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Abstract: We consider triangular arrays of i.i.d. elliptical random vectors
and study the Null hypothesis of equality of the last (p − q) eigenvalues
of the (normalized) scatter parameter. To attain robustness to heavy tails,
and hence validity in the whole class of elliptical distributions, we con-
sider procedures based on the spatial signs of the observations. We show
that the existing spatial sign test exhibit very low asymptotic power when
the qth and (q + 1)th eigenvalues are too close to each other, which is
highly problematic when trying to separate a signal from some spherically-
distributed noise. We therefore consider two types of alternatives: (i) the
qth and (q+1)th eigenvalues are well separated but the last (p−q) ones are
not equal, (ii) the qth and (q+1)th eigenvalues are too close to each other.
We propose new spatial sign tests that are robust to heavy tails and display
the same local asymptotic power as that of the classical spatial sign test in
case (i) and arbitrarily large asymptotic power in case (ii), making these
tests strictly better than the existing spatial sign test. We show how our
new sign tests can be used to construct robust estimators of the dimension
of heavy-tailed signals and also discuss how the proposed procedure can be
used in a directional data framework.
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1. Introduction

In a vast amount of classical multivariate models, it is common to consider
collections of i.i.d. p-variate random vectors whose distribution is characterized
by a location parameter θθθ and a scatter parameter ΣΣΣ. Under certain symme-
try assumptions, ΣΣΣ is a symmetric positive-definite p × p matrix summarizing
the dispersion of the population and performing Principal Component Anlysis
(PCA) on ΣΣΣ is therefore a very natural way to perform dimension reduction.
The most classical case of such a model is that of multivariate Gaussian random
vectors, where θθθ is the expectation and ΣΣΣ the covariance matrix. The elliptical
model, where the characteristic function of the random vectors is assumed to
be of the form t 7→ eit

′θθθϕ(t′ΣΣΣt) for some characteristic generator ϕ : R+ → R,
can be viewed as a more general model where strong symmetry–the probability
contours are ellipses here–still makes it possible to characterize the dispersion
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through ΣΣΣ. Note that no moment assumption is required for ΣΣΣ to be well-
defined, allowing to perform PCA on ΣΣΣ even under heavy-tailed assumptions
where the covariance matrix does not exist. Given that many problems–such as
the one studied in this contribution–are invariant with respect to scale trans-
formations of the data, it is often more convenient to define a shape parameter
V = det(ΣΣΣ)−1/pΣΣΣ and express the inference problem in terms of this matrix
V. Note that we know from [16] that this specific choice for the normalization
of V is canonical in the elliptical framework. A large class of testing prob-
lems over V is particularly relevant when performing PCA-based dimension
reduction techniques. In general, PCA makes use of the spectral decomposition
V = βββΛΛΛVβββ

′ of V, where βββ belongs to the special orthogonal group SOp and
ΛΛΛV is a diagonal matrix with ordered diagonal elements λ1,V, . . . , λp,V. The
objective of PCA-based dimension reduction is to project the data onto a space
of dimension q, 0 < q < p, spanned by the q eigenvectors in βββ that are asso-
ciated with the largest eigenvalues. In this context, the subsphericity problem,
i.e., the problem of testing for the equality of the last (p − q) eigenvalues is
very important. In the Gaussian case, a classical Likelihood Ratio Test (LRT)
for H0q : λq,V > λq+1,V = . . . = λp,V was introduced in [10]. In general, these
tests are used successively for H0q with q = p − 2, p − 3, . . . , 0 with the con-
vention λ0,V = λ1,V + 1, the aim being to identify the one k such that H0k

is not rejected. Indeed, if λk,V > λk+1,V = . . . = λp,V holds, we can consider
that the last (p− k) principal components contain only spherical noise. In this
situation, the dataset can be separated into a k-dimensional signal and some
spherically-distributed noise that can be safely removed. The strategy of testing
for H0q, q = p − 2, p − 3, . . . , 0 has been initially proposed by [1] in a factor
analysis context. In this context, the factors associated with the smallest equal
eigenvalues are considered non-significant and no conclusion should be drawn
from these since there is no consistent estimators of the last eigenvectors. This
Bartlett procedure is still relevant today, and is used for example in [28] and [5]
in very different domains as a preliminary step to factor analysis.

In recent years, the subsphericity problem and its ties to estimation of the di-
mension of a signal has been the subject of ongoing study; see [14], [13] and [15].
High-dimensional tests have been studied in [21], [7] and [24]. All these testing
procedures have one common drawback: their asymptotic powers tend to be dra-
matically low under alternatives to H0q of the type λq,V = λq+1,V = . . . = λp,V.
Note that this is particularly problematic in practice when trying to estimate
the dimension of the signal k. Indeed, assuming that k < p−2, successive testing
for H0q, q = p − 2, p − 3, . . . , 0 under H0k will irremediably produce a situa-
tion where the data-generating process is under such an alternative. In [2], a

Gaussian triangular array framework where the eigenvalues λ
(n)
i,V, i = 1, . . . , p

are depending on n has been considered, allowing to study the asymptotic be-

havior of the classical tests in scenarios where λ
(n)
q,V − λ

(n)
q+1,V = o(1) as n → ∞.

In the aforementioned article, a new test based on the Gaussian LRT and the
power-enhancement approach developed by [6], performing better in scenarios

where λ
(n)
q,V − λ

(n)
q+1,V = o(1), has been proposed. However, this strategy was
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proposed in a purely Gaussian framework, so that the procedures proposed in
[2] are not robust to the presence of heavy tails. This lack of robustness can
be partially solved by a pseudo-Gaussian correction in the spirit of [26], but
this method requires finite moments of order 4. The aim of this contribution is
to use the same power-enhancement strategy as in [2], but considering robust
test statistics allowing for the new procedures to be asymptotically valid in the
whole elliptical setting, irrespectively of the lack of finite fourth-order moments.
A very natural way of obtaining robust tests is to use of the spatial signs of the
observations when constructing the test statistic; that is using only the direc-
tion Xi−θθθ

∥Xi−θθθ∥ associated with each observation Xi. In general, multivariate sign

tests are elegantly simple, easy to compute, robust to heavy tails, remarkably
robust in high-dimensional scenarios (see [19] and [27]) and can be applied to a
certain class of directional data. In the context of PCA, multivariate sign tests
have already been studied in [9], [18], [3]. More important, multivariate sign test
for subsphericity have been proposed amongst other procedures in [4], even if
we will show latter that this test lacks power against alternatives of the type
λq,V = λq+1,V = . . . = λp,V. We will propose testing procedures based on the
spatial sign that are asymptotically valid in the whole elliptical framework and
show strong asymptotic powers with respect to the alternatives considered in

[2] where λ
(n)
q,V − λ

(n)
q+1,V = o(1) as n → ∞. This point is discussed in more

detail in Section 2. The new spatial sign tests will also be asymptotically valid
in a directional data framework where we make the assumption that the data-
generating process is angular Gaussian (see [22]). The aim is to combine power

improvement in certain problematic situations where λ
(n)
q,V − λ

(n)
q+1,V = o(1) as

n → ∞ and robustness to heavy tails in a single test statistic. Finally, we will
use these new multivariate sign-based tests to construct robust estimators of
the dimension of the signal, mimicking the construction of [15], and evaluate its
performances through numerical comparison with the estimators based on the
classical spatial sign test.

