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Abstract: In this contribution, we consider the problem of testing for the
sphericity of a collection of random vectors. It is well known that in a
classical elliptical model, testing for rotational symmetry of the underlying
distribution is equivalent to testing that a scatter parameter is a multiple
of the identity matrix. We consider the more general model of random
vectors with elliptical directions and introduce a few scenarios where testing
for sphericity is still equivalent to testing that the scatter parameter is a
multiple of the identity. These new scenarios include, for instance, non-
classical settings where some dependence of a very general form studied
here for the first time may be present between observations. We study,
under these new assumptions, the behavior of the classical spatial sign test
and show that under certain mild assumptions, the test is asymptotically
valid and has the same local asymptotic power as in the classical elliptical
scenario. We then show that, contrary to some commonly held belief, the
spatial sign test enjoys some local asymptotic optimality properties when it
comes to testing for sphericity when the underlying distribution is strongly
heavy-tailed.
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1. Introduction

A p-dimensional random vector X is considered to be spherical if there exists

a vector θθθ ∈ Rp such that X − θθθ
L
= O(X − θθθ), for all O ∈ SOp, with SOp

the special orthogonal group of p× p matrices. As spherical random vectors do
not admit a direction in which the variability is larger, they can be considered
as pure noise in a large amount of applications. Sphericity tests are therefore
particularly useful for trying to detect the presence of a signal in a given data set,
this detection being a preliminary step to performing any multivariate analysis
technique. In particular, testing for sphericity is a crucial step that must be
carried out before performing Principal Component Analysis (PCA) or, more
generally, before applying a dimension reduction technique to the data. For this
reason, the problem of testing for sphericity has been the subject of extensive
study for a very long time. [14] was the first attempt to tackle the problem
by proposing a Gaussian Likelihood Ratio Test (LRT), while a locally most
powerful invariant Gaussian test was obtained by [9] (see also [10]). Since the

1

mailto:gaspard.bernard@uni.lu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


G. Bernard/Testing for sphericity using spatial signs under elliptical directions 2

above tests are asymptotically valid only under Gaussian assumption, pseudo-
Gaussian procedures requiring only finite fourth-order moments were introduced
by [16] and [26]. To obtain robustness to the absence of finite fourth-order
moments, a sign-based test statistic was proposed by [27], while [6] proposed
tests based on the multivariate signed-ranks of the observations. Although the
problem of testing for sphericity has been considered for a very long time, it is
still actively studied because of its crucial importance in dimension reduction. To
cite only a few recent contributions, [8] proposed tests based on characteristic
functions, [2] tests based on random projections, [4] studied sphericity tests
in a time series framework and [23] proposed an approach based on optimal
transport. High-dimensional sphericity tests have also been extensively studied
these past years; see for instance [18, 19, 25, 21] and [13].

When testing for sphericity, certain assumptions over the underlying distribu-
tion allow us to reformulate the problem in such a way as to obtain asymptotic
optimality properties. If we assume that X is an elliptical random vector, the
geometry of the probability contours is entirely determined by a matrix acting
as a dispersion parameter. This (normalized) p × p matrix is called the shape
parameter and we will denote it V. The matrix V is normalized so that it
has determinant 1, as this choice is canonical in a sense established in [20]. In
the elliptical framework, the sphericity assumption is equivalent to assuming
that V = Ip. If we do not assume that the random vectors are elliptical, the
latter statement is not true in general and V = Ip does not necessarily im-
ply sphericity. For these reasons, the locally and asymptotically optimal tests
proposed in [6] assume ellipticity; testing for sphericity then boiling down to
testing that V = Ip. However, there may be less stringent assumptions that
could be made on the data generating process under which testing for V = Ip
is still equivalent to testing for sphericity. The first objective of this contribu-
tion is to propose a model, less stringent than the classical elliptical one, in
which the hypothesis V = Ip is still equivalent to the sphericity hypothesis,
making of the testing problem a (semi-)parametric one. The second objective
is to propose tests that are asymptotically valid under these new assumptions
and study their local asymptotic power. The third objective is to show under
which conditions these tests enjoy some asymptotic optimality properties. As
we shall see, our approach will lead to the use of procedures based on the spatial
signs of the observations, in the spirit of [27]. These procedures are based solely
on the directions of the (centred) observations, directions belonging to the unit
sphere of dimension p − 1. This contribution can also be seen as a strong plea
for the use of multivariate sign tests since, as we shall see later, they enjoy
some highly desirable properties. In this sense, this contribution investigates an
interesting phenomenon in statistical inference by pointing out that there are
cases where using less seemingly relevant information from the data not only
increases robustness but is also optimal.

This contribution is structured as follows. The section 2 presents the model
considered, the section 3 presents the test considered and outlines our approach,
the sections 4 and 5 examine the asymptotic validity, power and optimality of
the test considered, while the section 6 presents our conclusions. An Appendix
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gathers the technical proofs of the different results. The main tool used in this
contribution is the Le Cam asymptotic theory of experiments developed in [11]
and [12]. Our results are illustrated by Monte-Carlo simulation studies.

2. The model: skewness and dependent observations

The class of distributions with elliptical directions was introduced in [22], gener-
alizing the classical class of elliptical distributions. In the p-variate framework,
distributions with elliptical directions are characterized by a location parameter
θθθ ∈ Rp, and a shape parameter V belonging to the set of p× p positive definite
matrices with determinant equal to one. Some nonparametric nuisance of a very
general form is also present in the model. Explicitly, a collection of p-variate
random vectors X1, . . . ,Xn follows a distribution with elliptical directions with
parameters θθθ and V if it satisfies

Xi = RiV
1/2Ui + θθθ, i ∈ {1, . . . , n}. (1)

Here, U1, . . . ,Un are i.i.d. uniform random vectors on the unit sphere

Sp−1 := {u ∈ Rp | u′u = 1}

and R1, . . . , Rn is a collection of random variables with values in R+. We denote

this model by P
(n)
θθθ,V,R1,...,Rn

. The main difference with classical elliptical random
vectors lies in the fact that R1, . . . , Rn can be dependent on the Ui, can be
dependent on each others or can be such that they are not identically distributed.

In this context, the shape parameter V summarizes at least some part of
the dispersion of the data. We distinguish three settings which are of particular
relevance.

(I) The Ri are independent of the Ui and i.i.d. This is the classical elliptical
framework where the geometry of the dispersion is entirely characterized
by V.

(II) There is some dependence between the Ri and the Ui but the Ri are
i.i.d.. This corresponds to i.i.d. cases where some skewness is present in the
underlying distribution. In this context, the parameterV does not describe
the part of the geometry of the dispersion explained by the skewness.

(III) The Ri are not i.i.d. but are independent of the Ui. V still fully charac-
terizes the geometry of the dispersion but the distribution of the radius
can vary with i = 1, . . . , n. In particular, radial dependence between the
observations can be present in the Ri.

Inference over V in setting (I) is a very classical and well-studied problem,
see for instance [24] and [6] for an approach based on signed-ranks. In this
contribution, we will therefore focus mainly on settings (II) and (III), which
have not been the subject of as much work. Considering inference problems
on V in setting (II) makes sense if we assume that some contamination of a
classical elliptical distribution is causing the skewness as in [5] and if we would
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like to conduct inference over V in such a way that the procedure is robust to
this contamination. In general, if measurement errors are made on R1, . . . , Rn

and if these errors depend on the direction of the observations U1, . . . ,Un,
they will most likely affect classical inference procedures performed over the
dispersion parameter V. If we suspect that such errors have been made, it is
perfectly reasonable to want to perform inference on V in such a way that the
outcome is independent of these errors. Setting (III), on the other hand, makes
a lot of sense when we assume that the directions are independent, but that
the overall variability evolves over time and can be correlated with previous
realizations. For instance, the random vectors Ui could represent a direction
indicating whether certain prices are rising or falling and the Ri could represent
the magnitude of the price change. In this framework, the Ri can be linked to
some global volatility of the market, potentially correlated to past realizations,
while the directions Ui are still i.i.d. In setting (II) and (III), the Ri play the
role of a nuisance, while the shape parameter V encompasses all the relevant
information about the interaction between the various components of the Xi. It
is then very natural to consider classical testing problems over V - such as the
sphericity problem - in setting (II) and (III). Furthermore, since the inference
procedures based on the spatial signs of the observations are known to exhibit
excellent robustness properties in general - see, for instance, [1] - it is also very
natural to study the robustness of multivariate sign-based testing procedures
in settings (II) and (III). We develop the rationale of our approach in the next
section.

3. Testing for sphericity using multivariate signs

First, we introduce a few notations. LetA be a p×pmatrix, we denote by vec(A)
the p2-vector obtained by stacking the columns of A one on top of the other
and by ve

◦
ch (A) the vector obtained by stacking the upper-diagonal entries of

the matrix A deprived of its first component. We also denote by A− the Moore-
Penrose generalized inverse of A and by Kp the p2×p2 commutation matrix de-
fined such that Kpvec(A) = vec(A′). Finally, let Mp(V) the (p(p+1)/2−1)×p2

matrix such that (i) Mp(V)vec (V−1) = 0 and (ii) Mp(V)′ve
◦
ch (A) = vec (A)

for any symmetric matrix A such that tr(V−1A) = 0. For the sake of brevity,
we put Mp := Mp(Ip). We consider the parametrization δδδ = (θθθ′, ve

◦
ch ′(V))′.

In this parametrization ve
◦
ch (V) is the parameter of interest and we test for

ve
◦
ch (V) ∈ H0 with

H0 : ve
◦
ch (V) is such that V = Ip. (2)

In settings (I), (II) and (III), the interpretation of H0 is the same: the data
consists only of spherical noise. The difference between the three settings lies
only in the fact that in setting (II), the data can be considered as spherical
noise with some added contamination or errors that should be ignored while
in setting (III), it can be considered as correlated spherical random noise. The
main idea of this contribution is to get rid of the Ri in the test statistic, since it
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is the only part of the model that is defined differently in the three considered
settings. For that purpose, we define the elliptical signs of the observations

Ui(θθθ,V) =
V−1/2(Xi − θθθ)

∥V−1/2(Xi − θθθ)∥
,

obviously a quantity that is measurable with respect to the Ui. When V = Ip,
we find back the classical spatial signs. We also define the associated elliptical
distances

di(θθθ,V) = ∥V−1/2(Xi − θθθ)∥.

