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Figure 1. CAD-Assistant is a tool-augmented VLLM framework for AI-assisted CAD. Our framework generates FreeCAD [11] code
that is executed within CAD software directly and can process multimodal inputs, including textual queries, sketches, drawn commands
and 3D scans. This figure showcases various examples of generic CAD queries and the responses generated by CAD-Assistant.

Abstract

We propose CAD-Assistant, a general-purpose CAD
agent for AI-assisted design. Our approach is based on
a powerful Vision and Large Language Model (VLLM)
as a planner and a tool-augmentation paradigm using
CAD-specific tools. CAD-Assistant addresses multi-
modal user queries by generating actions that are iter-
atively executed on a Python interpreter equipped with
the FreeCAD [11] software, accessed via its Python API.
Our framework is able to assess the impact of gener-
ated CAD commands on geometry and adapts subsequent
actions based on the evolving state of the CAD design.
We consider a wide range of CAD-specific tools includ-
ing a sketch image parameterizer [21], rendering mod-
ules, a 2D cross-section generator, and other special-
ized routines. CAD-Assistant is evaluated on multi-
ple CAD benchmarks, where it outperforms VLLM base-
lines and supervised task-specific methods. Beyond exist-
ing benchmarks, we qualitatively demonstrate the poten-
tial of tool-augmented VLLMs as general-purpose CAD

solvers across diverse workflows. Code implementation
of the CAD-Assistant framework is publicly avail-
able https://github.com/dimitrismallis/CAD-

Assistant.

1. Introduction

Computer-Aided Design (CAD) refers to the use of com-
puter software to assist in the creation, modification, anal-
ysis, or optimization of a design [5]. Recently, there
has been a significant research interest in the automa-
tion of CAD pipelines. Examples include, 3D reverse-
engineering [13, 23, 37, 55], CAD generation [47, 49, 58,
61], edge parametrization [9, 72], CAD from multiview
images [17, 68], hand-drawn CAD sketch parametriza-
tion [21, 22] and text-guided CAD editing [26]. Still, most
efforts to date have centered around fixed workflows, and
the development of CAD agents to address generic tasks re-
mains largely unexplored. In this work, we advocate that
the creation of CAD agents capable of interacting with and
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supporting designers through the CAD process, would be a
transformative advancement for the CAD industry.

As Vision and Large Language Models (VLLMs) con-
tinue to mature [1, 3, 12, 28, 31, 32, 38, 40], they hold
promise for enabling AI-assisted CAD design, particu-
larly given that their very vast pre-training endow them
with broad knowledge of design and manufacturing [36].
Despite the identified potential, their ability to be used
within computational design and manufacturing workflows
remains severely constrained by weaknesses in geometric
reasoning and handling of mathematical concepts [19]. In-
deed, VLLMs may struggle to semantically interpret the ap-
pearance of rendered objects from their corresponding CAD
sequences [45]. They may also fail to recognize spatial
arrangements and the varied combinations of visual con-
cepts [50] or correctly orient primitives and generate accu-
rate placements [36]. Their effectiveness in an agentic CAD
setting is further hindered by the inherently unpredictable
effects of CAD commands. High-level CAD operations,
such as applying geometric constraints, fillet, chamfer, etc,
can have complex and non-intuitive impacts on a model’s
geometry and topology [48, 49], which is typically resolved
by advanced CAD solvers. VLLMs cannot reliably predict
the cumulative effects of the CAD commands they generate
further limiting their practical usability in CAD workflows.

Recently, tool-augmentation has emerged as a prevail-
ing strategy for addressing various shortcomings of foun-
dational models and enhancing their performance in real-
world applications [19, 34, 51, 54, 56]. Despite demon-
strated effectiveness, VLLMs capable of composing and
utilizing external tools have yet to be explored within the
domain of CAD design. This work addresses this gap by
introducing CAD-Assistant, a generic tool-augmented
VLLM framework that integrates CAD-specific tools to ef-
fectively address the limitations of VLLMs in AI-assisted
CAD. CAD-Assistant integrates a wide range of exter-
nal CAD-specific modules, including a hand-drawn image
parameterizer, rendering modules for multimodal CAD se-
quence understanding, a specialized utility for analysis of
geometric constraints and a 2D cross-section generator for
VLLM interaction with 3D scans.

Our framework leverages a VLLM-based planner and
CAD-specific tool augmentation for generic CAD task solv-
ing. The planner generates CAD code actions, that are
executed directly within the open-source CAD software
FreeCAD [11], accessed via its Python API. Geometric rea-
soning is enhanced by dedicated CAD rendering and param-
eter serialization modules, enabling a more comprehensive
multimodal representation of CAD models throughout the
planning and reasoning process. Instead of solely relying on
the effect prediction of complex CAD commands, our CAD
agent inspects the evolving state of a design and refines or
corrects actions based on the current CAD geometry. CAD-

specific tools facilitate the processing of multimodal inputs,
from text to hand-drawn sketches, precise CAD drawings,
drawn commands and 3D scans.