2. Elliptical model, null hypothesis and notations

We start the section by defining some notations that will be used throughout this
contribution. First, if eℓ is the ℓth vector of the canonical basis of Rp, let Kp :=∑p

i,j=1(eie
′
j)⊗(eje

′
i), the commutation matrix. For any matrixA, let vec(A) the

vector obtained by stacking its columns on top of each others. We also define
Jp := vec (Ip)vec

′ (Ip), with Iℓ the ℓ-dimensional identity matrix. Denoting
by dvec (A) =: (A11, dv

◦
ec ′(A))′, the p-dimensional vector obtained by stacking

the diagonal elements ofA, we letHp be the p×p2 matrix such thatHpvec (A) =
dvec (A). Note that HpH

′
p = Ip and that if A is diagonal, then H′

pdvec (A) =
vec (A). Finally, we write diag(B1, . . . ,Bm) for the block-diagonal matrix with
blocks B1, . . . ,Bm and A⊗2 := A⊗A, the classical Kronecker product between
A andA. For a symmetric and positive definite matrixB, we will denote asB1/2

its symmetric and positive definite square root, asB−1/2 the inverse of its square
root and as B− its generalized Moore-Penrose inverse.
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We will now examine the considered (elliptical) model in more details. Let
us consider a triangular array Xn1, . . . ,Xnn of p-variate i.i.d. random vectors
with a common centred elliptical distribution with scatter parameter ΣΣΣ(n). Let

βββΛΛΛ
(n)
V βββ′ = V(n) := (σ(n))−2ΣΣΣ(n)

with scale parameter σ(n) ∈ R+
0 such that det(V(n)) = 1, βββ ∈ SOp and with

ΛΛΛ
(n)
V := diag(λ

(n)
1,V, . . . , λ

(n)
p,V),

a converging sequence of p × p diagonal matrices with ordered eigenvalues. If
we assume that Xn1, . . . ,Xnn are absolutely continuous with respect to the
Lebesgue measure, the vectors Xn1, . . . ,Xnn admit a common density function

f
(n)
Xn1

: Rp → R+ of the form

f
(n)
Xn1

(x) = cσ(n),f1 f1(
1

σ(n)
(x′(V(n))−1x)1/2), (1)

with f1 belonging to the class of standardized radial functions F1 (see [8] for
more details), and cσ(n),f1 ∈ R+

0 a normalization constant.
The case of unknown location is a straightforward extension of the centred

case considered here, since it is well known that the location parameter can be
estimated at no asymptotic cost under ellipticity, as shown by [8]. We will then
restrict the model considered, without loss of generality, to densities of the form
(1). In this model, the parameter of interest is the vector of the eigenvalues de-

prived of its first component, vector that we denote dv
◦
ec (ΛΛΛ

(n)
V ). We will consider

the sequence of testing problems characterized by the following null hypotheses,
introduced in [2] in a Gaussian framework. Letting q ≥ 0, the sequence of null
hypotheses considered are

H(n)
0q : (λ

(n)
q+1,V = . . . = λ

(n)
p,V) ∩ (

√
n(λ

(n)
q,V − λ

(n)
q+1,V) → ∞ as n → ∞), (2)

with λ
(n)
0,V defined such that

√
n(λ

(n)
0,V − λ

(n)
1,V) → ∞ as n → ∞. H(n)

0q is both a
standard subsphericity hypothesis concerning the last (p − q) eigenvalues (the

smallest (p− q) latent roots are equal) and a separation assumption (λ
(n)
q,V and

λ
(n)
q+1,V are separated in such a way that

√
n(λ

(n)
q,V−λ

(n)
q+1,V) → ∞ as n → ∞). It

is logical to consider the separation part of the hypothesis H(n)
0q as this specific

root-n separation rate is necessary for consistent estimation of the q and (q+1)th
eigenvectors, and then for any projection over the first q principal components to
be carried out. For this reason, the Null (2) fully characterizes scenarios in which
the data can be separated into a well-identified signal that can be consistently

estimated and some spherical noise. For this reason, the alternatives to H(n)
0q

studied in [2] were classified by the authors into two distinct types:

(i) alternatives of type I, under which the last (p − q) eigenvalues are not

equal while
√
n(λ

(n)
q,V − λ

(n)
q+1,V) → ∞ as n → ∞;
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(ii) alternatives of type II, under which λ
(n)
q+1,V = . . . = λ

(n)
p,V while

√
n(λ

(n)
q,V − λ

(n)
q+1,V) → c, c ∈ R, as n → ∞.

Note that type II alternatives of course include the case where

λ
(n)
q,V = λ

(n)
q+1,V = . . . = λ

(n)
p,V,

which was described in the Introduction as problematic when trying to estimate
the dimension of the signal. We will study the asymptotic behavior under type

I and type II alternatives of the classical multivariate sign test for H(n)
0q . First,

we need to define ∀i = 1, . . . , n, n = 1, 2, . . ., the vectors of the spatial signs of
the observations Uni := Xni/∥Xni∥. Under the elliptical assumption (1), the
triangular array Un1, . . . ,Unn is known to be angular Gaussian (see [22]), with

shape parameter V(n). In other words, H(n)
0q is the exact same null hypothesis in

the angular Gaussian model as in the elliptical model. Any asymptotic property
of a test in the Un1, . . . ,Unn model can then be transferred to a corresponding
spatial sign test in the Xn1, . . . ,Xnn model. In particular, all conclusions made
in terms of asymptotic validity or local asymptotic powers in the angular Gaus-
sian framework are still valid in the elliptical framework. In the following, we
will therefore carry out the asymptotic analysis in the angular Gaussian model
because of its simpler nature and the way in which it allows to treat directional
data.

It should be noted that the interpretation of the null hypothesis of sub-
sphericity in the presence of directional data is slightly different from that in
the classical elliptical framework. As mentioned in sections 7 and 8 of [22], the
projection on the first q principal components still captures the highest possible
amount of variance, the only difference with the elliptical case being that the
projected random vectors will be supported on a unit ball in dimension q. The
second difference is that invariance with respect to the orthogonal transform
for directional data implies uniformity. In particular, the Null (2) can be inter-
preted as the uniformity of the angular components with respect to the (p− q)
(well-identified) directions containing the least variance.

3. The angular Gaussian model and the classical spatial sign test
statistic

As indicated in Section 2, we consider without loss of generality the limits of
triangular arrays of angular Gaussian random vectors, entirely characterized by
the shape parameter V(n). Recall that a p-variate random vector U ∈ Sp−1 :=
{u ∈ Rp,u′u = 1} is said to follow an angular Gaussian distribution with shape

parameter V(n) if its density f
(n)
U : Sp−1 → R+ (with respect to the surface

measure on Sp−1) is of the form

f
(n)
U (u) =

Γ(p/2)

2πp/2det(V(n))1/2
(u′(V(n))−1u)−p/2, (3)
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with Γ(k), k ∈ C, representing the Euler gamma function.
LetUn1, . . .Unn, a triangular array of angular Gaussian vectors having densi-

ties (3) and denote this assumption by P
(n)

βββ,ΛΛΛ
(n)
V

(recall here thatV(n) = βββΛΛΛ
(n)
V βββ′).

We will consider the natural multivariate sign-based test proposed in [4] (see
that reference for in-depth discussions of the asymptotic properties of this test in
a non-triangular array context where λq,V > λq+1,V), but first we need to intro-
duce some new objects. Let βββ0q := (βββq+1, . . . ,βββp) be the p×(p−q) matrix of the

last (p−q) eigenvectors ofV. Let V̂
(n)
Tyler be the classical M-estimator for shape of

[23] having determinant 1, eigenvalues Λ̂ΛΛTyler = diag(λ̂1,Tyler, . . . , λ̂p,Tyler) and

eigenvectors β̂ββTyler = (β̂ββ1, . . . , β̂ββp). Let V̂
(n) = Ṽ(n)/det1/p(Ṽ(n)) a constrained

(i.e., belonging the the Null) estimator of V(n) with Ṽ(n) defined as

Ṽ(n) :=

q∑
j=1

λ̂j,Tylerβ̂ββjβ̂ββ
′
j + λ̂V

p∑
j=q+1

β̂ββjβ̂ββ
′
j ,

where λ̂V := (p−q)−1
∑p

j=q+1 λ̂j,Tyler. Note that even if the Tyler shape estima-
tor was initially defined for random vectors belonging to Rp, it has been shown
in [22] that for angular Gaussian random vectors, the asymptotic distribution
of this estimator is the same as in the elliptical case. We finally define

S
(n)
sign := S

(n)
sign(V

(n)) =
1

n

n∑
i=1

(V(n))−1/2UniU
′
ni(V

(n))−1/2

U′
ni(V

(n))−1Uni

and
Ŝ
(n)
sign := S

(n)
sign(V̂

(n)).

Letting d(p, q) := (p − q + 2)(p − q − 1)/2 and in accordance with the sign-

based approach outlined earlier, we consider the sign test ϕ
(n)
sign introduced in [4],

which rejects the null hypothesis H(n)
0q at the asymptotic level α ∈ (0, 1) when,

S
(n)
q,sign =

np(p+ 2)

2
(tr((β̂ββ

′
0qŜ

(n)
signβ̂ββ0q)

2)− (p− q)−1tr2(β̂ββ
′
0qŜ

(n)
signβ̂ββ0q))

> χ2
d(p,q);1−α.

(4)

Our objective is to study the asymptotic distribution of the test statistic (4)

under the Null, type I and type II alternatives and to propose for ϕ
(n)
sign a power

improvement strategy of the type proposed for the Gaussian LRT in [2], allowing
to achieve non-trivial asymptotic power against type II alternatives. These type

II alternatives are the exact scenarios where we will show that ϕ
(n)
sign lacks power

in Section 5.
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4. Asymptotic behavior under H(n)
0q and against type I alternatives

In the classical framework where ΛΛΛV does not depend on n and where λq ̸= λq+1,

the local asymptotic power of the test ϕ
(n)
sign has already been derived in [4].