We denote by

S
(n)
sign := S

(n)
sign(θθθ, Ip) = p n−1

n∑
i=1

Ui(θθθ, Ip)Ui(θθθ, Ip)
′. (3)

It has been well known since [6] that in setting (I), asymptotically valid
multivariate sign tests for H0 can be based on the quantity

∆∆∆
(n)
sign(θθθ, Ip) = n−1/2 1

2
Mp

n∑
i=1

ve
◦
ch

(
S
(n)
sign(θθθ, Ip)

)
. (4)

More precisely, for the testing problem (2), the multivariate sign test studied
in [6] rejects H0 at the asymptotic level α when

S(n)(θθθ) := (∆∆∆
(n)
sign(θθθ, Ip))

′ΓΓΓ−
sign(Ip)∆∆∆

(n)
sign(θθθ, Ip) =

n(p+ 2)

2p
∥S(n)

sign(θθθ, Ip)− Ip∥2F

> χ2
p(p+1)/2−1;1−α, (5)

where χ2
ν;δ represents the quantile of order δ of the chi-squared distribution with

ν degrees of freedom and ΓΓΓsign(Ip) is defined as in Theorem 5.3. Note here that
although the explicit forms of the matrices Mp and ΓΓΓsign(Ip) are given for the
sake of precision, they play no role in the problem we tackle. Furthermore, the
final form of the test statistic considered in (5) is rather simple and does not
involve Mp or ΓΓΓsign(Ip). The two main points here are as follows:

(a) the multivariate sign test (5) based on (4) is asymptotically valid in the
elliptical directions setting since (4) does not depend on the Ri;

(b) the quantity θθθ still needs to be estimated in (4) to produce a useable test
statistic.

A natural approach is to replace θθθ in (4) by a root-n consistent estimator θ̂θθ
(n)

.

We denote by ϕ
(n)
sign the equivalent of the test (5) where θθθ has been replace by

θ̂θθ
(n)

. In setting (I), it is shown in [6] that the estimation of θθθ has no asymptotic
cost. In other words, we can consider without loss of generality that we are only
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dealing with ∆∆∆
(n)
sign(θθθ, Ip). This completely eliminates the dependence to the Ri

in (4), asymptotically.
In the settings (II) and (III), the problem is much more difficult because the

arguments used in [6] that allowed to assume that θθθ was specified are no longer
valid. This is why we need to study the potential cost of this estimation of θθθ in
(4).

Considering any root-n consistent estimator θ̂θθ
(n)

of θθθ, the problem under
study amounts to answering the following essential question: “Assuming that
we are in settings (II) or (III), under what conditions onX1, . . . ,Xn is it possible
to assert that

lim
n→∞

∆∆∆
(n)
sign(θ̂θθ

(n)
, Ip)

L
= lim

n→∞
∆∆∆

(n)
sign(θθθ, Ip), (6)

or, equivalently, that

lim
n→∞

n1/2
(
S
(n)
sign(θ̂θθ

(n)
, Ip)− Ip

) L
= lim

n→∞
n1/2

(
S
(n)
sign(θθθ, Ip)− Ip

)
?”. (7)

If the conditions such that (7) holds are met, we can consider that

∆∆∆
(n)
sign(θ̂θθ

(n)
, Ip)

asymptotically no longer depends on the Ri’s anymore and is then such that
its asymptotic distribution does not vary under assumptions (I), (II) and (III).
In the next section, we show under which conditions (7) holds and then under

which conditions the multivariate sign test for sphericity ϕ
(n)
sign is asymptotically

valid under the elliptical directions assumption (1).

4. Asymptotic validity of the multivariate sign test under elliptical
directions assumption

4.1. Asymptotic validity in presence of skewness

From now on, we assume that there exists θ̂θθ
(n)

, a consistent estimator of θθθ

satisfying n1/2(θ̂θθ
(n)

−θθθ) = OP(1) as n → ∞. We will return to the question of the
existence of such an estimator at the end of this section. For any l ∈ {1, . . . , p},
we denote by [v](l) the l-th component of v, v ∈ Rp. We first tackle the case
where the data generating process satisfies the assumptions of setting (II). In

other words, we will study the asymptotic validity of ϕ
(n)
sign assuming that the

Ri are i.i.d. but are not independent of the Ui. The main tool is the following
theorem.

Theorem 4.1. Let X1, . . . ,Xn p-variate random vectors with elliptical direc-

tions satisfying assumption (II). Assume that E(R
−3/2
i ) < ∞. Moreover, assume

that

E(R−1
i

V1/2Ui

∥V1/2Ui∥
) = 0
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and that for every k, l,m ∈ {1, . . . , p},

E([
V1/2Ui

∥V1/2Ui∥
](k)[

V1/2Ui

∥V1/2Ui∥
](l)[

V1/2Ui

∥V1/2Ui∥
](m)R−1

i ) = 0.

Then, the following holds as n → ∞,

lim
n→∞

n1/2
(
S
(n)
sign(θ̂θθ

(n)
, Ip)− Ip

) L
= lim

n→∞
n1/2

(
S
(n)
sign(θθθ, Ip)− Ip

)
.

A direct consequence of Theorem 4.1 is of course the following proposition,

which establishes the asymptotic validity of the multivariate sign test ϕ
(n)
sign in

scenario (II), under certain conditions over the Ri that we will discuss after
stating the result.

Theorem 4.2. Let X1, . . . ,Xn p-variate random vectors with elliptical direc-

tions satisfying the assumptions of Theorem 4.1. Then, ϕ
(n)
sign is asymptotically

valid for H0 as n → ∞ under P
(n)
θθθ,V,R1,...,Rn

.

We need to distinguish two conditions on the Ri. The condition E(R
−3/2
i ) <

∞ indicates only that the distribution of the Ri must not charge 0 too much.
Roughly speaking, this condition makes sense since the construction of the (em-

pirical) spatial signs implies dividing by ∥Xi − θ̂θθ
(n)

∥, a quantity which can
not be too close to 0. This assumption is not particularly stringent and makes
a lot of sense. The second (two-part) technical condition concerns the vector

E(R−1
i

V1/2Ui

∥V1/2Ui∥
) and its components and is more stringent. This condition can

be interpreted as follows: skewness can be present in the distribution of the Xi

but the R−1
i and the Ui still need to satisfy some symmetry assumption; in

particular, they must not be correlated. Then, the test ϕ
(n)
sign is indeed asymp-

totically robust to some form of contamination or measurement errors causing
skewness in the data set of the type considered in the section 2. However, very
roughly speaking, the assumption that said contamination/measurement errors

still preserve some form of symmetry should be met for the test ϕ
(n)
sign to remain

asymptotically valid.

4.2. Asymptotic validity in presence of radial dependence

The radial dependance scenario, where the data generating process satisfies the
assumptions (III), allows to get a much more interesting result. We will now

study the asymptotic consistency of ϕ
(n)
sign assuming that the Ri are not i.i.d.

but are independent of the Ui. We have the following proposition.

Theorem 4.3. Let X1, . . . ,Xn p-variate random vectors with elliptical direc-
tions satisfying assumption (III). Assume moreover that R1, . . . , Rn are such
that n−3/2

∑n
i=1 R

−3
i = oP(1). Then, the following holds as n → ∞,

n1/2
(
S
(n)
sign(θ̂θθ

(n)
, Ip)− S

(n)
sign(θθθ, Ip)

)
= oP(1).
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A proof can be found in the Appendix. A direct consequence of Theorem 4.3
is of course the next proposition, which establishes the asymptotic validity of

ϕ
(n)
sign in a large proportion of scenarios of type (III).

Theorem 4.4. Let X1, . . . ,Xn p-variate random vectors with elliptical direc-

tions satisfying the assumptions of Theorem 4.3 Then, ϕ
(n)
sign is asymptotically

valid for H0 as n → ∞ under P
(n)
θθθ,V,R1,...,Rn

.

Theorem 4.4 is a stronger result than Theorem 4.2 in the sense that the as-
sumption made about the Ri is not that stringent, when independence from the
Ui is assumed. Indeed, n−3/2

∑n
i=1 R

−3
i acts only as a way to prevent the distri-

bution of the Ri from charging 0 at a very fast rate and is a totally reasonable
assumption that will be in practice satisfied by most of the classical examples
we can think of - modulo some approximation we will detail later. As we will

show, testing for sphericity using ϕ
(n)
sign allows virtually to tackle every possible

radial dependance scenario we can think of, making the multivariate sign test a
very powerful tool in setting (III). We illustrate this last statement with some
examples of radii R1, . . . , Rn satisfying the assumptions of Theorem 4.4.

First, we will state a very general result, allowing to model some extremely
general type of radial dependence.

Theorem 4.5. Let X1n, . . . ,Xnn a triangular array of p-variate random vectors
satisfying assumption (III) with R1n = |A1| + cn, . . . , Rnn = |An| + cn, where
(Ai)i∈Z is any arbitrary discrete stochastic process and c−1

n = o(n1/6). Then,
n−3/2

∑n
i=1 R

−3
i = oP(1) as n → ∞.

A direct consequence of Theorem 4.5 is that the test (5) is asymptotically
valid for any root-n consistent estimator of θθθ if the radii R1, . . . , Rn are as-
sumed to be drown in a manner that is asymptotically equivalent to any given
stochastic process. Indeed, since we can have cn = o(1) (assuming that the
speed of convergence of c−1

n is not too fast), we have that for this choice of
cn as n → ∞, Ri = |Ai| + oP(1). Theorem 4.5 highlights the fact that the

assumption of Theorem 4.4 seems perfectly reasonable and that the test ϕ
(n)
sign

can be used in most classical radial dependance scenarios we can think of. In
practice, any model presenting some radial dependence can be approximated by
R1 = |A1|+ cn, . . . , Rn = |An|+ cn with cn = o(1) and for this approximation,

the spatial sign test ϕ
(n)
sign will always be asymptotically valid, provided that cn

does not converge too fast to 0. However, one could want to get rid of the ap-
proximation implied by considering |Ai|+ cn instead of |Ai|, which is perfectly
feasible if one requires more conditions on Ai to be satisfied.

Another very natural approach is to assume that the Ri are identically dis-
tributed but not independent. This covers, for instance, the case where for all
i = 1, . . . , n, Xi = RiV

1/2Ui +θθθ are identically distributed Gaussian p-vectors.
We have the following result, which guarantees that if the dimension p is suf-
ficiently large, the multivariate sign test is asymptotically valid in all classical
elliptical identically distributed cases without having to rely on the type of ap-
proximation used in Theorem 4.5. As usual in the radial dependence scenario,
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we still assume that Ui and Ri are independent and that the Ui are i.i.d..

Theorem 4.6. Let X1, . . . ,Xn identically distributed and satisfying assump-
tion (III). Assume moreover that the Xi have common density fX1 . Assume
moreover that p > 6 and that fX1 is bounded. Under those assumptions,

n−3/2
n∑

i=1

R−3
i = oP(1)

as n → ∞.

The assumption p > 6 may seem rather surprising at first sight. However, as
the radial part of Xi satisfies Ri = ∥V−1/2(Xi − θθθ)∥, its density depends on p
via the Jacobian of the change of variable. When p > 6, the negative moments
of order 6 are finite for most of the classical p-variate models - which means
that Xi does not charge 0 too fast. We provide one last example of models
for which testing for sphericity using spatial signs leads to asymptotically valid
procedures.

