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Abstract: We consider triangular arrays of i.i.d. elliptical random vectors
and study the Null hypothesis of equality of the last (p — ¢) eigenvalues
of the (normalized) scatter parameter. To attain robustness to heavy tails,
and hence validity in the whole class of elliptical distributions, we con-
sider procedures based on the spatial signs of the observations. We show
that the existing spatial sign test exhibit very low asymptotic power when
the gth and (¢ + 1)th eigenvalues are too close to each other, which is
highly problematic when trying to separate a signal from some spherically-
distributed noise. We therefore consider two types of alternatives: (i) the
gth and (g+1)th eigenvalues are well separated but the last (p—¢q) ones are
not equal, (i) the gth and (¢4 1)th eigenvalues are too close to each other.
‘We propose new spatial sign tests that are robust to heavy tails and display
the same local asymptotic power as that of the classical spatial sign test in
case (¢) and arbitrarily large asymptotic power in case (i), making these
tests strictly better than the existing spatial sign test. We show how our
new sign tests can be used to construct robust estimators of the dimension
of heavy-tailed signals and also discuss how the proposed procedure can be
used in a directional data framework.
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1. Introduction

In a vast amount of classical multivariate models, it is common to consider
collections of i.i.d. p-variate random vectors whose distribution is characterized
by a location parameter § and a scatter parameter X. Under certain symme-
try assumptions, ¥ is a symmetric positive-definite p X p matrix summarizing
the dispersion of the population and performing Principal Component Anlysis
(PCA) on X is therefore a very natural way to perform dimension reduction.
The most classical case of such a model is that of multivariate Gaussian random
vectors, where 6 is the expectation and ¥ the covariance matrix. The elliptical
model, where the characteristic function of the random vectors is assumed to
be of the form t — eit,e(b(t’Et) for some characteristic generator ¢ : RT™ — R,
can be viewed as a more general model where strong symmetry—the probability
contours are ellipses here—still makes it possible to characterize the dispersion
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through ¥. Note that no moment assumption is required for ¥ to be well-
defined, allowing to perform PCA on ¥ even under heavy-tailed assumptions
where the covariance matrix does not exist. Given that many problems—such as
the one studied in this contribution—are invariant with respect to scale trans-
formations of the data, it is often more convenient to define a shape parameter
V = det(E)~/?% and express the inference problem in terms of this matrix
V. Note that we know from [16] that this specific choice for the normalization
of V is canonical in the elliptical framework. A large class of testing prob-
lems over V is particularly relevant when performing PCA-based dimension
reduction techniques. In general, PCA makes use of the spectral decomposition
V = BAvpB' of V, where B belongs to the special orthogonal group SO,, and
Ay is a diagonal matrix with ordered diagonal elements A1 v,..., A, v. The
objective of PCA-based dimension reduction is to project the data onto a space
of dimension ¢, 0 < ¢ < p, spanned by the ¢ eigenvectors in B that are asso-
ciated with the largest eigenvalues. In this context, the subsphericity problem,
i.e., the problem of testing for the equality of the last (p — ¢q) eigenvalues is
very important. In the Gaussian case, a classical Likelihood Ratio Test (LRT)
for Hoq : Ag,v > Ag41,v = ... = Ap v was introduced in [10]. In general, these
tests are used successively for Ho, with ¢ = p —2,p — 3,...,0 with the con-
vention A\gv = Ai,v + 1, the aim being to identify the one k such that Hog
is not rejected. Indeed, if A\ v > Agt1,v = ... = A, v holds, we can consider
that the last (p — k) principal components contain only spherical noise. In this
situation, the dataset can be separated into a k-dimensional signal and some
spherically-distributed noise that can be safely removed. The strategy of testing
for Hoq, ¢ = p — 2,p — 3,...,0 has been initially proposed by [1] in a factor
analysis context. In this context, the factors associated with the smallest equal
eigenvalues are considered non-significant and no conclusion should be drawn
from these since there is no consistent estimators of the last eigenvectors. This
Bartlett procedure is still relevant today, and is used for example in [28] and [5]
in very different domains as a preliminary step to factor analysis.

In recent years, the subsphericity problem and its ties to estimation of the di-
mension of a signal has been the subject of ongoing study; see [14], [13] and [15].
High-dimensional tests have been studied in [21], [7] and [24]. All these testing
procedures have one common drawback: their asymptotic powers tend to be dra-
matically low under alternatives to Hoq of the type Ay v = g1, v =... = A v
Note that this is particularly problematic in practice when trying to estimate
the dimension of the signal k. Indeed, assuming that & < p—2, successive testing
for Hoq, ¢ = p —2,p — 3,...,0 under Ho will irremediably produce a situa-
tion where the data-generating process is under such an alternative. In [2], a

Gaussian triangular array framework where the eigenvalues )\( ), i=1,...,p
are depending on n has been considered, allowing to study the asymptotic be-
havior of the classical tests in scenarios where A, ") - /\((;_?1 v =o0(1) as n — oo.
In the aforementioned article, a new test based on the Gaussian LRT and the

power-enhancement approach developed by [6], performing better in scenarios
where )\(") — )‘z(;ri)l v = o(1), has been proposed. However, this strategy was
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proposed in a purely Gaussian framework, so that the procedures proposed in
[2] are not robust to the presence of heavy tails. This lack of robustness can
be partially solved by a pseudo-Gaussian correction in the spirit of [26], but
this method requires finite moments of order 4. The aim of this contribution is
to use the same power-enhancement strategy as in [2], but considering robust
test statistics allowing for the new procedures to be asymptotically valid in the
whole elliptical setting, irrespectively of the lack of finite fourth-order moments.
A very natural way of obtaining robust tests is to use of the spatial signs of the
observations when constructing the test statistic; that is using only the direc-
tion nﬁii:gﬂ\ associated with each observation X;. In general, multivariate sign
tests are elegantly simple, easy to compute, robust to heavy tails, remarkably
robust in high-dimensional scenarios (see [19] and [27]) and can be applied to a
certain class of directional data. In the context of PCA, multivariate sign tests
have already been studied in [9], [18], [3]. More important, multivariate sign test
for subsphericity have been proposed amongst other procedures in [4], even if
we will show latter that this test lacks power against alternatives of the type
AV = Ag+1,v = ... = Ay v. We will propose testing procedures based on the
spatial sign that are asymptotically valid in the whole elliptical framework and
show strong asymptotic powers with respect to the alternatives considered in
[2] where )\(") - Afffw = o(1l) as n — oo. This point is discussed in more
detail in Sectlon 2. The new spatial sign tests will also be asymptotically valid
in a directional data framework where we make the assumption that the data-
generating process is angular Gaussian (see [22]). The aim is to combine power
improvement in certain problematic situations where /\(n) — )\qj_)l v =o0(1) as
n — oo and robustness to heavy tails in a single test statlstlc Finally, we will
use these new multivariate sign-based tests to construct robust estimators of
the dimension of the signal, mimicking the construction of [15], and evaluate its
performances through numerical comparison with the estimators based on the
classical spatial sign test.

