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Some context

Bohr-Mollerup Theorem (1922)

The log-gamma function f = In o I is the unique convex solution vanishing at x = 1 to the equation

f(x+1) —f(x) =In(x) (x> 0).

This result can actually be slightly generalized as follows: All eventually convex solutions to the equation Af(x) = Inxon R
are of the form f(x) = ¢ + InT(x), wherec € R.
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The log-gamma function f = In o I is the unique convex solution vanishing at x = 1 to the equation

f(x+1) —f(x) =In(x) (x> 0).

This result can actually be slightly generalized as follows: All eventually convex solutions to the equation Af(x) = Inxon R
are of the form f(x) = ¢ + InT(x), wherec € R.

Theorem (Krull (1948)-Webster (1997))

For any eventually concave function g : R — R having the asymptotic property that the sequence n — Ag(n)
converges to zero, there exists exactly one (up to an additive constant) eventually convex solution f : Ry — R to the
equation Af = g.



Completely monotone functions

Areal-valued function f: | — R, defined on an open interval /, is called completely monotone if it is infinitely differentiable

and satisfies
(=1)"f™M(x) > 0 forallx € andalln € N.

Bernstein’s little Theorem (1928)
Any completely monotone function f: | — R, defined on an open interval /, is real analytic. That is, for any pointa € I,

there exists an open neighborhood U C / of a such that

which means that f coincides with its Taylor series expansion about a.



Completely monotone functions

Bernstein’s Theorem on monotone functions (1928)

Afunction f: Ry — Ris completely monotone if and only if it is representable as a Laplace type integral of the form
o0
) = [ erau® x>0
0
where p is the Lebesgue-Stieltjes measure induced by an increasing function from the interval [0, co) into itself.

Areal-valued function f: | — R, defined on an open interval /, is called absolutely monotone if it is infinitely differentiable
and satisfies

fM(x) > 0 forallx € fandalln € N.

Remark that f is completely monotone on /if and only if the function x — f(—x) is absolutely monotone on the reflected
interval - = {—x:x € }.



Bernstein’s little Theorem

Bernstein’s little Theorem

Let / be a real open interval. Suppose that a function f: | — R is infinitely differentiable and that (9 is absolutely
monotone for some g € N. Then f is real analytic on /.

Proof.
Foranya,x € landanyn € N*=N\ {0}, withn > g,

q—1 (k) n—1 ((k)
Fx) — kz f kkf") (x —a)f = k f kkf") (x — a)* + Ra(x),
—0 =q

where

X f(n) _\n 1
Rn(x) = /a @ 7(?)! (x—t)""tdt = E); 7?)! /o £(n) (a+s(x—a)) (1—s)""'ds.

Now, fix @ € /and let us prove that f is real analytic at a. To this extent, we fixe > 0and x € /such that
x € (a—e,a+¢) C I Letalsob € Iwithx < band |x —a| < b — a. Since f("+1) > 0, it follows that (") is increasing on /.



Continuation of the proof.

Therefore, we obtain the estimate

x—a” [ n—1
|Rn(x)| < (D) /o f"(a+s(b—a)) (1 —s)""ds,
or equivalently,
X—ajn
Ra()] < || Ralb).
We obtain: L
-
(k)
(6)~ 3" D 6~ o —Ratt) > 0,
k=0
dh
and hence x—anm q—1 f(k)(a)
0 < IR < |52 (fo) = X — P (b - a)¥).
k=

This shows that the sequence n — Rp(x) converges pointwise to zero forany x € (a — €, a + €), and hence the function f
is real analytic at a. Since a was chosen arbitrary in /, we conclude that f is real analytic on the entire interval /. |



Newton Series Representation

We say that a function f: | — R, defined on a right-unbounded open interval /, admits a Newton series expansion on | at a
pointa € Iif the following identity holds:

f(x) = kz (X B ") Aff(a)  (xel).
=0
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When x — a is a nonnegative integer, the identity always holds, and the series clearly reduces to a finite sum.



Newton Series Representation

We say that a function f: | — R, defined on a right-unbounded open interval /, admits a Newton series expansion on | at a
pointa € Iif the following identity holds:

f(x) = kz (X B ") Aff(a)  (xel).
=0

When x — a is a nonnegative integer, the identity always holds, and the series clearly reduces to a finite sum.

when x — a is not a nonnegative integer, the identity may fail for an arbitrary function f: | — R, even if f is real
analytic: Take for instance f : x > 0 — sin(7x) anda = 1.



About Newton Series

Proposition

Letf : | — R be a function defined on a real right-unbounded open interval. Let also a, x € /,and letn € N. If
x € {a,a+1,...,a+n— 1}, then

n—1

) -3 (X - ") AXf(a) = 0.

k=0 k

Ifx ¢ {a,a+1,...,a+ n— 1} orif f is differentiable at x, then

-

n—

) —> (X;”) Aff(a) = (x—a)fla,a+ 1,...,a+n—1,x].
k=0

Proof.