CAD-Assistant is a training-free framework that
generates CAD code on an open-source CAD API, produc-
ing outputs that are both editable and highly interpretable.
CAD-Assistant is also highly extensible and can op-
erate across the diverse set of commands available in the
FreeCAD API, requiring only a Python docstring to incor-
porate further capabilities. This is in contrast to the ma-
jority of CAD automation research focusing on the lim-
ited set of CAD operations captured in large-scale CAD
datasets [29, 58, 62, 63]. To address the lack of bench-
marks for tool use akin to specialized sets commonly used
in other domains [33, 35], this work adopts an evaluation
setting for generic CAD agents leveraging multiple existing
CAD tasks. Evaluations are conducted for 2D and 3D CAD
question answering, auto-constraining, and hand-drawn
CAD sketch image parametrization. CAD-Assistant
outperforms both VLLM baselines and supervised task-
specific methods trained on large-scale datasets, despite
being prompted in a zero-shot manner. Furthermore, we
demonstrate the potential of CAD-Assistant beyond ex-
isting benchmarks by showcasing diverse use cases, includ-
ing generating 3D solids from hand-drawn sketches, per-
forming 3D reverse engineering from 3D scans via cross-
section parameterization, and visual CAD design through
semantically interpretable drawing commands (e.g. sketch-
ing an extrusion operation). Example responses of the pro-
posed CAD-Assistant on diverse multimodal queries
are depicted in Figure 1.

Contributions: The main contributions of this work can be
summarized as follows:

1. We introduce CAD-Assistant, the first tool-
augmented VLLM framework for generic CAD task
solving. Our framework is equipped with a diverse set of
CAD-specific tools and can process multimodal inputs,
including hand-drawn sketches and 3D scans.

2. We demonstrate the effectiveness of tool-use for mit-
igating VLLMs’ limitations on AI-assisted CAD. Ge-
ometic reasoning is enhanced by incorporating compre-
hensive multimodal representations of CAD models and
enabling direct interaction with CAD software.

3. We propose a highly extensible and training-free frame-
work that can operate beyond the simple set of CAD
commands captured on existing CAD datasets.

4. We identify an evaluation setting for generic CAD agents
based on existing benchmarks. The proposed zero-
shot method outperforms baselines and task-specific ap-
proaches trained on large datasets. We also qualitatively
demonstrate the potential of CAD-Assistant on a di-
verse set of real-world use cases.



2. Related Work

Foundation Models for CAD: Recently, there has been in-
creasing research interest in the use of foundation models
on CAD-related applications. CAD-Talk [69] introduces a
framework for semantic CAD code captioning using multi-
view photorealistic renderings of CAD models along with
part-segmentation, powered by foundation models [8, 25].
Taking a similar path, QueryCAD [24] proposes an open-
vocabulary CAD part segmentation from images leverag-
ing segmentation foundation models and LLMs to perform
CAD-related question-answering for robotic applications.
CADLLM [60] proposes a T5 model [46] finetuned on the
SketchGraphs [48] dataset of 2D CAD sketches for sketch
auto-completion. CadVLM [59] extends CADLLM [60]
to the visual domain, incorporating a visual modality for
CAD sketch auto-completion, autoconstraining and image-
guided generation. CADReparam [26] uses VLLMs to in-
fer meaningful variation spaces for parametric CAD mod-
els, re-parameterizing them to enable exploration along
design-relevant axes. Img2CAD [68] utilizes a VLLM to
reverse engineer objects from images, predicting the spe-
cific CAD command types needed to model each part of
the object accurately. Badagabettu et al. [4], focus on text-
guided generation of CAD models as CADQuery code,
while LLM4CAD [30] use a similar approach to generate
3D CAD models from text and image inputs. Related to
ours is the training-free method of [2] focusing on CAD
model generation. Authors introduce a verification process
to ensure the validity of generated models, but do not ex-
plore tool augmentation. Our investigation diverges from
these task-specific approaches as it shifts the focus on tool-
augmentation for mitigating the limitation of VLLMs on
AI-assisted CAD. CAD-Assistant is the first general-
purpose framework for CAD design, able to process multi-
modal prompts and address diverse CAD use cases.