However, in our present triangular array setting, no result of such type has been
obtained. In this section, we then study the asymptotic properties of the test

ϕ
(n)
sign under H(n)

0q and (local) alternatives of type I, i.e., under local alternatives

to H(n)
0q such that

√
n(λ

(n)
q,V − λ

(n)
q+1,V) → ∞ as n → ∞. More precisely, we will

consider local perturbations of dv
◦
ec (ΛΛΛ

(n)
V ) ∈ H(n)

0q of the form

dv
◦
ec (ΛΛΛ

(n)
V + n−1/2diag(lll(n))) =: dv

◦
ec (ΛΛΛ

(n)
V ) + n−1/2τττ (n), (5)

where lll(n) =: (l
(n)
1 , . . . , l

(n)
p ) is a bounded sequence of Rp such that

det(ΛΛΛ
(n)
V + n−1/2diag(lll(n))) = 1

and

p∏
j=2

(λ
(n)
j,V + n−1/2l

(n)
j )−1 = λ

(n)
1,V + n−1/2l

(n)
1 ≥ . . . ≥ λ

(n)
p,V + n−1/2l(n)p .

Note that since, as n → ∞,

0 = det(ΛΛΛ
(n)
V + n−1/2diag(lll(n)))− det(ΛΛΛ

(n)
V )

= n−1/2tr((ΛΛΛ
(n)
V )−1diag(lll(n))) +O(n−1),

we have that lll(n) must be such that tr((ΛΛΛ
(n)
V )−1diag(lll(n))) = O(n−1/2) as n →

∞. To study the local asymptotic powers of ϕ
(n)
sign, we consider dv

◦
ec (ΛΛΛ

(n)
V ) ∈ H(n)

0q

and sequences of local alternatives of the form

P
(n)

βββ,ΛΛΛ
(n)
V +n−1/2diag(lll(n))

, (6)

with lll(n) ∈ Rp a bounded sequence satisfying (5). Note that under these local
alternatives, the hypothesis of separation of the qth and (q + 1)th eigenvalues

(n1/2(λ
(n)
q,V − λ

(n)
q+1,V) → ∞) is still valid. To study the asymptotic properties of

ϕ
(n)
sign, we will derive the asymptotic null distribution of the test statistic S

(n)
q,sign,

as well as its asymptotic distribution under local alternatives of the type (6).

The main tool to perform the asymptotic analysis of S
(n)
q,sign under elliptical

triangular array hypothesis will be a Local Asymptotic Normality (LAN) result

for the eigenvalues dv
◦
ec (ΛΛΛ

(n)
V ). In the LAN result below, we will consider that

M
(n)
p = Mp(dv

◦
ec (ΛΛΛ

(n)
V )) is the (p− 1)× p matrix such that

(i) M
(n)
p dvec ((ΛΛΛ

(n)
V )−1) = 0 and

(ii) (M
(n)
p )′dv

◦
ec (L) = dvec(L) for any matrix L such that tr((ΛΛΛ

(n)
V )−1L) = 0.
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We can now state the Local Asymptotic Normality result.

Theorem 4.1. Let ΛΛΛ
(n)
V be a sequence of diagonal matrices with

limn→∞ΛΛΛ
(n)
V =: ΛΛΛV and let lll(n) ∈ Rp a bounded sequence satisfying (5) with

τττ (n) = dv
◦
ec (diag(lll(n))).

Then as n → ∞ under P
(n)

βββ,ΛΛΛ
(n)
V

,

Λ(n) = log(
dP

(n)

βββ,ΛΛΛ
(n)
V +n−1/2diag(lll(n))

dP
(n)

βββ,ΛΛΛ
(n)
V

)

= (τττ (n))′∆∆∆(n)(ΛΛΛ
(n)
V ,βββ)− 1

2
(τττ (n))′ΓΓΓ(ΛΛΛ

(n)
V )τττ (n) + oP(1),

with

∆∆∆(n)(ΛΛΛ
(n)
V ,βββ) =

p
√
n

2
M(n)

p dvec((ΛΛΛ
(n)
V )−1/2βββ′S

(n)
signβββ(ΛΛΛ

(n)
V )−1/2)

and
ΓΓΓ(ΛΛΛ

(n)
V ) =

p

2(p+ 2)
M(n)

p (ΛΛΛ
(n)
V )−2(M(n)

p )′.

Moreover, ∆∆∆(n)(ΛΛΛ
(n)
V ,βββ)

L→ Np(0,ΓΓΓ(ΛΛΛV)) under P
(n)

βββ,ΛΛΛ
(n)
V

as n → ∞.

Following classical Le Cam Asymptotic Theory of experiment (see [11] and
[12]), the distribution of the sign test statistics is now easy to derive. We first

derive the asymptotic distribution of S
(n)
q,sign under H(n)

0q .

Theorem 4.2. When dv
◦
ec (ΛΛΛ

(n)
V ) ∈ H(n)

0q , the test statistic S
(n)
q,sign converges

weakly to the chi-square distribution with d(p, q) degrees of freedom under P
(n)

βββ,ΛΛΛ
(n)
V

as n → ∞.

Theorem 4.2 means that asymptotically, the test ϕ
(n)
sign behaves underH(n)

0q ex-

actly as in classical scenarios studied in [4] where ΛΛΛ
(n)
V does not depend on n and

where the qth and (q+1)th eigenvalues are distinct from each other. The follow-
ing theorem, obtained by a simple application of Le Cam’s third Lemma along-
side the use of Theorem 4.1, indicates that the same holds for the asymptotic

behavior of ϕ
(n)
sign under local alternatives of type I. We define λ

(n)
V , the common

value of the last equal (p− q) eigenvalues of V(n) and limn→∞ λ
(n)
V =: λV.

Theorem 4.3. Let dv
◦
ec (ΛΛΛ

(n)
V ) ∈ H(n)

0q and let lll(n) = (l
(n)
1 , . . . , l

(n)
p ) ∈ Rp be

a bounded sequence satisfying (5) with limn→∞ lll(n) =: lll = (l1, . . . , lp). Under

P
(n)

βββ,ΛΛΛ
(n)
V +n−1/2diag(lll(n))

, the test statistic S
(n)
q,sign converges weakly as n → ∞ to
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the noncentral chi-square distribution with d(p, q) degrees of freedom and non-
centrality parameter

p

2(p+ 2)(λV)2
( p∑
j=q+1

(lj)
2 − (p− q)−1(

p∑
j=q+1

lj)
2
)
.

The asymptotic distribution derived in Theorem 4.3 also coincides with the
asymptotic distribution under local alternatives already derived in [4]. The con-

clusion of this section is therefore that the test ϕ
(n)
sign asymptotically behaves un-

der local alternatives of type I exactly as it would in the classical non-triangular
array setting where the qth and (q+1)th eigenvalues are distinct. In this sense,
we can say that the natural sign-based test for this problem, introduced in [4],
is still valid and retains all its desirable asymptotic properties under type I al-

ternatives. As we will see in next section, ϕ
(n)
sign does not behave as well under

type II alternatives.

5. Asymptotic behavior against type II alternatives

In a Gaussian triangular array framework, [2] showed that the LRT displays
a very problematic lack of power under alternatives of type II. The aim of
this section is to show that the same phenomenon is still present when studying

considering ϕ
(n)
sign in an angular Gaussian triangular array framework. To achieve

this objective, we will study the asymptotic distribution of the test statistic

S
(n)
q,sign when n1/2(λ

(n)
q,V−λ

(n)
q+1,V) = O(1) and observe that the asymptotic power

of ϕ
(n)
sign is below the nominal level α under type II alternatives. The main result

of this section will be a proposition establishing the asymptotic distribution of
Sq,sign under any possible type II scenario.

