.9, would lead to the possibility
of studying which spectral ranges contribute more to the almost-saturation of the
universal bound in the inflection exponent η ≤ π/(2β) [4]. We already observed in
the appendix of [4] that the effect of finite temperature is to wash out the longer-
range knSFFs. The main obstacle in the analytical side for this research direction is
that now the knSFF depends not only on the difference En+k − En but also on the

sum En+k + En = s
(k)
n + 2En.

• A very interesting direction of study is to extend the knSFFs to the dissipative or
non-hermitian case, which on the random matrix side entails generalizing to ensem-
bles such as Ginibre. In the non-unitary case most studies focus on short-range
correlations [317] or the full SFF [131, 247, 318, 319]. The main obstacle in this
line is that long-range spectral correlations between complex eigenvalues are more
delicate to diagnose [320], which could be avoided by looking at correlations between
singular values [66], particularly through their evolution in the singular form factor
[321].

• Extending to more complicated random patterns which may be modelled through a
wigner-like surmise with a modified exponent α is a promising direction of study, in
which the insights from quantum chaos and random matrix theory could shed light
on different physical phenomena. This direction was explored for point patterns in
two dimensions in [322].

• Another possible direction is to propose corrections to the power α, as we did in
[6], which could yield a more accurate expression for the knSFFs and clarify how
patterns in the knLS manifest in the time evolution.
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• Is it possible to achieve an operator of the form as Ô(k), cf. sec. 4.6, through a
variant of the Lanczos algorithm [5]?

• Lastly, we understood why certain knSFFs do not build a linear ramp, and what
their role is in building the ramp of each of the spectral ranges. Still, it remains
to be understood why the linear ramp of RMT arises from the expressions for the
knSFFs, and which other possible expressions would build a linear ramp.

Recap of results of Chapter 4

• In the case of RMT we computed expressions for the knSFF analytically (4.25)

f
(k)
t = 1F1

(
α + 1

2
;
1

2
;− t2

4Aα

)
,

and approximately (numerically more stable) (4.34)

S
(k)
t ≈ 2(N − k)

N2
e−

ω2
kt2

4α

[
cos(ωkt) +

1

12α
ωkt
(ω2

kt
2

2α
− 3
)
sin(ωkt)

]
.

The nature of each individual knSFF is clear from these expressions, which
involve oscillatory functions multiplied by an envelope. In the case of Poisson,
the exact expression we computed (4.38)

S
(k)
t =

2(N − k)

N2

cos(k arctan t)

(1 + t2)
k
2

.

This expression is numerically stable, since it is written in terms of ordinary
functions, and thus we do not need to find approximations for it.

• The comparison between the analytical expressions for RMT and Poisson with
the numerical expressions for the disordered XXZ spin chain in the two different
phases, cf. Fig. 4.2, show that the deviations from universality happen specially
in the width of the envelope of the knSFF, which is slightly narrower than GOE
in the chaotic phase, and slightly wider than Poisson in the integrable phase.

• We computed an analytical expression for the minimum time for RMT (4.42)

tm(k) ≈
π

k
,

and for Poisson (4.47)

tm(k) = tan

(
π

1 + k

)
.

We find that this minimum time does not distinguish between chaos and inte-
grability, except for k = 1, where Poisson shows no dip.
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• We computed an analytical approximation for the minimum of each knSFF for
RMT (4.44)

S
(k)
tm ∼ −2(N−k)

N2
e−

π2

2k(βk+β+2) ,

and for Poisson (4.48)

S
(k)
tm =

2(N − k)

N2
cosk

(
π

1 + k

)
cos

(
kπ

k + 1

)
.

These can provide a simple justification for the lack of correlation hole in Poisson,
since none of them is deep enough to compensate S

(1)
t , cf. Fig. 4.5.