Since the classical way of dealing with dependent observations is the time
series framework, it makes perfect sense to consider a model where (some trans-
formation of) R1, . . . , Rn follow a classical time series model and assess whether
the assumptions of Theorem 4.3 are satisfied. In the following proposition, we
consider the log-transformation of the R1, . . . , Rn due to both its popularity in
time series analysis and technical reasons.

Theorem 4.7. Let X1, . . . ,Xn p-variate random vectors satisfying assumption
(III) with log (R1) = A1, . . . , log (Rn) = An, where (Ai)i∈Z is an ARMA(l, q)
process with centred i.i.d. errors ϵi with finite variance.

Moreover, assume that ϵ1 satisfies
∏∞

i=1 E(e
−tiϵ1) < ∞ for every sequence

(ti)i∈N satisfying
∑∞

i=1 t
2
i < ∞.

In this model, for all i ∈ Z, there exist φ1, . . . , φp < 1 and θ1, . . . , θq < 1,
such that we have

Ai =

l∑
k=1

φkAi−k +

q∑
j=1

θjϵi−j + ϵi.

Under those assumptions, n−3/2
∑n

i=1 R
−3
i = oP(1) as n → ∞.

According to Theorem 4.7, we can conclude that the test ϕ
(n)
sign is asymptot-

ically valid if the log-transformed radii R1, . . . , Rn are assumed to be drown
according to the very classical ARMA(l, q) time series model, granted that the
errors ϵi satisfy a certain technical assumption. Although this condition may
seem a little too abstract, it is not hard to check that it is satisfied in the
very classical case where ϵ1 ∼ N (0, σ), which already allows to tackle the most
classical models.

The results of this section clearly show that the asymptotic robustness to
radial dependence of the multivariate sign test is extremely impressive. Indeed,



G. Bernard/Testing for sphericity using spatial signs under elliptical directions 10

ϕ
(n)
sign is asymptotically valid under identically distributed p-variate elliptical ran-

dom vectors with p sufficiently large, under classical ARMA time series models
with Gaussian errors and under models approximating asymptotically any ar-
bitrary stochastic process.

4.3. Estimation of the location parameter

We still need to address the question of the choice of the estimator θ̂θθ
(n)

of θθθ.

We suggest using the spatial median θ̂θθ
(n)

sign, introduced in [15]. Intuitively, this
choice is logical since the spatial median is itself based on the spatial signs of

the observations. The spatial median θ̂θθ
(n)

sign is defined as the p-variate random
vector satisfying

n∑
i=1

Ui(θ̂θθ
(n)

sign, Ip) = 0.

We have the following result, guaranteeing that θ̂θθ
(n)

sign is root-n consistent
under some rather lenient assumptions.

Theorem 4.8. Let X1, . . . ,Xn p-variate random vectors with elliptical di-
rections satisfying assumptions (I), (II) or (III). Let R1, . . . , Rn such that as
n → ∞,

(i) n−1
∑n

i=1 Ri
−1 = OP(1),

(ii) there is no subsequence s(n)−1
∑s(n)

i=1 R−1
i such that s(n)−1

∑s(n)
i=1 R−1

i =
oP(1),

(iii) there exist δ ∈ (0, 1) such that n−1−δ/2
∑n

i=1 Ri
−1−δ = oP(1).

Then, under those assumptions, n1/2(θ̂θθ
(n)

sign − θθθ) = OP(1) as n → ∞.

We briefly summarize the results of this section. Thanks to Theorem 4.8,

plugging the spatial median θ̂θθ
(n)

sign in the test statistic defined in (5) allows us to

obtain a test for sphericity ϕ
(n)
sign which is asymptotically robust to some skewness

or to radial dependence between the observations in most cases (provided that
the assumptions of Theorem 4.1 or 4.3, respectively, are satisfied). We have yet

to answer the question of the asymptotic power of ϕ
(n)
sign, which is the subject

of the next section but we first present the results of a Monte Carlo simulation
study illustrating the results of this section.

4.4. Simulation study

We generated M = 20, 000 independent samples X
(j)
1 , . . . ,X

(j)
n with n = 2, 000

and j ∈ {1, 2, 3, 4}. For all j, the random (p = 3)-variate vectors satisfy X
(j)
i =

R
(j)
i Ui, i ∈ {1, . . . , n}, with Ui uniformly distributed on S2.
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When j ∈ {1, 2}, some asymmetry is present in the underlying data-generating

process (scenario (II)). If j = 1, the R
(j)
i satisfy the assumptions of Theorem

4.2. More precisely, R
(j)
i = |Zi| + |⟨(0, 0, 20),U′

i⟩| + 1/10 where Zi are i.i.d.
standard Gaussian random variables with expectation 1. When j = 2, the

R
(j)
i do not satisfy the assumptions of Theorem 4.2 anymore since we define

R
(j)
i = |Zi|+max{⟨(0, 0, 20),U′

i⟩, 0}+1/10. We mentioned in the section 2 that
inference in scenario (II) makes sense if we assume that some measurement er-
rors were made in such a way that they depend on the directions U1, . . . ,Un.
The simulation setups for j ∈ {1, 2} can be viewed as some toy exemples
where the measurement error is a simple translation of the radial component by
|⟨(0, 0, 20),U′

i⟩| or max{⟨(0, 0, 20),U′
i⟩, 0} respectively.

When j ∈ {3, 4}, some radial dependence is present in the data-generating

process (scenario (III)). If j = 3, the R
(j)
i satisfy the assumptions of Theorem

4.4: in this setup R
(j)
i = |Zi| + 1/10 with (Zi | Zi−1 = z) following a student

distribution with non-centrality parameter z, and 2.9 degrees of freedom (Z0 :=

1). When j = 4 and i = 30 k for k ∈ N, R(j)
i = |(n1/6Zi)

−1| with (Zi | Zi−1 = z)
following a student distribution with non-centrality parameter z and 3 degrees

of freedom (Z0 := 1); else, R
(j)
i = |Zi| + 1/10. It is easy to check that when

j = 4, the assumptions of Theorem 4.4 are not met anymore since R−1
i even

lacks finite third order moments when i = 30 k for some k ∈ N. Those last two
simulation setups can be considered as very simple radial dependence models of
the type described in the section 2, where the global volatility at time i depends
on the past realizations.

In these 4 settings, we study the empirical null distribution of the multivari-

ate sign test statistic S(n)(θ̂θθ
(n)

sign) (see (5)) and of the classical signed-rank test
statistic with Van der Waerden scores, which is known to be asymptotically
χ2
p(p+1)/2−1 in scenario (I) - see for instance [6]. The Van der Waerden test is a

very popular signed-rank test, due to its asymptotic optimality properties under
Gaussian assumptions. The use of this test statistic allows us to assess if the

robustness properties of ϕ
(n)
sign are shared by all signed-rank based test statistics.

For both test statistics, the location parameter θθθ = 0 was estimated using θ̂θθ
(n)

sign

and the histograms of the empirical null distributions were compared to the
target χ2

p(p+1)/2−1 density function. Examination of Figures 1 and 3 confirms

the asymptotic validity of ϕ
(n)
sign and tends to indicate that the Van der Waerden

score test probably does not share the same robustness properties. Figures 2 and
4 suggest that the assumptions of Theorems 4.2 and 4.4 are indeed necessary to

obtain the asymptotic validity of ϕ
(n)
sign in scenarios (II) and (III) respectively.
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Fig 1. Histograms of the sign and Van der Waerden test statistics (in orange) under scenario
(II) compared to target χ2 density function (in red) when the assumptions of Theorem 4.2
are met. The sample size is n = 2, 000.
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Fig 2. Histograms of the sign and Van der Waerden test statistics (in orange) under scenario
(II) compared to target χ2 density function (in red) when the assumptions of Theorem 4.2
are not met. The sample size is n = 2, 000.
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Fig 3. Histograms of the sign and Van der Waerden test statistics (in orange) under scenario
(III) compared to target χ2 density function (in red) when the assumptions of Theorem 4.4
are met. The sample size is n = 2, 000.
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Fig 4. Histograms of the sign and Van der Waerden test statistics (in orange) under scenario
(III) compared to target χ2 density function (in red) when the assumptions of Theorem 4.4
are not met. The sample size is n = 2, 000.
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5. Asymptotic power and optimality of the multivariate sign-based
test under elliptical directions assumption

5.1. Local asymptotic power in presence of skewness and radial
dependence

The asymptotic behavior of ϕ
(n)
sign under local alternatives is well studied in

scenario (I) - see [6]. We then focus on deriving the asymptotic distribution of

the test statistic S(n)(θ̂θθ
(n)

) (see (5)) under local alternatives to H0 in scenarios

(II) and (III). As in previous section, we assume that θ̂θθ
(n)

is a root-n consistent
estimator of θθθ.

Theorem 5.1. Let τττ (n) a converging sequence of p ×p symmetric matrices such
that det(Ip + n−1/2τττ (n)) = 1 and V(n) = Ip + n−1/2τττ (n) is positive definite. Let
τττ (n) → τττ as n → ∞. Let Xn1, . . . ,Xnn a triangular array of p-variate elliptical
random vector satisfying the assumptions of Theorem 4.2 or 4.4 with shape

parameter V(n) and location parameter θθθ. This model is denoted P
(n)

θθθ,V(n),R1,...,Rn
.

Under local alternatives to H0 of the form P
(n)

θθθ,V(n),R1,...,Rn
, the test statistic

S(n)(θ̂θθ
(n)

) is asymptotically non-central χ2
p(p+1)/2−1 with non-centrality param-

eter p
2(p+2) (tr(τττ

2)− p−1tr2(τττ)) as n → ∞.

Theorem 5.1 immediately yields the local asymptotic power of ϕ
(n)
sign. Inter-

estingly, the asymptotic distribution under scenarios (II) and (III) of S(n)(θ̂θθ
(n)

)
appearing in Theorem 5.1 is the exact same as its asymptotic distribution in

scenario (I), derived in [6]. The implication is that when using ϕ
(n)
sign, there is no

loss of asymptotic power occasioned by expanding the model from the classi-
cal elliptical setting (I) to scenarios involving skewness and radial dependence
considered in this contribution. We should stress out that this result is again
rather powerful since the Ri could belong to some very general class of stochastic
processes.

5.2. Asymptotic optimality

We will now turn to the question of the optimality of the multivariate sign

test ϕ
(n)
sign. Following Le Cam asymptotic theory of experiments, the main tool

will be a Local Asymptotic Normality (LAN) result for the sign-based central
sequence (4). In the classical elliptical framework (I), it is common to consider
the following slightly more stringent elliptical density model where the Ri are
such that X1, . . . ,Xn admit a density with respect to the Lebesgue measure. In

this model, denoted by P
(n)
θθθ,σ,V,f1

, X1, . . . ,Xn, have common density

fX(x) = cp,σ,f1f1

(
1

σ

(
(x− θθθ)′V−1(x− θθθ)

)1/2)
,
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for some scale parameter σ ∈ R+
0 , some f1 ∈ W 1,2(R+

0 ) belonging to the class
of the standardized radial functions

F1 := {f : R+
0 → R+ | (

∫ ∞

0

rp−1f(r)dr < ∞) ∩ (

∫ 1

0
rp−1f(r)dr∫∞

0
rp−1f(r)dr

= 1/2)}

and cp,σ,f1 a normalization constant. This purely technical constraint on f1
allows to avoid identifiability issues without any moment hypothesis. In this
context, it is well known that there is no radial function belonging to F1 such

that the sign-based test for sphericity ϕ
(n)
sign is locally and asymptotic optimal.