(x—a)™ L fla,a+1,...,a+nx] = (x—a)fla,a+1,...,a+n—1,x] — (x—a)fla,a+1,...,a+n].



p-convexity

Definition
Let / be any realinterval and let p > —1 be an integer. A function f: | — Ris said to be p-convex (resp. p-concave) if for
any systemxg < x; < - -+ < Xpy1 of p + 2 points in / the following inequality holds:

flxo, X1, ..., Xpy1] > 0 (resp. f[xo, X1, ..., Xp11] < 0).

We denote by ICT(I) (resp. lC’il(l)) the set of functions f: | — R that are p-convex (resp. p-concave), and we introduce
the notation
KP(1) = KE(yu P ().

KPHL() C CP(l)  (p € N),
If  lies in KC? (1), where / is right-unbounded, then Af liesin K2 (1),
Iff: | — Ris differentiable, then f lies in K% (/) if and only if f’ lies in K2~ (1),
If f lies in CP(1) N KC7 (1), then the map
(20,21, -.,2p) — flz0,21...,2p]

from /P*1 to R is continuous and increasing in each place.



p-convexity

Afunction f: | — R is completely monotone if and only if
fece( and (—1)"f" ¢ K1) foralln € N.

This latter condition exactly means that
fe ICE':II),,(I) foralln € N.

Similarly, the function f: | — R is absolutely monotone if and only if
f e Ki7Y() foralln €N,

and it is regularly monotone if and only if
f e K"Y() forallneN.



Newton Series Representation for CM functions

Theorem (L., Marichal, Zenaidi)

Let / be a real right-unbounded open interval. Suppose that a function f: | — R is infinitely differentiable and that f(9) is
completely monotone for some g € N. Then, for any a € /, the function f admits the Newton series expansion:

) =3 (X B ") Aff(a)  (xe)
k=0

and the convergence of the series is uniform on compact subsets of /.

Proof.
Leta,x € land letn € N*, withn > g,
= x—a " ox—a
0= (7, ) affe) = S0 (7 7) Akf(@) + Rotx), (1)

k=0 k=q k

where Rp(x) = (x — a)2fla,a+1,...,a+n—1,x].
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Continuation of the proof.

Letalso b € I, with b < min{a, x}. Using the latter observation, we immediately derive the following inequalities:

0 < [Ra(®)] = |(x—a)|fla,a+1,...,a+n—1,x]|
< |(x—a)|fla,a+1,...,a+n—1,b]|
_ (x—a)
 |(b—a)n @
and
(x - S
0 < Rl < | = ‘ Z%( ) akr )‘.
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Examples

We can readily see that the restriction of the reciprocal function f(x) = 1/x to R4 is completely monotone. It follows
that this function has a Newton series expansion on R at every pointa > 0. Forany k € Nandanya > 0,

k _ (_1\k K = (_l)k
A*f(a) = (-1) ala+1) --- (a+k) - a(a;rk).

Hence, for any a > 0, the reciprocal function admits the Newton series expansion:

x % Z -1 a+k) (x>0).
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Examples

The classical binomial theorem states that the identity
(c+1) = i(){) ck (x eR)
k= k ’

0

or equivalently,

(c+1) = (c+ l)ai()(;a> I (a,x € R),

k=0

holds for —1 < ¢ < 1. When ¢ > 1, the latter series diverges by the ratio test (unless x — a is a nonnegative integer).

This result shows that the exponential function
f(x) = (c+1)* (c>—-1,x€R)

admits a Newton series expansion on R at every a € Rwhen —1 < ¢ < 1, but not when ¢ > 1. Moreover, we can
easily see that this function is completely monotone if —1 < ¢ < 0, and absolutely monotone if ¢ > 0.
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Examples

Consider functions f1, f,, f3 defined by f1 (x) = e™, (x) = (e/2)* and f3(x) = €*.

The completely monotone function f; admits a Newton series expansion on R at every point a € R, as does the
absolutely monotone function f,.

The absolutely monotone function f; does not admit such expansions.

The function f, demonstrates that a function admitting a Newton series expansion at every point a € R need not be
completely monotone. The function f; illustrates that an absolutely monotone function need not admit a Newton series
expansion. Together, f; and f; illustrate that, although the map x — —x preserves real analyticity, it does not, in general,
preserve the existence of Newton series expansions.
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Applications to Principal Indefinite Sums

Forany p € N, we also let DP denote the set of functions g: Ry — R such that the sequence n — APg(n) converges to
zero.