• We also compute asymptotic expressions for the deepest knSFF k∗ (4.53) for
RMT

k∗β ∼ 3

√
π2N

β
,

and for Poisson (4.58)

k∗0 ∼
√
π2N

2

These are markedly different for RMT and Poisson and thus can be used as a
signature of the transition from chaos to integrability. We show them for the
disordered XXZ spin chain in Fig. 4.6 along the chaos to integrability transition.

• We find that the knSFF, like the full SFF is not a self-averaging quantity, cf.
Fig. 4.7.

• We introduce the partial SFF (4.66) with a limit in the range of the neighbors
K. Introducing the dip and Thouless times of the partial SFF, we find that even
if all neighbors are needed to explain the full extent of the ramp, the ones with
the biggest effect are the very short-range and the very long-range. This is seen
for RMT in Fig. 4.9 and for XXZ in Fig. 4.10.

• We find that when only the even or odd neighbors are considered, they show
markedly different behavior for RMT. The even neighbors build most of the
ramp while the odd only cancel the resonance of the even to give the ramp, cf.
Fig. 4.11.

• We also show that the approximation for the knSFF’s works well in building the
full SFF, cf. Figs. 4.12, 4.14.

• In terms of the knSFF’s, we can find a simple explanation for the appearance of
the spike in GSE, cf. Fig. 4.13, which essentially appears because the envelope
is wide enough to allow for a constructive interference of the knSFF’s.

• We construct a toy model in which there is only correlation to nearest neighbors,
and we find that this system does not show a linear ramp in its SFF, cf. Fig.
4.17.
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• Lastly, in Sec. 4.6 and in line with the other chapters of the thesis, we propose a
dissipative protocol which could serve to measure a correlation function related
to the knSFF.



Chapter 5

Discussion

This thesis has investigated the role of randomness in dissipative and chaotic quantum
dynamics. Throughout the chapters, we have dealt with different aspects of randomness,
broadly categorized as either noise, when randomness fluctuates in time, or randomness
as a model for complex many-body dynamics, through the framework of random matrix
theory. Another common methodological denominator of the thesis was going beyond the
standard approach in the field, which allows us to provide more detailed descriptions of
different phenomena. Here we discuss the main results of the thesis and their potential
importance.

In this spirit, Chapter 2 focused on a noisy hamiltonian beyond the noise-average, intro-
ducing quantities such as the stochastic operator variance (SOV) and its higher moments
and cumulants. For stochastic Hamiltonians, the unitarity of single trajectories simplifies
greatly the computations, and shows that all the higher point moments evolve as given
by the time evolution operator generated by the adjoint Lindbladian E†t = eL

†t. The
generalization to dynamics which are not unitary at single trajectories, such as continu-
ous quantum measurements [42, 43, 77] or even collapse theories [225], promises a better
understanding of the stability of stochastic quantum evolution, and its relation to the
chaotic or integrable dynamics of the system. This direction may yield important practi-
cal and fundamental insights, since the SOV may characterize how “error-resilient” is a
given operator, or provide a more refined quantity to explore in more stringent tests on
the foundations of quantum mechanics [225].

In Sec. 2.3, we found that the product of two SOV fulfills a bound similar to the un-
certainty relation. We found several versions of these inequalities, particularly state-
dependent and state-independent. The main open question in this line is: how hard is
it to measure the SOV? Perhaps it is enough to measure some of its expectation values.
Following on this line, it may be very fruitful to explore the conditions for the saturation
of the SOV uncertainty relations, the extra information contained in the operator versions
of the bound, and how these could be used to derive limits on Open quantum dynamics,
such as different quantum speed limits [222, 223].

In Sec. 2.6, we found a deep link between the SOV and dissipative OTOC’s. One
potentially very important follow-up direction on this is to try to extend the universal
bound on the Lyapunov exponent for the OTOC [128] to certain expectation values of
the SOV. The main obstacle in this direction is that for a stochastic Hamiltonian, the
connection holds to a dissipative OTOC, for which the Lyapunov regime is generally
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hindered by dissipation. Extensions to more general dynamics which are not unitary
at single trajectories, may bring different OTOCs which are not the dissipative one. A
natural playground for this direction of study is the Sachdev-Ye-Kitaev model [137, 142,
323], which saturates the universal bound at low temperature, and its Brownian variant
[324].