However, given a radial function f1 ∈ F1, the following LAN property holds, as
shown by [6]. This LAN property allows us to construct f1-specified locally and

asymptotically optimal tests for H0 based on the central sequence ∆∆∆
(n)
f1

(θθθ, σ,V)
defined in the Theorem 5.2 below.

Theorem 5.2. For any f1 ∈ F1 and for any sequence τττ (n) as in Theorem 5.1

we have under P
(n)
θθθ,σ,V,f1

and as n → ∞ that

log

(dP
(n)

θθθ,σ,V+n−1/2τττ(n),f1

dP
(n)
θθθ,σ,V,f1

)
= ve

◦
ch ′(τττ)∆∆∆

(n)
f1

(θθθ, σ,V)

− 1

2
ve

◦
ch ′(τττ)ΓΓΓf1(V)ve

◦
ch (τττ) + oP(1),

where

∆∆∆
(n)
f1

(θθθ, σ,V) =
n1/2

2
Mp(V)vec(V−1/2S

(n)
f1

(θθθ, σ,V)V−1/2),

S
(n)
f1

(θθθ, σ,V) = n−1
n∑

i=1

− ḟ1
f1

(di(θθθ,V)

σ

)di(θθθ,V)

σ
Ui(θθθ,V)Ui(θθθ,V)′,

ΓΓΓf1(V) =
Jp(f1)

4p(p+ 2)
Mp(V) (V⊗2)−1/2

(
Ip2 +Kp −

2

p
vec(Ip)vec(Ip)

′)
(V⊗2)−1/2 M′

p(V)

and

Jp(f1) =

∫∞
0

ḟ2
1 (r)

f1(r)
rp+1dr∫∞

0
f1(r)rp−1dr

.

Moreover, ∆∆∆
(n)
f1

(θθθ, σ,V) → N (0,ΓΓΓf1(V)) as n → ∞ under P
(n)
θθθ,σ,V,f1

.
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As mentioned earlier, this theorem does not allow us to derive an opti-
mality property for ϕsign since there is no radial function f1 ∈ F1 satisfying

∆∆∆
(n)
sign(θθθ, Ip) = ∆∆∆

(n)
f1

(θθθ, σ, Ip). We then take any positive real sequence 0 < νn =
o(1) and consider the sequence of radial functions

fn(r) = (1 +
r2

νn
)−

p+νn
2 (8)

with

cp,σ,fn =
Γ((p+ νn)/2)

πp/2ν
p/2
n σp Γ(νn/2)

.

These radial functions correspond to random vectors following multivariate
t-distributions with νn > 0 degrees of freedom. Even if fn does not technically
belong to F1, there is no identifiability problem in this specific scenario. Later,
when we refer to (8), the sequence can in some situations be standardized such
that it belongs to F1. We have an equivalent of the classical LAN property of
Theorem 5.2 for this sequence fn of radial functions.

Theorem 5.3. Let V = Ip. Let Xn1, . . . ,Xnn a triangular array of i.i.d. ran-

dom vectors with distribution P
(n)
θθθ,σ,V,fn

. For any sequence of radial functions

fn satisfying (8) and for any sequence τττ (n) as in Theorem 5.1, we have under

P
(n)
θθθ,σ,V,fn

and as n → ∞ that

log

(dP
(n)

θθθ,σ,V+n−1/2τττ(n),fn

dP
(n)
θθθ,σ,V,fn

)
= ve

◦
ch ′(τττ)∆∆∆

(n)
sign(θθθ,V)

− 1

2
ve

◦
ch ′(τττ)ΓΓΓsign(V)ve

◦
ch (τττ) + oP(1),

where

∆∆∆
(n)
sign(θθθ,V) :=

n1/2

2
Mp(V)vec(V−1/2S

(n)
sign(θθθ,V)V−1/2),

and

ΓΓΓsign(V) :=
p

4(p+ 2)
Mp(V) (V⊗2)−1/2

(
Ip2 +Kp −

2

p
vec(Ip)vec(Ip)

′)
(V⊗2)−1/2 M′

p(V).

Moreover, ∆∆∆
(n)
sign(θθθ,V) → N (0,ΓΓΓsign(V)) as n → ∞ under P

(n)
θθθ,σ,V,fn

.

A proof is given in the Appendix. Note that the rate of convergence of νn plays
no role in Theorem 5.3, which is rather uncommon in this type of asymptotic
results. Now, Theorem 5.3 alongside classical Le Cam asymptotic theory of
experiments directly yields the following asymptotic optimality result for the

multivariate sign test for sphericity ϕ
(n)
sign.
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Theorem 5.4. For any sequence of radial functions fn satisfying (8) and under

the sequence of experiments P
(n)
θθθ,σ,V,fn

as in Theorem 5.3, the test ϕ
(n)
sign is locally

and asymptotically maximin when testing for H0 against alternatives of the type
V(n) = Ip + n−1/2τττ (n), with τττ (n) as in Theorem 5.1.

The sequence of experiments corresponding to radial functions (8) is such
that, as n → ∞, the random vectors considered tend to have increasingly heavy
tails. An intuitive way to view the optimality result of Theorem 5.4 is that
the heavier the tails of the considered multivariate student random vectors, the
better the asymptotic performance of the sign test compared to its competitors.
We emphasize the fact that, apart from the trivially degenerate case νn = 0,

there is no rate of convergence such that ϕ
(n)
sign is not asymptotically optimal.

As mentioned in the introduction, this result is rather interesting in itself since
getting rid of all the radial information present in the random vectors turns out
to be the optimal choice in this scenario. This fact is rather counter-intuitive in
the sense that getting rid of a large part of the - seemingly relevant - information
is the asymptotically optimal way to perform inference in this context. As the
assumptions of Theorem 5.4 may seem a bit too restrictive, we introduce a
more general result, valid for any collection of random vectors with elliptical
directions such that its limiting behavior is similar to that of Theorem 5.4.
We consider the following triangular array of random vectors with elliptical
directions, generalizing the model used in proposition 5.4.

Let Xn1, . . . ,Xnn a triangular array of i.i.d. random p-vectors with elliptical
directions (see (1)) such that, for every n, the array admits joint density

fXn1,...,Xnn
(x1, . . . ,xn) = cp,σ,f̃n f̃n

(
1

σ

(
(x1 − θθθ)′V−1(x1 − θθθ)

)1/2
, . . . ,

1

σ

(
(xn − θθθ)′V−1(xn − θθθ)

)1/2)
.

The sequence of joint radial functions are assumed to belong to the class

F̃1 = {f̃1 : (R+
0 )

p → R+ | (
∫
(R+

0 )p

n∏
i=1

rp−1
i f̃1(r1, . . . , rn)dr1 . . . drn < ∞)

∩(
∫ 1

0
. . .

∫ 1

0

∏n
i=1 r

p−1
i f̃1(r1, . . . , rn)dr1 . . . drn∫∞

0
. . .

∫∞
0

∏n
i=1 r

p−1
i f̃1(r1, . . . , rn)dr1 . . . drn

= 1/2)}. (9)

This model is denoted P̃
(n)

θθθ,σ,V,f̃n
and includes some cases from both scenarios

(I) and (III). It can be viewed as a generalized version of the classical elliptical
density model where some dependence may be present in the radial part of the
random vectors.

Theorem 5.5. Let f̃n a sequence of joint radial functions belonging to the
class (9). Assume that there exist a sequence 0 < νn = o(1) with corresponding
(standardized) sequence fn satisfying (8) such that
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∥∥∥∥∥ f̃n(r1, . . . , rn)∏n
i=1 fn(ri)

∥∥∥∥∥
∞

= 1 + o(1)

as n → ∞.
Then, under the sequence of experiments P̃

(n)

θθθ,σ,V,f̃n
, the test ϕ

(n)
sign is locally

and asymptotically maximin when testing for H0 against alternatives of the type
V(n) = Ip + n−1/2τττ (n), with τττ (n) as in Theorem 5.1.

Theorem 5.5 is a slightly more general version of Theorem 5.4 which applies
to arrays of - potentially dependent - elliptical random vectors such that their
joint radial densities are sufficiently close to the joint radial densities of indepen-
dent multivariate students random vectors with increasingly heavy tails. Note
that there is no need to require additional conditions in terms of the speed of
convergence of f̃n(r1, . . . , rn)/

∏n
i=1 fn(ri) to obtain local asymptotic optimal-

ity of ϕ
(n)
sign. In this sense, Theorem 5.5 is a fairly general result, valid for any

collection of random vectors which tend to behave asymptotically like multi-
variate student random vectors with a very small number of degrees of freedom.
The main point of Theorem 5.5 is to establish that the asymptotic optimality

of ϕ
(n)
sign does not depend on the speed of convergence of f̃n, even in a class of

radial functions slightly more general than F1.

5.3. Simulation study

We now present some simulation results illustrating the fact that the local

asymptotic power of ϕ
(n)
sign are the same in scenarios (I), (II) and (III).

We generated M = 1, 000 independent samples X
(j,τ)
1 , . . . ,X

(j,τ)
n with n =

10, 000, τ ∈ {0, 1, . . . , 9, 10} and j ∈ {1, 2, 3}. For all j, i and τ , the (p = 3)-

dimensional random vector satisfies X
(j)
i = R

(j)
i (

V(n)
τ

det(V
(n)
τ )1/p

)1/2Ui with

V(n)
τ = diag(1, 1, 1− n−1/2τ)

and with the Ui uniformly distributed on S2. For τ = 0, the data-generating
process is spherical while for every τ > 0, the data-generating process is increas-
ingly under the alternative.

The case j = 1 corresponds to scenario (I): R
(j)
i = |Zi| with Zi i.i.d. standard

Gaussian random variables with expectation 1. The case j = 2 corresponds to

scenario (II): R
(j)
i = |Zi| + |⟨(0, 0, 1),U′

i⟩| + 1/10 where Zi are i.i.d. standard
Gaussian random variables with expectation 1. Finally, the case j = 3 corre-

sponds to scenario (III): R
(j)
i = |Zi|+ 1/10 with (Zi | Zi−1 = z) ∼ N (z, 1) and

Z0 := 1.
In the three settings, we study the empirical rejection frequencies of the mul-

tivariate sign test ϕ
(n)
sign, compared to the theoretical asymptotic local power
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derived in Theorem 5.1. The test ϕ
(n)
sign is performed at the asymptotic confi-

dence level α = 0.05. Inspection of Figure 5 confirms the theoretical findings of
Theorem 5.1.
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Fig 5. Empirical rejection frequencies of ϕ
(n)
sign under scenario (I) (in dotted blue), scenario

(II) (in dotted green) and scenario (III) (in dotted orange) compared to the theoretical asymp-
totic power curve (in red). The sample size is n = 10, 000.