Theorem (Marichal, Zenaidi (2022))

If g liesin DP N KP for some p € N, then there exists a unique solution f € KP, satisfying f(1) = 0, to the difference
equation Af = gon R, given by

n—1
) = Tg(x) = lim > g(k) - Zg(x+k)+2( )aiTg(n) (> 0), @)
k=1

where and f is p-convex (resp. p-concave) on any right-unbounded subinterval of R on which g is p-concave (resp.
p-convex). Furthermore, the convergence in (3) is uniform on any bounded subset of R..

Ifg(x) = In(x)andp = 1, X Inx = InT(x) and it provides the additive form of Gauss’ well-known limit:

InT(x :nln;O(ZInk—Zln(X+k +Xlnn) (x > 0).

15



Applications to Principal Indefinite Sums

Proposition (L., Marichal, Zenaidi)

Letp,qg € Nwithp < g,and letg: R, — R be an infinitely differentiable function. Suppose that g(P) eventually tends
monotonically to zero, and that g(9) is regularly monotone. Then, the following assertions hold:

g{" eventually tends monotonically to zero for every n > p.

g9~ or —g(@=1) is completely monotone.

Consequently, g is real analytic and admits a Newton series expansion on R at every pointa > 0.

Theorem (L., Marichal, Zenaidi)

Under the assumptions of the previous Proposition, the function Xg exists and is infinitely differentiable. Moreover, the
following assertions hold:

(Zg)(") eventually tends monotonically to zero for everyn > p + 1.

Both g(9=1) and (£g)(?, or their negatives, are completely monotone.

Consequently, Xg is real analytic and admits a Newton series expansion on R at every pointa > 0.
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Applications to Principal Indefinite Sums

Corollary (L., Marichal, Zenaidi)

Letp,q € Nwithp < g, let/be afixed right-unbounded interval of R, and letg: R, — R be a function such that g|, is
infinitely differentiable. Assume further that the following two conditions hold:

g|,(p) eventually tends monotonically to zero.

g|,(q) is regularly monotone.

Suppose also that g is real analytic (resp. admits a Newton series expansion on R at every pointa > 0). Then the
function Xg exists and is real analytic (resp. admits a Newton series expansion on R at every pointa > 0).
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Examples (Log-gamma Function)

Returning to the functions g(x) = Inx and Xg(x) = InT(x) defined on R, it is straightforward to verify that the
assumptions are satisfied with p = 1,9 = 2, and / = Ry. It follows that the function In ['(x) is real analytic and admits a
Newton series expansion on R at every point a > 0. Taking a = 1 for instance, we obtain the following Newton series

expansion

oo

Inl(x) = Z( )Akllnt|t:1 (x> 0),

k=1

which was already studied by Hermite (1900) and also Graham (1994).
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Examples (Stern’s Series)

The restriction of the function g(x) = 1/x to R clearly satisfies the assumptions with p = 0, and hence the corresponding
principal indefinite sum (up to an additive constant) is given by

Zg(x):—%+i(%— l) (x > 0).
k=1

x+k

It follows that
Ig(x) = Hy—1 = () +v  (x>0),

where x — Hy denotes the harmonic number function, 1(x) = '’ (x) /T (x) is the digamma function, and y is Euler’s constant.

The function g(x) = 1/x on R also satisfies the assumptions withp = 0, = 1,and / = Ry. It follows that X g(x) is real
analytic and admits a Newton series expansion on R at every pointa > 0. Taking a = 1 for instance, we obtain the
following series representation

ro =3 ()AL = () EE ] s
k=1 k=1

which is commonly referred to as Stern’s series.
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Conclusions

Define
AMP () = {fec™®():£fP*t >0, foralln € N},
CM () = {fec™():+(-1)"fP*) >0, foralln € N},
RMP(l) = {fec>®(): fPtM > gorfPtM <o, foralln € N}.
Remark that
AM’:’EI(I) = m ’Clzl(l)7 CMil(l) = m Kl?il)n—p(l)7 RMP(I) = ﬂ K:nil(l)
n>p n>p n>p
and
lim inf Ki'n = U AM% () c ce(),
p=>0
. . n—1 _ p w
liminf K"71(1) = L>JO RMP(l) C c¥(1).
p=>

20



Conclusions

Suppose now that /is a right-unbounded open interval of R... Then,
DPARMI(/) € CM{ ') U CM? M) (p,q €N, p<aq).
Let also A/(/) denote the class of functions f: | — R that admit a Newton series expansion on / at every point a € /so that

I|m|anC ,,(/ UCMP 1P C N(l) C cv(1),
p=>0

We have also observed the following significant fact:

RM°(1) ¢ | JNa(),

acl

where, for any a € /, the notation N (/) stands for the class of functions f: | — R that admit a Newton series expansion on
lata.
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