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ABSTRACT. Let K be a field, fix an algebraic closure K, and let G be a subgroup of K
×

. We
are able to give a closed formula for the ratio between the degree [K(G) : K] and the index
|GK× : K×|, provided that the latter is finite. Our formula explains all the K-linear relations
among radicals, which (beyond the ones stemming from the multiplicative group GK×/K×)
are generated by relations among roots of unity and single radicals. Our work builds on results
by Rybowicz, which in turn are based on Kneser’s theorem on the linear independence of
radicals.

1. INTRODUCTION

We let K be a field, for which we fix an algebraic closure K. We consider the radicals over
K, by which we mean the elements α ∈ K

× for which there exists a positive integer n such
that αn ∈ K×. We fix a group G of radicals such that the index |GK× : K×| is finite and
investigate the degree [K(G) : K]. (Note that the extension K(G)/K is in general not Galois,
but it is separable if the index is not divisible by the characteristic.) More precisely, we compare
the index and the degree, keeping in mind that the former (which is usually easier to compute)
will let us understand the latter. What is true in general is that

(1) [K(G) : K] ⩽ |GK× : K×|
because representants for GK×/K× can be taken as generators for the K-vector space K(G)
(and indeed the multiplicative relations that determine the index also affect the degree). Having
a strict inequality in (1) is a phenomenon that is called entanglement of radicals. Note that the
degree does not necessarily divide the index: for example, if K = Q and p is an odd prime
number and G is generated by a root of unity of order p, then the ratio degree/index is (p−1)/p.

Consider the setting of Kummer theory, namely suppose that the exponent n of the group
GK×/K× has the following two properties: n is not divisible by the characteristic of K;
K× contains a root of unity of order n. In this case, the group GK×/K× is isomorphic to
GnK×n/K×n hence the core result of Kummer theory states that we have an equality in 1
(see for example [8, Chapter VI, Section 8]).

Going beyond Kummer theory, Kneser [7] has shown that we have an equality in 1 provided
that the following conditions hold: n is not divisible by the characteristic of K; for every odd
prime p we have ζp ∈ K× or ζp /∈ GK×; we have ζ4 ∈ K× or 1 ± ζ4 /∈ GK×. The second
condition is motivated by our example above, while for the last condition consider K = Q and
suppose that G is generated by 1 + ζ4 (which is a fourth root of −4): the ratio degree/index
equals 1/2.
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For any multiplicative subgroup H of K× and for any positive integer m we call µm(H) the
group consisting of the roots of unity of order dividing m that are contained in H . Suppose
that the exponent of GK×/K×, which we call n, is not divisible by the characteristic of K.
Rybowicz [13] (see Theorems 11 and 16) has proven that, if n is a prime power, then we have

[K(G) : K]

|GnK×n : K×n|
= δ · [K(µn(GK×)) : K]

where δ ∈ {1, 12} and where δ ̸= 1 can only hold if n is a power of 2. As discussed in Section
2, this result by Rybowicz builds on Kneser’s theorem and also on work by Hasse and Schinzel.

There is a vast literature on radical extensions. We mention for example also [1] by Albu, [2] by
Barrera Mora and Vélez, and [5] by Halter-Koch. In [9], Lenstra investigated the entanglement
by introducing the entanglement group: this group was studied also by Palenstijn in his PhD
thesis [11] and by the author with Sgobba and Tronto [12]. The entanglement has also been
studied by Lenstra, Moree and Stevenhagen in [10]. Recently, the author with Chan, Pajaziti,
and Perissinotto established further results on the entanglement, see [3].

In this paper we build on the result by Rybowicz to study the ratio
[K(G) : K]

|GK× : K×|
.

We are also able to remove the assumption that n is a prime power: for us the finite exponent
of GK×/K× can be any positive integer that is not divisible by the characteristic of K. The
following remark shows that our condition on n is in fact not restrictive.

Remark 1. If q := char(K) and q | n (which implies q ̸= 0), the extension K(G)/K(Gqvq(n)
)

is purely inseparable and with degree the q-part of |GK× : K| (see [8, Corollary 9.2, Chapter
VI]). We deduce that

[K(G) : K]

|GK× : K×|
=

[K(Gqvq(n)
) : K]

|Gqvq(n)
K× : K×|

so we have reduced to the case where n is not divisible by the characteristic of K.

The following remark shows that the entanglement that we have for a general n cannot be
explained just by the entanglement that we have when n is a prime power.

Remark 2. Let n =
∏

p p
v, where p varies among the prime divisors of n. Defining Gp :=

Gn/pv , we have
|GK× : K×| =

∏
p

|GpK
× : K×| .

We deduce that
[K(G) : K]

|GK× : K×|
⩽

∏
p

[K(Gp) : K]

|GpK× : K×|

and that the equality holds if and only if the fields K(Gp) are linearly disjoint over K. In fact,
we prove (see Proposition 20, in view of Remark 1) that

[K(G) : K] divides
∏
p

[K(Gp) : K] .

