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Some context

Bohr-Mollerup Theorem (1922)
The log-gamma function f = ln ◦ Γ is the unique convex solution vanishing at x = 1 to the equation

f(x + 1)− f(x) = ln(x) (x > 0).

This result can actually be slightly generalized as follows: All eventually convex solutions to the equation ∆f(x) = ln x on R+

are of the form f(x) = c + ln Γ(x), where c ∈ R.

Theorem (Krull (1948)-Webster (1997))
For any eventually concave function g : R+ → R having the asymptotic property that the sequence n 7→ ∆g(n)
converges to zero, there exists exactly one (up to an additive constant) eventually convex solution f : R+ → R to the
equation ∆f = g.
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Completely monotone functions

A real-valued function f : I → R, defined on an open interval I, is called completely monotone if it is infinitely differentiable
and satisfies

(−1)nf (n)(x) ≥ 0 for all x ∈ I and all n ∈ N.

Bernstein’s little Theorem (1928)
Any completely monotone function f : I → R, defined on an open interval I, is real analytic. That is, for any point a ∈ I,
there exists an open neighborhood U ⊂ I of a such that

f(x) =
∞∑

k=0

f (k)(a)
k!

(x − a)k (x ∈ U),

which means that f coincides with its Taylor series expansion about a.
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Completely monotone functions

Bernstein’s Theorem on monotone functions (1928)
A function f : R+ → R is completely monotone if and only if it is representable as a Laplace type integral of the form

f(x) =

∫ ∞

0
e−xt dµ(t) (x > 0),

where µ is the Lebesgue-Stieltjes measure induced by an increasing function from the interval [0,∞) into itself.

A real-valued function f : I → R, defined on an open interval I, is called absolutely monotone if it is infinitely differentiable
and satisfies

f (n)(x) ≥ 0 for all x ∈ I and all n ∈ N.

Remark that f is completely monotone on I if and only if the function x 7→ f(−x) is absolutely monotone on the reflected
interval −I = {−x : x ∈ I}.
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Bernstein’s little Theorem
Bernstein’s little Theorem
Let I be a real open interval. Suppose that a function f : I → R is infinitely differentiable and that f (q) is absolutely
monotone for some q ∈ N. Then f is real analytic on I.

Proof.
For any a, x ∈ I and any n ∈ N∗=N \ {0}, with n ≥ q,

f(x)−
q−1∑
k=0

f (k)(a)
k!

(x − a)k =

n−1∑
k=q

f (k)(a)
k!

(x − a)k + Rn(x),

where

Rn(x) =

∫ x

a

f (n)(t)
(n − 1)!

(x − t)n−1 dt =
(x − a)n

(n − 1)!

∫ 1

0
f (n)(a + s(x − a)

)
(1 − s)n−1 ds.

Now, fix a ∈ I and let us prove that f is real analytic at a. To this extent, we fix ε > 0 and x ∈ I such that
x ∈ (a− ε, a+ ε) ⊂ I. Let also b ∈ I with x < b and |x − a| < b−a. Since f (n+1) ≥ 0, it follows that f (n) is increasing on I.
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Continuation of the proof.
Therefore, we obtain the estimate

|Rn(x)| ≤
|x − a|n

(n − 1)!

∫ 1

0
f (n)(a + s(b − a)

)
(1 − s)n−1 ds,

or equivalently,
|Rn(x)| ≤

∣∣∣ x − a
b − a

∣∣∣n
Rn(b).

We obtain:

f(b)−
q−1∑
k=0

f (k)(a)
k!

(b − a)k − Rn(b) ≥ 0,

and hence

0 ≤ |Rn(x)| ≤
∣∣∣ x − a

b − a

∣∣∣n (
f(b)−

q−1∑
k=0

f (k)(a)
k!

(b − a)k
)
.

This shows that the sequence n 7→ Rn(x) converges pointwise to zero for any x ∈ (a − ε, a + ε), and hence the function f
is real analytic at a. Since a was chosen arbitrary in I, we conclude that f is real analytic on the entire interval I.
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Newton Series Representation

We say that a function f : I → R, defined on a right-unbounded open interval I, admits a Newton series expansion on I at a
point a ∈ I if the following identity holds:

f(x) =
∞∑

k=0

(x − a
k

)
∆kf(a) (x ∈ I).