2. Elliptical model, null hypothesis and notations

We start the section by defining some notations that will be used throughout this
contribution. First, if e, is the £th vector of the canonical basis of R?, let K, :=

gj:l(e,-e;)@(ej e}), the commutation matriz. For any matrix A, let Vec(A) the
vector obtained by stacking its columns on top of each others. We also define
J, = vec (I,)vec’ (I,), with I, the /-dimensional identity matrix. Denoting
by dvec (A) =: (A11,dvec’(A))’, the p-dimensional vector obtained by stacking
the diagonal elements of A, we let H,, be the pxp? matrix such that H,vec (A) =
dvec (A). Note that H,H;, = I, and that if A is diagonal, then Hj dvec (A) =
vec (A). Finally, we write diag(By,...,B,,) for the block-diagonal matrix with
blocks B1,...,B,, and A®2 := A® A, the classical Kronecker product between
A and A. For a symmetric and positive definite matrix B, we will denote as B'/2
its symmetric and positive definite square root, as B~1/2 the inverse of its square
root and as B~ its generalized Moore-Penrose inverse.
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We will now examine the considered (elliptical) model in more details. Let
us consider a triangular array X1, ..., X,, of p-variate i.i.d. random vectors
with a common centred elliptical distribution with scatter parameter 2™ Let

with scale parameter o(™) € R such that det(V(™) =1, B € SO, and with

Ay = diag(\y, .. ALY,

a converging sequence of p x p diagonal matrices with ordered eigenvalues. If
we assume that X,,1,...,X,,, are absolutely continuous with respect to the
Lebesgue measure, the vectors X,,1, ..., X, admit a common density function

f)(gl)l : R? — R of the form

f>((nn)1 (X) = cptm gy fl(%(X/(V(n))—lx)l/%7 )

with f; belonging to the class of standardized radial functions F; (see [8] for
more details), and ¢, 5, € R a normalization constant.

The case of unknown location is a straightforward extension of the centred
case considered here, since it is well known that the location parameter can be
estimated at no asymptotic cost under ellipticity, as shown by [8]. We will then
restrict the model considered, without loss of generality, to densities of the form
(1). In this model, the parameter of interest is the vector of the eigenvalues de-

prived of its first component, vector that we denote dvec (Agb )). We will consider
the sequence of testing problems characterized by the following null hypotheses,
introduced in [2] in a Gaussian framework. Letting ¢ > 0, the sequence of null
hypotheses considered are

HE (A G = = Al N (VA — A ) coasn s 00),  (2)

with )\én\), defined such that \/ﬁ()\én\), - )\gn\),) — 00 as n — 00. H(()Z) is both a
standard subsphericity hypothesis concerning the last (p — ¢) eigenvalues (the
smallest (p — ¢) latent roots are equal) and a separation assumption (/\((In\), and

)\511')17\, are separated in such a way that \/ﬁ()\fl"\), — /\EIZ)LV

is logical to consider the separation part of the hypothesis H(()Z) as this specific
root-n separation rate is necessary for consistent estimation of the g and (¢+1)th
eigenvectors, and then for any projection over the first ¢ principal components to
be carried out. For this reason, the Null (2) fully characterizes scenarios in which
the data can be separated into a well-identified signal that can be consistently
estimated and some spherical noise. For this reason, the alternatives to 7{(()7;)
studied in [2] were classified by the authors into two distinct types:

) 2> o0asn — o). It

(i) alternatives of type 1, under which the last (p — q) eigenvalues are not
equal while \/ﬁ()\((ln\), - )‘Eﬁr)l,v) — 00 as N — 00;
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(ii) alternatives of type 11, under which Af;?l,v =...= )\XL‘), while

\/ﬁ(/\((zn‘), - /\((;)LV) — ¢, ceR as n — 0.

Note that type II alternatives of course include the case where

(n) _ () (0
)\thV - )\qil,v IR )\I:V’
which was described in the Introduction as problematic when trying to estimate
the dimension of the signal. We will study the asymptotic behavior under type

I and type II alternatives of the classical multivariate sign test for H(()Z). First,

we need to define Vi = 1,...,n, n =1,2,..., the vectors of the spatial signs of
the observations Uy; 1= X,,;/||Xn:||. Under the elliptical assumption (1), the
triangular array Uy, ..., Uy, is known to be angular Gaussian (see [22]), with

shape parameter V(™ In other words, ’Héz) is the exact same null hypothesis in
the angular Gaussian model as in the elliptical model. Any asymptotic property
of a test in the Uy,y,..., Uy, model can then be transferred to a corresponding
spatial sign test in the X1, ..., X, model. In particular, all conclusions made
in terms of asymptotic validity or local asymptotic powers in the angular Gaus-
sian framework are still valid in the elliptical framework. In the following, we
will therefore carry out the asymptotic analysis in the angular Gaussian model
because of its simpler nature and the way in which it allows to treat directional
data.

It should be noted that the interpretation of the null hypothesis of sub-
sphericity in the presence of directional data is slightly different from that in
the classical elliptical framework. As mentioned in sections 7 and 8 of [22], the
projection on the first ¢ principal components still captures the highest possible
amount of variance, the only difference with the elliptical case being that the
projected random vectors will be supported on a unit ball in dimension g. The
second difference is that invariance with respect to the orthogonal transform
for directional data implies uniformity. In particular, the Null (2) can be inter-
preted as the uniformity of the angular components with respect to the (p — q)
(well-identified) directions containing the least variance.

3. The angular Gaussian model and the classical spatial sign test
statistic

As indicated in Section 2, we consider without loss of generality the limits of
triangular arrays of angular Gaussian random vectors, entirely characterized by
the shape parameter V(™. Recall that a p-variate random vector U € SP~1 :=
{u € RP,u’u = 1} is said to follow an angular Gaussian distribution with shape
parameter V(") if its density fl(}L) : SP71 — R* (with respect to the surface
measure on SP~1) is of the form

0 = gty (V) g
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with T'(k), k € C, representing the Euler gamma function.

Let Uy, ... Uy,, a triangular array of angular Gaussian vectors having densi-
ties (3) and denote this assumption by P 5. /)U") (recall here that V(®) = ﬂAgL)ﬂ/).