Chapter 3 goes beyond the standard approach in the theory of Non-Hermitian Hamilto-
nians, which assumes that the decay is constant, and studies the evolution of stochastic
non-Hermitian Hamiltonians with noise in their decay. This leads to a novel master equa-
tion for the noise-average, which we name antidephasing since the dissipator is given by a
double anticommutator. This dynamics shows markedly different behavior to the GKSL
equation and to deterministic non-Hermitian Hamiltonians, which we show through the
evolution of the purity. Furthermore, we characterize the steady states of the dynamics,
and how the convergence happens, as dictated by the dissipative gap.

To further illustrate these dynamics, we consider the stochastic dissipative qubit (SDQ),
an extension of a NH Hamiltonian recently realized experimentally [80, 85]. This system
allows for a more in-depth analysis of the behavior of purity, which already showcases that
purifying states have shifted from the northern hemisphere to the southern hemisphere.
We also perform the full spectral analysis of the antidephasing Liouvillian analytically,
from which we find the steady states and the dissipative gap. The steady state analysis
shows that there are three different phases, the PT unbroken in which the steady state
is close to the maximally mixed state, the PT broken in which the state is close to
the excited state |f⟩ and the noise induced (NI) phase in which the noise stabilizes the
state |e⟩, which originally had losses. This illustrates the power of the antidephasing
approach and non-Hermitian dynamics for state preparation. Following on this analysis,
we proposed a protocol [7] to prepare nonstabilizer or magic states as the steady states of
the dynamics using non-Hermitian and stochastic non-Hermitian dynamics. The magic
steady states are found where the Bloch y coordinate is non-zero in the PT b phase close
to the exceptional point or in the NI phase close to the transition to the PT u phase.
We checked that the properties of spectral and steady states describe the evolution of
the density matrix dynamics well, and we also studied the evolution of single-trajectory
dynamics. We also proved that the NI phase is present when we remove the pumps;
therefore, a simple explanation for the appearance of this phase and the noise-induced
stabilization is still lacking. Lastly, we used our formalism to model the residual decay
rate observed in the PT broken phase, cf. Sec. 3.5.

A natural extension of the ideas developed in Chaps. 2 and 3 is to study the SOV for a
stochastic Non-Hermitian Hamiltonian. In this direction, one idea to simplify the analysis
is to study the SOV for a density matrix E(ϱ̂2t )−E(ϱ̂t)2, since the dynamics is nonlinear in
the density matrix, the Heisenberg and Schrödinger pictures are not equivalent, and the
latter is more natural. If we start from a pure state ϱ̂0 = |ψ0⟩ ⟨ψ0|, since NH Hamiltonians
keep pure states pure, the analysis can be mapped to the analysis of the average density
matrix.

From a purely practical point of view, one of the most interesting open questions is:
what is the best model to account for extra decay in non-Hermitian Hamiltonians? What
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quantities should we study to test what the most important sources of noise are, and how
should we take them into account in our description? There are many models, such as
the open dissipative qubit [83], the hybrid Liouvillian [325], and here we introduce the
antidephasing model [2], all of which attribute the source of extra decoherence to different
phenomena. Hence, it begs to ask which of these models reproduces the dynamics better
and which quantities we should look at to test this. Here, we made the first step in this
direction by testing how well the anti-Hermitian noise models the residual exponential
decay, and showed that it models it better than only real noise. However, a more thorough
analysis and more data would be needed in order to find the best model.

In Chapter 4, we went beyond nearest-neighbor correlations between the energies of a
random matrix and studied how each spectral range k contributes to the full ramp of
the SFF. Our analysis provides a more detailed picture of spectral correlations, which
naturally contains both short and long-range correlations, showing the dynamics they
generate and their role in the spectral form factor. This detailed formalism allows us to
find what properties are more sensitive to the breakdown of random matrix universality
and which ones are less, e.g., the short-time behavior of the knSFF is not sensitive to the
breakdown of universality since the deviations occur in the envelope. Building on this, we
found our most counterintuitive result, namely that very long-range spectral correlations
are key to explaining the full extent of the ramp in the SFF, although they are highly
non-universal.