▶ When x − a is a nonnegative integer, the identity always holds, and the series clearly reduces to a finite sum.
▶ when x − a is not a nonnegative integer, the identity may fail for an arbitrary function f : I → R, even if f is real

analytic: Take for instance f : x > 0 7→ sin(πx) and a = 1.
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About Newton Series
Proposition
Let f : I → R be a function defined on a real right-unbounded open interval. Let also a, x ∈ I, and let n ∈ N. If
x ∈ {a, a + 1, . . . , a + n − 1}, then

f(x)−
n−1∑
k=0

(x − a
k

)
∆kf(a) = 0.

If x /∈ {a, a + 1, . . . , a + n − 1} or if f is differentiable at x, then

f(x)−
n−1∑
k=0

(x − a
k

)
∆kf(a) = (x − a)n f [a, a + 1, . . . , a + n − 1, x].

Proof.

(x − a)n+1 f [a, a + 1, . . . , a + n, x] = (x − a)n f [a, a + 1, . . . , a + n − 1, x]− (x − a)n f [a, a + 1, . . . , a + n].
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p-convexity
Definition
Let I be any real interval and let p ≥ −1 be an integer. A function f : I → R is said to be p-convex (resp. p-concave) if for
any system x0 < x1 < · · · < xp+1 of p + 2 points in I the following inequality holds:

f [x0, x1, . . . , xp+1] ≥ 0 (resp. f [x0, x1, . . . , xp+1] ≤ 0).

We denote by Kp
1(I) (resp. Kp

−1(I)) the set of functions f : I → R that are p-convex (resp. p-concave), and we introduce
the notation

Kp(I) = Kp
1(I) ∪ Kp

−1(I).

▶ Kp+1(I) ⊂ Cp(I) (p ∈ N),
▶ If f lies in Kp

1(I), where I is right-unbounded, then ∆f lies in Kp−1
1 (I),

▶ If f : I → R is differentiable, then f lies in Kp
1(I) if and only if f ′ lies in Kp−1

1 (I),
▶ If f lies in Cp(I) ∩ Kp

1(I), then the map

(z0, z1, . . . , zp) 7→ f [z0, z1 . . . , zp]

from Ip+1 to R is continuous and increasing in each place. 8



p-convexity

A function f : I → R is completely monotone if and only if

f ∈ C∞(I) and (−1)nf (n) ∈ K−1
1 (I) for all n ∈ N.

This latter condition exactly means that
f ∈ Kn−1

(−1)n (I) for all n ∈ N.

Similarly, the function f : I → R is absolutely monotone if and only if

f ∈ Kn−1
1 (I) for all n ∈ N,

and it is regularly monotone if and only if
f ∈ Kn−1(I) for all n ∈ N.
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Newton Series Representation for CM functions
Theorem (L., Marichal, Zenaïdi)
Let I be a real right-unbounded open interval. Suppose that a function f : I → R is infinitely differentiable and that f (q) is
completely monotone for some q ∈ N. Then, for any a ∈ I, the function f admits the Newton series expansion:

f(x) =
∞∑

k=0

(x − a
k

)
∆kf(a) (x ∈ I)

and the convergence of the series is uniform on compact subsets of I.

Proof.
Let a, x ∈ I and let n ∈ N∗, with n ≥ q,

f(x)−
q−1∑
k=0

(x − a
k

)
∆kf(a) =

n−1∑
k=q

(x − a
k

)
∆kf(a) + Rn(x), (1)

where Rn(x) = (x − a)n f [a, a + 1, . . . , a + n − 1, x].
10



Continuation of the proof.
Let also b ∈ I, with b < min{a, x}. Using the latter observation, we immediately derive the following inequalities:

0 ≤ |Rn(x)| =
∣∣(x − a)n∣∣ ∣∣f [a, a + 1, . . . , a + n − 1, x]