We will consider the natural multivariate 51gn—based test proposed in [4] (see
that reference for in-depth discussions of the asymptotic properties of this test in
a non-triangular array context where Ay v > Ag4+1,v), but first we need to intro-
duce some new objects. Let B, := (ﬂ g+1s- - -» Bp) be the px (p—q) matrix of the

(n)

Tyler be the classical M-estimator for shape of

last (p—q) eigenvectors of V. Let V'
[23] having determinant 1, eigenvalues ATyler = dlag(Al Tylers - - - )\p,Tyler) and
eigenvectors By, = (B1,---,8,)- Let V) = V™ /det?P (V™) a constrained

(i.e., belonging the the Null) estimator of V(™) with V(™) defined as

n) 72)\JTyler,Bﬂ +)\V Z Bﬂga

=q+1

where Ay == (p—q)~! Zf: ot 5\‘7‘7Ty]er. Note that even if the Tyler shape estima-
tor was initially defined for random vectors belonging to RP, it has been shown
in [22] that for angular Gaussian random vectors, the asymptotic distribution
of this estimator is the same as in the elliptical case. We finally define

S(") . S(n)

1
sign 51gn n

n V(n 1/2U U/ (V(n))71/2
; (V)-1U,,;

and .
St = sl (v,

sign sign
Letting d(p,q) := (p —q+2)(p — ¢ — 1)/2 and in accordance with the sign-

based approach outlined earlier, we consider the sign test qbél )n introduced in [4],

which rejects the null hypothesis H(") at the asymptotic level a € (0,1) when,

n np(p+2) 5 an) 3 — p n
Sithen = s (6((BoySGimBog)?) — (P — @) 6r%(Bo, S Bog)
> Xd(p,g)il—a-

(4)

Our objective is to study the asymptotic distribution of the test btatistic (4)
under the Null, type I and type II alternatives and to propose for ¢51 ., & power
improvement strategy of the type proposed for the Gaussian LRT in [2], allowing
to achieve non-trivial asymptotic power against type I1 alternatives These type

™ acks power

IT alternatives are the exact scenarios where we will show that ¢51gn

in Section 5.
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4. Asymptotic behavior under ’H((]Z) and against type I alternatives

In the classical framework where Ay, does not depend on n and where Ay # A1,
the local asymptotic power of the test ¢51gn has already been derived in [4].
However, in our present triangular array setting, no result of such type has been
obtalned. In this section, we then study the asymptotic properties of the test
¢51gn under 'H(()Z) and (local) alternatives of type I, i.e., under local alternatives
to Hoq) such that f(A(n) — )\éi)l v) — 00 as n — oo. More precisely, we will

consider local perturbations of dvec (Ai}l )) € ’H(()Z) of the form

dvec (A +n~2diag(l™)) =: dvec (AY) +n =120, (5)
where 1) = (l;n), cee l,(,n)) is a bounded sequence of RP such that

det(Ag) + n_l/Qdiag(l("))) =1

and

p
H )\(n +n_1/21(")) )\gn\)/ +n_1/2l§") > > )\](:\)/ _’_n—l/QZz(gn).

Note that since, as n — oo,

0 = det(A +n~"2diag(l™)) — det(A)
V2t ((AYY) " Ldiag(d ™)) + O(n 1),

we have that ™ must be such that tr((A("))’ldiag(l(”))) O(n=?)asn —

00. To study the local asymptotic powers of nglgn, we consider dvec (A(")) € ’H(n)

and sequences of local alternatives of the form

(n)
Pﬂ A(n)Jrn 1/2dlag(l(n)) (6)

with 1™ € R? a bounded sequence satisfying (5). Note that under these local

alternatives, the hypothesis of separation of the ¢th and (¢ + 1)th eigenvalues
(n 1/2()\(") - )\((1"4_)1 v) — 00) is still valid. To study the asymptotic properties of
¢51gn’ we will derive the asymptotic null distribution of the test statistic S’é S)lgn,
as well as its asymptotic distribution under local alternatives of the type (6).

The main tool to perform the asymptotic analysis of s 51 , under elliptical
triangular array hypothesis will be a Local Asymptotic Normahty (LAN) result

for the eigenvalues dvec (Agl )). In the LAN result below, we will consider that
MZ(,n) = M, (dvec (Agl))) is the (p — 1) X p matrix such that

(i) M{Mdvec (A{”)~1) =0 and
(ii) (M(n)) dvec (L) = dvec(L) for any matrix L such that tr((Agl))_lL) =0
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We can now state the Local Asymptotic Normality result.

Theorem 4.1. Let An be a sequence of diagonal matrices with

limy, o0 Ay (n) _ =: Av and let 1™ ¢ RP g bounded sequence satisfying (5) with

7 = dvec (diag(1"™)).

(n)

Then as n — oo under P, .,
B.AS;

(n)
dPﬂ A("> +n—1/2diag(l(™))

dpy’ 1);<">

. 1 g A () (n
= )AVAYB) - S YTAT)T + o (1),

A = log )

with
AWMLY, B) = p#Mg,mdvec((A(V’”) 12881 BAYY)712)
e () P (n)
Wy = P v A2 vy

Moreover, A™ (Agl)“B) A N,(0,T(Av)) under P,(snz)\“” asn — oo.
Ny

Following classical Le Cam Asymptotic Theory of experiment (see [11] and
[12]), the distribution of the sign test statistics is now easy to derive. We first

derive the asymptotic distribution of S™ under H(n).

q, 51gn
Theorem 4.2. When dvec (Agl)) € H(()Z), the test statistic Sé sign cOTVETgES

(n)

weakly to the chi-square distribution with d(p, q) degrees of freedom under P,s AL

as n — Q.

Theorem 4.2 means that asymptotically, the test qi)(

sign Pehaves under Hoq ex-
actly as in classical scenarios studied in [4] where A\;L ) does not depend on n and
where the gth and (¢4 1)th eigenvalues are distinct from each other. The follow-
ing theorem, obtained by a simple application of Le Cam’s third Lemma along-
side the use of Theorem 4.1, indicates that the same holds for the asymptotic

behavior of ¢

value of the last equal (p — q) eigenvalues of V@™ and lim,,—yeo A /\ " =: Ay

sign under local alternatives of type I. We define )\\;L ). the common

Theorem 4.3. Let dvec (YY) € HSY and let 1™ = (1fV,...,1j")) € R? be
a bounded sequence satisfying (5) with limn_,ool(n) =1=(lh,...,1l,). Under

P/(;/)\Q}’anl/?diag(ﬁm) the test statistic Sq sign COnverges weakly as n — oo to
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the noncentral chi-square distribution with d(p,q) degrees of freedom and non-
centrality parameter

s (X -0 (Y 1),

Jj=q+1 J=q+1

The asymptotic distribution derived in Theorem 4.3 also coincides with the
asymptotic distribution under local alternatives already derived in [4]. The con-
clusion of this section is therefore that the test ¢£i"g)n asymptotically behaves un-
der local alternatives of type I exactly as it would in the classical non-triangular
array setting where the gth and (¢ + 1)th eigenvalues are distinct. In this sense,
we can say that the natural sign-based test for this problem, introduced in [4],

is still valid and retains all its desirable asymptotic properties under type I al-
(n)

ternatives. As we will see in next section, g, does not behave as well under

type II alternatives.