We denote by z the product of the odd prime divisors p of n such that ζp /∈ K× and ζp ∈ GK×.
Moreover, we let

√
K× be the group of all radicals over K whose square is in K×. The main

result of this paper is the following.
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Theorem 3. Suppose that char(K) ∤ n. If n is odd, then we have

(2)
[K(G) : K]

|GK× : K×|
=

[K(ζz) : K]

|µn(GK×) ∩K(ζz)× : µn(K×)|
.

If n is even, we write n = 2fn′ where f is a positive integer and n′ is an odd integer. Let
∆ be the non-negative integer from Definition 22 (which concerns the radical group Gn′

over
K(ζz)). Then we have

[K(G) : K]

|GK× : K×|
= C1 · C2

where

C1 :=
[K(ζz) : K]

|µn′(GK×) ∩K(ζz)× : µn′(K×)|

(this is (2) for the group G2f ) and where

C2 :=
1

2∆ · |
(
µ2f+1(GK×) · (GK× ∩

√
K×)

)
∩K(ζz)× : K×|

.

As a special case of our result, suppose that n is a power of 2 (hence n′ = z = C1 = 1). If
f = 1 or ζ4 /∈ K, then C2 = 1 and otherwise we have

C2 = 2−∆ =
[K(H) : K]

|HK× : K×|

where H is as in Theorem 17.

From our main result we deduce the following property (which also holds in case char(K) | n
provided that we exclude from z the prime factor char(K)).

Theorem 4. The degree [K(G) : K] divides

1

z
· [K(ζz) : K] · |GK× : K×| .

In the last section of the paper we prove a result about the (eventual maximal) growth of radical
extensions, see Theorem 24. We fix a subgroup Γ of K× and for every N > 1 consider the
radical group RN , which consists of all N -th roots of all elements of Γ. We show that, under
suitable assumptions, there exists a positive integer N0 (depending on Γ and K) such that

[K(RN ) : K(Rgcd(N,N0))] =
|RNK× : K×|

|Rgcd(N,N0)K
× : K×|

.

This relation, rewritten as

(3)
[K(RN ) : K]

|RNK× : K×|
=

[K(Rgcd(N,N0)) : K]

|Rgcd(N,N0)K
× : K×|

,

shows that the ratio between the degree and the index can be understood by investigating the
finitely many divisors of N0. In view of the discussion below, (3) also shows that the K-linear
relations between the radicals in RN are generated by the multiplicative relations and by the
K-linear relations between the radicals in Rgcd(N,N0). Theorem 25 (which is the reformulation
in our setting of [12, Theorem 1]) is similar in nature, and its formula is like (3) but with further
factors.
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1.1. Linear (and polynomial) relations among radicals. We want to describe all the polyno-
mial relations among the radicals over K. Any polynomial relation only involves finitely many
radicals r1, . . . , rm (for some m ⩾ 1) and it amounts to a non-zero polynomial f(x1, . . . , xm) ∈
K[x1, . . . , xm] such that f(r1, . . . , rm) = 0. If, beyond the constant term, the monomials in
f(x1, . . . , xm) have degree 1, then we have a K-linear relation among r1, . . . , rm, 1. In fact
studying all the polynomial relations among all radicals amounts to study their K-linear re-
lations. This is because any finite product of radicals is a radical (and we can assign a new
variable to any monomial of f , to see f as a homogeneous polynomials of degree 1 beyond the
constant term).

Consider the radical group G := ⟨r1, . . . , rm⟩. In particular, |GK× : K×| is finite. Each
relation among radicals in G that is of multiplicative nature (for example,

√
6 ·

√
10 = 2

√
15 in

R) is explained by the group structure of GK×/K×. Thus, such relations are controlled by the
index |GK× : K×|. The further polynomials relations are controlled by the degree [K(G) : K]
because any relation not generated by previously considered ones leads to a decrease of the
degree. Our results on [K(G) : K]/|GK× : K×| tell us what the degree is, so it suffices to
find enough relations that provide as upper bound for the degree its actual value.

Our main result (Theorem 3) then allows to completely understand the polynomial relations
among radicals. We now describe polynomial relations that (combined with the multiplicative
relations) generate all polynomial relations among radicals. As discussed, we may work with
a finitely generated radical group G, and we keep the notation of Theorem 3.

• For p an odd prime such that ζp ∈ GK× and ζp /∈ K×, calling dp = [K(ζp) : K], we
have

ζ
dp
p , . . . , ζp−1

p ∈ 1K + ζpK + . . .+ ζ
dp−1
p K = K(ζp) .

Moreover, the fact that certain powers of ζpvp(n) of order larger than p (and contained
in GK×) may be contained in K(ζp)

× leads to further K-linear relations among the
roots of unity.

• The elements in µn′(GK×) ∩K(ζz)
× are powers of ζn′ and also K-linear combina-

tions of powers of ζz , and equating the two expressions gives rise to a K-linear relation
among roots of unity. Similarly, the elements in(

µ2f+1(GK×) · (GK× ∩
√
K×)

)
∩K(ζz)

×

provide K-linear relations between single elements of G whose square is in K× and
powers of ζ2f+1z .