A possible research direction which would encompass many of the concepts of this thesis
is to build a random matrix ensemble “in time” through a stochastic non-Hermitian
Hamiltonian, in a similar spirit to the Brownian GUE studied in [326]. When we have
O(N2) sources of noise, acting in each of the operators L̂nm = |n⟩ ⟨m| we recover the GUE

in time as {X̂t =
∑

n,m ξ
(nm)
t |n⟩ ⟨m| , Ĥt = (X̂t+ X̂

†
t )/2}, where the only difference is that

now there is a parameter t which lets us “evolve through the ensemble”. However, what
is the behavior when we limit the sources of noise to a finite number Nc ≪ N2? How do
we lose the RMT behavior as the number of sources of noise decreases? Do long-range
correlations start to deviate from RMT before as happens in chaotic systems? If this is
the case, what is the relation between the critical neighbor range1 kcrit and the number of
noise channels Nc? Can we relate some of the spectral properties of the eigenvalues of the
ensemble to knLS or the knSFF’s? Lastly, what is the role of the choice of operators in
this model? This idea goes in the line of t-designs [327–329], these are random ensembles
that reproduce the Haar random ensemble up to a certain moment, which have been
investigated for stochastic Hamiltonians in [330].

This thesis has explored, scrutinized, and exploited the notion of randomness in the
quantum world for several different problems. Far from being only a disruptive element
that hinders quantum coherence, as is typically thought to be the case, we have showcased
the power of randomness and noise in the quantum world. They provide a simple model for
decoherence, which we characterized beyond the average through the stochastic operator

1A general definition of the critical neighbor range could be the kcrit such that ∥f (k)
Nc

− f
(k)
rmt∥ ≤ ϵ for

k ≤ kcrit and ∥f (k)
Nc

− f
(k)
rmt∥ > ϵ for k > kcrit, where f (k) is a given function of the spectrum which

depends only on k-th nearest neighbors and ∥ • ∥ is a certain norm.



220 Discussion

variance [1]. We leveraged the noise to find novel antidephasing master equations which
characterize the decoherence in the dissipative qubit and enlarge the possible steady states
for state preparation [2, 7]. Lastly, randomness appears in the foundation of the theory
of quantum chaos, through its connection to random matrix theory, and we provided a
more detailed look at the long-range spectral correlations and their role in the spectral
form factor [3].

Noise is ubiquitous in the real world around us and in the quantum realm. This thesis
has showcased some of its power, and in a similar way to the idea of exploiting quantum
properties for our advantage, noise, both in classical and quantum setups, may also be
exploited for certain tasks [331].



Appendix A

Numerical solution of Stochastic
Differential Equations

Here we briefly introduce some of the numerical algorithms used to solve Stochastic Dif-
ferential Equations numerically. To fix the notation let the SDE be

dXt = a(Xt, t)dt+ b(Xt, t)dWt, (A.1)

we denote the initial condition X0 = Y0 and recursively construct the solution Yn at time
tn = n∆t. Xt denotes a possibly vector-like variable, and a and b are vector functions of
it.

A.1 Euler-Maruyama

The Euler-Maruyama method is the simplest and least accurate, it is of order 0.5. It
constructs the numerical solution recursively as

Yn+1 = Yn + a(Yn, tn)∆t+ b(Yn, tn)∆Wn, (A.2)

where ∆Wn ∼ N (0,∆t) is a normal random variable with variance ∆t.