5. Asymptotic behavior against type II alternatives

In a Gaussian triangular array framework, [2] showed that the LRT displays
a very problematic lack of power under alternatives of type II. The aim of
this section is to show that the same phenomenon is still present when studying
considering (;S;ng)n in an angular Gaussian triangular array framework. To achieve
this objective, we will study the asymptotic distribution of the test statistic

Séfls)ign when n1/2()\((:\), — >‘((;7-l;-)1,v) = O(1) and observe that the asymptotic power
of qbglg)n is below the nominal level o under type II alternatives. The main result

of this section will be a proposition establishing the asymptotic distribution of
Sq,sign under any possible type II scenario.

We need to be slightly more specific and distinguish here a few cases, at this
point. We consider type II alternatives characterized by

with some blocks of the first ¢ eigenvalues converging to Ay, at various speeds.
More precisely, we consider 0 < 51 < s9 < s3 < g and we assume that

)

(i) ()\;"\), —Ay)=v; >0foreach 1 <j <sq,
(ii) ()\Sn‘), — Av) = o(1) with nl/Q(/\S-TL‘), —Ay) — o0 as n — oo, for each
51 <J < s2,
(iii) n1/2()\§-7\), — Ayv) =v; > 0 for each s < j < s3 and
(iv) ()\5"\), —Ay) = o(n~1/?) as n — oo, for each s3 < j < g,

We also define the following quantity

. +2 2
O(vi,...,vs,) = diag(vy,...,vs,Av1,_, )%? pT(IPQ+Kp+§Jp)7

p—s1

(7)
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where K, and J, have been defined at the beginning of Section 2. Theorem 5.1

below provides the asymptotic distribution of Sé sign under any possible type II
alternative.

Theorem 5.1. Let Ag;) = diag()\g?\),, ce )\gl\),,gvlé,_q) be as above and let

Z Z:
(01, va) = ( o T )

be a p X p matriz where Z11 is the so X sy upper left block of Z(v, ..., vs,), Zao
is the (p — s2) X (p — s2) lower right block of Z(v1,...,vs,), etc, such that

vec(Z(vy, ..., vs,)) ~ Np2(0,0(v1,...,vs,)).

Then as n — oo and under P(n) A Sé S)lgn converges weakly to

IFSIIA ]Z E-p-07' (Y 02, ®

j=q+1 Jj=q+1
where (bgi1,...,¢p) are the p — q smallest roots of

Zyy + diag(vey 11, -+, Vss, 05, 0, ).

Even if Theorem 5.1 can seem slightly hard to read, its implication is very
clear. For instance, under the type II alternative such that V = I,, we have
that s1 = so = s3 = 0. It is then straightforward to check that ({g41,...,¢p)

are the smallest roots of a GOE matrix Z such that ©'Z6 2 Z, for all possible
O € SO,. It is not very surprising then that the test statistics Sy gign tends to
be smaller with high probability when p is large with respect to (p — q).

To illustrate the power loss phenomenon under type II alternatives, we gen-
erated M = 6000 samples of sizes n = 2000 of (p = 8)-dimensional centred
multivariate ¢-distributed random vectors with 1 degree of freedom and scatter
parameter

2 (b,1) = diag(2 1) _;_, (1 +77°) 1}, 1,1).

The parameters b and [ take values b = 0,1/4,1/2,1 and [ = 1,...,6. We

performed the sign test ¢51g)n based on S;?lgn for 'H((fé) (¢ = 6), with [ the number
of eigenvalues converging to the last 2 ones and n =" the speed of convergence.
When the parameter b takes values 0 and 1/4, the data-generating processes be-
long to 7—[[()2) while the values 1/2 and 1 yield data-generating processes belonging
to type II alternatives. Inspection of figure 1 reveals that when [ increases, the
asymptotic power of the test essentially goes to 0 when b = 1. It is safe to say
that ¢s1gn shows essentially no power under type II alternatives. Our aim will
then be, from now on, to correct this rather dramatic lack of power.
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Fig 1: Empirical rejection frequencies of the test ¢
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6. New spatial sign tests

The results obtained in the previous sections imply that the test ¢ql ., achieves
the same local asymptotic powers as the sign test of [4] against alternatives
of type I but is (nearly) blind to alternatives of type II. We propose here a
new multivariate sign test, based on the same approach as the one developed

in [2] in the Gaussian framework. The new test is asymptotically equivalent to
(/)51 gn under ’H(()Z) and type I alternatives while showing non-trivial power against

alternatives of type II. First, define Vl(;,lq)-u = V(n /detl/p(V(nq)H) where
q+1
q’q+1 - ZAJ Tyler,B ﬂ + Z )\] Tylerﬂ ﬂ + /\V ,q,q+1 Zﬂ ﬂ]?
J=q+2 Jj=q
. N +1 n " (n
with AV,q,qfl = Zq Aj Tyler- Now, letting Sq o+ Lsign = Sglgn( q7q)+1) and

Bq’qﬂ = (,Bwﬁqﬂ), we erl use the statistic

(n) _ w2 (g 52
Sqqt+1sign = 9 tr(('Bq,q-HSq,q+1,sign'3q7q+1) )
tI‘ (ﬂ q+1Sq q+1, slgnﬂ ,q+1)
2
(9)
to take into account the potential deviation between )\((:\), and )\((;r)l v We can

Letting a € (0,1) and v € (0, 1), d sign

rejects ’Hoq at the asymptotic confidence level o when

now define the new sign tests gbfle‘)ﬁ sign-

(bflzzmsign = H[Stgz)lgn > Xd(p q);1— a]H[S(g?q)-i-l sign > X%;lf'y]
[Séz)-s-l sign — X2 1— ’y] =1
(10)
In (10), we use the convention S(g 1sign = T00. With this convention, ¢§16\)2v sign

and ¢£1 )n will coincide when performing the two tests for 7—[ ") For more details
on the 1deas behind this type of tests and their usage, we refer the reader to [2],
[20] and [17], but the basic idea is to simultaneously test for the fact that the
gth and (g + 1)th eigenvalues are sufficiently separated and for the equality of

the last (p —q) eigenvalues. We have the following asymptotic result for the test
(n)
¢n2w,sign'