• As explained in Section 4, the degree loss caused by the term 2∆ stems from K-
linear relations among roots of unity of order dividing 2f+1, and possibly an additional
relation

1 + ζ2w ∈ 1K + ζ4K

where w is largest integer such that ζ2w+ζ−1
2w ∈ K× (provided that such largest integer

exists).

As a summary, in this paper we are able to prove the following general result.

Theorem 5. The polynomial relations among radicals are generated by the multiplicative rela-
tions and by K-linear relations of the following type: relations among roots of unity; relations
among a single radical (whose square is in K×) and roots of unity; a relation among 1, ζ4 and
1 + ζ2w for some w ⩾ 2.
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2. KNESER’S THEOREM AND KUMMER THEORY

We let K be a field and fix an algebraic closure K. We let G be a group of radicals over K such
that the index |GK× : K×| is finite. We let n be the smallest positive integer such that Gn is
contained in K× (thus, n is the exponent of the group GK×/K× and it divides |GK× : K×|).
In view of Remark 1 we always suppose that n is not divisible by the characteristic of K.

We observe that, for the purposes of this paper, it would be not restrictive to suppose that G is
finitely generated. Indeed, it is possible to replace G by any set of representatives of the group
G/(G ∩ K×) ≃ GK×/K×, which is assumed to be finite (as this change does not affect
neither the index nor the degree under consideration).

For any positive integer m that is not divisible by char(K) we fix some root of unity ζm in K
×

of order m (with a coherent choice, namely that if m,M are positive integers such that m | M
then we have ζ

M/m
M = ζm). If H is a subgroup of K× and m is a positive integer, we write

µm(H) for the group of roots of unity in H whose order divides m. We let φ denote Euler’s
totient function.

Remark 6. The following sequence, induced by the exponentiation by n, is exact:

(4) 1 → µn(GK×)K×/K× → GK×/K× → GnK×n/K×n → 1 .

Indeed, if (ga)n = bn for some g ∈ G and for some a, b ∈ K×, then gn ∈ K×n and hence
g ∈ µn(GK×)K×. Moreover, the following sequence is exact

1 → µn(K
×) → µn(GK×) → µn(GK×)K×/K× → 1

because we have µn(K
×) = µn(GK×) ∩K×. We deduce that

(5) |GK× : K×| = |GnK×n : K×n| · |µn(GK×) : µn(K
×)| .

We rely on the famous result by Martin Kneser from [7]:

Theorem 7 (Kneser’s theorem). We have

[K(G) : K] = |GK× : K×|

if the following two conditions hold: for every odd prime p we have ζp ∈ K× or ζp /∈ GK×;
we have ζ4 ∈ K× or 1± ζ4 /∈ GK×.

We observe that for every m > 1 and for every α ∈ K× the radical group ⟨ζmα⟩ contains a
root of unity different from 1 if and only if α ̸= ζ−1

m is a root of unity. Unless K has positive
characteristic q and it is algebraic over Fq, there is α ∈ K× that is not a root of unity. Thus,
even if ζm /∈ K× and G ∩ µm(K

×
) = {1}, it is possible that GK× contains µm.

Kneser’s result covers all cases for which [K(G) : K] = |GK× : K×| holds. Indeed, in [15,
Chapter 2, Theorem 20] Schinzel proved the following:

Proposition 8 (Schinzel). The two conditions in Kneser’s theorem are necessary.
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Proof (alternative proof based on Theorem 3). If z > 1, then [K(ζz) : K] ⩽ φ(z) while
|µn′(GK×) ∩ K(ζz)

× : K×| is divisible by z hence there is some prime p | z such that
the p-adic valuation of [K(G) : K]/|GK× : K×| is non-zero. Now suppose that z = 1
but that the second condition in Kneser’s theorem does not hold: we prove that the 2-adic
valuation of [K(G) : K]/|GK× : K×| is non-zero. To study this 2-adic valuation, we may
replace G by Gn′

(hence n becomes 2f ). Then by Kneser’s theorem over L = K(ζ4) we have
[L(G) : L] = |GL× : L×|. The claim holds because [K(G) : K]/[L(G) : L] divides 2 while
|GK× : K×|/|GL× : L×| is a multiple of 4, as (with the appropriate sign choice) the class of
(1± ζ4) ∈ L× has order 4 in GK×/K×. □

Remark 9. If ζp ∈ GK× and ζp /∈ K×, then we have p | n. If (for a sign choice) 1 ± ζ4 ∈
GK× and ζ4 /∈ K×, then 4 | n because (1± ζ4)

2 = ±2ζ4 and (1± ζ4)
4 = −4 hence the order

of 1± ζ4 in GK×/K× is 4.

By the above remark, the two conditions in Kneser’s theorem are satisfied if ζn ∈ K. In this
case, the extension K(G)/K is a Kummer extension and its Galois group is abelian of exponent
dividing n:

Theorem 10 (Kummer theory). If ζn ∈ K, the groups Gal(K(G)/K) and GK×/K× and
GnK×n/K×n are isomorphic. In particular, we have

(6) [K(G) : K] = |GK× : K×| = |GnK×n : K×n| .