We need to be slightly more specific and distinguish here a few cases, at this
point. We consider type II alternatives characterized by

ΛΛΛ
(n)
V = diag(λ

(n)
1,V, . . . , λ

(n)
q,V, λV1′

p−q)

with some blocks of the first q eigenvalues converging to λV at various speeds.
More precisely, we consider 0 ≤ s1 ≤ s2 ≤ s3 ≤ q and we assume that

(i) (λ
(n)
j,V − λV) = vj > 0 for each 1 ≤ j ≤ s1,

(ii) (λ
(n)
j,V − λV) = o(1) with n1/2(λ

(n)
j,V − λV) → ∞ as n → ∞, for each

s1 < j ≤ s2,

(iii) n1/2(λ
(n)
j,V − λV) = vj > 0 for each s2 < j ≤ s3 and

(iv) (λ
(n)
j,V − λV) = o(n−1/2) as n → ∞, for each s3 < j ≤ q,

We also define the following quantity

ΘΘΘ(v1, . . . , vs1) = diag(v1, . . . , vs1 , λV1′
p−s1)

⊗2 p+ 2

p
(Ip2 +Kp +

2

p
Jp),

(7)
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where Kp and Jp have been defined at the beginning of Section 2. Theorem 5.1

below provides the asymptotic distribution of S
(n)
q,sign under any possible type II

alternative.

Theorem 5.1. Let ΛΛΛ
(n)
V = diag(λ

(n)
1,V, . . . , λ

(n)
q,V, λV1′

p−q) be as above and let

Z(v1, . . . , vs1) =

(
Z11 Z′

21

Z21 Z22

)
be a p× p matrix where Z11 is the s2 × s2 upper left block of Z(v1, . . . , vs1), Z22

is the (p− s2)× (p− s2) lower right block of Z(v1, . . . , vs1), etc, such that

vec(Z(v1, . . . , vs1)) ∼ Np2(0,ΘΘΘ(v1, . . . , vs1)).

Then as n → ∞ and under P
(n)

βββ,ΛΛΛ
(n)
V

, S
(n)
q,sign converges weakly to

p

2(p+ 2)λ2
V

(

p∑
j=q+1

ℓ2j − (p− q)−1(

p∑
j=q+1

ℓj)
2), (8)

where (ℓq+1, . . . , ℓp) are the p− q smallest roots of

Z22 + diag(vs2+1, . . . , vs3 ,0
′
q−s3 ,0

′
p−q).

Even if Theorem 5.1 can seem slightly hard to read, its implication is very
clear. For instance, under the type II alternative such that V = Ip, we have
that s1 = s2 = s3 = 0. It is then straightforward to check that (ℓq+1, . . . , ℓp)

are the smallest roots of a GOE matrix Z such that ΘΘΘ′ZΘΘΘ
D
= Z, for all possible

ΘΘΘ ∈ SOp. It is not very surprising then that the test statistics Sq,sign tends to
be smaller with high probability when p is large with respect to (p− q).

To illustrate the power loss phenomenon under type II alternatives, we gen-
erated M = 6000 samples of sizes n = 2000 of (p = 8)-dimensional centred
multivariate t-distributed random vectors with 1 degree of freedom and scatter
parameter

ΣΣΣ(n)(b, l) = diag(2 1′
p−l−2, (1 + n−b) 1′

l, 1, 1).

The parameters b and l take values b = 0, 1/4, 1/2, 1 and l = 1, . . . , 6. We

performed the sign test ϕ
(n)
sign based on S

(n)
q,sign for H(n)

06 (q = 6), with l the number

of eigenvalues converging to the last 2 ones and n−b the speed of convergence.
When the parameter b takes values 0 and 1/4, the data-generating processes be-

long toH(n)
06 while the values 1/2 and 1 yield data-generating processes belonging

to type II alternatives. Inspection of figure 1 reveals that when l increases, the
asymptotic power of the test essentially goes to 0 when b = 1. It is safe to say

that ϕ
(n)
sign shows essentially no power under type II alternatives. Our aim will

then be, from now on, to correct this rather dramatic lack of power.
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Fig 1: Empirical rejection frequencies of the test ϕ
(n)
sign under the null and type

II alternatives, p=8 and ΣΣΣ(n)(b, l) = diag(2 1′
p−l−2, (1 + n−b) 1′

l, 1, 1). All tests
are performed at the asymptotic nominal level .05 with sample size n = 2000.
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6. New spatial sign tests

The results obtained in the previous sections imply that the test ϕ
(n)
sign achieves

the same local asymptotic powers as the sign test of [4] against alternatives
of type I but is (nearly) blind to alternatives of type II. We propose here a
new multivariate sign test, based on the same approach as the one developed
in [2] in the Gaussian framework. The new test is asymptotically equivalent to

ϕ
(n)
sign under H(n)

0q and type I alternatives while showing non-trivial power against

alternatives of type II. First, define V̂
(n)
q,q+1 = Ṽ

(n)
q,q+1/det

1/p(Ṽ
(n)
q,q+1), where

Ṽ
(n)
q,q+1 :=

q−1∑
j=1

λ̂j,Tylerβ̂ββjβ̂ββ
′
j +

p∑
j=q+2

λ̂j,Tylerβ̂ββjβ̂ββ
′
j + λ̂V,q,q+1

q+1∑
j=q

β̂ββjβ̂ββ
′
j ,

with λ̂V,q,q+1 := 1
2

∑q+1
j=q λ̂j,Tyler. Now, letting Ŝ

(n)
q,q+1,sign := S

(n)
sign(V̂

(n)
q,q+1) and

β̂ββq,q+1 := (β̂ββq, β̂ββq+1), we will use the statistic

S
(n)
q,q+1,sign :=

np(p+ 2)

2

(
tr
(
(β̂ββ

′
q,q+1Ŝ

(n)
q,q+1,signβ̂ββq,q+1)

2
)

−
tr2
(
β̂ββ
′
q,q+1Ŝ

(n)
q,q+1,signβ̂ββq,q+1

)
2

)
(9)

to take into account the potential deviation between λ
(n)
q,V and λ

(n)
q+1,V. We can

now define the new sign tests ϕ
(n)
new,sign. Letting α ∈ (0, 1) and γ ∈ (0, 1), ϕ

(n)
new,sign

rejects H(n)
0q at the asymptotic confidence level α when

ϕ
(n)
new,sign := I[S(n)

q,sign > χ2
d(p,q);1−α]I[S

(n)
q,q+1,sign > χ2

2;1−γ ]

+I[S(n)
q,q+1,sign ≤ χ2

2;1−γ ] = 1.

(10)

In (10), we use the convention S
(n)
0,1,sign ≡ +∞. With this convention, ϕ

(n)
new,sign

and ϕ
(n)
sign will coincide when performing the two tests for H(n)

00 . For more details
on the ideas behind this type of tests and their usage, we refer the reader to [2],
[20] and [17], but the basic idea is to simultaneously test for the fact that the
qth and (q + 1)th eigenvalues are sufficiently separated and for the equality of
the last (p− q) eigenvalues. We have the following asymptotic result for the test

ϕ
(n)
new,sign.

Theorem 6.1. Let dv
◦
ec (ΛΛΛ

(n)
V ) ∈ H(n)

0q . Under P
(n)

βββ,ΛΛΛ
(n)
V

, ϕ
(n)
new,sign−ϕ

(n)
sign = oP(1)

as n → ∞.
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Theorem 6.1 above shows that ϕ
(n)
new,sign is asymptotically valid and has same

asymptotic powers as ϕ
(n)
sign under local alternatives of type I by contiguity.

Moreover, it is very easy to show, using Theorem 5.1, that the asymptotic power

of ϕ
(n)
new,sign under type II alternatives can be made arbitrarily large by taking γ

arbitrarily small.

Then, ϕ
(n)
new,sign is a a strict improvement over ϕ

(n)
sign, preserving the desirable

properties of the latter test when it shows good performances while improving
its power under type II scenarios. As noted in Section 2, these findings are true
in the all elliptical model, and not only in the angular Gaussian setting.

To conclude this section, we present some finite n empirical powers obtained
by simulation and illustrating the magnitude of the power enhancement granted

by ϕ
(n)
new,sign in practical scenarios. We simulated M = 1000 independent sam-

ples X
(b,τ)
1 , . . . ,X

(b,τ)
n of (p = 5)-dimensional centred multivariate t-distributed

random vectors with 1 degree of freedom. We used sample size n = 2000 and
scatter parameter

ΣΣΣ(n)(b, τ) = diag(3, 1 + n−b, 1 + n−b, 1, 1− n−1/2τ).

We used the values τ = 0, 1, 2, 4, 6, 8 and b = 0, 1/8, 1/4, 1/2, 1, 2. The values

τ = 0 and b < 1/2 yield data-generating processes belonging to H(n)
03 (q = 3)

while all the other parameter values yield data-generating processes increasingly

under the alternative. We performed the classical multivariate sign test ϕ
(n)
sign

alongside three versions of ϕ
(n)
new,sign with parameter γ = .9, .5, .05. All tests are

performed for H(n)
03 at the same asymptotic nominal level α = .05. Inspection of

figure 2 confirms our theoretical findings. The new test ϕ
(n)
new,sign asymptotically

behaves as ϕ
(n)
sign when b < 1/2 (i.e. under the null and type I alternatives)

while showing way larger power than ϕ
(n)
sign when b ≥ 1/2 (i.e. under type II

alternatives), even if some continuity phenomenons can of course be observed.