° (n) (n) (n) (n) (n) _
Theorem 6.1. Let dvec (Ay,") € Hy,'. Under Pﬂ,Ai,")’ Drow sign — Psign = 0P (1)
asn — oo.
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Theorem 6.1 above shows that d)f@ws%n is asymptotically valid and has same

asymptotic powers as (bblgn under local alternatives of type I by contiguity.
Moreover, it is very easy to show, using Theorem 5.1, that the asymptotic power
of qbgz‘)”’sign under type II alternatives can be made arbitrarily large by taking -y
arbitrarily small

Then, (bnew sign 1S @ a strict improvement over qﬁ sign» Preserving the desirable
properties of the latter test when it shows good performances while improving
its power under type II scenarios. As noted in Section 2, these findings are true
in the all elliptical model, and not only in the angular Gaussian setting.

To conclude this section, we present some finite n empirical powers obtained
by simulation and illustrating the magnitude of the power enhancement granted
by (bnew sign 1D practical scenarios. We simulated M = 1000 independent sam-

ples ng o XET) of (p = 5)-dimensional centred multivariate ¢-distributed
random vectors with 1 degree of freedom. We used sample size n = 2000 and
scatter parameter

= (b, ) = diag(3, 1+ 0", 14+ 07", 1,1 —n" /7).

We used the values 7 =10,1,2,4,6,8 and b=0,1/8,1/4,1/2,1,2. The values
7 =0 and b < 1/2 yield data-generating processes belonging to H(()g) (g = 3)
while all the other parameter values yield data-generating processes increasingly

under the alternative. We performed the classical multivariate sign test ¢mgn

alongside three versions of qb with parameter v = .9,.5,.05. All tests are

new,sign
performed for 7—[03 at the same asymptotic nominal level a = .05. Inspection of

figure 2 confirms our theoretical findings. The new test gi) asymptotically

behaves as qb(

sign

new 51gn

when b < 1/2 (i.e. under the null and type I alternatives)

while showing way larger power than ¢§1gn when b > 1/2 (i.e. under type II
alternatives), even if some continuity phenomenons can of course be observed.

7. Robust sign-based estimator of the dimension of the signal

Rather naturally, we consider that the dimension of the signal k is the value
g € {0,...,p — 2} for which "H((]n) holds. If ’H(") does not hold for any ¢ €
{0,...,p— 2} we simply let £k = p — 1. Note that the notion of signal and noise
decomposition in a directional data framework readily follows from the analogy
with the elliptical case.

The form of our new multivariate sign-based estimator of k is

knew,sign = mln{q € {07 SRRy 2} | H[Szgns)lgn > bt(zn ] [S(gr;)—&-l sign > C(n)]
[&S?—&-l sign <c n)] = 0}

(11)



G. Bernard/New spatial sign tests for inference on signal dimension 14

Null (1=0) Type Il (1=0) Type | (1=1)
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-t -
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O new(.1) e ©
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< < <

(=] o
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o o o

o /o e el e g J oo srem EEl
b=0 b=1/8 b=1/4 b=1/2 b=1 b=2 b=0 b=1/8 b=1/4
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© ®

o o

© ©

o o

< <

o o

N

o

b=0

o
o
b=0 b=1/8 b=1/4 b=0

b=1/8 b=1/4 b=1/8 b=1/4

(n)

sign

and gb(n) (denoted new) for v = .9,.5,.05. All tests are performed at the

new,sign
asymptotic nominal level .05. The sample size is n = 2000.

Fig 2: Empirical rejection frequencies of the tests ¢_; > (in red, denoted classic)
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for some positive sequences bg"), qg = 0,...,p — 2 such that bén) — oo and
bgn) = o(n) as n — oo for all ¢ and for some other positive sequence ¢(™ — oo
such that ¢™) = o(n) as n — co. These conditions are purely technical and serve
only to guarantee the consistency of l%new’sign. If the minimum is not achieved in
(11), we use the definition ]%new,sign = p — 1. We compare our new estimator to

its natural classical equivalent l%sign, based on the classical test d)éing)n and defined
as follows

fsign = min {g € {0,...,p— 2} | 1[S")

q,sign

> b{] = 0}. (12)
()

Now, we assess by simulation whether the power gained by using ¢,.; ien
over ¢£12‘)N under type II scenarios translates in better performances at finite n for

the estimator kyewsign. For that purpose, we simulated M = 2000 independent

() (n)
samples of i.i.d. random vectors ng’T )L X8T) With a common (p = 3)-
dimensional centered multivariate t-distribution with 1 degree of freedom and
scatter matrix

1
2(b,7™) = diag(1 +n"",1,1 — 57(’0).

We used 7 = 0,n71,n71/2 1 and b = 0, 3, 1. The sample size is n = 1000. At

each replication, we computed I:;Sign with bén) = X?z(p 9),.950 4= 0,...,p—2. This
specific choice for bt(ln) was recommended to be used in practice by [25]. We also
computed 4 versions of the estimator kjew sign With

2 2 2 2
™ e {X2,.055 X2..1, X2:.95> X2,.99 }-

We compared the various estimators to the true value of k, i.e.

k= (p—DI[r™ > 0]+ (I[p < %] +(p— DI > S)IF™ = 0].

Figure 3 shows the proportion of good selections of & (i.e., l%sign = kor l%new,sign =
k) for each considered estimator. This shows that the new sign-based estima-
tors perform as well as l%sign when b = 0 and outperform l%sign when b > 0.
This is consistent with theory and with what was observed in the Gaussian
framework in [2]. This makes of our new robust estimator an improvement over
the existing ones, be it in terms of performance versus I%Sign or robustness ver-
sus the pseudo-Gaussian procedures. It should also be noted that, as usual, if

(n) (n)
ng’T ), . 7X£Lb ") had been angular Gaussian random vectors belonging to
the unit sphere, every conclusions and simulation results would have been the
exact same.
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b=0 b=1/2 b=1
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o I .- FEp——— ] ] Fp——— ] ]
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16

Fig 3: Proportion of good selection of k for the estimator l%sign (in red) and for

2

four choices of estimators l;:new,sign (in blue) with n = 1000, bé") = X(p.q),.95

2 2 2 2
and (™ € {X3..055 X5,.1 X5..95, X2:.99 ) -
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8. Conclusions

In this contribution, we considered the testing problem characterized by
’Héz) : (/\((ﬁr)l’v =...= )\I()n\)/) N (n1/2()\((:\)/ - )‘z(JTQI,V) —00asn — 00)

and studied the asymptotic behavior of the classical multivariate sign test

qbign under elliptical triangular array assumptions. We have shown that when

nt/ 2()\((:\), —)\((ITLV) — 00 as n — 0o, ¢£?g)n behaves in our current framework ex-
actly as in the classical non-triangular array framework studied in [4]. However,
(n)

we also showed that ¢, has dramatically low power when

2O = Ay = ol).