Proof. The isomorphism between the former and latter group is one of the main results in
Kummer theory (see [8, Theorem 8.1, Chapter VI]). The isomorphism between the second and
the third group is a consequence of (4) because µn(GK×) = µn(K

×) = ⟨ζn⟩. □

If K and G consist of real numbers, then µn(GK×) = µn(K
×) = {±1} and the two condi-

tions in Kneser’s theorem are satisfied. Hence, (6) holds (see also [13, Theorem 2.2]).

3. THE CASE WHERE n IS AN ODD PRIME POWER

We suppose that n is the power of an odd prime number p (thus, the characteristic of K is
different from p). We rely on the following result, which combines Theorem 7 (in view of
Remark 9) and [13, Theorem 2.3]. To be precise, [13, Theorem 2.3] is stated for characteristic
zero (there is a remark in the paper that most results should extend to separable extensions in
positive characteristic) however the proof goes through also in positive characteristic: this can
easily be checked as the proof is self-contained up to Kneser’s theorem.

Theorem 11 (Kneser - Rybowicz). We have

[K(G) : K]

|GnK×n : K×n|
= [K(µn(GK×)) : K] .

Moreover, if ζp /∈ GK× or ζp ∈ K×, then we have

[K(G) : K] = |GK× : K×| .

We deduce that, if ζp /∈ GK× or ζp ∈ K×, then the degree [K(G) : K] is a power of p while
in the remaining case it is a power of p times [K(ζp) : K].
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Corollary 12. If H := µn(GK×), then we have

[K(G) : K]

|GK× : K×|
=

[K(H) : K]

|HK× : K×|
.

If ζp /∈ K× and ζp ∈ GK×, then we have H = ⟨ζpm⟩ for some positive integer m. Let m0 be
the largest positive integer such that ζpm0 ∈ K(ζp)

× (or ∞, if no such largest integer exists).
Then we have

[K(G) : K]

|GK× : K×|
=

{
1 if ζp ∈ K× or ζp /∈ GK×

[K(ζp) : K] · p−min(m0,m) otherwise .

Proof. Combining Theorem 11 and (5) we get

[K(G) : K]

|GK× : K×|
=

[K(µn(GK×)) : K]

|µn(GK×) : µn(K×)|
.

From H ∩ K× = µn(K
×) we deduce that |H : µn(K

×)| = |HK× : K×|. By Theorem
11 we are left to deal with the case ζp /∈ K× and ζp ∈ GK×. We may conclude because
|H : µn(K

×)| = pm while [K(H) : K] = [K(ζp) : K] · pmax(m−m0,0). □

Remark 13. We observe that we may have m0 = ∞ even if ζp /∈ K. For example, let F
be a prime field with a characteristic that is not p. The extension F (ζp∞)/F has a Galois
group isomorphic to (Z/pZ)× × Zp. We may then take as K the subfield that is fixed by the
subgroup of order 2 of the Galois group (ζp is not fixed but ζpt + ζ−1

pt is fixed for any t ⩾ 1).
The requested properties are preserved if we enlarge K without changing K ∩ F (ζp∞).

As explained in Section 1.1, we can make use of Corollary 12 to determine K-linear relations
among radicals that, together with the multiplicative relations, generate all the K-linear rela-
tions. If n is an odd prime power, all entanglement stems from K-linear relations among roots
of unity. The K-linear relation

1 + ζp + ζ2p + · · ·+ ζp−1
p = 0

has to be counted only if ζp /∈ K×, and it is only relevant if ζp ∈ GK×. If dp := [K(ζp) : K],
the minimal polynomial of ζp gives a K-linear relation among 1, ζp, . . . , ζ

dp
p , and all the powers

ζip for i ⩾ dp are K-linear combinations of the roots of unity 1, ζp, . . . , ζ
dp−1
p . We also have

(ζpm)
pj+max(m−m0,0) ∈ 1K + ζpK + · · ·+ ζ

dp−1
p K for j ⩾ 0

because any element in K(ζp) is of this form. These K-linear relations already explain the
degree of K(G)/K.

4. THE CASE WHERE n IS A POWER OF 2

Let n = 2f for some positive integer f (so we assume that char(K) ̸= 2). We suppose that
f ⩾ 2 and ζ4 /∈ K× (else, we already know that [K(G) : K] = |GK× : K×| by Theorem 7
and Remark 9). For every positive integer t we write ξ2t = ζ2t + ζ−1

2t . Moreover, we let w be
the largest integer such that ξ2w ∈ K×, or we set w = ∞ if no such largest integer exists.

The following lemma is due to Hasse [6, Satz 2], and it also holds for f = 1 (see [14, Lemma
2] by Schinzel).
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Lemma 14 (Hasse and Schinzel). The kernel of the map

K×/K×n → K×K(ζ4)
×n/K(ζ4)

×n

induced by the inclusion is generated by the class of the following element:

a =


−1 if w > f

−ξn2w+1 if w = f

ξn2w+1 if w < f .

Notice that ξn2w+1 = (ξ2w + 2)
n
2 . Since ξ2w ∈ K×, we always have a2 ∈ K×n. However, the

class of a modulo K×n may have order 1 or 2.