7. Robust sign-based estimator of the dimension of the signal

Rather naturally, we consider that the dimension of the signal k is the value

q ∈ {0, . . . , p − 2} for which H(n)
0q holds. If H(n)

0q does not hold for any q ∈
{0, . . . , p− 2}, we simply let k = p− 1. Note that the notion of signal and noise
decomposition in a directional data framework readily follows from the analogy
with the elliptical case.

The form of our new multivariate sign-based estimator of k is

k̂new,sign = min{q ∈ {0, . . . , p− 2} | I[S(n)
q,sign > b(n)q ]I[S(n)

q,q+1,sign > c(n)]

+I[S(n)
q,q+1,sign ≤ c(n)] = 0},

(11)
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Fig 2: Empirical rejection frequencies of the tests ϕ
(n)
sign (in red, denoted classic)

and ϕ
(n)
new,sign (denoted new) for γ = .9, .5, .05. All tests are performed at the

asymptotic nominal level .05. The sample size is n = 2000.
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for some positive sequences b
(n)
q , q = 0, . . . , p − 2 such that b

(n)
q → ∞ and

b
(n)
q = o(n) as n → ∞ for all q and for some other positive sequence c(n) → ∞
such that c(n) = o(n) as n → ∞. These conditions are purely technical and serve

only to guarantee the consistency of k̂new,sign. If the minimum is not achieved in

(11), we use the definition k̂new,sign = p− 1. We compare our new estimator to

its natural classical equivalent k̂sign, based on the classical test ϕ
(n)
sign and defined

as follows

k̂sign = min {q ∈ {0, . . . , p− 2} | I[S(n)
q,sign > b(n)q ] = 0}. (12)

Now, we assess by simulation whether the power gained by using ϕ
(n)
new,sign

over ϕ
(n)
new under type II scenarios translates in better performances at finite n for

the estimator k̂new,sign. For that purpose, we simulated M = 2000 independent

samples of i.i.d. random vectors X
(b,τ(n))
1 , . . . ,X

(b,τ(n))
n with a common (p = 3)-

dimensional centered multivariate t-distribution with 1 degree of freedom and
scatter matrix

ΣΣΣ(b, τ (n)) = diag(1 + n−b, 1, 1− 1

2
τ (n)).

We used τ (n) = 0, n−1, n−1/2, 1 and b = 0, 1
2 , 1. The sample size is n = 1000. At

each replication, we computed k̂sign with b
(n)
q = χ2

d(p,q),.95, q = 0, . . . , p−2. This

specific choice for b
(n)
q was recommended to be used in practice by [25]. We also

computed 4 versions of the estimator k̂new,sign with

c(n) ∈ {χ2
2;.05, χ

2
2;.1, χ

2
2;.95, χ

2
2;.99}.

We compared the various estimators to the true value of k, i.e.

k = (p− 1)I[τ (n) > 0] + (I[b <
1

2
] + (p− 1)I[b ≥ 1

2
])I[τ (n) = 0].

Figure 3 shows the proportion of good selections of k (i.e., k̂sign = k or k̂new,sign =
k) for each considered estimator. This shows that the new sign-based estima-

tors perform as well as k̂sign when b = 0 and outperform k̂sign when b > 0.
This is consistent with theory and with what was observed in the Gaussian
framework in [2]. This makes of our new robust estimator an improvement over

the existing ones, be it in terms of performance versus k̂sign or robustness ver-
sus the pseudo-Gaussian procedures. It should also be noted that, as usual, if

X
(b,τ(n))
1 , . . . ,X

(b,τ(n))
n had been angular Gaussian random vectors belonging to

the unit sphere, every conclusions and simulation results would have been the
exact same.
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Fig 3: Proportion of good selection of k for the estimator k̂sign (in red) and for

four choices of estimators k̂new,sign (in blue) with n = 1000, b
(n)
q = χ2

d(p,q),.95

and c(n) ∈ {χ2
2;.05, χ
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8. Conclusions

In this contribution, we considered the testing problem characterized by

H(n)
0q : (λ

(n)
q+1,V = . . . = λ

(n)
p,V) ∩ (n1/2(λ

(n)
q,V − λ

(n)
q+1,V) → ∞ as n → ∞)

and studied the asymptotic behavior of the classical multivariate sign test

ϕ
(n)
sign under elliptical triangular array assumptions. We have shown that when

n1/2(λ
(n)
q,V−λ

(n)
q+1,V) → ∞ as n → ∞, ϕ

(n)
sign behaves in our current framework ex-

actly as in the classical non-triangular array framework studied in [4]. However,

we also showed that ϕ
(n)
sign has dramatically low power when

n1/2(λ
(n)
q,V − λ

(n)
q+1,V) = o(1).

We then proposed new tests ϕ
(n)
new,sign, in the spirit of the new Gaussian tests

proposed in [2], and showed that the tests ϕ
(n)
new,sign are retaining all the de-

sirable asymptotic properties of ϕ
(n)
sign while showing arbitrarily large power

when n1/2(λ
(n)
q,V − λ

(n)
q+1,V) = o(1). We also have shown through simulations

that ϕ
(n)
new,sign can be used to estimate the dimension of a signal in such a way

that the resulting estimators outperform the existing sign-based competitors at
finite n.

The new spatial sign-based procedures proposed in this contribution are
asymptotically valid in the elliptical distribution class and, in particular, make
it possible to deal with cases where the covariance matrix does not exist. For
this reason, our new tests and estimators seem particularly suitable for perform-
ing inference on the dimension of a signal when the data-generating process is
suspected of being heavy-tailed.

Furthermore, it should be noted that as a by-product of the way we derived
the asymptotic properties of our new tests, our procedure can be used in a direc-
tional data framework assuming an underlying angular Gaussian distribution.
In this context, our procedure allows us to determine a set of (p− q) directions
that can be estimated consistently, whose linear span contains the smallest pos-
sible amount of variability and such that the angular components of the data
with respect to these directions are independent and uniformly distributed.

For all the aforementioned reasons, the spatial sign procedures proposed in
this contribution are indeed exceptionally robust and allow to perform inference
on the dimension of a signal in an impressive number of scenarios. Its asymptotic
distribution - both under the Null and local alternatives - is not affected by the
assumptions made on the distribution of the radial parts of the elliptical random
vectors considered or by the assumption that the data are restricted to the unit
sphere. Thanks to our power enhancement strategy, we finally gained robustness
with respect to scenarios where the qth and (q + 1)th eigenvalues are too close
to each other for existing tests to show any significant asymptotic power. All
these facts make our procedures very attractive for inference on the dimension
of a signal when robustness properties are a priority.
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Appendix A: Proofs of the various results

Proof of Theorem 4.1. To simplify the notations in this proof, we put

Zi := βββ′Uni, ΛΛΛ := ΛΛΛ
(n)
V and ΛΛΛn := ΛΛΛ

(n)
V + n−1/2diag(lll(n)).

First,

Λ(n) = −n

2

(
log(det (ΛΛΛn))− log (det (ΛΛΛ))

)
−p

2

n∑
i=1

(
log (Z′

iΛΛΛ
−1
n Zi)− log (Z′

iΛΛΛ
−1Zi)

)
.

