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Abstract—Satellite operators worldwide are in a race to deploy
and enhance connectivity supporting diverse 5G applications
and services, with success depending on the ability to deliver
superior Quality of Experience (QoE) tailored to each service,
despite limited network capacity. However, this effort is challenged
by unpredictably fluctuating traffic demands, distinct packet
arrival distributions across services, and evolving stochastic user
QoE expectations. This paper addresses these challenges by
formulating a statistical optimization problem that minimizes
allocated capacity (intending to accommodate more users) while
satisfying specific QoE requirements, such as queuing delay. To
achieve this, we leverage packet queuing analysis within the
buffer system of the SatCom gateway’s forward link. Given the
complexity of solving the problem directly, we first approximate
its constraints using probabilistic analysis. Then, we propose
a multi-agent Double Deep Q-Network (DDQN) algorithm that
enables a more accurate representation of queue-length states and
facilitates better decision-making by the agents. The approach
leverages episodic training to ensure agents are well-prepared and
optimized through simulations before being deployed in a real-
time environment. Extensive simulation campaigns validate the
effectiveness of our method, demonstrating clear improvements
over benchmark algorithms.

Index Terms—Capacity Allocation, Stochastic QoE, DQN,
DDQN, Multi-service, Queuing Analysis, Blocking Probability.

I. INTRODUCTION

SATELLITE communication (SatCom) networks have
emerged as a promising technology, offering ubiquitous

wireless connectivity in regions that lack terrestrial radio access
service. They play an important role in improving resilience for
different applications and services, significantly contributing to
the advancement of future wireless communication networks.
SatCom operators around the world are competing to provide
the fastest, most reliable, and extensive 5G coverage, catering
to heterogeneous services. Their primary goal is to satisfy users
with diverse Quality of Experience (QoE) requirements under
limited network resources [2].
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In wireless communication systems, QoE-aware dynamic
capacity allocation (CA) strategies have been considered ad-
vanced technologies that significantly impact network operators’
revenue and rental costs incurred by service providers [3]. A
key component in this process is the medium access control
(MAC) layer, which manages packet transmissions and buffer
queue status [4]. The MAC layer formats data for physical
transmission and coordinates closely with the physical and radio
link control (RLC) layers [5], facilitating effective scheduling,
resource allocation, and traffic prioritization [6], [7]. By flexibly
prioritizing capacity based on service-level agreements (SLAs)
and user QoE, SatCom operators can implement proactive
and effective CA policies. Such policy design is crucial, as
allocating the minimum capacity needed to ensure satisfactory
QoE effectively reduces capital and operational expenditures
[8], [9]. The primary challenges are due to the following.

(i) Network operators often struggle with defining metrics
to accurately model the QoE, a challenge exacerbated by
evolving stochastic quality expectations [10]–[12].

(ii) Traffic demands fluctuate unpredictably over time, making
it difficult to pre-allocate capacity without risking over-
provisioning or service degradation.

(iii) Different services exhibit distinct packet inter-arrival
characteristics, complicating the modeling of burstiness
and increasing the complexity of traffic handling [13].

(iv) Dynamically coordinating limited capacity among mul-
tiple services is challenging due to competing demands,
which complicate the prioritization of services during
congestion, necessitating more intelligent and adaptive
CA policies.

To handle these challenges, SatCom operators must model
the time-varying characteristics of packet arrivals and inter-
arrival times for various service types. Assuming simplistic
or homogeneous traffic models, such as applying a Poisson
distribution to all traffic, fails to capture the burstiness and
diversity of real-world traffic [14], [15]. To address this, we
tackle the more realistic and complex nature of SatCom traffic
by incorporating diverse inter-arrival distributions and service-
specific behaviors. Yet, due to the inherent uncertainty in user
demand, real-time performance indicators are still necessary for
effective decision-making. Due to limited capacity, satellites
cannot admit every incoming packet instantly. Instead, packets
are buffered, and traffic fluctuations lead to time-varying queue
length (QL) within the system. In this context, QL naturally
emerges as a key metric. The QL serves as a critical indicator
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of network congestion, providing insight into allocated capacity,
queueing delay, packet drop probability, and overall QoE. This
makes it a valuable indicator to optimize network performance
[16], [17]. A high QL suggests overload and possible QoE
degradation, while a low QL indicates resource underutilization,
suggesting the potential for capacity reallocation.

Beyond modeling traffic patterns, modeling QoE itself
presents additional complexity. While the Mean Opinion Score
(MOS) has traditionally been used to measure perceived
quality on a scale from 1 (bad) to 5 (excellent) [10], [12],
its subjectivity, context sensitivity, and vulnerability to outliers
limit its reliability in dynamic environments. Though still in
the subjective estimation, extending QoE analysis from MOS
to statistical indicators, such as the probability of "good or
better" (GoB) and "poor or worse" (PoW) ratings, represents a
meaningful advancement in capturing user satisfaction more
quantitatively [18], [19]. To address these subjective issues,
objective QoE metrics can offer a more reliable and automated
approach to assessing user experience [20]. Objective metrics,
such as latency and packet loss, provide quantifiable data that
can be automatically monitored in real-time to guide capacity
decisions. Despite these improvements, traffic demand and the
available resources are inherently time-varying and uncertain,
making it challenging to ensure that a pre-allocated capacity
consistently satisfies the requirements of users. To address
these limitations, a stochastic QoE evaluation framework
that quantifies the probability of meeting objective target
requirements can be employed [11], [12]. This approach
enables a more realistic and comprehensive understanding
of the relationship between unpredictable traffic patterns, CA,
and QoE performance, facilitating more adaptive and effective
capacity management in dynamic network environments.

Telecom operators engage in periodic planning and optimiza-
tion of available capacity to ensure efficient utilization and meet
SLAs. These optimization activities occur at varying intervals,
ranging from minutes, hours, and days to monthly, guided
by operator policies and network stability [21], [22]. Despite
enhancing capacity utilization efficiency, these methods often
exhibit a reactive nature, leading to potential resource under-
utilization or over-utilization between optimization intervals.
Moreover, conventional optimization methods have limitations
in harnessing historical data, accurately predicting outcomes,
and managing large datasets for adaptable and flexible capacity
management. These challenges highlight the growing need for
adaptive, data-driven strategies that can dynamically respond
to changing network conditions and improve the flexibility and
efficiency of capacity planning [23].

Despite extensive optimization efforts, a significant advance-
ment toward achieving adaptive and proactive CA is the
exploitation of Machine Learning (ML) techniques, particularly
Reinforcement Learning (RL) algorithms. Advanced Deep
Reinforcement Learning (DRL) algorithms such as Deep Q-
Network (DQN), Double DQN (DDQN), Dueling DDQN
(3DQN), Proximal Policy Optimization (PPO), and actor-critic
models have shown promise in this domain [24]–[29]. Among
these, DQN variants, particularly DDQN and 3DQN, are
well suited to scenarios with high uncertainty and stochastic
QoE requirements [30]. Using these advanced techniques, we

can quickly obtain near-optimal CA solutions, even amidst
significant fluctuations in network traffic demands. This is
achieved by preemptively learning the intricate relationship
between traffic patterns of different services and optimal CA,
ultimately enhancing the QoE for users across various services.

To enable centralized management with decentralized
decision-making, where individual agents independently op-
timize CA for different services, and for additional reasons
explained in Section III, this paper proposes leveraging a multi-
agent DDQN that integrates real-time QL monitoring with
service-specific modeling of packet inter-arrival distributions
and stochastic QoE metrics. The proposed approach aims to
proactively optimize CA decisions, thus improving QoE for
diverse service requirements and overall network efficiency.

A. Related works

Dynamic resource allocation has been extensively studied in
the literature and remains an evolving area of research aimed
at addressing emerging challenges.

1) Non-QoE-Aware Dynamic Resource Allocation: Most
works on resource allocation primarily concentrate on aug-
menting available capacity to meet aggregated traffic demand
by improving the utilization efficiency of power, bandwidth,
beam direction, or joint management. They aim to minimize
the mismatch between offered traffic and required capacity.
Techniques, such as beam hopping [17], [31], beam illumination
[32], beam scheduling [33], joint user scheduling, power
allocation and precoding [34], and joint beam, power, and
bandwidth allocation [35], are employed. Although these works
significantly contribute to dynamic resource allocation and
resource utilization efficiency, they neglect an important aspect
of resource allocation: QoS and QoE.