Lemma 15. With the notation of Lemma 14, we have a /∈ K×n if and only if w ⩾ f or
char(K) = 0 and K ∩Q(ζ2∞) is totally real.

Proof. We can easily settle the case w > f because (−1) /∈ K×n as ζ4 /∈ K×. So now
suppose that w ⩽ f . The condition a ∈ K×n means that (ξ2w +2)γ ∈ K×2, where γ is a root
of unity of order dividing n/2 for w < f and of order n for w = f . Since γ ∈ K×, we must
have γ ∈ {±1}. We cannot have γ = 1 because ξ2w+1 /∈ K, so now suppose that γ = −1.

We observe that for a finite field F of odd characteristic and such that ζ4 /∈ F the product of
two non-squares is a square (by Kummer theory, as F (

√
b) = F (ζ4) holds if b ∈ F× \ F×2).

We deduce that −(ξ2w + 2) = (−1) · (ξ22w+1) ∈ K×2 in odd characteristic.

In characteristic 0, the square roots of −(ξ2w + 2) are in Q(ζ2∞) and not totally real. They
cannot be in K× if K ∩ Q(ζ2∞) is totally real. In the remaining case, ζ4 and ξ2w+1 generate
the same quadratic extension of K ∩Q(ζ2∞) hence of K, so by Kummer theory −(ξ2w +2) is
a square in K×. □

We rely on the following result, which is [13, Theorem 2.4], restated thanks to Lemma 15.
Similarly to Theorem 11, the original result is stated in characteristic zero, but the proof also
goes through in positive characteristic.

Theorem 16 (Rybowicz). We have

[K(G) : K]

|GnK×n : K×n|
= δG · [K(µn(GK×)) : K]

where δG ∈ {1, 12}. Let a be as in Lemma 14. We have δG = 1
2 if and only if a ∈ GnK×n and,

in the case w < f , additionally 1 + ζ2w ∈ GK× and char(K) = 0 and K ∩Q(ζ2∞) is totally
real.

Theorem 17. Let δG be as in Theorem 16 and set

H =



µ2n(GK×) if w > f

µn(GK×) if w = f and −ξn2w+1 /∈ GnK×n

⟨1 + ζ2w , ζn⟩ if w = f and −ξn2w+1 ∈ GnK×n

µn(GK×) if w < f and δG = 1

⟨1 + ζ2w⟩µn(GK×) if w < f and δG = 1/2 .

Then H is a subgroup of GK× and we have

[K(G) : K]

|GK× : K×|
=

[K(H) : K]

|HK× : K×|
.
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Proof. For w = f , we first prove the claim that H = ⟨1 + ζ2w , ζn⟩ ∩ GK×. Observe that
ζ2w+1ξ2w+1 = 1+ζ2w . If −ξn2w+1 /∈ GnK×n, there is no integer i such that (1+ζ2w)ζ

i
n ∈ GK×

and hence ⟨1 + ζ2w , ζn⟩ ∩ GK× = µn(GK×). Else, fix i such that (1 + ζ2w)ζ
i
n ∈ GK×.

Considering that ξ22w+1 ∈ K×, we deduce that ζn ∈ GK× hence 1 + ζ2w ∈ GK× and the
claim is proven.

Note that in all cases H is a subgroup of GK× such that µn(HK×) = µn(GK×). We now
prove that δG = δH . If w > f , this is because −1 ∈ GnK×n is equivalent to ζ2n ∈ GK×. If
w = f , this is because −ξn2w+1 ∈ GnK×n is equivalent to (1+ ζ2w) ∈ µn(K

×
) ·GK× and we

have H = ⟨1+ζ2w , ζn⟩∩GK×. If w < f , we observe that δG = 1 implies δH = 1, so suppose
that δG = 1

2 . We clearly have 1 + ζ2w ∈ HK×, so we are left to prove that ξn2w+1 ∈ HnK×n.
This is equivalent to ξ2w+1 ∈ ⟨1+ ζ2w , ζn⟩K×n, which holds because ξ2w+1 = ζ−1

2w+1(1+ ζ2w)
and ζ2w+1 is a power of ζn.

In view of Remark 6, from Theorem 16 (applied to G and to H), as H̃ := µn(GK×) =
µn(HK×) and δG = δH , we have

[K(G) : K]

|GK× : K×|
= δG · [K(H̃) : K]

|H̃ : µn(K×)|
=

[K(H) : K]

|HK× : K×|
.

□

Example 18. All five cases in Theorem 17 do occur. For the first case we may choose K =
Q(ξ2w) with w ⩾ 3 and G = ⟨ n

√
5⟩ with 2 ⩽ f < w. Now let K = Q (thus, w = 2). In

the second and third case we have n = 4 and the condition to check is whether −4 ∈ G4Q×4.
So for the second (respectively, third) case we may take G to be ⟨ 4

√
5⟩ (respectively, ⟨ζ8

√
2⟩).

Finally, let n = 8 hence a = 16. For the fourth case we may take G = ⟨ 8
√
5⟩ as 16 /∈ ⟨5⟩Q×8.