(13)

Since det(ΛΛΛ) = 1, we have that

−n

2

(
log (det (ΛΛΛn))− log (det (ΛΛΛ))

)
= −n

2
log (det (Ip + n−1/2ΛΛΛ−1diag(lll(n)))),

so that since for any p× p matrix A,

log (det (Ip +A)) = tr(A)− 1

2
tr(A2) + o(∥A∥)

when ∥A∥ → 0, we get from (13) that

Λ(n) = −
√
n

2
tr(ΛΛΛ−1diag(lll(n))) +

1

4
tr(ΛΛΛ−2diag2(lll(n)))

−p

2

n∑
i=1

(
log (Z′

iΛΛΛ
−1
n Zi)− log (Z′

iΛΛΛ
−1Zi)

)
+ oP(1)

(14)

as n → ∞ under P
(n)
βββ, ΛΛΛn

. Now, we have that

log (Z′
iΛΛΛ

−1
n Zi)− log (Z′

iΛΛΛ
−1Zi) = log (Z′

iΛΛΛ
−1Zi + Z′

i(ΛΛΛ
−1
n −ΛΛΛ−1)Zi)

− log (Z′
iΛΛΛ

−1Zi)

= log (1 +
Z′

i(ΛΛΛ
−1
n −ΛΛΛ−1)Zi

Z′
iΛΛΛ

−1Zi

)

=
Z′

i(ΛΛΛ
−1
n −ΛΛΛ−1)Zi

Z′
iΛΛΛ

−1Zi

−1

2

(
Z′

i(ΛΛΛ
−1
n −ΛΛΛ−1)Zi

Z′
iΛΛΛ

−1Zi

)2

+Rni,

(15)
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for some rest Rni. Since

ΛΛΛ−1
n −ΛΛΛ−1 = −n−1/2ΛΛΛ−2diag(lll(n)) + n−1ΛΛΛ−3diag2(lll(n)) +O(n−3/2)

as n → ∞, the boundedness of the Zi’s entails that

n∑
i=1

Z′
i(ΛΛΛ

−1
n −ΛΛΛ−1)Zi

Z′
iΛΛΛ

−1Zi

= −n−1/2
n∑

i=1

Z′
iΛΛΛ

−2diag(lll(n))Zi

Z′
iΛΛΛ

−1Zi

+n−1
n∑

i=1

Z′
iΛΛΛ

−3diag2(lll(n))Zi

Z′
iΛΛΛ

−1Zi

+ oP(1)

= −n−1/2
n∑

i=1

tr(
Z′

iΛΛΛ
−2diag(lll(n))Zi

Z′
iΛΛΛ

−1Zi

)

+n−1
n∑

i=1

tr(
Z′

iΛΛΛ
−3diag2(lll(n))Zi

Z′
iΛΛΛ

−1Zi

) + oP(1)

= −n−1/2
n∑

i=1

tr(diag(lll(n))
ΛΛΛ−1ZiZ

′
iΛΛΛ

−1

Z′
iΛΛΛ

−1Zi

)

+n−1
n∑

i=1

tr(diag(lll(n))
ΛΛΛ−3/2ZiZ

′
iΛΛΛ

−3/2

Z′
iΛΛΛ

−1Zi

diag(lll(n)))

+oP(1)

= −n1/2tr(diag(lll(n))n−1
n∑

i=1

ΛΛΛ−1ZiZ
′
iΛΛΛ

−1

Z′
iΛΛΛ

−1Zi

)

+tr(diag(lll(n))n−1
n∑

i=1

ΛΛΛ−3/2ZiZ
′
iΛΛΛ

−3/2

Z′
iΛΛΛ

−1Zi

diag(lll(n)))

+oP(1).

(16)

Using the definition of S
(n)
sign alongside S

(n)
sign = p−1Ip + oP(1), we get from (16)

that

n∑
i=1

Z′
i(ΛΛΛ

−1
n −ΛΛΛ−1)Zi

Z′
iΛΛΛ

−1Zi

= −n1/2tr(diag(lll(n))ΛΛΛ−1/2βββ′S
(n)
signβββΛΛΛ

−1/2)

+tr(diag(lll(n))ΛΛΛ−1βββ′S
(n)
signβββΛΛΛ

−1diag(lll(n))) + oP(1)

= −n1/2tr(diag(lll(n))ΛΛΛ−1/2βββ′S
(n)
signβββΛΛΛ

−1/2)

+p−1tr(diag(lll(n))ΛΛΛ−2diag(lll(n))) + oP(1).

(17)

Using the fact that for any p×p matrixA and diagonal p×p matrix L, tr(LA) =
dvec(L)′dvec(A), we get from (17) that
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n∑
i=1

Z′
i(ΛΛΛ

−1
n −ΛΛΛ−1)Zi

Z′
iΛΛΛ

−1Zi

= −n1/2lll(n)dvec(ΛΛΛ−1/2βββ′S
(n)
signβββΛΛΛ

−1/2)

+p−1lll(n)ΛΛΛ−2(lll(n))′ + oP(1).

(18)

Now, same Taylor expansion for the second term in (15) yields

−1

2

n∑
i=1

(
Z′

i(ΛΛΛ
−1
n −ΛΛΛ−1)Zi

Z′
iΛΛΛ

−1Zi

)2

= − 1

2n

n∑
i=1

(
Z′

iΛΛΛ
−2diag(lll(n))Zi

Z′
iΛΛΛ

−1Zi

)2

+ oP(1)

= − 1

2n

n∑
i=1

tr2(diag(lll(n))
ΛΛΛ−1ZiZ

′
iΛΛΛ

−1

Z′
iΛΛΛ

−1Zi

)

+oP(1)

= − 1

2n

n∑
i=1

lll(n)dvec(
ΛΛΛ−1ZiZ

′
iΛΛΛ

−1

Z′
iΛΛΛ

−1Zi

)

dvec′(
ΛΛΛ−1ZiZ

′
iΛΛΛ

−1

Z′
iΛΛΛ

−1Zi

)(lll(n))′ + oP(1)

= −1

2
E(lll(n)dvec(

ΛΛΛ−1ZiZ
′
iΛΛΛ

−1

Z′
iΛΛΛ

−1Zi

)

dvec′(
ΛΛΛ−1ZiZ

′
iΛΛΛ

−1

Z′
iΛΛΛ

−1Zi

)(lll(n))′) + oP(1)

= − 1

p(p+ 2)
lll(n)ΛΛΛ−1(Ip +

1

2
1p1

′
p)ΛΛΛ

−1(lll(n))′

+oP(1). (19)

The last line is a well known fact (see, for example [9] and [8]). Finally note that

n∑
i=1

Rni =
1

3

n∑
i=1

(1 +Hni)
−3

(
Z′

i(ΛΛΛ
−1
n −ΛΛΛ−1)Zi

Z′
iΛΛΛ

−1Zi

)3

,

for some Hni between 0 and
Z′

i(ΛΛΛ
−1
n −ΛΛΛ−1)Zi

Z′
iΛΛΛ

−1Zi
. The boundedness of the Zi’s implies

that |
∑n

i=1 Rni| < C/n1/2 for some constant C so that
∑n

i=1 Rni is oP(1) as

n → ∞ under P
(n)
βββ, ΛΛΛn

. Using this last fact and combining (15), (18) and (19), we

get that, as n → ∞ and under P
(n)
βββ, ΛΛΛn

,
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n∑
i=1

log (Z′
iΛΛΛ

−1
n Zi)− log (Z′

iΛΛΛ
−1Zi) = −n1/2lll(n)dvec(ΛΛΛ−1/2βββ′S

(n)
signβββΛΛΛ

−1/2)

+p−1lll(n)ΛΛΛ−2(lll(n))′

− 1

p(p+ 2)
lll(n)ΛΛΛ−1(Ip −

1

2
1p1

′
p)ΛΛΛ

−1(lll(n))′

+oP(1).

(20)

Combining (14) and (20), we get that, as n → ∞ and under P
(n)
βββ, ΛΛΛn

,

Λ(n) = −n1/2

2
lll(n)dvec(ΛΛΛ−1) +

1

4
lll(n)ΛΛΛ−2(lll(n))′

+
p

2
n1/2lll(n)dvec(ΛΛΛ−1/2βββ′S

(n)
signβββΛΛΛ

−1/2)− 1

2
lll(n)ΛΛΛ−2(lll(n))′

+
1

2(p+ 2)
lll(n)ΛΛΛ−1(Ip −

1

2
1p1

′
p)ΛΛΛ

−1(lll(n))′ + oP(1)

=
p

2
n1/2lll(n)dvec(ΛΛΛ−1/2βββ′(S

(n)
sign − p−1Ip)βββΛΛΛ

−1/2)

− p+ 2

4(p+ 2)
lll(n)ΛΛΛ−2(lll(n))′

+
2

4(p+ 2)
lll(n)ΛΛΛ−1(Ip +

1

2
1p1

′
p)ΛΛΛ

−1(lll(n))′ + oP(1)

=
p

2
n1/2lll(n)dvec(ΛΛΛ−1/2βββ′(S

(n)
sign − p−1Ip)βββΛΛΛ

−1/2)

− p

4(p+ 2)
lll(n)ΛΛΛ−1(Ip −

1

p
1p1

′
p)ΛΛΛ

−1(lll(n))′ + oP(1).