2) QoE-Aware Dynamic Resource Allocation: Resource
allocation to meet QoE demands has been extensively studied
in the literature. For instance, the authors in [39] explored
the trade-off between transmission rate and service price
using a fuzzy-based approach, demonstrating how fuzzy logic
can optimize resource allocation to balance cost and QoE.
Similarly, the authors in [38] examined the trade-off between
allocated bandwidth and the QoE requirements of ultra-high-
definition (UHD) video services using game theory, providing
insights into how game-theoretic models can be used to allocate
bandwidth efficiently. In [40], the authors investigated QoE-
aware pricing, power allocation, and admission control to
ensure a minimum data rate to maintain the QoE of video
call services, highlighting the importance of integrating pricing
strategies with resource allocation to enhance user satisfaction.
Furthermore, QoE-driven resource allocation frameworks for
video streaming on 5G networks are proposed in [36], [37].
Although these methods can improve QoE and resource
utilization efficiency, they primarily consider aggregate traffic
demand rather than demand per service. Additionally, these
works do not account for multiple services, and the inter-arrival
distribution of traffic demand is not discussed.

3) QOE-Aware Dynamic Resource Allocation for Multiple
services: The complexity and challenge of simultaneously
fulfilling the QoE requirements of multiple co-existing services
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TABLE I: COMPARISON OF SCHEMES

Related Work Multiple Services QoE Consideration Service Priority Varying Arrival Distribution
MOS Stochastic Service Specific

[17], [31]–[35]
[36]–[40] ✓
[41] ✓
[42] ✓ ✓
[43], [44] ✓ ✓
[45], [46] ✓ ✓ ✓
[47] ✓ ✓
This Work ✓ ✓ ✓ ✓ ✓

is greater than that of fulfilling the requirements for a single
service or aggregate QoE. The work in [41] presents a dynamic
channel reservation approach grounded in a DQN tailored for
multi-service low earth orbit (LEO) satellite communication
systems. Authors in [42] also worked on resource allocation
for multiple services with priority. Another work [43] focuses
on QoE-aware resource allocation for multiple IoT services.
However, these works evaluate QoE using a cumulative score,
which overlooks the distinct QoE requirements of each service.
The authors in [44] worked on a more detailed categorization of
QoS provisioning by incorporating radio resource, storage, and
computing resource allocation for multiple coexisting services.
Although their work highlights the importance of resource
allocation for maintaining service-specific QoS, it assumes a
homogeneous traffic model based on a Poisson distribution
for all services and treats the transmission rate as constant,
represented by a fixed mean packet arrival rate. This assumption
overlooks the diverse arrival distributions and the time-varying
nature of packet transmission.

Additionally, the works in [45], [46] introduce a self-tuning
algorithm for optimizing QoE across multiple services in LTE
networks by adjusting service priority parameters. However,
these works estimate QoE solely based on the basic MOS
approach and they neglect the consideration of packet inter-
arrival distribution. In [47], we exploit optimization techniques
to develop a novel dynamic QoE-aware CA algorithm address-
ing time-varying traffic in multi-beam multi-service SatCom
systems to minimize the operation costs and satisfying QoE
demands. However, the work neglects the difference in arrival
distribution among flows and assumes that all flows adhere to
the Poisson process. In addition, the study assumes the first-
come-first-served queuing analysis approach which contrasts
with our current prioritized queuing analysis. Table I provides
a summary of related works, highlighting the limitations of
existing literature and the key contributions of our approach.

To the best of our knowledge, the existing literature has
not yet explored QoE-aware flexible CA planning that accom-
modates multiple coexisting services, each with distinct QoE
requirements and varying packet inter-arrival distributions. The
method proposed in our work aims to fill this gap.

B. Contributions

In this study, we focus on QoE-aware flexible CA planning,
leveraging time-varying QL dynamics and DDQN to derive an
optimal CA planning policy. Our primary contributions are:

• Diverse inter-arrival distribution scenarios: We model
multiple co-existing services, each characterized by dis-
tinct packet inter-arrival time distributions. This nuanced
approach accurately captures the traffic burstiness and
variability inherent in real-world scenarios, providing a
more comprehensive understanding of peak and off-peak
traffic arrivals.

• Customized stochastic QoE requirements: We introduce
a novel dimension by considering the diverse, uncertain
QoE requirements associated with different services. Rec-
ognizing the varying sensitivities of services to allocated
capacity enables us to tailor our CA planning strategy and
to optimize user experience based on specific preferences.

• Service prioritization: Developed a novel CA planning
mechanism using DDQN, integrating QoE-awareness and
priority-based service provisioning to efficiently manage
capacity across diverse services, mitigating performance
degradation during congestion. During high-congestion
periods, priority levels can be dynamically adjusted to
ensure essential services receive adequate resources.

• Prediction followed by optimization: The traffic demand
expected in future time slots is not known in advance,
making it difficult to apply optimization techniques for
CA online. Therefore, in this work, we employed a multi-
horizon LSTM model for traffic prediction and adopted
the Lagrangian duality optimization approach in [47] to
incorporate customized QoE requirements for the services.
This method was used as a benchmark to compare against
our proposed approach.

In summary, our proposed approach leverages multi-agent
DDQN for adaptable capacity dimensioning to aid satellite
service providers in optimizing capacity for delivering multiple
services while prioritizing QoE requirements. Our preliminary
studies of this objective have been presented in [1], which
utilized the conventional Q-learning approach for single-flow
single-beam SatCom systems. In this current work, we aim to
expand upon those findings by considering multibeam, multi-
service schemes that require larger state- and action-space
ML models, which exceed the capabilities of the Q-learning
approach. We introduce double DQNs and provide robust
demonstrations along with additional benchmark comparisons.

The remaining sections of the paper are organized as
follows. Section II presents the system model and problem
formulation. Section III delves into the queuing analysis,
problem approximation, and DRL methods. Subsequently,
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TABLE II: LIST OF KEY NOTATIONS

Notation Definition

𝑎𝑏
𝑓 ,𝑘 Current action by agent for flow 𝑓 of beam 𝑏 at cycle 𝑘.
𝐵 Total number of virtual beams.
𝐹 Number of data flows per beam.
𝐾 Number of cycles.
𝐿 𝑓 Packet length of packets in flow 𝑓 .
𝑀 Number of TSs per cycle 𝐾 .
𝑛𝑏
𝑓 ,Blk Number of flow 𝑓 of beam 𝑏 packets blocked.

𝑛𝑏
𝑓 ,QoE Number of flow 𝑓 of beam 𝑏 packets with QoE violated.
𝑃̄Blk Target blocking probability.
𝑃̄QoE Target QoE violation probability.
𝑞̄𝑏
𝑓

Mean QL per cycle for flow 𝑓 of beam 𝑏.
𝑞max Maximum buffer length.
𝑞
𝑓

QoE Target QL of packets in flow 𝑓 .
𝑞𝑏 (𝑡 ) QL in beam 𝑏 at time 𝑡 .
𝑟𝑏
𝑓 ,𝑘 Local reward of beam 𝑏 for flow 𝑓 at cycle 𝑘.
𝑅𝑏

𝑓 ,𝑘 Total reward of beam 𝑏 for flow 𝑓 at cycle 𝑘.
𝑠𝑏
𝑓 ,𝑘 Current state of beam 𝑏 for flow 𝑓 .
𝑠′𝑏
𝑓 ,𝑘 Next state of beam 𝑏 for flow 𝑓 .
𝑇 Total observation time (seconds)
𝑇ts TS duration (seconds).
𝑊max Maximum available capacity of the satellite (bps).
𝑊 total

𝑏
Total capacity per beam (bps).

𝑊 (𝑡 ) Total allocated capacity at time 𝑡 .
𝑊𝑏

𝑓
(𝑡 ) Capacity allocated for beam 𝑏 due to flow 𝑓 at time 𝑡 .

𝑊𝑏
𝑓 ,𝑘 Capacity allocated for beam 𝑏 due to flow 𝑓 at cycle 𝑘.

𝜆𝑏
𝑓
(𝑡 ) Arrival rate of data packets due to flow 𝑓 of beam 𝑏.

𝜆𝑏 (𝑡 ) Arrival rate of data packets to beam 𝑏.
𝜇𝑏
𝑓
(𝑡 ) Service rate at beam 𝑏 for flow 𝑓 .

𝜑𝑏
𝑓 ,𝑘 QoE violations due to flow 𝑓 of beam 𝑏 at cycle 𝑘.

Θ𝑏
𝑓 ,𝑘 BP violations due to flow 𝑓 of beam 𝑏 at cycle 𝑘.

Λ𝑏 (𝑡 ) Total arrival rate to beam 𝑏.
𝜔, 𝜔̂ The parameters of the current and target DQN network.
𝜃 , 𝜃− The parameters of the current and target DDQN network.
𝛼 Learning rate.
𝛾 Discount factor.

𝛽, 𝛽1 Scale parameters of Pareto and Weibull distribution.
𝜂, 𝜂1 Shape parameters of Pareto and Weibull distribution.
𝜏 Inter-arrival time.