For the fifth case we may take G = ⟨ζ8
√
2⟩ as 16 ∈ ⟨16⟩Q×8 and 1 + ζ4 = ζ8

√
2.

Lemma 19. With the notation of Theorem 17, we let m be the largest positive integer such that
ζ2m ∈ H . If m = 1 then we have [K(H):K]

|HK×:K×| = 1, while if m ⩾ 2 then we have

[K(H) : K]

|HK× : K×|
=


22−m if w > f or if w = f and −ξn2w+1 /∈ GnK×n

21−f if w = f and −ξn2w+1 ∈ GnK×n

22−min(w′,m) if w < f , δG = 1

21−min(w′,m) if w < f , δG = 1/2

where, if w is finite, w′ is the largest positive integer such that ζ2w′ ∈ K(ζ4)
×. In the last case

we have m = max(w,m), where m is the largest integer such that ζ2m ∈ µn(GK×).

We observe the following: in characteristic 0, we have w′ = w or w′ = w + 1 and the latter
case holds if and only if char(K) = 0 and K ∩Q(ζ2∞) is not totally real; in odd characteristic
p (thus p ≡ 3 mod 4 because ζ4 /∈ K), w′ is the 2-adic valuation of p2 − 1.

Proof. If m = 1, then [K(H) : K] = |HK× : K×| by Theorem 7 and Remark 9 so suppose
that m ⩾ 2.

We remark that m ⩽ w if w > f (because m ⩽ f +1) or if w = f and −ξn2w+1 /∈ GnK×n. In
these cases, we have [K(H) : K] = 2 and |HK× : K×| = |H : µ2n(K

×)| = 2m−1.
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If w = f and −ξn2w+1 ∈ GnK×n, then K(H) = K(ζ4). We conclude because (1 + ζ2w)
2 =

ζ2w(2 + ξ2w) and ζ2w are in the same class modulo K× and hence

|HK× : K×| = 2|⟨ζn⟩K× : K×| = n .

Finally suppose that w < f . Since 1 + ζ2w ∈ K(ζ4)
×, we have

[K(H) : K] = 21+max(m−w′,0) .

If δG = 1, we may conclude because we have |HK× : K×| = 2m−1. If δG = 1/2 (in
particular, char(K) = 0 and K∩Q(ζ2∞) is totally real), recall that (1+ζ2w)

2 ∈ ζ2wK
×\K×.

By Lemma 15 we know that (1 + ζ2w)
n = ξn2w+1 /∈ K×n so there is no integer i such that

(1 + ζ2w)ζ
i
n ∈ K×. We deduce that

|HK× : K×| = 2|⟨ζ2w⟩µn(GK×)K× : K×| .
We are left to show that |HK× : K×| = 2m and we do so by proving that m = max(w,m).
For m ⩾ w, H is contained in K(ζ2m)

× and we conclude because this group does not contain
ζ2m+1 . For m < w, H is contained in K(ζ4)

× and we conclude because ζ2w+1 /∈ K(ζ4)
×. □

We make use of Theorem 17 and Lemma 19 (as described in Section 1.1) to find K-linear
relations among radicals which, together with the multiplicative relations, generate all K-linear
relations (in case n is a power of 2). Remark that K(ζ4) = 1K + ζ4K.

• If w > f or if w = f and −ξn2w+1 /∈ GnK×n, we only have entanglement if m ⩾ 3.
Since m ⩽ f + 1 and m ⩽ f for w = f , it suffices to consider the K-linear relations
expressing

ζ23 , . . . , ζ2m ∈ 1K + ζ4K .

• If w = f and −ξn2n ∈ GnK×n, there is also an additional entanglement (as there is the
loss of a factor 2 in the degree [K(G) : K]) which is due to 1+ζ2w ∈ GK×∩K(ζ4)

×,
and it is expressed by the K-linear relation

(7) 1 + ζ2w ∈ 1K + ζ4K .

• Finally, suppose that w < f . If δG = 1, then the entanglement is similarly due to

(8) ζ23 , . . . ζ2m′ ∈ 1K + ζ4K

where m′ is the largest positive integer less or equal to m such that ζ2m′ ∈ K(ζ4)
×. If

δG = 1/2, the entanglement is similarly explained by (8) and (7).

5. THE GENERAL CASE

Let n be a positive integer that is not divisible by the characteristic of K. If n = 1, then we
have

[K(G) : K] = |GK× : K×| = 1

so we suppose that n ⩾ 2 and write n =
∏

p p
vp for the prime factorization of n, where p varies

among the prime divisors of n. Let z be the product of the odd primes p such that ζp /∈ K×

and ζp ∈ GK×. We observe that ζz ∈ K(G). We set np := pvp and Gp = Gn/np . In this way,
np is the smallest positive integer such that Gnp

p ⊆ K×. Since np is a prime power, we may
apply the results in the previous sections to study Gp. Note that we have

(9) |GK× : K×| =
∏
p

|GpK
× : K×|
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and the same holds if we replace K by a finite extension.

Proposition 20. We have

(10) [K(G) : K(ζz)] =
∏
p

[K(ζz, Gp) : K(ζz)]

and
[K(G) : K] divides

∏
p

[K(Gp) : K] .