(n)

new,sign 111 the spirit of the new Gaussian tests

We then proposed new tests ¢
proposed in [2], and showed that the tests cb(") are retaining all the de-

new,sign
(n)

sirable asymptotic properties of ¢Sign while showing arbitrarily large power

when n'/ 2()\51"\), - AE;—?LV) = o(1). We also have shown through simulations

that ¢1(121V,Sign can be used to estimate the dimension of a signal in such a way
that the resulting estimators outperform the existing sign-based competitors at
finite n.

The new spatial sign-based procedures proposed in this contribution are
asymptotically valid in the elliptical distribution class and, in particular, make
it possible to deal with cases where the covariance matrix does not exist. For
this reason, our new tests and estimators seem particularly suitable for perform-
ing inference on the dimension of a signal when the data-generating process is
suspected of being heavy-tailed.

Furthermore, it should be noted that as a by-product of the way we derived
the asymptotic properties of our new tests, our procedure can be used in a direc-
tional data framework assuming an underlying angular Gaussian distribution.
In this context, our procedure allows us to determine a set of (p — ¢) directions
that can be estimated consistently, whose linear span contains the smallest pos-
sible amount of variability and such that the angular components of the data
with respect to these directions are independent and uniformly distributed.

For all the aforementioned reasons, the spatial sign procedures proposed in
this contribution are indeed exceptionally robust and allow to perform inference
on the dimension of a signal in an impressive number of scenarios. Its asymptotic
distribution - both under the Null and local alternatives - is not affected by the
assumptions made on the distribution of the radial parts of the elliptical random
vectors considered or by the assumption that the data are restricted to the unit
sphere. Thanks to our power enhancement strategy, we finally gained robustness
with respect to scenarios where the gth and (¢ + 1)th eigenvalues are too close
to each other for existing tests to show any significant asymptotic power. All
these facts make our procedures very attractive for inference on the dimension
of a signal when robustness properties are a priority.
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Appendix A: Proofs of the various results
Proof of Theorem 4.1. To simplify the notations in this proof, we put

Z;:=B'U,, A=A and A,:=A{ +n 2diagl™).
First,
A = —g (log(det (A,,)) — log (det (A)))
DS (108 (ZiA;'2,) ~ log (ZiA~'2.).
- (13)
Since det(A) = 1, we have that
—g(log (det (A,)) — log (det (A))) = —g log (det (I, + n~ /A~ diag(1'™))),
so that since for any p X p matrix A,
log (det (I, + A)) = tr(A) — %tr(ﬁ) +o(l|Al)

when ||A]| — 0, we get from (13) that

A = fgtr(Afldiag(ﬂ"))Hitr(A*QdiagQ(lW))

P . B
(14)
as n — oo under Pén)/xn Now, we have that

log (Z/A, ' Z;) — log (ZIA™'Z;) log (ZiA'Z; + Z! (A, — A HZ))

—log (Z/A™'Z,)

Zi(A, - ATHZ,
ZA'Z;

Zi(A, - ATYZ,
Z/N'Z,

1V (ZA A Yz,
- — 2 n — t + Rni;
2 ZAZ,

= log(1+

)
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for some rest R,;. Since
A AT = 2 2diag (™) + n A3 diag? (1) + O(n3/?)

as n — 0o, the boundedness of the Z;’s entails that

iz;m;lfrl)zi B *WZZ'A *diag(1"™)Z;
Z/A'Z, B Z/AN'Z;

=1

el Z Z/A "3 diag? 1"z, + op(1)

ZA7'Z,;

" ZA 2diag(l"™)Z;
= —n 2N (= !

" ZA 3 diag? (1) Z;
4 —1 t [
Tt Z/A'Z,
= A'Z,ZATT
= —n 1 2¥ tr(diag(™W) 22
; (diag(l™™) ZA'Z, )
A2 Z, 2032
I3 . (n)
ZA7, diag(1'™))

) +op(1)

4n~t Z tr(diag(@™)
i=1
+op(1)
A 'ZZAT

= —n'?tr(dia l”) -1 e
(gt YRR

A~ 3/2Z ZA 3/2

(n)
ZA i diag(l'™))

+tr(diag(™)n =" Z

+op(1).
(16)

Using the definition of str
that

alongside SSlgn = p~ I, + op(1), we get from (16)

51gn

n — —1 )
ZZ (A, )Zi _ —n'?tr(diag(@™)A?B'S

n)ﬂA_l/Q)
1
s ZiA Z:

sign

+tr(diag(™)A T B'S!) BA T diag(1™)) + op (1)

sign

= —n?tr(diag(t™)AT/28'ST) BAT?)
+p tr(diag(@™)A 2 diag(@™)) + op(1).
(17)
Using the fact that for any pxp matrix A and diagonal px p matrix L, tr(LA) =
dvec(L)'dvec(A), we get from (17) that
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" ZiA - ATHZ, 125 _ _
i\"tn o 1 n)d ec(A 1/2 /S(TL) A 1/2
; Z;A—lzz n Vi ( ﬂ mgnﬂ )

+p  UMAT2AM™Y 4 op(1).
(18)
Now, same Taylor expansion for the second term in (15) yields

2 2
1w (ZHAY —AYHZ, 1 & [ Z A %diag(1™)Z;
_ 7 n — . 2 1
2 Zi:l ( Z/A'Z, 2n ZA'Z, or(l)

=1

A 'Z,ZA!