Section IV provides the numerical results. Lastly, Section V
concludes the work. For ease of reference, a list of key notations
used in this paper is provided in Table II.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a Geostationary Earth Orbit (GEO) satellite
capable of providing multiple radio access services over 𝐵
radiation beams to users randomly distributed across these
beams’ coverage areas. In this scheme, the downlink traffic
demand (transmission requests) from various users within the
coverage of beam 𝑏 comes from the core network and is
aggregated at the top of Layer 2, within the Service Data
Adaptation Protocol (SDAP) [6] and represented as multiple
packet flows. We assume that there are 𝐹 different data flows,
each with different packet lengths, arriving at the gateway
buffer, specific to a particular satellite beam. These data
flows are assumed to originate from user requests within the
coverage area of that beam. The gateway is aware of the
users residing in each beam and accordingly routes packets
from external networks to the appropriate buffers. In this
system, the dynamic CA mechanism is developed centrally at
the network controller located on the ground, e.g., integrated

Traffic
content

qbf(t)

Core
network

GW

λbF(t)

λb2(t)
λb1(t)

Agent

Environment

ActionState
Reward

Controller

Fig. 1: CA for a queued flow of packets using RL.
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Fig. 2: The cycle-based capacity allocation framework.

at the gateway side as shown in Fig. 1. This centralization
enables informed decision-making in real time based on a
holistic view of network conditions, ensuring efficient resource
allocation and adaptability to dynamic traffic flows. Using
this mechanism, the SatCom operator can dynamically and
efficiently allocate varying amounts of capacity to different
beams based on the needs of the flows within them, satisfying
user QoE requirements1 over time and minimizing operator
costs.

A. Time-Varying Capacity Allocation

Let 𝑊max (bps) denote the maximum SatCom capacity that
the operator can allocate to serve 𝐹 traffic flows in all beams.
Each flow in each beam is assigned a portion of the capacity
at any time 𝑡, denoted by 𝑊𝑏

𝑓
(𝑡), which can range from 0 to

𝑊max, i.e., 0 ≤ 𝑊𝑏
𝑓
(𝑡) ≤ 𝑊max. In addition, it is imperative to

allocate capacity to each type of service (flow), ensuring that
the total capacity assigned to all flows across all beams does
not exceed the maximum available capacity of the operator,
which yields the following constraint.

𝑏=𝐵∑︁
𝑏=1

𝑓 =𝐹∑︁
𝑓 =1

𝑊𝑏
𝑓 (𝑡) ≤ 𝑊

max. (1)

As described in Fig. 2, the network operates for a period
of 𝑇 seconds, divided into multiple time-slots (TS), termed
the transmission time. Herein, each TS lasts for a duration of
𝑇ts seconds. For various technical, operational, and economic
reasons, limitations of the satellite system impose a minimum
granularity of time to reconfigure onboard resources. Therefore,
we assume that 𝑊𝑏

𝑓
(𝑡) for all (𝑏, 𝑓 ) remains constant for the

1The user QoE requirement will be explained later in the following section.
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QoE requirement is granted

0 qQoE qmax

Increasing unutilized capacity Increasing packet drop probability

Packets blocked

Increasing QoE violation probability

Packets admitted but delayed

QoE requirement violated

Fig. 3: Impact of QL on QoE and blocking probability.

duration of a cycle of 𝑀 TSs and it can only be reset at TS
indices 𝑡𝑟 ∈ {0,𝑀 , 2𝑀 , ..., 𝑘𝑀 , ...}. This can be written as

𝑊𝑏
𝑓 (𝑡) = 𝑊

𝑏
𝑓 (𝑘𝑀) if 𝑡 ∈

(
(𝑘 − 1)𝑀𝑇ts, 𝑘𝑀𝑇ts

]
, (2)

where 𝑘 = 1, ...,𝐾 and 𝐾 = 𝑇/(𝑀𝑇ts). In the following, the
paper refers to𝑊𝑏

𝑓
(𝑘𝑀) as𝑊𝑏

𝑓 ,𝑘 , representing the flow capacity
𝑓 allocated to the beam 𝑏 in cycle 𝑘 . The design framework
considers a period that spans 𝐾 cycles during 𝑇 seconds.

B. Queuing Model

This study addresses the challenge of managing heteroge-
neous traffic demand varying in time, originating from various
services, each of which exhibits diverse patterns of arrival rate
distribution and distinct QoE requirements. To address this
issue, the demands from end users in different services are
classified by service type and modeled as service-specific flows
of packets queued to access each beam.

1) Arrival Model: The data flows are categorized according
to their respective statistical parameters, including arrival rates,
service rates, and packet lengths. Consider 𝐹 data flows
corresponding to 𝐹 services that tend to access each of 𝐵
beams, as shown in Fig. 1. We further assume that the flow
𝑓 ( 𝑓 = 1, ..., 𝐹) transports data packets of length 𝐿 𝑓 bits.
Additionally, flow 𝑓 corresponding to beam 𝑏 has a time-
varying arrival rate of 𝜆𝑏

𝑓
(𝑡) packets.

2) Service Rate: The service rate in the number of packets
for a flow 𝑓 entering to beam 𝑏 at any time 𝑡 can be expressed
as a function of the allocated capacity as follows:

𝜇𝑏𝑓 (𝑡) = 𝑊
𝑏
𝑓 (𝑡)𝑇ts/𝐿 𝑓 . (3)

3) Corresponding Queue Length: Consequently, the QL of
packets due to flow 𝑓 of beam 𝑏 at any time 𝑡 is given as

𝑞𝑏𝑓 (𝑡 + 1) = min
(

max
(
𝑞𝑏𝑓 (𝑡) + 𝜆

𝑏
𝑓 (𝑡) − 𝜇

𝑏
𝑓 (𝑡), 0

)
, 𝑞max

)
, (4)

where max
(
𝑞𝑏
𝑓
(𝑡) + 𝜆𝑏

𝑓
(𝑡) − 𝜇𝑏

𝑓
(𝑡), 0

)
is to ensure that the QL

is always non-negative. Similarly, the minimization process
assumes that the QL will not exceed the maximum. Here,
𝑞max indicates the maximum buffer length. Having 𝑞𝑏

𝑓
(𝑡), the

mean QL of flow 𝑓 in beam 𝑏 over a cycle 𝑘 can be simply
calculated as

𝑞𝑏𝑓 ,𝑘 =

∑𝑡=𝑘𝑀
𝑡=(𝑘−1)𝑀 𝑞𝑏

𝑓
(𝑡)

𝑀
. (5)

C. QoE Requirements

As mentioned in Section I-A, state-of-the-art methods com-
monly use the MOS as a standard metric for QoE estimation.
The basic MOS approach may not accurately capture QoE, as
it relies on users’ subjective expectations of fulfilling certain
requirements [2], [12]. It is also costly, time-consuming, and
impractical for large-scale environments due to the extensive
number of participants required for the experiment [40]. QoE
can also be evaluated by considering user’s expectations and
objective performance metrics like throughput, latency, and
jitter. In SatCom networks, latency is a key QoE metric,
especially for real-time services. Since total latency comprises
queuing and propagation delays, and GEO systems have near-
constant propagation delay, QL becomes the main and practical
indicator of service latency.

As depicted in Fig. 3, consider a buffer with a specified size,
a target QL 𝑞QoE predefined based on SLA, and a maximum
QL 𝑞max. At any time 𝑡, the traffic demand fluctuates, leading
to a dynamic QL at the buffer. If we assume no previously
queued packets are available at the buffer system, gradually
as the QL grows from zero toward 𝑞QoE, the queuing delay
increases, progressively violating QoE requirements. When the
QL extends from 𝑞QoE towards 𝑞max, QoE requirements are
increasingly violated, and the probability of packet blocking
grows, signaling the need for additional CA. Once the queue
exceeds 𝑞max, packets are blocked and lost, further degrading
service quality. Hence, in our work, we define QoE as the
probability that data packets of a specific service type will
not encounter a QL exceeding a threshold 𝑞QoE, upon their
first arrival in the gateway buffer, along with a predetermined
probability of violating it. The probability that the expected
QL exceeds the required target should not surpass a designated
threshold known as the probability of QoE violation. This
requirement can be given as

Prob
{
𝑞𝑏𝑓 (𝑡) ≥ 𝑞

𝑓

QoE

}
≤ 𝑃̄QoE,∀(𝑡, 𝑏, 𝑓 ). (6)

where 𝑞 𝑓QoE and 𝑃̄QoE stand for the target QL requirement of
flow 𝑓 (i.e. service 𝑓 ), and the threshold probability of QoE vi-
olation. Here, we assume that the different flows corresponding
to different services have different QoE requirements (𝑞 𝑓QoE).
Similarly, the probability of the QL reaching or exceeding the
maximum QL must be lower than another specified threshold
of blocking probability. This can be expressed as

Prob
{
𝑞𝑏𝑓 (𝑡) ≥ 𝑞max

}
≤ 𝑃̄Blk ,∀(𝑡, 𝑏, 𝑓 ). (7)

where 𝑃̄Blk is the target blocking probability2 of all flows.