Proof. To prove (10) we show that the fields K(ζz, Gp), whose compositum is K(G), are
linearly disjoint over K(ζz). It suffices to prove that the degree [K(ζz, Gp) : K(ζz)] is a power
of p. This holds by Corollary 12 (for p odd), by Theorem 7 (for p = 2 and ζ4 ∈ K× or 4 ∤ n)
and by Theorem 17 and Lemma 19 (in the remaining case).

The second assertion follows from (10). Indeed, consider that the Galois extension K(ζz)/K
is the compositum of its Galois subextensions K(ζp)/K hence

[K(ζz) : K] divides
∏
p

[K(ζp) : K] .

Moreover, since K(ζz)/K(ζp) is Galois and applying [8, Theorem 1.12, Chapter VI],

[K(ζz, Gp) : K(ζz)] divides [K(ζp, Gp) : K(ζp)] .

□

The following result is [14, Theorem 2]:

Theorem 21 (Schinzel’s theorem on abelian radical extensions). Let n ⩾ 1 be not divisible by
char(K). If α ∈ K×, the extension K(ζn, n

√
α)/K is abelian if and only if αm = βn holds

for some β ∈ K× and for some m | n such that ζm ∈ K.

Proof of Theorem 3 if n is odd. By (9) and (10) we can write

[K(G) : K]

|GK× : K×|
= [K(ζz) : K] ·

∏
p|n

[K(ζz, Gp) : K(ζz)]

|GpK× : K×|
.

We have GpK
× ∩K(ζz)

× ⊆ µpvp (GpK
×) because ζp /∈ K× and the extension K(ζz)/K is

abelian (we apply Theorem 21).

By Theorem 7 (in view of Remark 9) we then have

[K(ζz, Gp) : K(ζz)] = |GpK(ζz)
× : K(ζz)

×| = |GpK
× : K×|

|µpvp (GpK×) ∩K(ζz)× : µpvp (K×)|
.

We may then conclude remarking that

|µn(GK×) ∩K(ζz)
× : µn(K

×)| =
∏
p|n

|µpvp (GpK
×) ∩K(ζz)

× : µpvp (K
×)| .

□

Definition 22. We set ∆ = 0 if ζ4 ∈ K× or 4 ∤ n. Otherwise, we let H ′ be the group H from
Theorem 17 and Lemma 19 for the radical group Gn′

over K(ζz) and set

(11) 2−∆ :=
[K(ζz, H

′) : K(ζz)]

|H ′K(ζz)× : K(ζz)×|
.
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Proof of Theorem 3 if n is even. Call GP =
∏

p|n,p ̸=2Gp. Remarking that ζz ∈ GP , we can
write

[K(G) : K]

|GK× : K×|
= [K(ζz) : K] · [K(GP ) : K(ζz)]

|GPK× : K×|
· [K(ζz, G2) : K(ζz)]

|G2K× : K×|
.

By the odd case of Theorem 3 we have

[K(GP ) : K]

|GPK× : K×|
=

[K(ζz) : K]

|µn/n2
(GPK×) ∩K(ζz)× : µn/n2

(K×)|
.

Since µn/n2
(GK×) = µn/n2

(GPK
×) and µ2n2(GK×) = µ2n2(G2K

×) and GK×∩
√
K× =

G2K
× ∩

√
K× we are left to prove that

[K(ζz, G2) : K(ζz)]

|G2K× : K×|
=

2−∆

|
(
µ2n2(G2K×) · (G2K× ∩

√
K×)

)
∩K(ζz)× : K×|

.

As K(ζz)/K is abelian, by Theorem 21 we have

G2K
× ∩K(ζz)

× =
(
µ2n2(G2K

×) · (G2K
× ∩

√
K×)

)
∩K(ζz)

×

so it suffices to show that
[K(ζz, G2) : K(ζz)]

|G2K(ζz)× : K(ζz)×|
= 2−∆ ,

which is a consequence of Theorem 17 and (11) (or of Theorem 7 if ζ4 ∈ K× or 4 ∤ n). □

Example 23. We recover Theorem 3 for K = Q(
√
5) and G = ⟨ζn, n

√
g⟩, where n > 1

and g = 2
√
5(1 −

√
5). As shown in [12, Example 42], we have [K(G) : K] = nφ(n)/d

(where d = 4 if 10 | n and d = 2 if gcd(10, n) = 5 and d = 1 otherwise). We have
|GK× : K×| = n2. Let p vary among the prime divisors of n. If n is odd, then we have

[K(ζz) : K] =
1

d

∏
p

(p− 1) =
φ(n)z

nd

and µn(GK×) ∩K(ζz)
× = µz(K

×
) while µn(K

×) = {1} hence

[K(G) : K]

|GK× : K×|
=

φ(n)

nd
=

[K(ζz) : K]

|µn(GK×) ∩K(ζz)× : µn(K×)|
.

If n is even, then we have(
µ2f+1(GK×) · (GK× ∩

√
K×)

)
∩K(ζz)

× =

{
{±1} if 5 ∤ n
⟨√g⟩K× otherwise .