Z/N'Z,; )

1 & _ n
= —%ZtrQ(dlag(l( ))
=1
+op(1)
1 & A 'Z,Z A7
= ——Zl(")dvec(77f )
Pt ZA'Z;
A 'Z,ZA!
Z/A'Z,;
A 'Z,ZA!
Z/A'Z;
A'Z,Z/ A
ZA'Z;

dvec'( )(I™Y + 0p(1)

= —%E(l(")dvec( )

dvee'( JA™Y) +op(1)

1 ") x — 1 1(n
= —p(p+2)l( A (I, + L1)A Lamy

+op(1). (19)

The last line is a well known fact (see, for example [9] and [8]). Finally note that

3
- 1< Z(AY —AYHZ,
Rni - 5 1 Hni -3 C - : 5
; 3 Z( + Hui) ( Z/N'Z,

i=1

’ -1 -1 .
W The boundedness of the Z;’s implies

that |31 | Rni| < C/n'/? for some constant C' so that > R, is op(1) as
n — oo under Pgn)An. Using this last fact and combining (15), (18) and (19), we

get that, as n — oo and under Pgn)A,

for some H,,; between 0 and
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Zlog (ZIA,'Z;) —log (ZIAT'Z;) = —n21™dvec(A™/2B'S[) BA~1?)
+p—1l(n)A—2<l(n))/
1
R 1CO S V2 S INA—17(n)y/
p(p+2)l AN, — 51,1)A7Ha™)
+op(1).

Combining (14) and (20), we get that, as n — oo and under ng)An’

nl/2

AT = T dvec(A ) 4+ 1WAy

+§n1/2l<">dvec(A—1/2ﬂ’s§;gnﬁA—1/2) - %l(")A‘2(l(”))’

1 1
(n)A—1 - 1 —1/7(n)y\s
gt AT @ = SLIAT ) e ()
= gnl/Ql(")dvec(Afl/Qﬂ (s — p1,)BAT?)

sign
p+2
4(p+2)

2 ) s 1 1 nin
4(p+2)l( A 1(1p+§1p1;)A LA™y 4 op(1)

— gnl/Ql(")dvec(A_1/2ﬂ (8™ — p11,)BA/?)

sign
P geavr - 1At ™y 4 on1),
4(p +2) Peoptr

l(n)Af2(l(n))/

_|_

Recalling that the definition of ™ implies
tr((A) " diag@™)) = o(1)

as n — 00, it is easy to get that

(MY = A™M) 4 o(1). (22)

Now, using (21), (22) and properties of M,(,n), we finally get that, as n — oo

and under Pfgn)An ,



G. Bernard/New spatial sign tests for inference on signal dimension 22

(n) pn'/? (n)yng(n) —1/2 0/ /q(n) -1 —1/2
A= = (T M dvec(A B (S — T Lp)BATT)
1 n p n - — - n n
) g M AT (L, = 1A (M) ) op (1)
1/2
pn n _ n _
= S5 (") Mydvec(A 2g's() BAT1/?)
1 D _
Loy P apmA=2 gy 0.
3 ") g MU AT M) e (1)
(23)
Note that this is the desired result, which concludes the proof. O

The next Lemma provides the asymptotic behavior of
E(") E(”) N
E(n) = < 171 1721 = ﬁT ler:B7
el wly) P
(n)

where EYI) is a ¢ x ¢ block, E5,’ a (p—q) X (p—q) block, etc. Its proof is similar
as the one of Proposition 2 in [2] and is therefore omitted here.

Lemma A.1. Using the above notations and letting Agn\), = diag()\g?\),, ce )\Sf\),),
the following are true.
(i) If nl/Q()\((:\), - )\((11)17\,) — 00 as n — oo, we have that
”1/2E(271L)(A§?\)/ - )\((]TI,VIQ) = Op(1)
and
B33 (By;))' = Tpq + op(n /%)
as n — oo under P™ )
B.Ay,
(i1) ifnl/Q()\g?\),—)\gj_)l)v) — ¢ < 00 asn — 0o, we have that Eg{) is not op(1)
as n — oo under P™ (n)
B.Ay,
Proof of Theorem 4.2. First,
n np(p+2) 5 aln) 5 — 5 an) 3
Syoten = g (tr((BogSiinBag)?) — (0 — 070 (BogS{ipuBoy))
p(p+2) > & . 1 Al A ~
= Sy ved (Bo S Bog) M-z = 5 Tu-a)n' Pvec(Bo, 8L o)
p(p+ 2) 7 (n 7 (n
TT/(V( ))Eun(V( ))a

(24)
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where ¥, 1= T,_g)2 — p%.]p_q and

q
N ~l Al ~(n —
T(V™) = (Bog ®,30q)”1/2vec(siig)n —p L),

Using the same arguments as in the proof of Theorem 3.1 in [18], we have that

12 o (@ _ gy 1 (n))1/2Y®2
n vec (Ss1gn 851gn) p(p + 2) {IPQ + KP + JP] ((V ) )
’I’L1/2V6C ((V(n))—l _ (V(n))—l)
n/2r
s (V)12 (v ) 1/2)82 1 vee(1,)
+op(1). (25)
as n — 00, under Pénl)\m. Now, it follows from (25) that
Ay
A ~t Al ~(n _
S TV = 8p0(Boy @ Bog)n' vec(SG, —p7'Ty)

N ~l n B
= Epyq (IBOq ® :BOq)nl/2veC<S£ig)11 —-bp 1110)
*Epqugn) + Epquén) + op (1)
(26)

as n — oo under P (ny» Where
BAY

Wi = (Béq@@/%q)p(pw) [I,,2+KP+J,,}((V(“>)1/2)®2

’I’Ll/QVQC ((V(n))—l o (V(n))—1)7

and

Wgn) = (B:)q ® ng)n;ﬂ {((\A[(n))—l/2(V(n))1/2)®2 _ Ipz}vec(lp).

Since Ay is the common value of the (p — ¢) smallest eigenvalues of V(™) the
Slutsky Lemma entails that

B W = s By © By (V)22 e (V)7 — (VO
= BBy @ B (V)20 v (V)7 — (V) )
+op(1)
= BBy @ By e (VO) T = (V) ) on (1)
= AV e (B, (V) By, + op (1), (27)
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Using the notation Agl) = diag()\(lfl‘),7 . )\;"\),) =: diag(AgfL\),,AgL)Ip,q), where

Ag"\), is the g x ¢ diagonal matrix with the ¢ largest roots of A(\7 ) as diagonal
elements, simple computations and (27) yield

Y 2 3 Y n n)\—17
Epa WY = o AvEpan! e (Bo, (VO = AVL) (A0 V) By,
+op (1)
2 N 5 n n n n)\ — P
= o r VR e (BB - ML) AAY) B By,
+0p(1)
2 2 n n n
= —mévzp,qnlm"ec (E§1)(A(1,\)/ - A&/)Iq)
(-AVALR) T ESYY) + op(1)
= op(l), (28)
as n — oo under P;")A(n), where we used Lemma A.l in the last line. Now
working along the same \llines, we obtain that
(n) A AN e (n)\—1/2 (v7(n)\1/2\®2
Zpa W5 = BBy @ Bog) ™ (V) /AV) )22 L [vee(T,)