D. Problem Formulation

To enhance the revenue of satellite operators by accommo-
dating more users, we need to allocate the minimal capacity

2In practice, different services have different blocking probability require-
ments. However, in this context, we associate the blocking probability with the
likelihood that the QL exceeds the maximum buffer size, which is assumed to
be constant across all services
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that still meets QoE and blocking probability requirements.
Hence, the problem can be formulated as follows

min
{𝑊𝑏

𝑓 ,𝑘 }′𝑠

∑︁
∀𝑏

∑︁
∀ 𝑓

∑︁
∀𝑘
𝑊𝑏
𝑓 ,𝑘 (8a)

s.t. Prob
{
𝑞𝑏𝑓 (𝑡) ≥ 𝑞

𝑓

QoE

}
≤ 𝑃̄QoE,∀(𝑘 , 𝑏, 𝑓 ), (8b)

Prob
{
𝑞𝑏𝑓 (𝑡) ≥ 𝑞max

}
≤ 𝑃̄Blk,∀(𝑘 , 𝑏, 𝑓 ), (8c)

Constraint (1), (8d)

where constraint (8b) stipulates that the probability of the QL
exceeding 𝑞 𝑓QoE throughout the period must not surpass 𝑃̄QoE
for all flows across all beams and cycles. Likewise, (8c) ensures
that the blocking probability of packets in each flow within
beam 𝑏 at every cycle and time 𝑡 remains below the target.
Constraint (8d) ensures that the total allocated capacity to all
flows in all beams at every cycle 𝑘 cannot exceed the available
satellite spectrum capacity. The primary challenge in solving
the problem arises from the stochastic nature of the formulas
in constraints 1 and 2, rendering it difficult to provide explicit
solutions. Therefore, to solve the problem, it is necessary to
approximate the constraints with equivalent expressions.

A certain number 𝑛 of newly arrived packets at time 𝑡 is
blocked if the total packets comprising accumulated packets
from the previous TS and newly arriving packets, minus the
processed packets (service rate), exceed the maximum QL.
Hence, the number of flow 𝑓 packets blocked from accessing
beam 𝑏 at time 𝑡, denoted as 𝑛𝑏

𝑓 ,Blk (𝑡), is given by

𝑛𝑏
𝑓 ,Blk (𝑡) = max

(
0, 𝑞𝑏𝑓 (𝑡 − 1) + 𝜆𝑏𝑓 (𝑡) − 𝜇

𝑏
𝑓 (𝑡) − 𝑞max

)
. (9)

where 𝑞𝑏
𝑓
(𝑡 − 1) is the QL in the previous TS for flow packets

𝑓 tending to the access beam 𝑏. Similarly, the number of flow
𝑓 of beam 𝑏 packets with QoE requirements violated at time
𝑡, denoted as 𝑛𝑏

𝑓 ,QoE (𝑡), is given by

𝑛𝑏
𝑓 ,QoE (𝑡) = max

(
0, 𝑞𝑏𝑓 (𝑡 − 1) + 𝜆𝑏𝑓 (𝑡) − 𝜇

𝑏
𝑓 (𝑡) − 𝑞

𝑓

QoE

)
. (10)

For short periods, such as a single TS, 𝑛𝑏
𝑓 ,QoE (𝑡) and 𝑛𝑏Blk (𝑡)

may not represent meaningful averages to calculate the probabil-
ity of blocking and the probability of QoE violation. However,
over a sufficiently large number of TSs, the problem constraints
can be approximated by their probabilities of occurrence as

𝜑𝑏𝑓 ,𝑘 = Num
{
𝑞𝑏𝑓 (𝑡) ≥ 𝑞

𝑓

QoE

}
/𝑀 ≤ 𝑃̄QoE,∀ 𝑓 , 𝑏, 𝑘 , (11)

and

Θ𝑏𝑓 (𝑘) = Num
{
𝑞𝑏𝑓 (𝑡) = 𝑞max

}
/𝑀 ≤ 𝑃̄Blk,∀ 𝑓 , 𝑏, 𝑘 , (12)

where Num{.} indicates the number of occurrences the expres-
sion is true.

III. DRL FOR OPTIMAL CAPACITY ALLOCATION

This section explores how DRL, specifically DQN, DDQN,
and 3DQN, can be applied to develop a flexible CA approach
for establishing optimal policies in proactive capacity planning
across multiple QoE-centric satellite services. RL is a ML
approach that allows an agent to reach a specific objective
by maximizing long-term rewards through trial-and-error
interactions with its environment [26]. The agent interacts

by choosing actions from its available action space based on
its current state. Each action results in a corresponding reward
and a transition to a new state. This process is repeated until
the agent’s learning process converges to an optimal policy,
maximizing the average reward. We explore two different multi-
agent models: (1) one agent per flow, resulting in a total of 𝐵𝐹
agents, and (2) one agent per beam, a total of 𝐵 agents. The
choice of the number of agents involves a trade-off: Assigning
𝐵𝐹 agents (one agent per flow) provide fine-grained control
and smaller action spaces per agent but at the cost of significant
computational complexity. In contrast, using 𝐵 agents (one
agent per beam) strikes a balance between granularity and
complexity, offering moderate action spaces while potentially
facing challenges in fair resource allocation among flows within
each beam. While a single centralized agent could theoretically
manage the entire system, this approach is not considered in
our work due to the high training complexity associated with
the large action space, as discussed in Section III-A4.

A. Elements of RL Model

1) Environment: The environment is the considered 𝐵-
beam satellite system, as depicted in Section II, which imposes
specific constraints on CA. The dynamics of the environment
encompass the evolution of the queue state in response to
allocated capacity and external factors, including packet arrival
rates and traffic patterns. These environmental dynamics are
critical for the RL model to adapt and optimize CA, thereby
ensuring the target QoE requirements.

2) Agent: In our context, an agent (whether an agent of a
single flow or an agent of all flows accessing a particular beam)
refers to a CA manager and decision maker, co-located at the
gateway. Its role is engaging with the environment to develop
an optimal CA policy that minimizes capacity consumption
while satisfying users’ requirements on the QoE and blocking
probability.

3) State: The state is defined as the specific instance of
congestion in the satellite environment, which is determined
by measuring the QL at the gateway. In particular, the QL of
flow 𝑓 of beam 𝑏 at TS 𝑡 (𝑞𝑏

𝑓
(𝑡)) can be calculated based on

(4). However, the CA system is designed to work per cycle.
Therefore, we model the state of an agent managing the flow
𝑓 accessing beam 𝑏 in cycle 𝑘 , denoted as 𝑠𝑏

𝑓 ,𝑘 as the mean
QL of all time intervals within a cycle 𝑘 , that is, 𝑠𝑏

𝑓 ,𝑘 ={𝑞𝑏
𝑓 ,𝑘}.

Similarly, the state of an agent that manages the CA of 𝐹 flows
accessing beam 𝑏 at cycle 𝑘 is expressed as

𝑠𝑏𝑘 =
{
𝑞𝑏1,𝑘 , 𝑞𝑏2,𝑘 , 𝑞𝑏3,𝑘 , ..., 𝑞𝑏𝐹,𝑘

}
∈ S, ∀(𝑏, 𝑘), (13)

where S denotes the set of all possible states of the agent.
While the state captures the QL values for all flows for a
particular cycle, the agent implicitly learns temporal patterns
through accumulated experiences stored in the replay buffer as
detailed in Section III-B. This enables the agent to account for
time-varying traffic trends without requiring explicit historical
information in the state representation.

4) Action: In our context, an action refers to selecting and
allocating a specific capacity value from a given action space
to satisfy the quality requirements of users. The action space
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Fig. 4: Training process in DQN and DDQN.

A is a set of discrete capacity levels from which agents can
select to meet QoE requirements.

A =
{
𝑊1,𝑊2, . . . ,𝑊𝑁

}
, (14)

where 𝑁 is the number of capacity levels. Thus, for the one
agent per flow, the action of an agent for flow 𝑓 of beam 𝑏 at
a cycle 𝑘 , denoted 𝑎𝑏

𝑓 ,𝑘 , can be given by

𝑎𝑏𝑓 ,𝑘 ∈ A. (15)

Similarly, for the one agent per beam model, the action of
an agent managing 𝐹 flows in beam 𝑏 is given as

𝑎𝑏𝑘 =
{
𝑎𝑏1,𝑘 , 𝑎𝑏2,𝑘 , . . . , 𝑎𝑏𝐹,𝑘

}
, (16)

where each element of 𝑎𝑏
𝑘

is also an element of A. Herein, an
agent has to choose the action from 𝑁𝐹 possible actions. This
is achieved by constructing the Cartesian product A×𝐹, where
𝐹 is the set of flows, 𝐹 = {1, 2, . . . , 𝐹}. Each element in the
Cartesian product represents a pairing of a discrete capacity
value 𝑊 ∈ A with a flow 𝑓 ∈ 𝐹. This generates all possible
combinations of capacity to be allocated for the available
number of flows. To minimize the number of agents and achieve
system-wide optimization, one agent can be considered for the
entire system. However, this approach comes with a significant
drawback: the action space grows exponentially to (𝑁𝐹𝐵),
resulting in extremely high training complexity. This makes it
impractical for implementation in a flexible CA system within
multi-service satellite networks, where dynamic adaptability
and computational efficiency are critical.