A.2 Stochastic Runge-Kutta

The stochastic Runge-Kutta method [332] is an explicit order 1.0 strong scheme. We
compute recursively the solution as

Yn+1 =Yn + an∆t+ bn∆Wn +
1

2
√
∆t

(b(Υn)− bn)((∆Wn)
2 −∆t), (A.3)

where Υn = Yn + an∆t + bn
√
∆t, an = a(Yn), bn = b(Yn), and ∆Wn = Wn+1 −Wn

are independent identically distributed normal random variables with zero average and
variance ∆t.
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A.3 Kloeden-Platen

Another approach is the explicit order 1.5 strong scheme by Kloeden and Platen, see
Chapt. 11.2 (eqs 2.1, 2.2, 2.3 page 378) of [332].

Yn+1 = Yn + b∆W +
a(Υ+)− a(Υ−)

2
√
∆t

∆Z +
a(Υ+) + 2an + a(Υ−)

4
∆t

+
b(Υ+)− b(Υ−)

4
√
∆t

(∆W 2 −∆t) +
b(Υ+)− 2bn + b(Υ−)

2∆t
(∆W∆t−∆Z)

+
b(Φ+)− b(Φ−)− b(Υ+) + b(Υ−)

4∆t

(
∆W 2

3
−∆t

)
∆W,

where an ≡ a(Yn), bn ≡ b(Yn), ∆t is the time step, the auxiliary variables are

Υ± = Yn + an∆t± bn
√
∆t, Φ± = Υ+ ± b(Υ+)

√
∆t,

and the noises ∆W, ∆Z are found from the transformation (eq. 4.3 page 352)

∆W = U1

√
∆t, ∆Z =

∆t3/2

2
(U1 +

1√
3
U2),

where U1, U2 ∼ N (0, 1) are i.i.d. normal random variables.



Numerical solution of Stochastic Differential Equations 223





Bibliography

[1] P. Martinez-Azcona, A. Kundu, A. del Campo, and A. Chenu, Physical Review

Letters 131, 160202 (2023), publisher: American Physical Society.

[2] P. Martinez-Azcona, A. Kundu, A. Saxena, A. del Campo, and A. Chenu, Physical

Review Letters 135, 010402 (2025), publisher: American Physical Society.

[3] P. Martinez-Azcona, R. Shir, and A. Chenu, Physical Review B 111, 165108 (2025),

publisher: American Physical Society.

[4] P. Martinez-Azcona and A. Chenu, Quantum 6, 852 (2022), publisher: Verein zur

Förderung des Open Access Publizierens in den Quantenwissenschaften.

[5] P. Nandy, A. S. Matsoukas-Roubeas, P. Mart́ınez-Azcona, A. Dymarsky, and A. del

Campo, Physics Reports 1125–1128, 1–82 (2025).

[6] R. Shir, P. Martinez-Azcona, and A. Chenu, “Surmise for random matrices’ level

spacing distributions beyond nearest-neighbors,” (2025), arXiv:2504.20134 [quant-

ph] .

[7] P. Martinez-Azcona, M. Sarkis, A. Tkatchenko, and A. Chenu, “Magic steady state

production: Non-hermitian and stochastic pathways,” (2025), arXiv:2507.08676

[quant-ph] .

[8] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).

[9] P. W. Anderson, Science 177, 393 (1972), publisher: American Association for the

Advancement of Science.

[10] D. A. Lidar and T. A. Brun, eds., Quantum Error Correction (Cambridge University

Press, Cambridge, 2013).

[11] Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J. Huggins, Y. Li, J. R. McClean,

and T. E. O’Brien, Rev. Mod. Phys. 95, 045005 (2023).

[12] R. P. Feynman, QED: The strange theory of light and matter (Princeton University

Press, 2014).