Al ~l 1/2 ~
= X,4Bo, ®,Boq)n7 [((V(n))—l/z(V(n))1/2)®2} vec(I,)

Tll/2 -1 n n n n n
= Ypg D Av vec((Eél),EgQ))A(\,)(Egl),E§2))’)
n/? -1 WA ()7 )y
= X,y » Ay vee (B (Av — Av L) (Egy")') +op(1)

= Op(l) (29)

as n — oo under Pgl)A(n). Combining (26), (28) and (29), we obtain that
» Ay

2, T (V) =%, (By, ® Byg)n'/>vec(SL2,) + op(1) (30)

sign

as n — oo under P(n)

B AL Using again Lemma A.1, the Slutsky Lemma and
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(30), we obtain as n — oo under p™ (ny that
B, Ay

my _ plp+2)

q,sign 2 sign

n n n 1 n n
(n1/2V€C/((E51)7 Eg2)>ﬁl<sg' - EIP)IB(Eél)’ Eé2))/)2p7q

sign

nt?vec((ESy  ES)B (LY, — ;Imaéﬁmwﬁ>)+oﬁw

pp+2 .
= % <n1/2ve<3'(Eég)ﬁéqséfg)nﬂoq(Eég))')zpyq

7N%wm$m§$mwmgn)+@m

p(p+ 2 n n n
- <i2>anmgmw$4ﬁwm;ww>
@B, S 8o, (BL)) ) +op(1)
—q 22 M0g~signt 0q P

_ ﬂﬁ;”nOmwaigﬁ@F)—pifﬁw@%@ﬁwo*”ﬂ”'
(31)

The result follows exactly as in the proof of Proposition 5 in [2], using classical
Rao-Mitra arguments. O

Proof of Theorem 4.3. The result follows from a direct application of the Le
Cam third Lemma using the LAN property of Theorem 4.1 and (31). O

Now, the main tool to prove Theorem 5.1 will be the following Lemma, al-
lowing to express the test statistic S™ i terms of V)

q, 31gn Tyler
the definition of V(Ty)ler

(see Section 3 for
) with probability 1 as n — oo. Note that Lemma A.2
requires that the last (p — ¢) eigenvalues of V(™) are equals, which does not

allow us to use it to derive the asymptotic distribution of Sé oy under local

alternatives of the type (6) and justifies that the LAN property of Theorem 4.1
had to be derived.

Lemma A.2. Let Agl) = diag()\gtl\)p cey Af:\),,&;” 1;,_,) a converging sequence
of diagonal matrices with ordered eigenvalues. Under P;nl)“n) and as n — 00, we
Ay

have that

éz)igﬂ S(Yi[)‘yler + OP(l)v
with
n L LA
Sér,n'l)‘yler = 7])@( Z A?,Tyler - (p - q)_l( Z /\Z}Tyler)Q)y (32)
2(p + 2)AV 1=q+1 i=q+1

and with S\i,Tyler, i=1,...,p and iv defined in Section 3.
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Proof of Lemma A.2. First, since V) satisfies

Tyler
l i (VSI‘T;)Ier ) ! /2Un2 U{n,z (V(Tr;)ler ) —1/2 —p 1 I
i = P
i U (V(Ty)lerr U,

we obtain, using the same arguments as in the proof of Theorem 3.1 in [18] that

12 vece (S(”) -p 1)

n sign

1
- = (n)y1/2\®2
P (L2 + K, + 3, (V)72

1/2

n e (V)7 = (Vi) ™) + ==
[((V(n))fl/Q(V(n))l/2)®2

—((\7(") )71/2(V("))71/2)®2}vcc(Ip)+0p(1)

Tyler
= e K 1, (V)Y
p(p+2) Y
n!/2vec (V)1 — (VY )™
+n;/2 {((‘A’(n))*” (Vi) /)22 - IHVQC(IP)
+op(1)

(33)

as n — oo and under ngi}l). Now using the notation ¥, ; 1= I(;,_q)2 — %JP*‘I’

—q
(33) implies that

n Al A n) 5 Al A n) 5
S(g,s)ign = ) (nl/QveC/ (:BOqSiig)nﬁOq)zp»qn1/2vec(ﬂ0qsgig)nﬂ0q)) + OP(l)

= (_Wgn) + Wén))lzp,q(_wgn) + W2n)) + OP(l)

(34)
under P/(an)ﬂ") as n — 0o, where
Ay

[z + Ky + 3, [ (VO)12) 5201 2 (V)1 — (V) )7,

and

n &/ Y 711/2 Cr(n)y— Cr(n
W = (B, ®ﬂ0q)7 {((v< NV Ipz]vec(Ip).
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Now, denoting by gv the common value of the last (p — ¢) eigenvalues of v

and using the fact that V(™) and \A/'(T?ler

with the fact that Epyq(ﬁgq ® ng)vec (I,) = 0, we obtain that

share the same eigenvectors together

n &/ ~f 1 Cr(n
prqwg ) = 22P,q<ﬂ0q ®:BOq)ZW((V’(Ty)1er)1/2)®2

n'/2vec (V)= — (V) ™) + op(1)
2 1/2 8 8

= g vec (diag(A Crv"'7>‘ er)) +0 17
Avp(p+2) P (diag(Ag+17y1 p.Tyler)) +0p(1)

(35)

under P,(snz)\iy’ as n — oo. Now still since Ep,q(B:)q ® ﬁ;q)vec (I,) = 0, we also
have that

(n) A AN r(n)\—1/2/xr(n)  \1/2\®2
Zpa W5 = BBy @ Bog) ™ [(VO) AV )% T [vee(T,)
Y Y n1/2 7(n)\— (7 (7 (7 (n)\—
= Zpa(Boy © Bog) — —vec((V) VAV ) (V)72
1 e .
= szyqn1/2vec(dlag(>\q+17Tylcr, oy Ap,Tyler))-
Av

(36)

Combining (34), (35) and (36), the result follows easily from the fact that
3y, q is idempotent.
O

Proof of Theorem 5.1. From Lemma A.2, is it enough to show the weak conver-

gence of S (n) in order to get the result. From [23], we have that

q,Tyler
n'/2vec(B' (Vi — V)B)
converges weakly to vec(Z) ~ Njp2(0,0(v1,...,vs,)) as n — oo under Pl(snz)\(")'
Ay
Now, it follows along the same lines as in the proof of Proposition 1 in [2] that
Séfﬁ%yler converges weakly to
» P P
W( Z = (p—q) Z 4)?). (37)
(p+2)2Av ;55 j=a+1
This is the desired result.
O

Proof of Theorem 6.1. Using Theorem A.2, the result follows along the same
lines as in the proof of Proposition 4 of [2]. O
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