Both the one agent per flow and one agent per beam models
utilize the epsilon-greedy strategy, a commonly employed
action selection technique in RL. Under this approach, agents
predominantly select the best action with the highest Q-value,
optimizing the CA decision based on accumulated knowledge,
with a probability of 1 − 𝜖 , and introduce an element of
randomness by occasionally allocating a random capacity from
the action space, with a probability of 𝜖 as

𝑎 =


random action, for prob. of 𝜖 ,
arg max

𝑎

{
𝑄(𝑠, 𝑎)

}
, for prob. of 1 − 𝜖 , (17)

where 𝑄(𝑠, 𝑎) is the Q-value corresponding to the action 𝑎

at state 𝑠. This approach applies regardless of whether the
model involves one agent per flow or one agent per beam. This
dual strategy effectively strikes a balance between exploiting
the agent’s accumulated experience to maximize immediate
rewards and exploring the environment to enhance the learning
process over time.

5) Reward: After taking action, agents receive immediate
rewards from the environment, which evaluates how well
the allocated capacity meets demand and QoE requirements
across all service types. These rewards are calculated based
on episodes involving diverse traffic demand scenarios across
all service types for the agents to interact with. The goal
is to identify a policy that maximizes the expected future
rewards based on feedback from these simulated episodes.
In the one agent per flow model, during an episode, when
the combined capacity needed by the 𝐵𝐹 flows exceeds the
maximum beam capacity, the available capacity is allocated
based on service priority. This priority is quantified by a weight
vector p = (𝑝1, 𝑝2, ..., 𝑝𝐹), indicating the reward penalties
imposed on the RL agents. Consequently, during congestion,
we assume that the service with the highest tolerance (highest
𝑞
𝑓

QoE) to wait in a queue is assigned the highest penalty weight.
The total reward is then given as a sum of the two sub-rewards.
The first sub-reward is expressed in terms of the allocated
capacity relative to the available capacity as follows:

𝑟𝑏𝑓 ,𝑘,1 =


0, if

∑
∀(𝑏, 𝑓 )𝑊

𝑏
𝑓
(𝑡) ≤ 𝑊max,

−100 ∗ 𝑝 𝑓∑ 𝑓 =𝐹

𝑓 =1 𝑝 𝑓

, otherwise. (18)

This reward component penalizes agents if the total allocated
capacity exceeds the maximum available capacity 𝑊max. The
reward of −100 is used to discourage the agents from allocating
capacity values that exceed the maximum available capacity for
the flows. The penalty per flow is proportional to the priority
of the flows. The other sub-reward can be given as a weighted
sum of the mean QL and the inverse of allocated capacity
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depending on requirement satisfaction as

𝑟𝑏𝑓 ,𝑘,2 =


𝜁𝑞𝑏

𝑓 ,𝑘 +
𝛿

𝑊𝑏
𝑓 ,𝑘

, if
𝜑𝑏

𝑓 ,𝑘
𝑀
≤ 𝑃̄QoE ∧

Θ𝑏
𝑓 ,𝑘
𝑀
≤ 𝑃̄Blk,

−𝑞𝑏
𝑓 ,𝑘 , otherwise.

(19)

This secondary reward component incentivizes the agent to
allocate the minimal capacity necessary to achieve and maintain
low average QLs, 𝑞𝑏

𝑓 ,𝑘 . Here, 𝜁 and 𝛿 are weighting factors
that balance the effects of QL and allocated capacity on the
reward. The total reward per flow is then given as

𝑅𝑏𝑓 ,𝑘 = 𝑟
𝑏
𝑓 ,𝑘,1 + 𝑟

𝑏
𝑓 ,𝑘,2. (20)

Similar to the one agent per flow case, the reward is calculated
as a sum of two sub-rewards.

𝑟𝑏𝑘,1 =

{
0, if

∑
∀(𝑏, 𝑓 )𝑊

𝑏
𝑓
(𝑡) ≤ 𝑊max,

−100, otherwise.
(21)

This reward component penalizes agents from making alloca-
tion decisions that violate the global capacity constraint. Here,
each agent takes a combined action for all flows resulting in
different QoE requirement violations and blocking probabilities
for each service type. Hence, the second sub-reward is the sum
of the rewards from each flow as follows

𝑟𝑏𝑘,2 =
∑︁
𝑓 ∈F
(𝜁𝑞𝑏𝑓 ,𝑘 +

𝛿

𝑊𝑏
𝑓 ,𝑘
) −

∑︁
𝑓 ∉F

𝑞𝑏𝑓 ,𝑘 , (22)

where F =

{
𝑓 |

𝜑𝑏
𝑓 ,𝑘
𝑀
≤ 𝑃̄QoE ∧

Θ𝑏
𝑓 ,𝑘
𝑀
≤ 𝑃̄Blk

}
. The total reward

is then calculated by summing the sub-rewards, given as

𝑅𝑏𝑘 = 𝑟𝑏𝑘,1 + 𝑟
𝑏
𝑘,2. (23)

In both the one agent per flow and one agent per beam
cases, coordination among agents primarily arises from the
shared penalty mechanism and the global capacity constraint,
reflecting characteristics of reward shaping and environmental
interaction.

B. Deep Q-Network

The DQN utilizes Deep Neural Networks (DNN) to approx-
imate action-value functions for dealing with high-dimensional
state space problems, such as flexible CA with time-varying
demand, by utilizing the representational power of deep
learning. In DQN, each agent creates its own model with two
DNNs: the online and the target networks. In each cycle, the
agents use the online network to approximate the Q-function
Q
(
𝑠, 𝑎;𝜔

)
and choose an action, where 𝜔 is the weights of

the agent’s online network. The target network, with weights
𝜔̂, is used to stabilize the learning process by copying 𝜔 after
a set number of cycles.

During the training phase, the agent employs the experience
replay strategy to enhance convergence speed and solution
quality by incorporating a wide range of experiences from
different regions of the state space, various actions, and
corresponding rewards. By using this method, its transition(
𝑠, 𝑎, 𝑟 , 𝑠′

)
is stored in the experience replay memory. At each

iteration, a random batch of experiences is sampled from
this memory to train the learning model. In particular, the

application of DQN to solve the problem (8) can be represented
as follows: In each learning step (cycle), the agent takes an
action of bandwidth allocation after observing its current state.
Then it receives a reward from the environment and moves
to the next state. After that, its respective experience tuple
of

(
𝑠, 𝑎, 𝑟, 𝑠′

)
is stored in its experience replay memory. A

mini-batch of experiences is then sampled to train the online
network. Based on that, the parameters of the online network
𝜔 are updated to minimize the loss function. The loss function
for the one agent per flow configuration is defined as

L =

(
Q′ − Q

(
𝑠𝑏𝑓 ,𝑘 , 𝑎𝑏𝑓 ,𝑘 ;𝜔

) )2
, (24)

where Q′ is the target Q-value which is computed based on
the Bellman optimality principle by adding the reward to the
maximum Q-value at the next state as follows:

Q′ = 𝑅𝑏𝑓 ,𝑘 + 𝛾max
𝑎′𝑏
𝑓 ,𝑘

Q
(
𝑠′𝑏𝑓 ,𝑘 , 𝑎′𝑏𝑓 ,𝑘 ; 𝜔̂

)
, (25)

where 𝛾 is the discount factor and 𝜔̂ represent the combination
of updated weights and biases in the target network. The Q-
value of the online network is updated using the following
equation:

Q(𝑠𝑏𝑓 ,𝑘 , 𝑎𝑏𝑓 ,𝑘 ;𝜔) = Q(𝑠𝑏𝑓 ,𝑘 , 𝑎𝑏𝑓 ,𝑘 ;𝜔)

+ 𝛼
(
Q′ − Q(𝑠𝑏𝑓 ,𝑘 , 𝑎𝑏𝑓 ,𝑘 ;𝜔)

)
,

(26)

where 𝛼 is the learning rate, which controls the step size for
the update. This equation adjusts the predicted Q-value towards
the target Q-value, scaled by the learning rate. Through this
iterative process, the parameters of the online network are
updated to minimize the loss function, and the online Q-values
gradually converge to the optimal Q-values, improving the
agent’s decision-making ability.

Similarly, for the one agent per beam model, the parameters
of the online model 𝜔𝑏 are updated to minimize the loss
function as follows

L𝑏 =

(
Q′𝑏 − Q𝑏

(
𝑠𝑏𝑘 , 𝑎𝑏𝑘 ;𝜔𝑏

) )2
, (27)

where Q′
𝑏

is the target Q-value which is computed as follows:

Q′𝑏 = 𝑅𝑏𝑘 + 𝛾max
𝑎′𝑏
𝑘

Q𝑏
(
𝑠′𝑏𝑘 , 𝑎′𝑏𝑘 ; 𝜔̂𝑏

)
, (28)

where 𝜔𝑏 is the weight of agent 𝑏’s online network and 𝜔̂𝑏
represents the combination of updated weights and biases
in the target network of the agent. By minimizing the loss
function, the DQN iteratively improves its policy, enabling it to
effectively learn optimal actions in complex, high-dimensional
environments. After a given number of learning steps, the
target network parameters 𝜔̂ and 𝜔̂𝑏 are updated by copying
the values of 𝜔 and 𝜔𝑏. Training continues until convergence.
The detailed implementation of the two models is summarized
in Algorithm 1.