We conclude this section by a last simulation study meant to illustrate the

asymptotic optimality properties of ϕ
(n)
sign. We generatedM = 2, 000 independent

samples X
(τ)
1 , . . . ,X

(τ)
n with n ∈ {110, 200, 500, 1000} and τ ∈ {0, 1, . . . , 9, 10}.

For all τ and for all n, X
(τ)
1 , . . . ,X

(τ)
n are i.i.d. and are drawn according to a

(p = 3)-dimensional multivariate t-distribution with 150
n degrees of freedom and

shape parameter
V(n)

τ

det(V
(n)
τ )1/p

with V
(n)
τ = diag(1, 1, 1 − n−1/2τ). The larger n

is, the larger the dispersion of the data and the closest the simulation setup is

to the model of Theorem 5.4, where ϕ
(n)
sign is locally and asymptotically optimal.

We performed at the asymptotic level α the multivariate sign test ϕ
(n)
sign and the

signed-rank test with Van der Waerden score. Inspection of Figure 6 confirms

that ϕ
(n)
sign tends to outperform more and more the Van der Waerden test as the

tails of the distribution grow heavier (with n) - which is in line with Theorem
5.4.
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Fig 6. Empirical rejection frequencies of ϕ
(n)
sign (in blue) and of the Van der Waerden test

(in red) as a function of τ under multivariate student assumption with df = 150/n (scenario
(I)). The sample size is n ∈ {110, 200, 500, 1000}.
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6. Conclusions

In this contribution, we have studied the asymptotic behavior of the spatial sign

test for sphericity ϕ
(n)
sign when the model does not satisfy the classical elliptical

distribution assumption. Expanding on the elliptical assumption, we have iden-
tified two settings in which testing for sphericity is a highly relevant problem
that can be reframed through a parametric lens: elliptical directions in presence
of skewness (II) and elliptical directions with radial dependence (III). We have

derived asymptotic validity results and local asymptotic power results for ϕ
(n)
sign

in these two settings. In particular, we have shown that a very general type
of dependence can be present in the radial part of the observations without

affecting the asymptotic validity and local power of ϕ
(n)
sign. We have also shown

that ϕ
(n)
sign enjoys certain asymptotic optimality properties when the underlying

process tends to be very strongly heavy tailed. These results imply that, assum-
ing a strongly heavy tailed data-generating process, the use of the spatial sign
test for sphericity will guarantee exceptional asymptotic power while providing
some asymptotic robustness to skewness and radial dependence. It should be
noted that these robustness properties do not seem to be enjoyed by every test
in the class of signed-rank tests proposed by [6] - as highlighted in the simula-
tion study in section 4. This is why the combination of Theorems 4.2, 4.4 and

5.4 argues strongly in favour of using ϕ
(n)
sign when the data generating process is

suspected to be strongly heavy-tailed. Indeed, from a practical point of view,

the asymptotic power of ϕ
(n)
sign will be arbitrarily close to the asymptotic power

of the best signed-rank based competitors, with stronger guarantees regarding
its robustness to the lack of classical elliptical assumption. When n is finite,

the asymptotic optimality of the test ϕ
(n)
new results in a tendency for ϕ

(n)
sign to

dominate in terms of power the classical signed-rank based competitors when
the data generating process is strongly heavy-tailed. This fact was highlighted
in the simulation study in the section 5. In this sense, the asymptotic results
of this contribution are of practical use as they admit a fairly straightforward
interpretation for finite n. An interesting open question concerns the conditions
under which procedures based on the signed-rank - such as the Van der Waerden
test considered in the various simulation studies - would exhibit the same type

of robustness as ϕ
(n)
sign in scenarios (II) and (III). The simulation study of the

section 4 suggests that these conditions would be different from those derived

for ϕ
(n)
sign in this contribution. This question is left to future research.
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Appendix: Proofs of the various results

Proof of Theorem 4.1. The proof consists in a direct application of Theorem 2
in [3].

Proof of Theorem 4.2. The result is a direct consequence of Theorem 4.1.

Proof of Theorem 4.3. First note that if n−3/2
∑n

i=1 R
−3
i

P→ 0, then we have by
Jensen inequality and the fact that Ri ≥ 0 almost surely that

0 ≤ (n−3/2
n∑

i=1

R−2
i )3/2 ≤ n−3/4(n−1

n∑
i=1

R−2
i )3/2 ≤ n−3/4n−1

n∑
i=1

R−3
i

P→ 0.

This directly implies that n−3/2
∑n

i=1 R
−2
i = oP(1), a fact that will be used

later. Now, we note that

∥Xi − θθθ∥2 − 2(Xi − θθθ)′(θ̂θθ
(n)

− θθθ) + ∥θ̂θθ
(n)

− θθθ∥2

∥Xi − θθθ∥2
Ui(θ̂θθ

(n)
, Ip)U

′
i(θ̂θθ

(n)
, Ip)

=
∥Xi − θ̂θθ

(n)
∥2

∥Xi − θθθ∥2
Ui(θ̂θθ

(n)
, Ip)U

′
i(θ̂θθ

(n)
, Ip)

=
∥Xi − θ̂θθ

(n)
∥2

∥Xi − θθθ∥2
(Xi − θ̂θθ

(n)
)(Xi − θ̂θθ

(n)
)′

∥Xi − θ̂θθ
(n)

∥2

=
(Xi − θθθ)(Xi − θθθ)′

∥Xi − θθθ∥2
+

(Xi − θ̂θθ
(n)

)(Xi − θ̂θθ
(n)

)′ − (Xi − θθθ)(Xi − θθθ)′

∥Xi − θθθ∥2

= Ui(θθθ, Ip)U
′
i(θθθ, Ip) +

(Xi − θ̂θθ
(n)

)(Xi − θ̂θθ
(n)

)′ − (Xi − θθθ)(Xi − θθθ)′

∥Xi − θθθ∥2

= Ui(θθθ, Ip)U
′
i(θθθ, Ip)

+
(θ̂θθ

(n)
− θθθ)(θ̂θθ

(n)
− θθθ)′ − (Xi − θθθ)(θ̂θθ

(n)
− θθθ)′ − (θ̂θθ

(n)
− θθθ)(Xi − θθθ)′

∥Xi − θθθ∥2
,

which yields

Ui(θ̂θθ
(n)

, Ip)U
′
i(θ̂θθ

(n)
, Ip)

= Ui(θθθ, Ip)U
′
i(θθθ, Ip)

+
(θ̂θθ

(n)
− θθθ)(θ̂θθ

(n)
− θθθ)′ − (Xi − θθθ)(θ̂θθ

(n)
− θθθ)′ − (θ̂θθ

(n)
− θθθ)(Xi − θθθ)′

∥Xi − θθθ∥2

+
2(Xi − θθθ)′(θ̂θθ

(n)
− θθθ)− ∥θ̂θθ

(n)
− θθθ∥2

∥Xi − θθθ∥2
Ui(θ̂θθ

(n)
, Ip)U

′
i(θ̂θθ

(n)
, Ip).

(10)
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Now, (10) implies that

n1/2(S
(n)
sign(θ̂θθ

(n)
, Ip)− S

(n)
sign(θθθ, Ip)) = n−1/2

n∑
i=1

(
(θ̂θθ

(n)
− θθθ)(θ̂θθ

(n)
− θθθ)′

−(Xi − θθθ)(θ̂θθ
(n)

− θθθ)′

−(θ̂θθ
(n)

− θθθ)(Xi − θθθ)′
)

1

∥Xi − θθθ∥2

+n−1/2
n∑

i=1

(
2(Xi − θθθ)′(θ̂θθ

(n)
− θθθ)

∥Xi − θθθ∥2

−∥θ̂θθ
(n)

− θθθ∥2

∥Xi − θθθ∥2

)
Ui(θ̂θθ, Ip)U

′
i(θ̂θθ, Ip)

:= An +Bn.

Recall that it has been established at the very beginning of the proof that as

n → ∞, n−3/2
∑n

i=1 R
−2
i = oP(1). Now, using this last fact and n1/2(θ̂θθ

(n)
−θθθ) =

OP(1), we get that as n → ∞,

An = n−1/2
n∑

i=1

∥Xi − θθθ∥−2

(
(θ̂θθ

(n)
− θθθ)(θ̂θθ

(n)
− θθθ)′ − (Xi − θθθ)(θ̂θθ

(n)
− θθθ)′

−(θ̂θθ
(n)

− θθθ)(Xi − θθθ)′
)

= n−1/2
n∑

i=1

R−1
i ∥V1/2Ui∥−2

(
R−1

i (θ̂θθ
(n)

− θθθ)(θ̂θθ
(n)

− θθθ)′

−V1/2Ui(θ̂θθ
(n)

− θθθ)′ − (θ̂θθ
(n)

− θθθ)U′
iV

1/2

)
= −n−1/2

n∑
i=1

R−1
i ∥V1/2Ui∥−2

(
V1/2Ui(θ̂θθ

(n)
− θθθ)′ + (θ̂θθ

(n)
− θθθ)U′

iV
1/2

)
+oP(1).

(11)

Using the independence of the Ri and the Ui (which are i.i.d.) alongside
n−3/2

∑n
i=1 R

−2
i = oP(1), we get that as n → ∞
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E
(
∥n−1

n∑
i=1

R−1
i

V1/2Ui

∥V1/2Ui∥2
∥2
)

= E
(
n−2

n∑
i=1

R−1
i

U′
iV

1/2

∥V1/2Ui∥2
n∑

j=1

R−1
j

V1/2Uj

∥V1/2Uj∥2
)

= n−2
n∑

i=1

E(R−2
i )E

( U′
iV

1/2

∥V1/2Ui∥2
V1/2Ui

∥V1/2Ui∥2
)

+n−2
∑

1≤i̸=j≤n

(
E(R−1

i R−1
j )

E
( U′

iV
1/2

∥V1/2Ui∥2
V1/2Uj

∥V1/2Uj∥2
))

= E
( U′

1V
1/2

∥V1/2U1∥2
V1/2U1

∥V1/2U1∥2
)
n−2

n∑
i=1

E(
1

R2
i

)

= o(1). (12)

It is implied by (12) that n−1
∑n

i=1 R
−1
i

V1/2Ui

∥V1/2Ui∥2 = oP(1). Then, using again

that n1/2(θ̂θθ
(n)

− θθθ) = OP(1), we get from this last fact and from (11) that

An = −n−1/2
n∑

i=1

V1/2Ui(θ̂θθ
(n)

− θθθ)′ + (θ̂θθ
(n)

− θθθ)U′
iV

1/2

Ri∥V1/2Ui∥2
+ oP(1)

= −n−1
n∑

i=1

V1/2Ui n
1/2(θ̂θθ

(n)
− θθθ)′ + n1/2(θ̂θθ

(n)
− θθθ)U′

iV
1/2

Ri∥V1/2Ui∥2
+ oP(1)

= oP(1)

as n → ∞. Now, consider

Bn = n−1/2
n∑

i=1

2(Xi − θθθ)′(θ̂θθ
(n)

− θθθ)− ∥θ̂θθ
(n)

− θθθ∥2

∥Xi − θθθ∥2
Ui(θ̂θθ, Ip)Ui(θ̂θθ, Ip)

′.