(21)

Recalling that the definition of lll(n) implies

tr((ΛΛΛ)−1diag(lll(n))) = o(1)

as n → ∞, it is easy to get that

(M(n)
p )′τττ (n) = (lll(n))′ + o(1). (22)

Now, using (21), (22) and properties of M
(n)
p , we finally get that, as n → ∞

and under P
(n)
βββ, ΛΛΛn

,
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Λ(n) =
p n1/2

2
(τττ (n))′M(n)

p dvec(ΛΛΛ−1/2βββ′(S
(n)
sign − p−1Ip)βββΛΛΛ

−1/2)

−1

2
(τττ (n))′

p

2(p+ 2)
M(n)

p ΛΛΛ−1(Ip − p−11p1
′
p)ΛΛΛ

−1(M(n)
p )′τττ (n) + oP(1)

=
p n1/2

2
(τττ (n))′Mpdvec(ΛΛΛ

−1/2βββ′S
(n)
signβββΛΛΛ

−1/2)

−1

2
(τττ (n))′

p

2(p+ 2)
M(n)

p ΛΛΛ−2(M(n)
p )′τττ (n) + oP(1).

(23)

Note that this is the desired result, which concludes the proof.

The next Lemma provides the asymptotic behavior of

E(n) =

(
E

(n)
11 E

(n)
12

E
(n)
21 E

(n)
22

)
:= β̂ββ

′
Tylerβββ,

where E
(n)
11 is a q×q block, E

(n)
22 a (p−q)× (p−q) block, etc. Its proof is similar

as the one of Proposition 2 in [2] and is therefore omitted here.

Lemma A.1. Using the above notations and letting ΛΛΛ
(n)
1,V := diag(λ

(n)
1,V, . . . , λ

(n)
q,V),

the following are true.

(i) If n1/2(λ
(n)
q,V − λ

(n)
q+1,V) → ∞ as n → ∞, we have that

n1/2E
(n)
21 (ΛΛΛ

(n)
1,V − λ

(n)
q+1,VIq) = OP(1)

and
E

(n)
22 (E

(n)
22 )′ = Ip−q + oP(n

−1/2)

as n → ∞ under P
(n)

βββ,ΛΛΛ
(n)
V

;

(ii) if n1/2(λ
(n)
q,V−λ

(n)
q+1,V) → c < ∞ as n → ∞, we have that E

(n)
21 is not oP(1)

as n → ∞ under P
(n)

βββ,ΛΛΛ
(n)
V

.

Proof of Theorem 4.2. First,

S
(n)
q,sign =

np(p+ 2)

2

(
tr((β̂ββ

′
0qŜ

(n)
signβ̂ββ0q)

2)− (p− q)−1tr2(β̂ββ
′
0qŜ

(n)
signβ̂ββ0q)

)
=

p(p+ 2)

2
n1/2vec′(β̂ββ

′
0qŜ

(n)
signβ̂ββ0q)(I(p−q)2 −

1

p− q
Jp−q)n

1/2vec(β̂ββ
′
0qŜ

(n)
signβ̂ββ0q)

=
p(p+ 2)

2
T′(V̂(n))ΣΣΣp,qT(V̂(n)),

(24)
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where ΣΣΣp,q := I(p−q)2 − 1
p−qJp−q and

T(V̂(n)) := (β̂ββ
′
0q ⊗ β̂ββ

′
0q)n

1/2vec(Ŝ
(n)
sign − p−1Ip).

Using the same arguments as in the proof of Theorem 3.1 in [18], we have that

n1/2 vec (Ŝ
(n)
sign − S

(n)
sign) = − 1

p(p+ 2)

[
Ip2 +Kp + Jp

]
((V(n))1/2)⊗2

n1/2vec ((V̂(n))−1 − (V(n))−1)

+
n1/2

p

[
((V̂(n))−1/2(V(n))1/2)⊗2 − Ip2

]
vec(Ip)

+oP(1). (25)

as n → ∞, under P
(n)

βββ,ΛΛΛ
(n)
V

. Now, it follows from (25) that

ΣΣΣp,qT
(n)(V̂(n)) = ΣΣΣp,q(β̂ββ

′
0q ⊗ β̂ββ

′
0q)n

1/2vec(Ŝ
(n)
sign − p−1Ip)

= ΣΣΣp,q(β̂ββ
′
0q ⊗ β̂ββ

′
0q)n

1/2vec(S
(n)
sign − p−1Ip)

−ΣΣΣp,qW
(n)
1 +ΣΣΣp,qW

(n)
2 + oP(1)

(26)

as n → ∞ under P
(n)

βββ,ΛΛΛ
(n)
V

, where

W
(n)
1 := (β̂ββ

′
0q ⊗ β̂ββ

′
0q)

1

p(p+ 2)

[
Ip2 +Kp + Jp

]
((V(n))1/2)⊗2

n1/2vec ((V̂(n))−1 − (V(n))−1),

and

W
(n)
2 := (β̂ββ

′
0q ⊗ β̂ββ

′
0q)

n1/2

p

[
((V̂(n))−1/2(V(n))1/2)⊗2 − Ip2

]
vec(Ip).

Since λ̂V is the common value of the (p − q) smallest eigenvalues of V̂(n), the
Slutsky Lemma entails that

ΣΣΣp,qW
(n)
1 =

2

p(p+ 2)
ΣΣΣp,q(β̂ββ

′
0q ⊗ β̂ββ

′
0q)((V

(n))1/2)⊗2n1/2vec ((V̂(n))−1 − (V(n))−1)

=
2

p(p+ 2)
ΣΣΣp,q(β̂ββ

′
0q ⊗ β̂ββ

′
0q)((V̂

(n))1/2)⊗2n1/2vec ((V̂(n))−1 − (V(n))−1)

+oP(1)

=
2

p(p+ 2)
λ̂VΣΣΣp,q(β̂ββ

′
0q ⊗ β̂ββ

′
0q)n

1/2vec ((V̂(n))−1 − (V(n))−1) + oP(1)

= − 2

p(p+ 2)
λ̂VΣΣΣp,qn

1/2vec (β̂ββ
′
0q(V

(n))−1β̂ββ0q) + oP(1). (27)
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Using the notation ΛΛΛ
(n)
V = diag(λ

(n)
1,V, . . . λ

(n)
p,V) =: diag(ΛΛΛ

(n)
1,V, λ

(n)
V Ip−q), where

ΛΛΛ
(n)
1,V is the q × q diagonal matrix with the q largest roots of ΛΛΛ

(n)
V as diagonal

elements, simple computations and (27) yield

ΣΣΣp,qW
(n)
1 = − 2

p(p+ 2)
λ̂VΣΣΣp,qn

1/2vec (β̂ββ
′
0q(V

(n) − λ
(n)
V Ip)(−λ

(n)
V V(n))−1β̂ββ0q)

+oP(1)

= − 2

p(p+ 2)
λ̂VΣΣΣp,qn

1/2vec (β̂ββ
′
0qβββ(ΛΛΛ

(n)
V − λ

(n)
V Ip)(−λ

(n)
V ΛΛΛ

(n)
V )−1βββ′β̂ββ0q)

+oP(1)

= − 2

p(p+ 2)
λ̂VΣΣΣp,qn

1/2vec (E
(n)
21 (ΛΛΛ

(n)
1,V − λ

(n)
V Iq)

(−λ
(n)
V ΛΛΛ

(n)
1,V)−1(E

(n)
21 )′) + oP(1)

= oP(1), (28)

as n → ∞ under P
(n)

βββ, ΛΛΛ
(n)
V

, where we used Lemma A.1 in the last line. Now

working along the same lines, we obtain that

ΣΣΣp,qW
(n)
2 = ΣΣΣp,q(β̂ββ

′
0q ⊗ β̂ββ

′
0q)

n1/2

p

[
((V̂(n))−1/2(V(n))1/2)⊗2 − Ip2

]
vec(Ip)

= ΣΣΣp,q(β̂ββ
′
0q ⊗ β̂ββ

′
0q)

n1/2

p

[
((V̂(n))−1/2(V(n))1/2)⊗2

]
vec(Ip)

= ΣΣΣp,q
n1/2

p
λ̂
−1

V vec((E
(n)
21 ,E

(n)
22 )ΛΛΛ

(n)
V (E

(n)
21 ,E

(n)
22 )′)

= ΣΣΣp,q
n1/2

p
λ̂
−1

V vec (E
(n)
21 (ΛΛΛ

(n)
V,1 − λ

(n)
V Iq)(E

(n)
21 )′) + oP(1)

= oP(1) (29)

as n → ∞ under P
(n)

βββ, ΛΛΛ
(n)
V

. Combining (26), (28) and (29), we obtain that

ΣΣΣp,qT
(n)(V̂(n)) = ΣΣΣp,q(β̂ββ

′
0q ⊗ β̂ββ

′
0q)n

1/2vec(S
(n)
sign) + oP(1) (30)

as n → ∞ under P
(n)