Remark 1. Although DQN models have proven their effi-
ciency and effectiveness for resource allocation problems, they
sometimes encounter overestimation problems, where the agent
consistently selects sub-optimal actions in a given state merely
because these actions have the highest Q-value estimates [26].
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Algorithm 1 DQN-BASED CA ALGORITHM

1: Initialization:
• Initialize replay memory D, D𝑏 .
• Initialize the online network with random weights 𝜔, 𝜔𝑏 .
• Initialize the target network with weights 𝜔̂, 𝜔̂𝑏 .

2: for each episode ( 𝑖 = 0 to max episode) do
3: Initialize the state 𝑠𝑏

𝑓 ,𝑘 , 𝑠𝑏
𝑘

.
4: for each cycle (𝑘 = 0 to 𝐾) do
5: Choose an action from the action space using the epsilon-greedy

method as in (17).
6: Calculate the total reward according to (20), (23) and observe the

next state 𝑠′𝑏
𝑓 ,𝑘 , 𝑠′𝑏

𝑘
.

7: Store experiences (𝑠𝑏
𝑓 ,𝑘 , 𝑎𝑏

𝑓 ,𝑘 ,𝑅𝑏
𝑓 ,𝑘 , 𝑠′𝑏

𝑓 ,𝑘) in D
and (𝑠𝑏

𝑘
, 𝑎𝑏

𝑘
,𝑅𝑏

𝑘
, 𝑠′𝑏

𝑘
) in D𝑏 .

8: Take sample minibatch experiences (𝑠𝑏
𝑓 ,𝑘 , 𝑎𝑏

𝑓 ,𝑘 ,𝑅𝑏
𝑓 ,𝑘 , 𝑠′𝑏

𝑓 ,𝑘) from D
and (𝑠𝑏

𝑘
, 𝑎𝑏

𝑘
,𝑅𝑏

𝑘
, 𝑠′𝑏

𝑘
) from D𝑏 .

9: Calculate the target Q_value according to (25) and (28).
10: Calculate the loss using gradient descent as in (24) and (27).
11: Update online network parameters 𝜔 and 𝜔𝑏 to minimize the loss

function.
12: Update target network parameters after every 𝑘̂ (𝑘̂ > 0) cycles:

𝜔̂ ← 𝜔 and 𝜔̂𝑏 ← 𝜔𝑏 .
13: end for
14: end for

This overestimation occurs because the Q-values predicted by
the DQN may not accurately reflect the true expected rewards,
leading the agent to make poor decisions. This overestimation
problem can be better addressed by using a DDQN.

C. Double Deep Q-Network

DDQN is an improved version of DQN that addresses
the issue of Q-value overestimation encountered in DQN
by decoupling action selection and evaluation as shown in
Fig. 4. Unlike in DQN, where the target network is used for
both action selection and evaluation, in DDQN, the online
network selects the best action for the next state. In this
subsection, we focus exclusively on the one-agent-per-beam
DDQN model to reduce the architectural complexity associated
with managing a separate agent for each flow. This approach
simplifies the overall framework while still leveraging the
advanced capabilities of DDQN compared to DQN. Hence, the
best action selection is given as

𝑎 = arg max
𝑎′𝑏
𝑘

𝑄
(
𝑠′𝑏𝑘 , 𝑎′𝑏𝑘 ; 𝜃

)
, (29)

and the selected action is evaluated by the target network. The
target Q-value is then estimated as

𝑄′ = 𝑅𝑏𝑘 + 𝛾𝑄
(
𝑠′𝑏𝑘 , 𝑎; 𝜃−

)
. (30)

The gradient descent step can be used to calculate the loss as
follows

L′ =
(
𝑄′ −𝑄(𝑠𝑏𝑘 , 𝑎𝑏𝑘 ; 𝜃)

)2
(31)

The detailed implementation steps of the DDQN-based CA
algorithm, which is developed to address problem (8) are
summarized in Algorithm 2.

D. Dueling Double Deep Q-Network (3DQN)

In scenarios where the value of being in a particular state is
more significant than the specific actions taken, DDQN may

Algorithm 2 DDQN/3DQN-BASED CA ALGORITHM

1: Initialization:
• Initialize replay memory D′.
• Initialize the online network with random weights 𝜃 .
• Initialize the target network with weights 𝜃− .

2: for each episode (𝑖 = 0 to max episode) do
3: Initialize the state (𝑠𝑏

𝑘
) for all beams and flows.

4: for each cycle (𝑘 = 0 to 𝐾) do
5: Choose an action from the action space using the epsilon-greedy

method as in (17).
6: Calculate the total reward according to(20), (23) and observe the

next state 𝑠′𝑏
𝑘

.
7: Store experiences (𝑠𝑏

𝑘
, 𝑎𝑏

𝑘
,𝑅𝑏

𝑘
, 𝑠′𝑏

𝑘
) in D′ .

8: Sample random minibatch of experiences (𝑠𝑏
𝑘

, 𝑎𝑏
𝑘

,𝑅𝑏
𝑘

, 𝑠′𝑏
𝑘
) from

D′.
9: Select the best action according to (29).

10: Calculate the target Q-value according to (30).
11: Perform a gradient descent step to calculate the loss according to

(31), where the Q-value in the 3DQN model is calculated according
to (32).

12: Update online network parameters 𝜃 to minimize the loss function.

13: Update the target network’s parameters after every 𝑘̂ (𝑘̂ > 0) cycles:
𝜃− ← 𝜃 .

14: end for
15: end for

not be efficient due to its inability to estimate state values
and action advantages separately [28], [48]. By decoupling the
state value and action advantage estimations the 3DQN model
helps to reduce Q-value overestimation further and enhance
the stability of learning. The Q-value estimation comparison of
DDQN and 3DQN is shown in Fig. 5. Here, 3DQN separates
the state value 𝑉 (𝑠𝑏

𝑘
), i.e. the value to be in a particular QL state

regardless of the action taken and the action advantage function
𝐴(𝑠𝑏

𝑘
, 𝑎𝑏
𝑘
), i.e. the advantage of taking a specific action (such

as CA) at that specific state for more precise and stable value
estimation. We estimate the Q-values by adding the outputs of
the state value and advantage values as follows [28], [48]

𝑄(𝑠𝑏𝑘 , 𝑎𝑏𝑘 ; 𝜃, 𝜃𝑆 , 𝜃𝐴) = 𝑉 (𝑠𝑏𝑘 )+𝐴(𝑠
𝑏
𝑘 , 𝑎𝑏𝑘 )−

1
|𝐴𝑛 |

∑︁
𝑎𝑏
𝑘
∈𝐴𝑛

𝐴(𝑠𝑏𝑘 , 𝑎𝑏𝑘 ),

(32)
where 𝜃𝑆 , 𝜃𝐴 are the parameters related to the state value
function and action advantage function, |𝐴𝑛 | is the number of
available actions in the action space and 1

|𝐴𝑛 |
∑
𝑎𝑏
𝑘
∈𝐴𝑛

𝐴(𝑠𝑏
𝑘
, 𝑎𝑏
𝑘
)

represents the mean advantage across all possible actions, which
is subtracted to normalize the advantage function. The detailed
implementation of the CA algorithm is also given in (2), as
the only difference with DDQN is in the Q-value estimation
given in step 11 of the algorithm.

E. Computational Complexity Analysis

While the overall complexity of the DRL architecture can be
influenced by the design of its input, hidden, and output layers,
the primary factors are the sizes of the state and action spaces.
For the one agent per flow model, where the QL for packets of
flow 𝑓 ranges from 0 to 𝑞max, and actions are selected from
𝑁 discrete options, the complexity scales linearly with the
product of the number of beams, flows, and 𝑞max. In contrast,
for the one agent per beam model, each agent takes actions
for multiple flows simultaneously, resulting in a state size of
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Fig. 5: Q-value estimation process in DDQN and 3DQN as in [48].

TABLE III: COMPLEXITY ANALYSIS OF THE PROPOSED METHOD.

Scenario State Complexity Action Complexity
1 Agent per Beam 𝐵 · (𝑞max + 1)𝐹 𝐵 · 𝑁𝐹

1 Agent per Flow 𝐵 · 𝐹 · (𝑞max + 1) 𝐵 · 𝐹 · 𝑁

(𝑞max + 1)𝐹 and an action space size of 𝑁𝐹 . The complexities
of the two scenarios are summarized in Table III.