∣∣
≤

∣∣(x − a)n∣∣ ∣∣f [a, a + 1, . . . , a + n − 1, b]
∣∣

=

∣∣∣∣ (x − a)n

(b − a)n

∣∣∣∣ |Rn(b)|, (2)

and

0 ≤ |Rn(x)| ≤
∣∣∣∣ (x − a)n

(b − a)n

∣∣∣∣ ∣∣∣∣f(b)−
q−1∑
k=0

(b − a
k

)
∆kf(a)

∣∣∣∣.
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Examples

▶ We can readily see that the restriction of the reciprocal function f(x) = 1/x to R+ is completely monotone. It follows
that this function has a Newton series expansion on R+ at every point a > 0. For any k ∈ N and any a > 0,

∆kf(a) = (−1)k k!
a(a + 1) · · · (a + k)

=
(−1)k

a
(a+k

k
) .

Hence, for any a > 0, the reciprocal function admits the Newton series expansion:

1
x

=
1
a

∞∑
k=0

(−1)k
(x−a

k
)(a+k

k
) (x > 0).
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Examples
▶ The classical binomial theorem states that the identity

(c + 1)x =
∞∑

k=0

(x
k

)
ck (x ∈ R),

or equivalently,

(c + 1)x = (c + 1)a
∞∑

k=0

(x − a
k

)
ck (a, x ∈ R),

holds for −1 < c < 1. When c > 1, the latter series diverges by the ratio test (unless x − a is a nonnegative integer).
This result shows that the exponential function

f(x) = (c + 1)x (c > −1, x ∈ R)

admits a Newton series expansion on R at every a ∈ R when −1 < c < 1, but not when c > 1. Moreover, we can
easily see that this function is completely monotone if −1 < c ≤ 0, and absolutely monotone if c ≥ 0.
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Examples

Consider functions f1, f2, f3 defined by f1(x) = e−x , f2(x) = (e/2)x and f3(x) = ex .

▶ The completely monotone function f1 admits a Newton series expansion on R at every point a ∈ R, as does the
absolutely monotone function f2.

▶ The absolutely monotone function f3 does not admit such expansions.

The function f2 demonstrates that a function admitting a Newton series expansion at every point a ∈ R need not be
completely monotone. The function f3 illustrates that an absolutely monotone function need not admit a Newton series
expansion. Together, f1 and f3 illustrate that, although the map x 7→ −x preserves real analyticity, it does not, in general,
preserve the existence of Newton series expansions.
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Applications to Principal Indefinite Sums
For any p ∈ N, we also let Dp denote the set of functions g : R+ → R such that the sequence n 7→ ∆pg(n) converges to
zero.

Theorem (Marichal, Zenaïdi (2022))
If g lies in Dp ∩ Kp for some p ∈ N, then there exists a unique solution f ∈ Kp, satisfying f(1) = 0, to the difference
equation ∆f = g on R+ given by

f(x) = Σg(x) = lim
n→∞

n−1∑
k=1

g(k)−
n−1∑
k=0

g(x + k) +
p∑

j=1

(x
j

)
∆j−1g(n) (x > 0), (3)

where and f is p-convex (resp. p-concave) on any right-unbounded subinterval of R+ on which g is p-concave (resp.
p-convex). Furthermore, the convergence in (3) is uniform on any bounded subset of R+.

If g(x) = ln(x) and p = 1, Σ ln x = ln Γ(x) and it provides the additive form of Gauss’ well-known limit:

ln Γ(x) = lim
n→∞

( n−1∑
k=1

ln k −
n−1∑
k=0

ln(x + k) + x ln n
)

(x > 0).
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Applications to Principal Indefinite Sums
Proposition (L., Marichal, Zenaïdi)
Let p, q ∈ N with p < q, and let g : R+ → R be an infinitely differentiable function. Suppose that g(p) eventually tends
monotonically to zero, and that g(q) is regularly monotone. Then, the following assertions hold:

(a) g(n) eventually tends monotonically to zero for every n ≥ p.

(b) g(q−1) or −g(q−1) is completely monotone.

Consequently, g is real analytic and admits a Newton series expansion on R+ at every point a > 0.

Theorem (L., Marichal, Zenaïdi)
Under the assumptions of the previous Proposition, the function Σg exists and is infinitely differentiable. Moreover, the
following assertions hold:

(a) (Σg)(n) eventually tends monotonically to zero for every n ≥ p + 1.