Tool-augmented VLLMs: Recently there has been grow-
ing interest in enhancing LLMs and VLLM performance
via augmentation with external tools [16, 19, 34, 51, 54, 56,
66, 70]. The field is further propelled by the emergence of
benchmarks, namely ScienceQA [33] and TabMWP [35],
which are well-suited for evaluating the effectiveness of
tool-use. Tool-use offers several benefits [44], such as re-
ducing hallucinated knowledge [52], providing real-time in-
formation [34], enhancing domain expertise [39] and pro-
ducing interpretable outputs by making intermediate steps
explicit [16, 54]. Planning is commonly performed via
instructions in natural language [16, 34] or Python code
generation [19, 54], and tool set might include search en-
gines [27, 34, 39], calculators [10, 42], external APIs [43],
vision modules [16, 54], Hugging Face models [51], Azure
models [66] or LLM created tools [7]. Despite the vast
potential of tool-augmented LLMs and VLLMs for CAD-

related applications, the space remains unexplored. To
our knowledge, this work is the first investigation on tool-
augmented VLLMs for AI-assisted CAD.

VLLMs as Geometrical Reasoners: In order to advance
tool-augmented VLLMs for AI-assisted CAD, it is crucial
for the VLLMs planner to semantically recognize and pre-
cisely identify and manipulate individual elements within
parametric geometries. This type of precision is an es-
sential skill when interfacing with CAD software. Natu-
rally, this raises the question: Can large vision language
models understand symbolic graphics programs? In that
direction, Yi et al. [67] explored incorporating symbolic
structure as prior knowledge for enhancing visual ques-
tion answering. More recently, Sharma et al. [50] ex-
amined visual program generation and recognition, show-
ing that while shape generation often relies on memorizing
prototypes from training data, shape recognition demands
a deeper understanding of primitives. Qi et al. [45] in-
troduced SGPBench, a question-answering benchmark de-
signed to assess the semantic understanding and consistency
of symbolic graphics programs, including CAD models.
This benchmark evaluates the extent of LLMs’ ability to se-
mantically comprehend and reason about geometric struc-
tures. While [45] applied instruction tuning to improve vi-
sual program understanding, our work emphasizes general-
purpose VLLMs, demonstrating that factors like serializa-
tion and parametrization strategies for formatting geometry
and multimodal representation of a CAD model can signif-
icantly expand VLLMs’ capacity for geometric reasoning.

3. The proposed CAD-ASSISTANT

3.1. General Framework

This section provides an overview of CAD-ASSISTANT.
Our framework comprises the following three components:

Planner: The planner P is modelled by a VLLM capable
of advanced reasoning. Following [19], on each timestep t,
the planner analyses the current context ct and generates a
plan pt and an action at that implements pt. In this work,
we employ GPT-4o [40] as the core framework planner.

Environment: We utilize the Python interpreter as the pri-
mary environment E for executing the generated action at
at time t. Additionally, E integrates CAD software [11] as a
foundational component for AI-assisted CAD applications.
On each timestep, t, the environment provides feedback et
of the current state of the CAD design.

Tool Set: CAD-ASSISTANT utilizes a set T = {Ti}Ni=1

of N CAD-specific tools, suitable for AI-Assisted CAD.
These include standard Python libraries, modules of the
FreeCAD Python API [11] to interface CAD commands,
and other useful CAD-specific tools and Python routines.
CAD-ASSISTANT can be formalized as follows: Given
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Figure 2. Overview of CAD-Assistant framework. A multi-
modal user request is provided as context to a VLLM planner P .
At step t, the planner generates a plan pt and an action at (python
code). The action is executed on an environment E and the gener-
ated execution output ft is fed back to the planner, enabling gen-
eration for the next timestep.

a multimodal x0 input user query, on each timestep t, the
planner P generates:

pt ← P(x0; ct−1, T ) , (1)

at ← P(pt; ct−1, x0, T ) , (2)

where pt is the current plan in natural language, and at is the
current action formulated as Python code. Then, the gener-
ated action at is executed on the framework’s environment:

(ft, et)← E(at; et−1, T , x0) , (3)

where ft is the output of the code execution, and et is the
new state of the CAD design. Note that ft can include both
textual and visual outputs of the execution, e.g. list of CAD
geometries in .json format or the rendering of the current
state of the CAD object. Finally, the context is updated as:

ct+1 ← concat(ft, {cs}ts=1) , (4)

concatenating the previous context with the current code ex-
ecution output and is supplied to P for plan generation of
timestep t+1. This process iterates for an arbitrary T num-
ber of steps until the planner P concludes that the request
x0 has been successfully addressed. At that point, P gener-
ates pT , a special TERMINATE plan that indicates the com-
pletion of CAD-ASSISTANT’s response. An illustration of
the proposed execution flow is provided in Figure 2 and an
example of the agents’ trajectory as a response to an auto-
constraining request is provided in Figure 3.

USER QUERY: Analyse the sketch to identify geometric relationships
and apply  parametric constraints.