F. Benchmark Algorithm

This section modifies the algorithm developed in our prior
research [47] to obtain a benchmark solution for comparison
purposes by assuming Poisson arrivals for all flows. This
solution approach utilizes the Lagrangian duality optimization
method for CA, as detailed in [47]. It consolidates packet
arrivals from all service types into a single queue, which is then
served based on a first-come-first-served scenario. However, it
is worth noting that the CA results obtained by this optimization
approach are determined based on perfect knowledge of the
arrival rates.

To adapt this benchmark solution to our scheme, we use
the predicted traffic demand of an LSTM recurrent neural
network as input, as outlined in [49]. To gain a comprehensive
understanding of future traffic demand beyond the immediate
horizon and to capture longer-term trends more effectively,
we employed a multi-horizon LSTM network to predict the
input traffic demand of all the TSs of the next cycle for the
optimization approach. This approach optimizes forecasting
accuracy by concurrently predicting traffic demand for multiple
future TSs, enhancing the effectiveness of CA strategies.

IV. PERFORMANCE EVALUATION AND NUMERICAL
RESULTS

In this section, we outline the dataset preparation process,
discuss the considered hyper-parameter values, present the
results obtained using the proposed techniques, conduct a
performance comparison, and assess the efficiency of the
implemented algorithms.

A. Input Traffic and Traffic Distribution Models

To create diverse services, various distributions of packet
arrival rates can be exploited according to the specific
services. Common arrival rate distributions encompass the
Poisson distribution [50], known for modeling random arrivals,
and heavy-tailed distributions [51], [52] which capture the
variability and unpredictability often encountered in modern

communication networks. We analyze three distinct traffic
flows, each corresponding to a different set of characteristics.
For the considered 3 service types, Poisson, Pareto (heavy-
tailed), and Weibull (heavy-tailed) distributions for estimating
the inter-arrival time of packets in the flows. The inter-arrival
time for the Poisson distribution denoted 𝜏Poi is calculated from
the Cumulative Distribution Function (CDF) of the inter-arrival
time given as

Prob
{
𝜏Poi ≤ 𝑡

}
= 1 − 𝑒−𝜆𝜏Poi , (33)

where 𝜏Poi is determined by taking the ratio of the negative
natural logarithm of the complement of a random value
uniformly sampled between 0 and 1 to the arrival rate of
the Poisson-process based flow 1, which is given as

𝜏Poi = − log(1 − 𝑅1)/𝜆1 (𝑡). (34)

The CDF of the inter-arrival time of Pareto distribution (𝜏Pa)
is given as [53]

Prob
{
𝜏Pa ≤ 𝑡

}
= 1 − (𝛽/𝜏Pa)𝜂 , (35)

hence, the inter-arrival time of flow 2’s packets assumed to
follow Pareto distribution is given by

𝜏Pa = [𝛽/(1 − 𝑅2)] (1/𝜂)/𝜆2 (𝑡). (36)

Similarly, the CDF of the inter-arrival time of Weibull distri-
bution (𝜏Wei) is expressed as

Prob
{
𝜏Wei ≤ 𝑡

}
= 1 − 𝑒−𝛽1𝜏

𝜂1
Wei , (37)

then, the inter-arrival time of flow 3 packets assumed to follow
Weibull distribution is provided by [54],

𝜏Wei = 𝛽1

[
− log(1 − 𝑅3)

1
𝜂1

]
/𝜆3 (𝑡), (38)

where 𝛽 and 𝛽1 are the scale parameters, 𝜂 and 𝜂1 are the
shape parameters and 𝑅1, 𝑅2, 𝑅3 are random numbers between
0 and 1. Assuming that the traffic pattern evolves over 24
hours following the trend of the dataset in [55], we generated
a random number of packets per second for 10 beams, each
supporting 3 distinct service types. To indicate the traffic arrival
variability among flows, the Probability Mass Function (PMF)
of the packet arrivals for the services is given in Fig. 6.

For the benchmark algorithm, Lagrangian duality, the input
traffic was forecasted from historical traffic demand using an
LSTM RNN model. To ensure that prediction errors do not
affect the comparison, the implemented LSTM model was
validated by testing it with a new dataset. After preparing the
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Fig. 6: Probability mass function of the considered flows. Each
value on the horizontal axis reflects an arrival rate in a TS, and the
corresponding vertical coordinate shows the probability of observing
that rate in that TS.

TABLE IV: LSTM HYPER-PARAMETER VALUES.

Parameters Values
Activation function tanh
Epochs 100
Forecast horizon 3600
Hidden layers 2
LSTM units 50
Loss function Mean squared error (MSE)
Number of models 10 (1 per beam)
Sequence length 100

predicted traffic, we employed the 𝑀𝑡/𝑀𝑡/1 queuing analysis
for the flow of packets. The hyper-parameters chosen for the
LSTM model are summarized in Table IV.

B. Numerical Results and Comparative Analysis

In this section, we analyze and compare the numerical
outcomes of various approaches: DQN with one agent per
flow (referred to as DQN model 1), DQN with one agent
per beam (referred to as DQN model 2), DDQN with one
agent per beam, 3DQN with one agent per beam and the
benchmark optimization approach utilizing Lagrangian duality.
For the DQN, DDQN, and 3DQN models, the agent selects
actions from an action space comprising 12 equally spaced
values between 0 and the maximum capacity demand of the
corresponding flows, generated using the NumPy linspace
function. For DQN model 1, the epsilon decay rate (𝜎) value
is 0.9995. If not explicitly specified, the remaining parameter
values default to those listed in Table V.

Fig. 7 shows the CDF of the demand-to-allocated capacity
ratio. Flow 1 has a higher proportion of samples with lower
ratios, indicating less congestion. This reflects its lower priority
penalty weight compared to Flows 2 and 3, demonstrating that
our CA model effectively prioritizes more critical and delay-
sensitive services.

Fig. 8 indicates the convergence of the simulated RL
algorithms concerning QL, total reward, probability of QoE
violation, and total allocated capacity. Fig. 8a illustrates the
convergence of the mean QL over episodes for the three
considered flows when using the DDQN method. The figure
indicates that the mean QL converges for all flows. Differences

TABLE V: CONSIDERED PARAMETER VALUES.

Parameters Values
Activation function Relu, Linear
Cycle duration (𝑀) 1 Hour
Discount factor 0.1
Duration of 1 episode 1 day
Epsilon decay (𝜎) 0.9998
Loss function MSE
Experience-replay pool size 50000 [41]
Experience-replay mini-batch size 128
Learning rate 0.01
Maximum QL (𝑞max ) 2 Mbytes (30 packets) [56]
Maximum capacity (𝑊max) 1 Gbps
Normalized packet length 65(KBytes) [57]
Optimizer Adam [26]
Priority penalty weights [0.1, 0.3, 0.6]
Target update ratio 0.01
Target QoE violation probability (𝑃̄QoE) 0.1 [18], [19]
Target QL (𝑞QoE ) [15, 20, 25] packets
The minimal exploration probability 0.001
Target blocking probability (𝑃̄Blk) 0.05 [58]
TS duration (𝑇ts) 1 Second
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Fig. 7: Demand to capacity ratio of all the flows.

in QL values among flows are attributable to the varying target
QL requirements and priority weights. Specifically, flow 1 has
the lowest target QL and the highest priority weight. This
incurs the lowest reward penalty during congestion, leading
to the lowest mean QL for this flow. Similarly, Figs. 8b, 8c,
and 8d indicate the reward, probability of QoE violation, and
total allocated capacity convergence, respectively. The plots
reveal that both 3DQN and DDQN achieve similar performance
and outperform both the DQN models 1 and 2. This can be
attributed to the ability of 3DQN and DDQN to mitigate the
overestimation bias commonly encountered in DQN models.
The plot also indicates that the DQN model 1 outperforms the
DQN model 2 due to the use of individual agents for each
flow within every beam. This approach allows each agent to
specialize in a specific flow and learn to select the best action
from the action space. In contrast, the DQN model 2 assigns
one agent per beam, which must manage a larger action space
of 123 possible actions, making it harder to coordinate multiple
flows and resulting in lower performance.

The plots in Fig. 9 indicate the total allocated capacity per
cycle against the total traffic demand for all simulated models.
To analyze scalability and system performance under varying
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Fig. 8: Convergence plots of the implemented DQN algorithms.

conditions, the total allocated capacity using the proposed
DDQN model is evaluated for different values of 𝑃̄QoE, 𝑃̄Blk,
𝑞QoE, and 𝑞max, assuming all flows have the same target QL
requirement. The total allocated capacity using the DDQN
model in Figs. 9a and 9b is given at different values of the
target QoE violation (𝑃̄QoE) and target blocking probability
(𝑃̄Blk). The plots demonstrate that the system requires allocating
a higher capacity for stricter targets, such as a lower QoE
violation probability (0.05) compared to a higher value (0.1)
and a lower blocking probability (0.01) compared to a higher
value (0.05). In addition, the DDQN model results in Figs. 9c
and 9d show the total allocated capacity per cycle at different
values of target QL (𝑞QoE) and 𝑞max. The plots indicate that
a CA system intended for services with a higher tolerance
for waiting in a queue (𝑞QoE = 20) requires less capacity
than a lower tolerance (𝑞QoE = 15) and vice versa. Similarly, a
higher value of buffer size (𝑞max = 40) can satisfy the blocking
probability requirements with a lower allocated capacity as
compared to lower values (𝑞max = 30). This is because a
larger buffer size can store more packets that would likely be
dropped with a smaller buffer size. However, admitted packets
in a system with a large buffer size do not necessarily meet
QoE requirements and may lead to buffer bloating.