(b) Both g(q−1) and (Σg)(q), or their negatives, are completely monotone.

Consequently, Σg is real analytic and admits a Newton series expansion on R+ at every point a > 0.
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Applications to Principal Indefinite Sums

Corollary (L., Marichal, Zenaïdi)
Let p, q ∈ N with p < q, let I be a fixed right-unbounded interval of R+, and let g : R+ → R be a function such that g|I is
infinitely differentiable. Assume further that the following two conditions hold:

(a) g|(p)
I eventually tends monotonically to zero.

(b) g|(q)
I is regularly monotone.

Suppose also that g is real analytic (resp. admits a Newton series expansion on R+ at every point a > 0). Then the
function Σg exists and is real analytic (resp. admits a Newton series expansion on R+ at every point a > 0).
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Examples (Log-gamma Function)

Returning to the functions g(x) = ln x and Σg(x) = ln Γ(x) defined on R+, it is straightforward to verify that the
assumptions are satisfied with p = 1, q = 2, and I = R+. It follows that the function ln Γ(x) is real analytic and admits a
Newton series expansion on R+ at every point a > 0. Taking a = 1 for instance, we obtain the following Newton series
expansion

ln Γ(x) =
∞∑

k=1

(x − 1
k

)
(∆k−1

t ln t)
∣∣

t=1 (x > 0),

which was already studied by Hermite (1900) and also Graham (1994).
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Examples (Stern’s Series)
The restriction of the function g(x) = 1/x to R+ clearly satisfies the assumptions with p = 0, and hence the corresponding
principal indefinite sum (up to an additive constant) is given by

Σg(x) = −
1
x
+

∞∑
k=1

( 1
k
−

1
x + k

)
(x > 0).

It follows that
Σg(x) = Hx−1 = ψ(x) + γ (x > 0),

where x 7→ Hx denotes the harmonic number function,ψ(x) = Γ′(x)/Γ(x) is the digamma function, and γ is Euler’s constant.

The function g(x) = 1/x on R+ also satisfies the assumptions with p = 0, q = 1, and I = R+. It follows that Σg(x) is real
analytic and admits a Newton series expansion on R+ at every point a > 0. Taking a = 1 for instance, we obtain the
following series representation

Σg(x) =
∞∑

k=1

(x − 1
k

)
∆k−1

x
1
x

∣∣∣
x=1

=
∞∑

k=1

(x − 1
k

) (−1)k−1

k
(x > 0),

which is commonly referred to as Stern’s series.
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Conclusions
Define

AMp
±1(I) = {f ∈ C∞(I) : ±f (p+n) ≥ 0, for all n ∈ N},

CMp
±1(I) = {f ∈ C∞(I) : ±(−1)nf (p+n) ≥ 0, for all n ∈ N},

RMp(I) = {f ∈ C∞(I) : f (p+n) ≥ 0 or f (p+n) ≤ 0, for all n ∈ N}.

Remark that
AMp

±1(I) =
⋂

n≥p

Kn−1
±1 (I), CMp

±1(I) =
⋂

n≥p

Kn−1
±(−1)n−p (I), RMp(I) =

⋂
n≥p

Kn−1(I)

and

lim inf
n→∞

Kn−1
±1 (I) =

⋃
p≥0

AMp
±1(I) ⊂ Cω(I),

lim inf
n→∞

Kn−1(I) =
⋃

p≥0

RMp(I) ⊂ Cω(I).
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Conclusions
Suppose now that I is a right-unbounded open interval of R+. Then,

Dp ∩ RMq(I) ⊂ CMq−1
1 (I) ∪ CMq−1

−1 (I) (p, q ∈ N, p < q).

Let also N (I) denote the class of functions f : I → R that admit a Newton series expansion on I at every point a ∈ I so that

lim inf
n→∞

Kn−1
±(−1)n (I) =

⋃
p≥0

CMp
±(−1)p (I) ⊂ N (I) ⊂ Cω(I),

We have also observed the following significant fact:

RM0(I) ̸⊂
⋃
a∈I

Na(I),

where, for any a ∈ I, the notation Na(I) stands for the class of functions f : I → R that admit a Newton series expansion on
I at a.
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