Using arguments of the same type as earlier and noting that∥∥∥∥∥n∥θ̂θθ(n) − θθθ∥2n−3/2
n∑

i=1

1

R2
i

Ui(θ̂θθ, Ip)Ui(θ̂θθ, Ip)
′

∥∥∥∥∥
F

≤ n∥θ̂θθ
(n)

− θθθ∥2∥∥∥∥∥n−3/2
n∑

i=1

1

R2
i

1p1
′
p

∥∥∥∥∥
F

= oP(1),
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we get that

Bn = n−1/2
n∑

i=1

2(Xi − θθθ)′(θ̂θθ
(n)

− θθθ)

∥Xi − θθθ∥2
Ui(θ̂θθ, Ip)Ui(θ̂θθ, Ip)

′

−n−1/2
n∑

i=1

∥θ̂θθ
(n)

− θθθ∥2

∥Xi − θθθ∥2
Ui(θ̂θθ, Ip)Ui(θ̂θθ, Ip)

′

= n−1/2
n∑

i=1

2(Xi − θθθ)′(θ̂θθ
(n)

− θθθ)

∥Xi − θθθ∥2
Ui(θ̂θθ, Ip)Ui(θ̂θθ, Ip)

′

−n∥θ̂θθ
(n)

− θθθ∥2n−3/2
n∑

i=1

1

R2
iλV,p

Ui(θ̂θθ, Ip)Ui(θ̂θθ, Ip)
′

= n−1/2
n∑

i=1

2(Xi − θθθ)′(θ̂θθ
(n)

− θθθ)

∥Xi − θθθ∥2
Ui(θ̂θθ, Ip)Ui(θ̂θθ, Ip)

′ + oP(1),

with λV,p the last eigenvalue of V. We then have, using (10) again, that as
n → ∞

Bn = n−1/2
n∑

i=1

2(Xi − θθθ)′(θ̂θθ
(n)

− θθθ)

∥Xi − θθθ∥2
(
Ui(θθθ, Ip)U

′
i(θθθ, Ip)

+
(θ̂θθ

(n)
− θθθ)(θ̂θθ

(n)
− θθθ)′ − (Xi − θθθ)(θ̂θθ

(n)
− θθθ)′ − (θ̂θθ

(n)
− θθθ)(Xi − θθθ)′

∥Xi − θθθ∥2

+
2(Xi − θθθ)′(θ̂θθ

(n)
− θθθ)− ∥θ̂θθ

(n)
− θθθ∥2

∥Xi − θθθ∥2
Ui(θ̂θθ

(n)
, Ip)U

′
i(θ̂θθ

(n)
, Ip)

)
+ oP(1).

(13)

We denote by Ũ
(ℓ)
i the ℓ-th component of V1/2Ui

∥V1/2Ui∥
, 1 ≤ ℓ ≤ p. Now, note

that for the first term of (13), we have for 1 ≤ k, l ≤ p that

(n−1/2
n∑

i=1

2(Xi − θθθ)′(θ̂θθ
(n)

− θθθ)

∥Xi − θθθ∥2
Ui(θθθ, Ip)U

′
i(θθθ, Ip))k,l

= 2

p∑
m=1

n1/2(θ̂θθ
(n)

− θθθ)(m)n−1
n∑

i=1

R−1
i λ

−1/2
V,p Ũ

(m)
i Ũ

(k)
i Ũ

(l)
i .

Now, using again that n−3/2
∑n

i=1 R
−2
i = oP(1), we have that

n−1
n∑

i=1

R−1
i Ũ

(m)
i Ũ

(k)
i Ũ

(l)
i
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converges to 0 in quadratic mean because as n → ∞,

E
(
(n−1

n∑
i=1

R−1
i Ũ

(m)
i Ũ

(k)
i Ũ

(l)
i )2

)
= E(n−2

n∑
i=1

R−1
i Ũ

(m)
i Ũ

(k)
i Ũ

(l)
i

n∑
i=1

R−1
j Ũ

(m)
j Ũ

(k)
j Ũ

(l)
j )

≤ n−2
∑

1≤i̸=j≤n

(
E(R−1

i R−1
j )

E(Ũ
(m)
i Ũ

(k)
i Ũ

(l)
i Ũ

(m)
j Ũ

(k)
j Ũ

(l)
j )

)
+n−2

n∑
i=1

E(R−2
i )

= o(1).

(14)

The last line holds because E(Ũ
(m)
i Ũ

(l)
i Ũ

(k)
i ) = −E(Ũ

(m)
i Ũ

(l)
i Ũ

(k)
i ) = 0 (re-

call that the Ũi are i.i.d.). Then, (13) and (14) yield

Bn = n−1/2
n∑

i=1

2(Xi − θθθ)′(θ̂θθ
(n)

− θθθ)

∥Xi − θθθ∥2

( (θ̂θθ(n) − θθθ)(θ̂θθ
(n)

− θθθ)′ − (Xi − θθθ)(θ̂θθ
(n)

− θθθ)′ − (θ̂θθ
(n)

− θθθ)(Xi − θθθ)′

∥Xi − θθθ∥2

+
2(Xi − θθθ)′(θ̂θθ

(n)
− θθθ)− ∥θ̂θθ

(n)
− θθθ∥2

∥Xi − θθθ∥2
Ui(θ̂θθ

(n)
, Ip)U

′
i(θ̂θθ

(n)
, Ip)

)
+ oP(1).

The fact that n−3/2
∑n

i=1 R
−3
i = oP(1), n

−3/2
∑n

i=1 R
−2
i = oP(1) and that

n1/2(θ̂θθ
(n)

− θθθ) = OP(1) alongside same reasoning as earlier yields Bn = oP(1).
Then, as n → ∞, we have that

n1/2(S
(n)
sign(θ̂θθ

(n)
, Ip)− S

(n)
sign(θθθ, Ip)) = An +Bn = oP(1),

which concludes the proof.

Proof of Theorem 4.4. The result is a direct consequence of Theorem 4.3.
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Proof of Theorem 4.5. The proof holds trivially because, by definition of cn,

lim
n→∞

n−3/2
n∑

i=1

R−3
in ≤ lim

n→∞
max

i∈{1,...,n}
{n−1/2R−3

in }

= lim
n→∞

max
i∈{1,...,n}

{n−1/2(|Ai|+ cn)
−3}

≤ lim
n→∞

n−1/2c−3
n

= lim
n→∞

(n−1/6c−1
n )3

= 0.

Note that it is clear that the result hold for any stochastic process Ai.

Proof of Theorem 4.6. Note that since p ≥ 7 and because the Xi have common
(bounded) density fX1

, E(R−6
i ) =

∫∞
0

r−6rp−1fX1
(r)dr < ∞. Now, write

lim
n→∞

n−3/2
n∑

i=1

R−3
i ≤ lim

n→∞
max

i∈{1,...,n}
{n−1/2R−3

i }.

We also note that maxi∈{1,...,n}{n−1/2R−3
i } = oP(1) if

max
i∈{1,...,n}

{n−1R−6
i } = oP(1)

as n → ∞. Now, since the Ri are identically distributed, we have that for any
fixed δ ∈ R+

0 ,

lim
n→∞

n∑
i=1

P(R−6
i ≥ iδ) = lim

n→∞

n∑
i=1

P(R−6
1 ≥ iδ) ≤ E(R−6

1 )

δ
< ∞.

Then, by the Borel-Cantelli lemma, we have that for any arbitrary δ > 0,

P([n−1R−6
n ≥ δ] infinitely often) = 0.

In other words, n−1R−6
n converges almost surely to 0 as n → ∞. It re-

mains to check that as n → ∞, maxi∈{1,...,n}{n−1R−6
i } = oP(1) (actually, we

show the almost sure convergence). Assume that there exist c ∈ R+
0 such that

(maxi∈{1,...,n}{n−1R−6
i })n ≥ c infinitely often with non-zero probability. How-

ever, we have that for all fixed k ∈ N0, the sequence (n−1R−6
k )n converges

almost surely to 0 as n → ∞. This entails that the (smallest) index m(n) such
that n−1R−6

m(n) = maxi∈{1,...,n}{n−1R−6
i } satisfies m(n) → ∞ as n → ∞ with

probability 1. Then, for c ∈ R+
0 , and for any N ∈ N0 there exist with non-zero

probability an n ≥ N such that n−1R−6
n ≥ c. Indeed, from previously stated

arguments, there exist with non-zero probability a ñ large enough allowing to
get simultaneously
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(i) c ≤ ñ−1R−6
m(ñ) ≤ m(ñ)−1R−6

m(ñ)

and (ii) n := m(ñ) ≥ N . This is obviously a contradiction since the sequence
n−1R−6

n converges to 0 almost surely, as established earlier.

Proof of Theorem 4.7. Since the ARMA(l, q) process Ai, i ∈ Z is a purely
non-deterministic zero-mean stable stationary process, the Wold Decomposition
Theorem yields

Ai =

∞∑
j=1

bjϵi−j (15)

with
∑∞

j=1 b
2
j < ∞ and b1 = 1 - see for instance [7]. This directly entails that the

Ai are identically distributed with finite variance. Now, we have by assumption
on ϵ1 that,

E(R−6
i ) = E(R−6

1 ) = E(e−6A1) = E(e−6
∑∞

j=1 bjϵ1−j ) =

∞∏
j=1

E(e−6bjϵ1) < ∞.

From now on, the rest of the proof follows exactly as in the proof of Theorem
4.6.

The following technical result from [17] is required for the next proof.

Lemma A.1. Let Tn(θ̃θθ), θ̃θθ ∈ Rp a sequence of convex stochastic processes. Let

T (θ̃θθ) be a convex stochastic process such that the finite dimensional distributions

of Tn(θ̃θθ) converge to the finite dimensional distributions of T (θ̃θθ) for all θ̃θθ ∈ Rp.

Let {θ̃θθn, n ∈ N} the collection of random p-vectors such that for all n ∈ N0,

θ̃θθn = inf
θ̃θθ∈Rp

Tn(θ̃θθ),

and θ̃θθlim a random p-vector such that

θ̃θθlim = inf
θ̃θθ∈Rp

T (θ̃θθ).

Then, we have that as n → ∞, θ̃θθn
L→ θ̃θθlim.