From the figures we can observe that the 3DQN and the pro-
posed multi-agent DDQN demonstrate a superior performance
in allocating less capacity that meets the target QoE requirement
compared to the other models. Typically, the Lagrangian

duality optimization approach is expected to outperform other
methods. However, that approach assumes all arrivals follow
a Poisson distribution which fails to accurately capture the
traffic flexibility of the diverse traffic patterns of the considered
flows. Furthermore, the Lagrangian duality method applied the
𝑀𝑡/𝑀𝑡/1 queueing method which limits the traffic utilization
(𝜆𝑏
𝑓
(𝑡)/𝜇𝑏

𝑓
(𝑡)) value to remain below 1 for all time intervals.

This implies that the allocated capacity always exceeds the
demand, regardless of the queue state. Such an assumption can
lead to an inefficient QL approximation and lower efficiency
in CA, as it leaves unutilized capacity to handle any spikes in
demand that may exceed the optimal capacity. Consequently,
when evaluating the trade-offs between efficiency, adaptability,
and scalability, deep learning approaches emerge as promising
solutions for QoE-aware dynamic CA in 5G networks.

Figs. 10a and 10b indicate the mean blocking and QoE
requirement violation probability per cycle, respectively. The
plots demonstrate that all models achieve a value lower than the
target value of 0.05 for blocking probability and 0.1 for QoE
requirement, indicating their effectiveness. Moreover, these
figures, along with Fig. 9, demonstrate that the 3DQN and
DDQN methods, which exhibit nearly identical performance,
outperform the other methods considered in terms of meeting
the target requirements with relatively lower allocated capacity.
This is further supported by Fig. 11, which shows, for the same
QoE and traffic demand (Mbps), the 3DQN and DDQN models
require less capacity, compared to other models, efficiently
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(a) Capacity at different values of 𝑃̄QoE.
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(b) Capacity at different values of 𝑃̄Blk
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(c) Capacity at different values of 𝑞 𝑓QoE.
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(d) Capacity at different values of 𝑞max

Fig. 9: Total allocated capacity per cycle and total traffic demand over time.
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(b) Mean probability of QoE violation per cycle.

Fig. 10: Probability of blocking and probability of QoE violation.

accommodating a greater number of users.
We can also assess the efficiency of our model by comparing

the obtained QoE violation probability results with experimental
metrics. These metrics are based on MoS measurements,
categorized as a percentage of good or better (%GoB) and poor
or worse (%PoW), as described in [18] and [19]. As we do
not consider users in our work, we consider the probability of
QoE violation per cycle for different samples after the model is
trained. As shown in Fig. 12, our model achieves a performance

equivalent to the acceptability level of a service with excellent
quality, indicated by a MOS above 4.5.

Table VI shows the total runtime of the simulated algorithms
on a High Performance Computer (HPC) system using Python
3.8.6 and GCCcore 10.2.0 with 28 CPU cores. From the
table, we can observe that the trained DDQN, 3DQN and
DQN models have faster inference time compared to the
optimization approach, indicating their effectiveness in handling
time-varying demands with different arrival rate distributions.
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Fig. 12: CDF Plot of QoE Violation Probability: This plot shows the
percentage of good or better (%GoB) and poor or worse (%PoW)
experiences based on the specified target QoE requirement violation
probability of 0.1 for good or better, and the worst 25% (QoE violation
probability > 0.75) for poor or worse.

The total time and average time per episode needed for DQN
model 1 are higher than the other DRL models. This is because
model 1 assumes one agent per flow and requires a total of 30
agents, necessitating a more complex DQN model architecture
compared to DQN model 2, 3DQN and DDQN, which assume
one agent per beam (10 agents in total). DDQN emerges as
a balanced choice, offering a reasonable average time per
episode and total convergence time while achieving comparable
performance to 3DQN. While 3DQN slightly outperforms
DDQN, its higher time complexity makes DDQN a more
computationally efficient choice. The increased computational
complexity of DDQN compared to DQN model 1 and DQN
model 2, is due to the separate action selection and evaluation
steps. Similarly, 3DQN introduces higher complexity than
DDQN by decoupling the state value and action advantage
when calculating Q-values, requiring additional computation
to combine them. The scatter plot in Fig. 13 illustrates the
relationship between the mean QL and the probability of QoE
violation probability, taking the capacity values obtained using
DDQN. The results reveal a clear trend: as the mean QL
increases, the likelihood of QoE violations also rises. This
correlation underscores we can accurately estimate the demand-
capacity relationship, allowing for more effective CA strategies.

In summary, DDQN, 3DQN, and DQNs demonstrate compar-
atively better efficiency in handling various arrival distribution
types, optimizing total allocated capacity, and exhibiting
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Fig. 13: Mean QL versus Probability of QoE violation.
TABLE VI: CONVERGENCE TIME OF THE SIMULATED ALGORITHMS.

Algorithm Average time
per episode (s)

Total conver-
gence time (s)

Episodes to
converge

DQN model 1 440.94 110235.755 250
DQN model 2 244.96 61242.086 250
DDQN 273.29 68324.367 250
3DQN 329.85 82463.45 250
Duality 1228.36 122836 100

inherent adaptability, making them invaluable for meeting the
unpredictable demands of dynamic environments as compared
to the benchmark method. The main reason for this efficiency
is the assumption of different arrival distribution types for all
flows in the proposed method, in contrast to the optimization
approach that assumes a Poisson process for all flows. Selecting
the optimal strategy among the models requires balancing
computational resources, system complexity, and the need for
tailored decision-making. In our specific simulation, we propose
the DDQN model as it shows almost the same performance
but lower complexity as compared to 3DQN, and better
performance than DQN models 1 and 2.

C. Impact of Increased Number of Flows on Convergence

Managing CA for thousands of service types with QoE-
specific requirements poses significant challenges, particularly
when considering the computational burden of a large state
and action space. To address this, similar service types can
be grouped based on QoE requirements, traffic patterns, or
priority levels, resulting in fewer traffic flows. The three traffic
flow distributions considered in this study, Poisson, Pareto
and Weibull represent many existing service types [50]–[52].
However, a substantial number of service groups may follow
other distribution types.

In this subsection, we extend our analysis to include
additional traffic arrival patterns: Normal, Exponential, and
Gamma distributions. These distributions collectively capture
a wide range of packet arrival distributions observed in real-
world service types. To evaluate the impact of the number of
flows, we simulate and compare scenarios with three, four, five,
and six flows using a DDQN-based model. Action masking is
applied in scenarios with four, five, and six flows to reduce
the action space by removing action combinations that exceed
the maximum capacity. The convergence results are presented
in Fig. 14. The simulations indicate that models with fewer
flows (three) converge faster than those with more flows. This
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Fig. 14: Convergence for different number of flows.

behavior can be attributed to the increased complexity of
managing a larger state and action space with additional flows,
and the heightened traffic variability resulting from greater
variations in arrival distributions. Despite this, the convergence
trends are promising, showing an increasing trajectory in the
reward and a decreasing trajectory in the capacity convergence.
These trends suggest that, although increased flows demand
more computational resources and training episodes to reach
convergence, the model is capable of achieving optimal perfor-
mance with further training or the application of complexity-
reducing techniques. The results underscore the importance of
balancing computational feasibility with the accuracy of CA
models in scenarios involving a larger number of traffic flows.

V. CONCLUSION AND FUTURE WORK

This paper proposed a QoE-aware flexible CA mechanism,
leveraging multi-agent DDQN, that offers significant advance-
ments in optimizing capacity utilization while prioritizing QoE
across multiple services. The mechanism exhibits resilience in
dynamically adapting to fluctuating traffic demand, ensuring
consistent performance and user satisfaction. The simulation
results demonstrate that the proposed method enhances the
overall capacity utilization efficiency and QoE across various
satellite services. Future work may involve accounting for
the dynamic nature of LEO constellations and incorporating
rain fading alongside mobility, necessitating an agile and
responsive strategy for CA. This is essential for efficiently
managing communication resources in a rapidly changing
SatCom environment. Exploring service prioritization alongside
fairness, and load-balancing techniques across multiple LEO
SatCom networks to effectively manage time-varying demands
and achieve balanced traffic distribution offers a compelling
direction for future research.
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