We may then recover the formula of Theorem 3 because ∆ = 0 (as H ′ = µ2f (K
×
) for f ⩾ 2).

Proof of Theorem 4. Equivalently, we prove that [K(G) : K(ζz)] divides 1
z · |GK× : K×|.

Recall from (10) that

[K(G) : K(ζz)] =
∏
p|n

[K(ζz, Gp) : K(ζz)]

and write

1

z
· |GK× : K×| =

∏
p|z

1

p
· |GpK

× : K×|

 ∏
p|n,p∤z

|GpK
× : K×|

 .
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For p | z the degree [K(ζz, Gp) : K(ζz)] divides 1
p · |GK× : K×| by Corollary 12. If p ̸= 2

and p ∤ z, or if p = 2 and ζ4 ∈ K× or 4 ∤ n we have

(12) [K(ζz, Gp) : K(ζz)] = |GpK(ζz)
× : K(ζz)

×|

by Theorem 7 (in view of Remark 9) and the index in (12) divides |GpK
× : K×|. For p = 2,

ζ4 /∈ K× and 4 | n the degree [K(ζz, G2) : K(ζz)] divides |G2K(ζz)
× : K(ζz)

×| by Theorem
17 and (11). □

We set µ∞ = ∪m⩾1µm. We conclude by proving two results on the growth of certain radical
extensions.

Theorem 24. For every positive integer N let RN be a subgroup of K× such that the index
|RNK× : K×| divides N c for some constant c, R1 ∈ K× and such that RM

N = RN/M holds
for every M | N . Suppose that there are only finitely many primes p such that ζp /∈ K× and
ζp ∈ RNK× for some N , and call z their product. Moreover, suppose that

|µ∞(K(ζ4z)
×) : µ∞(K×)|

is finite. Then there exists a positive integer N0 such that

[K(RN ) : K]

|RNK× : K×|
=

[K(Rgcd(N,N0)) : K]

|Rgcd(N,N0)K
× : K×|

.

Proof. Let N0 be a number that is divisible by 4z and with the property that for every N
the group µN (RNK×) ∩ K(ζz)

× is a subgroup of µN0(RN0K
×). Thus removing from N

the prime factors coprime to N0 does not affect µN (RNK×) ∩ K(ζz)
×. Moreover, if p is

any prime number, we have µpvp(N)(RNK×) = µpvp(N)(Rpvp(N)K×). Combining these two
observations we obtain

µN (RNK×) ∩K(ζz)
× = µgcd(N,N0)(Rgcd(N,N0)K

×) ∩K(ζz)
× .

If N is odd, we may conclude by Theorem 3. So suppose that N is even. Since RN ∩
√
K× =

R2v2(N) ∩
√
K× and because of the bound on |RNK× : K×| we may define N0 (such that

v2(N0) is large enough) so that RNK×∩
√
K× = Rgcd(N,N0)K

×∩
√
K×. Similarly, we may

define N0 such that the group(
µ2v2(N)+1(RNK×) · (RNK× ∩

√
K×)

)
∩K(ζz)

×

does not change by replacing N by gcd(N,N0) (because the squares of its elements are in
µ2v2(N)(RNK×) ∩ K(ζz)

× which stabilizes when v2(N) is large enough). We may then
conclude by Theorem 3 because, considering Definition 22, we may define N0 such that
v2(N0) > w′ (or we have w′ = ∞) and such that 1 + ζ2w′ is contained in R2v2(N0) if it is
contained in R2v for some positive integer v. □

The following result is the reformulation in our setting of [12, Theorem 1]:

Theorem 25. Let K be a number field, fix a finitely generated subgroup Γ of K× and for every
positive integer N let RN consist of all N -th roots of all elements of Γ. Then there exists a
positive integer N0 such that

[K(RN ) : K]

|RNK× : K×|
=

[K(Rgcd(N,N0)) : K]

|Rgcd(N,N0)K
× : K×|

·
∏

p|N,p∤N0,ζp /∈K×

p− 1

p
.
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Proof. There is an odd squarefree integer Z such that for all primes p ∤ Z we have [K(ζp) :
K] = p − 1. Additionally, we can choose Z such that for any N ⩾ 1 the extensions
K(Rpvp(N) , ζZ)/K(ζZ) are linearly disjoint for every prime number p. Thus for any odd
squarefree integer Z ′ that is a multiple of Z and for every positive integer N we have

µ2v2(N)+1(RNK×)(RNK× ∩
√
K×) ∩K(ζZ′)× ⊆ R2v2(N)K× ∩K(ζZ′)× ⊆ K(ζZ)

× .

By Lemma 19 we may choose the 2-adic valuation of N0 to be large enough such that
[K(R2v2(N) , ζZ) : K(ζZ)]

|R2v2(N)K(ζZ)× : K×|
=

[K(R2min(v2(N),v2(N0)) , ζZ) : K(ζZ)]

|R2min(v2(N),v2(N0))K(ζZ)× : K×|
.

Then, following the proof of Theorem 3, we are left to control those N which divide a power
of Z, and for them we can find a suitable N0 following the proof of Theorem 24. □
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