βββ, ΛΛΛ
(n)
V

. Using again Lemma A.1, the Slutsky Lemma and
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(30), we obtain as n → ∞ under P
(n)

βββ, ΛΛΛ
(n)
V

that

S
(n)
q,sign =

p(p+ 2)

2

(
n1/2vec′((E

(n)
21 ,E

(n)
22 )βββ′(S

(n)
sign − 1

p
Ip)βββ(E

(n)
21 ,E

(n)
22 )′)ΣΣΣp,q

n1/2vec((E
(n)
21 ,E

(n)
22 )βββ′(S

(n)
sign − 1

p
Ip)βββ(E

(n)
21 ,E

(n)
22 )′)

)
+ oP(1)

=
p(p+ 2)

2

(
n1/2vec′(E

(n)
22 βββ′

0qS
(n)
signβββ0q(E

(n)
22 )′)ΣΣΣp,q

n1/2vec(E
(n)
22 βββ′

0qS
(n)
signβββ0q(E

(n)
22 )′)

)
+ oP(1)

=
p(p+ 2)

2
n

(
tr((E

(n)
22 βββ′

0qS
(n)
signβββ0q(E

(n)
22 )′)2)

− 1

p− q
tr2(E

(n)
22 βββ′

0qS
(n)
signβββ0q(E

(n)
22 )′)

)
+ oP(1)

=
p(p+ 2)

2
n

(
tr((βββ′

0qS
(n)
signβββ0q)

2)− 1

p− q
tr2(βββ′

0qS
(n)
signβββ0q)

)
+ oP(1).

(31)

The result follows exactly as in the proof of Proposition 5 in [2], using classical
Rao-Mitra arguments.

Proof of Theorem 4.3. The result follows from a direct application of the Le
Cam third Lemma using the LAN property of Theorem 4.1 and (31).

Now, the main tool to prove Theorem 5.1 will be the following Lemma, al-

lowing to express the test statistic S
(n)
q,sign in terms of V̂

(n)
Tyler (see Section 3 for

the definition of V̂
(n)
Tyler) with probability 1 as n → ∞. Note that Lemma A.2

requires that the last (p − q) eigenvalues of V(n) are equals, which does not

allow us to use it to derive the asymptotic distribution of S
(n)
q,sign under local

alternatives of the type (6) and justifies that the LAN property of Theorem 4.1
had to be derived.

Lemma A.2. Let ΛΛΛ
(n)
V = diag(λ

(n)
1,V, . . . , λ

(n)
q,V, λ

(n)
V 1′

p−q) a converging sequence

of diagonal matrices with ordered eigenvalues. Under P
(n)

βββ,ΛΛΛ
(n)
V

and as n → ∞, we

have that
S
(n)
q,sign = S

(n)
q,Tyler + oP(1),

with

S
(n)
q,Tyler :=

np

2(p+ 2)λ̂
2

V

(

p∑
i=q+1

λ̂2
i,Tyler − (p− q)−1(

p∑
i=q+1

λ̂i,Tyler)
2), (32)

and with λ̂i,Tyler, i = 1, . . . , p and λ̂V defined in Section 3.
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Proof of Lemma A.2. First, since V̂
(n)
Tyler satisfies

1

n

n∑
i=1

(V̂
(n)
Tyler)

−1/2UniU
′
ni(V̂

(n)
Tyler)

−1/2

U′
ni(V̂

(n)
Tyler)

−1Uni

= p−1Ip,

we obtain, using the same arguments as in the proof of Theorem 3.1 in [18] that

n1/2 vec (Ŝ
(n)
sign − p−1Ip) = − 1

p(p+ 2)

[
Ip2 +Kp + Jp

]
((V(n))1/2)⊗2

n1/2vec ((V̂(n))−1 − (V̂
(n)
Tyler)

−1) +
n1/2

p[
((V̂(n))−1/2(V(n))1/2)⊗2

−((V̂
(n)
Tyler)

−1/2(V(n))−1/2)⊗2
]
vec(Ip) + oP(1)

= − 1

p(p+ 2)

[
Ip2 +Kp + Jp

]
((V̂

(n)
Tyler)

1/2)⊗2

n1/2vec ((V̂(n))−1 − (V̂
(n)
Tyler)

−1)

+
n1/2

p

[
((V̂(n))−1/2(V̂

(n)
Tyler)

1/2)⊗2 − Ip2

]
vec(Ip)

+oP(1)

(33)

as n → ∞ and under P
(n)

βββ,ΛΛΛ
(n)
V

. Now using the notation ΣΣΣp,q := I(p−q)2 − 1
p−qJp−q,

(33) implies that

S
(n)
q,sign =

p(p+ 2)

2

(
n1/2vec′(β̂ββ

′
0qŜ

(n)
signβ̂ββ0q)ΣΣΣp,qn

1/2vec(β̂ββ
′
0qŜ

(n)
signβ̂ββ0q)

)
+ oP(1)

=
p(p+ 2)

2
(−W

(n)
1 +W

(n)
2 )′ΣΣΣp,q(−W

(n)
1 +W

(n)
2 ) + oP(1)

(34)

under P
(n)

βββ,ΛΛΛ
(n)
V

as n → ∞, where

W
(n)
1 := (β̂ββ

′
0q ⊗ β̂ββ

′
0q)

1

p(p+ 2)[
Ip2 +Kp + Jp

]
((V̂(n))1/2)⊗2n1/2vec ((V̂(n))−1 − (V̂

(n)
Tyler)

−1),

and

W
(n)
2 := (β̂ββ

′
0q ⊗ β̂ββ

′
0q)

n1/2

p

[
((V̂(n))−1/2(V̂

(n)
Tyler)

1/2)⊗2 − Ip2

]
vec(Ip).
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Now, denoting by λ̂V the common value of the last (p− q) eigenvalues of V̂(n)

and using the fact that V̂(n) and V̂
(n)
Tyler share the same eigenvectors together

with the fact that ΣΣΣp,q(β̂ββ
′
0q ⊗ β̂ββ

′
0q)vec (Ip) = 0, we obtain that

ΣΣΣp,qW
(n)
1 = 2ΣΣΣp,q(β̂ββ

′
0q ⊗ β̂ββ

′
0q)

1

p(p+ 2)
((V̂

(n)
Tyler)

1/2)⊗2

n1/2vec ((V̂(n))−1 − (V̂
(n)
Tyler)

−1) + oP(1)

=
2

λ̂V p(p+ 2)
ΣΣΣp,qn

1/2vec (diag(λ̂q+1,Tyler, . . . , λ̂p,Tyler)) + oP(1),

(35)

under P
(n)

βββ,ΛΛΛ
(n)
V

as n → ∞. Now still since ΣΣΣp,q(β̂ββ
′
0q ⊗ β̂ββ

′
0q)vec (Ip) = 0, we also

have that

ΣΣΣp,qW
(n)
2 = ΣΣΣp,q(β̂ββ

′
0q ⊗ β̂ββ

′
0q)

n1/2

p

[
((V̂(n))−1/2(V̂

(n)
Tyler)

1/2)⊗2 − Ip2

]
vec(Ip)

= ΣΣΣp,q(β̂ββ
′
0q ⊗ β̂ββ

′
0q)

n1/2

p
vec((V̂(n))−1/2(V̂

(n)
Tyler)(V̂

(n))−1/2)

=
1

λ̂V p
ΣΣΣp,qn

1/2vec(diag(λ̂q+1,Tyler, . . . , λ̂p,Tyler)).

(36)

Combining (34), (35) and (36), the result follows easily from the fact that
ΣΣΣp,q is idempotent.

Proof of Theorem 5.1. From Lemma A.2, is it enough to show the weak conver-

gence of S
(n)
q,Tyler in order to get the result. From [23], we have that

n1/2vec(βββ′(V̂
(n)
Tyler −V(n))βββ)

converges weakly to vec(Z) ∼ Np2(0,ΘΘΘ(v1, . . . , vs1)) as n → ∞ under P
(n)

βββ,ΛΛΛ
(n)
V

.

Now, it follows along the same lines as in the proof of Proposition 1 in [2] that

S
(n)
q,Tyler converges weakly to

p

2(p+ 2)λ2
V

(

p∑
j=q+1

ℓ2j − (p− q)−1(

p∑
j=q+1

ℓj)
2). (37)

This is the desired result.

Proof of Theorem 6.1. Using Theorem A.2, the result follows along the same
lines as in the proof of Proposition 4 of [2].
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