— 225 —

http://dx.doi.org/10.1103/PhysRevLett.131.160202
http://dx.doi.org/10.1103/PhysRevLett.131.160202
http://dx.doi.org/10.1103/5ksl-tjjm
http://dx.doi.org/10.1103/5ksl-tjjm
http://dx.doi.org/10.1103/PhysRevB.111.165108
http://dx.doi.org/10.22331/q-2022-11-03-852
http://dx.doi.org/10.1016/j.physrep.2025.05.001
https://arxiv.org/abs/2504.20134
https://arxiv.org/abs/2504.20134
http://arxiv.org/abs/2504.20134
http://arxiv.org/abs/2504.20134
https://arxiv.org/abs/2507.08676
https://arxiv.org/abs/2507.08676
http://arxiv.org/abs/2507.08676
http://arxiv.org/abs/2507.08676
http://dx.doi.org/10.1103/RevModPhys.75.715
http://dx.doi.org/10.1126/science.177.4047.393
http://dx.doi.org/10.1017/CBO9781139034807
http://dx.doi.org/10.1103/RevModPhys.95.045005


226 Bibliography

[13] M. A. Nielsen and I. L. Chuang, en“Quantum Computation and Quantum Informa-

tion: 10th Anniversary Edition,” (2010), iSBN: 9780511976667 Publisher: Cam-

bridge University Press.

[14] M. M. Wilde, Quantum Information Theory (Cambridge University Press, Cam-

bridge, 2013).

[15] A. Uhlmann, Reports on Mathematical Physics 9, 273 (1976).

[16] R. Jozsa, Journal of Modern Optics 41, 2315 (1994), publisher: Taylor & Francis

eprint: https://doi.org/10.1080/09500349414552171.

[17] H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford

University Press on Demand, 2002).

[18] A. Rivas and S. F. Huelga, Open quantum systems, Vol. 10 (Springer, 2012).

[19] M. Stefanini, A. A. Ziolkowska, D. Budker, U. Poschinger, F. Schmidt-Kaler,

A. Browaeys, A. Imamoglu, D. Chang, and J. Marino, “Is lindblad for me?”

(2025), arXiv:2506.22436 [quant-ph] .

[20] A. G. Redfield, IBM Journal of Research and Development 1, 19 (1957).

[21] A. G. Redfield, in Advances in Magnetic and Optical Resonance, Advances in Mag-

netic Resonance, Vol. 1, edited by J. S. Waugh (Academic Press, 1965) pp. 1–32.

[22] R. Hartmann and W. T. Strunz, Phys. Rev. A 101, 012103 (2020).

[23] S. Nakajima, Progress of Theoretical Physics 20, 948–959 (1958).

[24] R. Zwanzig, The Journal of Chemical Physics 33, 1338–1341 (1960).

[25] C. Gonzalez-Ballestero, Quantum 8, 1454 (2024).

[26] A. Smirne and B. Vacchini, Phys. Rev. A 82, 022110 (2010).

[27] Rivas, S. F. Huelga, and M. B. Plenio, Reports on Progress in Physics 77, 094001

(2014), arXiv:1405.0303 [quant-ph].

[28] L. Li, M. J. W. Hall, and H. M. Wiseman, Physics Reports Concepts of quantum

non-Markovianity: A hierarchy, 759, 1 (2018).

[29] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17, 821 (1976).

[30] G. Lindblad, Communications in Mathematical Physics 48, 119 (1976).

[31] I. Siemon, A. S. Holevo, and R. F. Werner, Open Systems & Information Dynamics

(2017), 10.1142/S1230161217400157, publisher: World Scientific Publishing Com-

pany.

http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1017/CBO9781139525343
http://dx.doi.org/10.1016/0034-4877(76)90060-4
http://dx.doi.org/10.1080/09500349414552171
https://arxiv.org/abs/2506.22436
http://arxiv.org/abs/2506.22436
http://dx.doi.org/10.1147/rd.11.0019
https://www.sciencedirect.com/science/article/pii/B9781483231143500076
http://dx.doi.org/10.1103/PhysRevA.101.012103
http://dx.doi.org/10.1143/ptp.20.948
http://dx.doi.org/10.1063/1.1731409
http://dx.doi.org/10.22331/q-2024-08-29-1454
http://dx.doi.org/10.1103/PhysRevA.82.022110
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://dx.doi.org/10.1016/j.physrep.2018.07.001
http://dx.doi.org/10.1016/j.physrep.2018.07.001
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1142/S1230161217400157
http://dx.doi.org/10.1142/S1230161217400157


Bibliography 227

[32] I. Siemon, engUnbounded generators of dynamical semigroups , DoctoralThesis, Han-

nover : Institutionelles Repositorium der Leibniz Universität Hannover (2024).