Proof of Theorem 4.8. We consider without loss of generality and for the sake

of simplicity that θθθ = 0 in this proof. It is well known that since θθθ = 0, n1/2θ̂θθ
(n)

sign

minimizes (in θ̃θθ) the following expression

n∑
i=1

∥Xi − n−1/2θ̃θθ∥ − ∥Xi∥ =

n∑
i=1

∥RiV
1/2Ui − n−1/2θ̃θθ∥ − ∥RiV

1/2Ui∥.
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Using approximation (A3) in [17], we have that for all θ̃θθ ∈ Rp and for all
0 < δ < 1,

|
n∑

i=1

∥RiV
1/2Ui − n−1/2θ̃θθ∥ − ∥RiV

1/2Ui∥ − n−1/2
n∑

i=1

V1/2U′
i

∥V1/2Ui∥
θ̃θθ

−n−1
n∑

i=1

(2Ri)
−1∥V1/2Ui∥θ̃θθ

′(
Ip −

V1/2UiU
′
iV

1/2

∥V1/2Ui∥2
)
θ̃θθ|

≤ C n−(2+δ)/2
n∑

i=1

R
−(1+δ)
i λ

1/2
V,1 ∥θ̃θθ∥2+δ (16)

with C ∈ R+
0 some constant independent of θ̃θθ and X1, . . . ,Xn and λV,1 the first

eigenvalue of V. Using the fact that n−(2+δ)/2
∑n

i=1 R
−(1+δ)
i = oP(1) for some

δ ∈ (0, 1), (16) yields, for all θ̃θθ ∈ Rp as n → ∞,

n∑
i=1

∥RiV
1/2Ui − n−1/2θ̃θθ∥ − ∥RiV

1/2Ui∥ − n−1/2
n∑

i=1

V1/2U′
i

∥V1/2Ui∥
θ̃θθ

−n−1
n∑

i=1

(2Ri)
−1θ̃θθ

′(
Ip −

V1/2UiU
′
iV

1/2

∥V1/2Ui∥2
)
θ̃θθ

= oP(1). (17)

Assume now that n1/2θ̂θθ
(n)

sign is not OP(1) and note that the collection

{n1/2θ̂θθ
(n)

sign | n = 1, . . . , L}

is bounded in probability for all fixed L ∈ N0. Then, there is ϵ in (0, 1) and a

subsequence
(
q(n)

)1/2
θ̂θθ
(q(n))

sign such that for all M ∈ R+
0 , there exist an N ∈ N

such that

P(∥
(
q(n)

)1/2
θ̂θθ
(q(n))

sign ∥ ≥ M) > ϵ

for all n ≥ N . Now, since
(
q(n)

)−1 ∑q(n)
i=1 R−1

i = OP(1), we have by Prokhorov’s
Theorem that there exists a subsequence

(
m(q(n))

)−1
m(q(n))∑

i=1

(2Ri)
−1

(
Ip −

V1/2UiU
′
iV

1/2

∥V1/2Ui∥2
)

converging in distribution to some random matrix A. Obviously as n → ∞
we also have that

(
m(q(n))

)−1/2 ∑m(q(n))
i=1

V1/2Ui

∥V1/2Ui∥
L→ Z, with Z multivariate

Gaussian. Now, defining
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Tm(q(n))(θ̃θθ) =

m(q(n))∑
i=1

∥RiV
1/2Ui −

(
m(q(n))

)−1/2
θ̃θθ∥ − ∥RiV

1/2Ui∥

and

T (θ̃θθ) = Z′θ̃θθ + θ̃θθ
′
A θ̃θθ,

the previous steps and (17) yields Tm(q(n))(θ̃θθ)
L→ T (θ̃θθ) as n → ∞. Now, using

Lemma A.1 with Tm(q(n))(θ̃θθ) and T (θ̃θθ) we get that the sequence

(
m(q(n))

)1/2
θ̂θθ
(m(q(n)))

sign

is asymptotically distributed as the minimizer of T (θ̃θθ) and then satisfies as
n → ∞,

Z+A
(
m(q(n))

)1/2
θ̂θθ
(m(q(n)))

sign = oP(1). (18)

It is easy to check that

A
L
= lim

n→∞

(
m(q(n))

)−1
m(q(n))∑

i=1

(2Ri)
−1

(
Ip −

V1/2UiU
′
iV

1/2

∥V1/2Ui∥2
)

is positive definite with probability 1 because by assumption there is no subse-

quence such that s(n)−1
∑s(n)

i=1 R−1
i is oP(1). Then, (18) yields, as n → ∞,

(
m(q(n))

)1/2
θ̂θθ
(m(q(n)))

sign = OP(1). (19)

There is a contradiction between (19) and the fact that for all M ∈ R0, there

exist by assumption an N ∈ N such that P(∥
(
q(n)

)1/2
θ̂θθ
(q(n))

sign ∥ ≥ M) ≥ ϵ for

every n ≥ N and for some ϵ > 0. Then, we must have n1/2θ̂θθ
(n)

sign = OP(1) as
n → ∞. This concludes the proof.

Proof of Theorem 5.1. It is easy to check that the fact that V(n) depends on n
does not change anything in the proofs of Theorems 4.1 and 4.3. Then, by Theo-

rems 4.1 and 4.3, we have that S(n)(θθθ) and S(n)(θ̂θθ
(n)

) have the same asymptotic

distribution under P
(n)

θθθ,V(n),R1,...,Rn
as n → ∞.

Now, the asymptotic distribution of S(n)(θθθ) has been derived in scenario I

under P
(n)

θθθ,V(n),R1,...,Rn
by [6]. This yields the result in scenarios II and III since

S(n)(θθθ) is measurable with respect to U1, . . . ,Un.
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Proof of Theorem 5.3. Recall here that in this proof, we have that V = Ip. We
keep the notation V to make explicit when the shape parameter appears in the
various expressions. We also write V(n) = V + n−1/2τττ (n). We will prove that
for any ϵ ∈ R+

0 ,

lim
n→∞

P
(n)
θθθ,σ,V,fn

[
| log

(dP
(n)

θθθ,σ,V(n),fn

dP
(n)
θθθ,σ,V,fn

)
−
(
ve

◦
ch ′(τττ)∆∆∆

(n)
fn

(θθθ, σ,V) − 1

2
ve

◦
ch ′(τττ)ΓΓΓsign(V)ve

◦
ch (τττ)

)
| > ϵ

]
= 0.

(20)

and that

lim
n→∞

P
(n)
θθθ,σ,V,fn

[
|ve

◦
ch ′(τττ)∆∆∆

(n)
sign(θθθ,V)− ve

◦
ch ′(τττ)∆∆∆

(n)
fn

(θθθ, σ,V)| > ϵ
]

= 0.

(21)

Combining (20) and (21) and using the continuous mapping theorem will
yield the result. We first prove (20). We note first that by definition of fn,

log

(dP
(n)

θθθ,σ,V(n),fn

dP
(n)
θθθ,σ,V,fn

)
=

(p+ νn)

2

n∑
i=1

(
log(1 +

(dni(θθθ,V)/σ)2

νn
)

− log(1 +
(dni(θθθ,V

(n))/σ)2

νn
)

)
. (22)

Consider the representation

Xn1 = Rn1σV
1/2Un1 + θθθ, . . . ,Xnn = RnnσV

1/2Unn + θθθ

as in (1). We can rewrite (22) as

log

(dP
(n)

θθθ,σ,V(n),fn

dP
(n)
θθθ,σ,V,fn

)
=

(p+ νn)

2

n∑
i=1

(
log(R−2

ni νn +U′
niV

−1Uni)

− log(R−2
ni νn +U′

ni(V
(n))−1Uni)

)
. (23)

Recalling that V = Ip, simple Taylor expansion of the logarithm function
around (R−2

ni νn + 1) yields
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log

(dP
(n)

θθθ,σ,V(n),fn

dP
(n)
θθθ,σ,V,fn

)
= − (p+ νn)

2

n∑
i=1

(
log(R−2

ni νn + 1)

− log(R−2
ni νn +U′

ni(V
(n))−1Uni)

)
=

(p+ νn)

2

n∑
i=1

(
(R−2

ni νn + 1)−1(U′
ni(V

(n))−1Uni − 1)

−1

2
(R−2

ni νn + 1)−2(U′
ni(V

(n))−1Uni − 1)2

+
1

3
(Hni)

−3(U′
ni(V

(n))−1Uni − 1)3
)

(24)

for some

Hni ∈ [R−2
ni νn +min(1,U′

ni(V
(n))−1Uni), R

−2
ni νn +max(1,U′

ni(V
(n))−1Uni)].

It is not hard to see that since R−2
ni νn is positive and U′

ni(V
(n))−1Uni is al-

most surely positive and bounded away from 0 (this is easy to deduce from
the structure of V(n)), we have that (Hni)

−3 = OP(1). Now, write the spectral
decomposition

(V(n))−1 = (βββ(n))′(ΛΛΛ(n))−1βββ(n) =: (βββ(n))′(Ip + n−1/2lll(n))−1βββ(n),

with lll(n) a diagonal matrix and βββ(n) ∈ SOp such that (βββ(n))′lll(n)βββ(n) = τττ (n).
Using a Taylor expansion we get that

U′
ni(V

(n))−1Uni − 1 = U′
niβββ

(n)(ΛΛΛ(n))−1(βββ(n))′Uni − 1

= U′
niβββ

(n)(Ip − n−1/2lll(n) + n−1(lll(n))2)(βββ(n))′Uni − 1

+OP(n
−3/2).

= U′
ni(−n−1/2τττ (n) + n−1(τττ (n))2)Uni +OP(n

−3/2).

(25)

This immediately yields (U′
ni(V

(n))−1Uni − 1)3 = OP(n
−3/2). Combining

this last fact and (Hni)
−3 = OP(1) yields, as n → ∞,

log

(dP
(n)

θθθ,σ,V(n),fn

dP
(n)
θθθ,σ,V,fn

)
= − (p+ νn)

2

n∑
i=1

(
(R−2

ni νn + 1)−1(U′
ni(V

(n))−1Uni − 1)

−1

2
(R−2

ni νn + 1)−2(U′
ni(V

(n))−1Uni − 1)2
)
+ oP(1).

(26)
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Combining (25) with (26) and using that (R−2
ni νn + 1)−1 is almost surely

bounded, we get

log

(dP
(n)

θθθ,σ,V(n),fn

dP
(n)
θθθ,σ,V,fn

)
=

(p+ νn)

2

(
n−1/2

n∑
i=1

(R−2
ni νn + 1)−1U′

niτττ
(n)Uni

+n−1
n∑

i=1

1

2
(R−2

ni νn + 1)−2(U′
niτττ

(n)Uni)
2

−(R−2
ni νn + 1)−1(U′

ni(τττ
(n))2Uni)

)
+ oP(1).

=
(p+ νn)

2

(
n−1/2

n∑
i=1

(R−2
ni νn + 1)−1tr(τττ (n)UniU

′
ni)

+n−1
n∑

i=1

[
1

2
(R−2

ni νn + 1)−2tr2(τττ (n)UniU
′
ni)

−(R−2
ni νn + 1)−1tr(τττ (n)UniU

′
niτττ

(n))]

)
+ oP(1).