[33] M.-D. Choi, Linear Algebra and its Applications 10, 285 (1975).

[34] A. Jamiolkowski, Reports on Math. Phys. 3, 275 (1972).

[35] A. A. Budini, Physical Review A 64, 052110 (2001).

[36] A. A. Budini, Phys. Rev. A 63, 012106 (2000).

[37] A. Chenu, M. Beau, J. Cao, and A. del Campo, Physical Review Letters 118,

140403 (2017), publisher: American Physical Society.

[38] A. Kiely, Europhysics Letters 134, 10001 (2021).

[39] C. W. Gardiner, Handbook of stochastic methods, Vol. 3 (springer Berlin, 1985).

[40] K. Jacobs, Stochastic processes for physicists: understanding noisy systems (Cam-

bridge University Press, 2010).

[41] E. A. Novikov, Sov. Phys. JETP 20, 1290 (1965).

[42] H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge

University Press, Cambridge, 2009).

[43] K. Jacobs, Quantum Measurement Theory and its Applications (Cambridge Univer-

sity Press, Cambridge, 2014).

[44] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).

[45] C. M. Bender, Contemporary Physics 46, 277 (2005), arXiv:quant-ph/0501052.

[46] A. Mostafazadeh, Journal of Mathematical Physics 43, 205 (2002), eprint:

https://pubs.aip.org/aip/jmp/article-pdf/43/1/205/19019524/205 1 online.pdf.

[47] A. Mostafazadeh, Journal of Mathematical Physics 43, 3944 (2002), arXiv:math-

ph/0203005.

[48] A. Mostafazadeh, Journal of Mathematical Physics 43, 2814 (2002).

[49] N. Hatano and D. R. Nelson, Physical Review Letters 77, 570 (1996), publisher:

American Physical Society.

[50] X. Zhang, Z. , Tian, L. , Ming-Hui, , and Y.-F. Chen, Advances

in Physics: X 7, 2109431 (2022), publisher: Taylor & Francis eprint:

https://doi.org/10.1080/23746149.2022.2109431.

[51] J. T. Gohsrich, A. Banerjee, and F. K. Kunst, en“The non-Hermitian skin effect:

A perspective,” (2025), arXiv:2410.23845 [quant-ph].

http://dx.doi.org/10.15488/15855
http://dx.doi.org/https://doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/https://doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1103/PhysRevA.64.052110
http://dx.doi.org/10.1103/PhysRevA.63.012106
http://dx.doi.org/10.1103/PhysRevLett.118.140403
http://dx.doi.org/10.1103/PhysRevLett.118.140403
http://dx.doi.org/10.1209/0295-5075/134/10001
http://dx.doi.org/10.1017/CBO9780511813948
http://dx.doi.org/10.1017/CBO9781139179027
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1080/00107500072632
http://dx.doi.org/10.1063/1.1418246
http://dx.doi.org/10.1063/1.1489072
http://dx.doi.org/10.1063/1.1461427
http://dx.doi.org/10.1103/PhysRevLett.77.570
http://dx.doi.org/10.1080/23746149.2022.2109431
http://dx.doi.org/10.1080/23746149.2022.2109431
http://dx.doi.org/10.48550/arXiv.2410.23845
http://dx.doi.org/10.48550/arXiv.2410.23845


228 Bibliography

[52] A. Ruschhaupt, F. Delgado, and J. G. Muga, Journal of Physics A: Mathematical

and General 38, L171 (2005).

[53] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, Optics

Letters 32, 2632 (2007), publisher: Optica Publishing Group.

[54] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez,

G. A. Siviloglou, and D. N. Christodoulides, Physical Review Letters 103, 093902

(2009), publisher: American Physical Society.