=
(p+ νn)

2

(
n−1/2

n∑
i=1

[
(R−2

ni νn + 1)−1

vec(τττ (n))′vec(UniU
′
ni)

]
+n−1

n∑
i=1

[1
2
(R−2

ni νn + 1)−2

vec(τττ (n))′vec(UniU
′
ni)vec

′(UniU
′
ni)vec(τττ

(n))

−(R−2
ni νn + 1)−1vec(τττ (n)UniU

′
ni)

′vec(τττ (n))
])

+oP(1).

(27)

Recall now that the definition of fn implies that under P
(n)
θθθ,σ,V,fn

, (νn)
−1/2X1n

admits density

f(νn)−1/2X1n
(x) =

Γ((p+ νn)/2)

πp/2σp Γ(νn/2)
(1 +

(x− θθθ)′V−1(x− θθθ)

σ2
)−

p+νn
2 ,

which implies that (νn)
−1/2Rn1 admits density

f(νn)−1/2R1n
(r) =

Γ((p+ νn)/2)

πp/2σp Γ(νn/2)
rp−1(1 + r2/σ2)−

p+νn
2 .

It is easy to see from this last fact that for all C ∈ R+ and as n → ∞, we have

that P
(n)
θθθ,σ,V,fn

(
(νn)

−1/2R1n) ≤ C
)
→ 0. This obviously directly entails that for
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all i ∈ {1, . . . , n} we have (R−2
ni νn + 1)−1 = 1 + oP(1) as n → ∞. Combining

this fact with (27) and using the Law of Large Numbers yields, under P
(n)
θθθ,σ,V,fn

as n → ∞,

log

(dP
(n)

θθθ,σ,V(n),fn

dP
(n)
θθθ,σ,V,fn

)
=

(p+ νn)

2

(
n−1/2

n∑
i=1

(R−2
ni νn + 1)−1

vec′(τττ (n))vec(UniU
′
ni)

+
1

2
vec(τττ (n))′E(vec(UniU

′
ni)vec

′(UniU
′
ni))vec(τττ

(n))

−vec(τττ (n)E(UniU
′
ni))

′vec(τττ (n))

)
+ oP(1)

=
(p+ νn)

2

(
n−1/2

p+ νn

n∑
i=1

(
− ḟn

fn
(Rni)Rni

vec(τττ (n))vec(UniU
′
ni)

)
+

1

2p(p+ 2)
vec(τττ (n))′

(
Ip2 +Kp + vec(Ip)

vec′(Ip)
)
vec(τττ (n))

− 1

2p
vec(τττ (n))′(Ip2 +Kp)vec(τττ

(n))

)
+ oP(1).

The last line is a well known fact that can be found in [6]. Now, using that

0 = −n(p+ νn)

2p

(
log(det(V + n−1/2τττ (n)))− log(det(V))

)
= −n1/2(p+ νn)

2p
tr(τττ (n)) +

p+ νn
4p

tr((τττ (n))2) + o(1),

we get that as n → ∞ and under P
(n)
θθθ,σ,V,fn

,
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log

(dP
(n)

θθθ,σ,V(n),fn

dP
(n)
θθθ,σ,V,fn

)
=

(p+ νn)

2

(
vec(τττ (n))′

( n−1/2

p+ νn

n∑
i=1

− ḟn
fn

(Rni)Rni

vec(UniU
′
ni)−

n1/2

p
vec(Ip)

)
+

1

2p(p+ 2)
vec(τττ (n))′

(
Ip2 +Kp + vec(Ip)vec

′(Ip)
)

vec(τττ (n))

− 1

2p
vec(τττ (n))′(Ip2 +Kp)vec(τττ

(n))

+
1

4p
vec(τττ (n))′(Ip2 +Kp)vec(τττ

(n))

)
+ oP(1).

= vec′(τττ (n))
n1/2

2
vec(S

(n)
fn

(θθθ, σ,V)− Ip)

−1

2
× p

4(p+ 2)

vec(τττ (n))′
(
Ip2 +Kp −

2

p
vec(Ip)vec

′(Ip)
)
vec(τττ (n))

+oP(1).

(28)

Now, it is easy to show that as n → ∞,

M′
p(ve

◦
ch (τττ (n))) = vec(τττ (n)) + o(1),

which, combined with (28) and basic properties of M′
p, immediately yields (20)

(recall here once again that V = Ip). We now prove (21). We will show that as

n → ∞ under P
(n)
θθθ,σ,V,fn

,

∆∆∆
(n)
fn

(θθθ, σ,V) = ∆∆∆
(n)
sign(θθθ,V) + oP(1) (29)

It is obviously sufficient to show that as n → ∞ and under P
(n)
θθθ,σ,V,fn

,

n1/2S
(n)
fn

(θθθ, σ,V)− n1/2S
(n)
sign(θθθ,V) = oP(1). (30)

First, we have that under P
(n)
θθθ,σ,V,fn

,

nE(∥S(n)
fn

(θθθ, σ,V)− S
(n)
sign(θθθ,V)∥2F) = n−1E(∥

n∑
i=1

(
(p+ νn)

1

1 + dni(θθθ,V)2

σ2νn

dni(θθθ,V)2

σ2νn
Uni(θθθ,V)Uni(θθθ,V)′

−pUni(θθθ,V)Uni(θθθ,V)′
)
∥2F).
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We write

cni := (p+ νn)(1 +
dni(θθθ,V)2

σ2νn
)−1 dni(θθθ,V)2

σ2νn
− p

= − ḟn
fn

(dni(θθθ,V)/σ)dni(θθθ,V)/σ − p.

Letting k
(n)
p be a normalization constant, we have that under P

(n)
θθθ,σ,V,fn

the

density of the dni(θθθ,V)/σ’s is k
(n)
p rp−1fn(r)I{r>0}. This yields

E(cni) = −k(n)p

∫ ∞

0

ḟn(r)r
pdr − p = 0

by integration by part. Similarly,

Jp(fn) = k(n)p

∫ ∞

0

rp+1(
ḟn
fn

)2(r)fn(r)dr = E((cni + p)2) = E(c2ni) + p2.

With these notations, we write

nE(∥S(n)
fn

(θθθ, σ,V)− S
(n)
sign(θθθ,V)∥2F)

= n−1E(tr(

n∑
i=1

cniUni(θθθ,V)U′
ni(θθθ,V)

n∑
j=1

cnjUnj(θθθ,V)U′
nj(θθθ,V))).

Using E(cni) = 0 and independence, we get that, under P
(n)
θθθ,σ,V,fn

,

nE(∥S(n)
fn

(θθθ, σ,V)− S
(n)
sign(θθθ,V)∥2F)

= n−1E(

n∑
i=1

c2nitr(Uni(θθθ,V)U′
ni(θθθ,V)Uni(θθθ,V)U′

ni(θθθ,V)))

= n−1
n∑

i=1

E(c2ni)

Now, since under P
(n)
θθθ,σ,V,fn

,

lim
n→∞

nE(∥S(n)
fn

(θθθ, σ,V)− S
(n)
sign(θθθ,V)∥2F) = lim

n→∞
n−1

n∑
i=1

E(c2ni)

= lim
n→∞

E(c2n1) = lim
n→∞

Jp(fn)− p2 = lim
n→∞

p(p+ 2)(p+ νn)

(p+ 2 + νn)
− p2 = 0,

we have that (29) holds (a closed form for Jp(fn) can be found for instance
in [6]), which means that (21) holds. Combining (20) and (21) and using the
continuous mapping theorem concludes the proof.
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As a closing word, we note that the fact that V = Ip has been used solely
for the sake of simplifying the various expressions and computation but does
not play a fundamental role. The proof would in fact hold for any shape matrix
modulo some small adjustments.

Proof of Theorem 5.5. It is sufficient to prove the following LAN property,

lim
n→∞

P̃
(n)

θθθ,σ,V,f̃n

[
| log

(
dP̃

(n)

θθθ,σ,V(n),f̃n

dP̃
(n)

θθθ,σ,V,f̃n

)

−
(
ve

◦
ch ′(τττ)∆∆∆

(n)
sign(θθθ,V)− 1

2
ve

◦
ch ′(τττ)ΓΓΓsign(V)ve

◦
ch (τττ)

)
| > ϵ

]
= 0. (31)

Now, writing

Tn(X1, . . . ,Xn) = | log
(dP

(n)

θθθ,σ,V(n),fn

dP
(n)
θθθ,σ,V,fn

)
−
(
ve

◦
ch ′(τττ)∆∆∆

(n)
sign(θθθ,V)− 1

2
ve

◦
ch ′(τττ)ΓΓΓsign(V)ve

◦
ch (τττ)

)
|,

writing gn(r1, . . . , rn) :=
∏n

i=1 fn(ri) and using
∥∥∥ f̃n
gn

(r1, . . . , rn)
∥∥∥
∞

= 1 + o(1),
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we have as n → ∞ that

P̃
(n)

θθθ,σ,V,f̃n

[
| log

(
dP̃

(n)

θθθ,σ,V(n),f̃n

dP̃
(n)

θθθ,σ,V,f̃n

)

−
(
ve

◦
ch ′(τττ)∆∆∆

(n)
sign(θθθ,V)− 1

2
ve

◦
ch ′(τττ)ΓΓΓsign(V)ve

◦
ch (τττ)

)
| > ϵ

]

= P̃
(n)

θθθ,σ,V,f̃n

[
| log

(dP
(n)

θθθ,σ,V(n),fn

dP
(n)
θθθ,σ,V,fn

)
+ log(1 + oP(1))

−
(
ve

◦
ch ′(τττ)∆∆∆

(n)
sign(θθθ,V)− 1

2
ve

◦
ch ′(τττ)ΓΓΓsign(V)ve

◦
ch (τττ)

)
| > ϵ

]

= P̃
(n)

θθθ,σ,V,f̃n

[
| log

(dP
(n)

θθθ,σ,V(n),fn

dP
(n)
θθθ,σ,V,fn

)
−
(
ve

◦
ch ′(τττ)∆∆∆

(n)
sign(θθθ,V)− 1

2
ve

◦
ch ′(τττ)ΓΓΓsign(V)ve

◦
ch (τττ)

)
| > ϵ

]
+ o(1)

=

∫
Rn×p

I{Tn(x1,...,xn)>ϵ}(x1, . . . ,xn)f̃n(x1, . . . ,xn)dx1 . . . dxn + o(1)

=

∫
Rn×p

I{Tn(x1,...,xn)>ϵ}(x1, . . . ,xn)gn(x1, . . . ,xn)(1 + o(1))dx1 . . . dxn

+o(1)

= o(1).

We used Theorem 5.3 in the last line. It follows that the LAN property (31)
holds and the result is a consequence of classical Le Cam asymptotic theory of
experiments.
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