[55] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Physical

Review Letters 100, 103904 (2008), publisher: American Physical Society.
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98, 010103 (2018).

[241] F. Carollo, R. L. Jack, and J. P. Garrahan, Physical Review Letters 122, 130605

(2019), arXiv:1811.04969 [cond-mat, physics:quant-ph].

[242] F. Carollo, J. P. Garrahan, and R. L. Jack, Journal of Statistical Physics 184

(2021), 10.1007/s10955-021-02799-x.

[243] G. T. Landi, M. J. Kewming, M. T. Mitchison, and P. P. Potts, PRX Quantum 5,

020201 (2024).

http://dx.doi.org/10.1103/PhysRevX.7.031016
http://dx.doi.org/https://doi.org/10.1146/annurev-conmatphys-031720-030658
http://dx.doi.org/https://doi.org/10.1146/annurev-conmatphys-031720-030658
http://dx.doi.org/10.1103/PhysRevLett.129.250601
http://dx.doi.org/10.1103/PhysRevLett.132.010402
http://dx.doi.org/10.1142/q0178
http://dx.doi.org/10.1142/q0178
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://arxiv.org/abs/2304.12413
http://arxiv.org/abs/2304.12413
http://dx.doi.org/10.1201/9780429492563
http://dx.doi.org/10.1201/9780429492563
http://dx.doi.org/10.1142/S1230161217500019
http://dx.doi.org/10.1142/S1230161217500019
http://dx.doi.org/10.1063/1.5099499
http://dx.doi.org/10.1088/0305-4470/6/9/004
http://dx.doi.org/10.1088/0305-4470/6/9/004
http://dx.doi.org/10.1103/PhysRevA.98.010103
http://dx.doi.org/10.1103/PhysRevA.98.010103
http://dx.doi.org/10.1103/PhysRevLett.122.130605
http://dx.doi.org/10.1103/PhysRevLett.122.130605
http://dx.doi.org/10.1007/s10955-021-02799-x
http://dx.doi.org/10.1007/s10955-021-02799-x
http://dx.doi.org/10.1103/PRXQuantum.5.020201
http://dx.doi.org/10.1103/PRXQuantum.5.020201


Bibliography 239

[244] D. A. Lidar, en“Lecture Notes on the Theory of Open Quantum Systems,” (2020),

arXiv:1902.00967 [quant-ph].

[245] M. R. Geller, Advanced Quantum Technologies 6, 2200156 (2023), eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.202200156.

[246] D. C. Brody and E.-M. Graefe, Phys. Rev. Lett. 109, 230405 (2012).
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Review B 101, 174312 (2020), arXiv:1906.11856 [cond-mat].

[309] J. T. Edwards and D. J. Thouless, Journal of Physics C: Solid State Physics 5, 807

(1972).

[310] M. L. Mehta and F. J. Dyson, Journal of Mathematical Physics 4, 713 (1963).

[311] M. Winer, S.-K. Jian, and B. Swingle, Physical Review Letters 125, 250602 (2020),

arXiv:2006.15152 [cond-mat, physics:hep-th].

[312] Y. Liao, A. Vikram, and V. Galitski, Physical Review Letters 125, 250601 (2020),

arXiv:2005.08991 [cond-mat, physics:hep-th].

[313] D. V. Vasilyev, A. Grankin, M. A. Baranov, L. M. Sieberer, and P. Zoller, PRX

Quantum 1, 020302 (2020), publisher: American Physical Society.

[314] L. K. Joshi, A. Elben, A. Vikram, B. Vermersch, V. Galitski, and P. Zoller, Physical

Review X 12, 011018 (2022).

[315] A. K. Das, C. Cianci, D. G. A. Cabral, D. A. Zarate-Herrada, P. Pinney,

S. Pilatowsky-Cameo, A. S. Matsoukas-Roubeas, V. S. Batista, A. del Campo, E. J.

Torres-Herrera, and L. F. Santos, Phys. Rev. Res. 7, 013181 (2025).
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