PLAN: To analyze the sketch and apply the appropriate parametric constraints, I will first use
the sketch_recognizer function to understand the current state of the sketch. Then I will use
the analyse_constraints function to evaluate their validity and impact on the sketch before
applying them.

ACTION: Use the sketch_recognizer function to analyze the current state of the sketch.

PLAN: The sketch consists of several line segments and arcs forming a square with rounded
corners. To ensure the sketch is fully constrained, I will apply the following constraints:
1. Coincident constraints to connect endpoints of adjacent geometries.
2. Horizontal and Vertical constraints for the straight line segments.
3. Equal constraints for the arcs to ensure they have the same radius.
4. Tangent constraints between the arcs and the line segments.
I will first analyse and apply the Coincident constraints.

ACTION: Analyze and apply Coincident constraints to connect endpoints of geometries.

ACTION: Apply Horizontal and Vertical
constraints to the line segments.

PLAN: The Coincidents have been applied, ensuring that the loops are closed. Next, I will
apply Horizontal and Vertical constraints to the straight line segments to maintain their
orientation.

PLAN: The sketch is now properly constrained.
TERMINATE.

             ENVIRONMENT:  Execution Success

           ENVIRONMENT: Execution Success

The sketch contains the following elements, serialized in JSON format:

Rendered Sketch Image

Constrained FreeCAD Sketch

(Rest of the  steps)

Figure 3. Execution flow for autoconstraining. The sketch rec-
ognizer function is utilized for multimodal CAD understanding.
Constraints are generated over multiple timesteps.

3.2. CAD-specific Tool-set

CAD-ASSISTANT includes a set of N CAD-specific tools
or modules. Each tool is defined by its method signature
and the docstring [18] that disambiguates its use. Mod-



Module Type Module Description

Python Action format and logical operations.

FreeCAD Integration with CAD software [11].

Sketch Parameterizer Hand-drawn sketch image to CAD
sketch based via [21].

Sketch Recognizer Renders sketch and plots parameters.

Solid Recognizer Renders a 3D CAD model and plots
parameters.

Constraint Checker Analyzes geometric constraints.

Crosssection Extract Generates an image of a cross section
from a 3D mesh.

Table 1. Overview of CAD-specific tools.

ules Ti are instantiated via their Python interface with ar-
guments generated by P as part of the action at. Notably,
actions are formulated as Python code, as in [19, 54], rather
than the natural-language instructions advocated by recent
works [16, 34]. This design choice allows for direct use of
the FreeCAD API. Moreover, the generated action at can
access the parameters of the CAD models’ state et and per-
form logical and computational operations, which is highly
advantageous for design tasks (see also section 10 of sup-
plementary). Our CAD-specific tool set is summarized in
Table 1 and a detailed overview of each tool is provided in
supplementary.

4. Experiments
This section outlines the experiments conducted to validate
the effectiveness of CAD-Assistant.

4.1. Strategies for Effective Geometric Reasoning
Effective geometric reasoning is an essential requirement
for the development of generic CAD agents. How-
ever, VLLMs have shown limited ability to geometrically
comprehend and mathematically reason about CAD pro-
grams [45, 50]. Previous work has explored symbolic in-
struction tuning [45] for addressing this limitation. In con-
trast, we shift our focus on tool augmentation as a training-
free alternative to enhance geometric reasoning. This sub-
section examines CAD representations that can be derived
using external tools and improve VLLMs’ understanding of
CAD programs. Specifically, we study the following factors
of a CAD representation:
Parametrization Strategy: Parametric geometries can be
represented by different sets of parameters. For instance, a
line could use start / end points or an angle and length rela-
tive to a reference. We compare the implicit parametrization
approach of [45] to the point-based primitive representation
of [22]. We also explore over-parametrization, where a re-
dundant set of parameters is used per geometry. More de-

2D CAD SGPBench - Sketch in Textual Format

Serialization Parametarization Acc

SGPBench [45] format
Serialized Graph Implicit 0.674

Standardized CAD Sketch formats
DXF [20] 0.671
OCA [15] 0.707

Serialization Strategy (Tabular formats)
CSV Point-based 0.703
Markdown Point-based 0.706
HTML Point-based 0.710

Serialization Strategy (Schema-embedded formats)
Serialized Graph Point-based 0.744
JSON Point-based 0.748

Parametarization Strategy
JSON Point-based 0.748
JSON Overparametarized 0.747

2D CAD SGPBench - Sketch as a Rendering

CAD Sketch Image Type Acc

Hand-drawn Sketch 0.616
Precise Rendering 0.754

Table 2. Investigation of prompting strategies on geometric rea-
soning. We report performance for GPT-4o in terms of accuracy on
the 2D partition of SGPBench [45]. (Top) Impact of Parametriza-
tion and serialization on CQA performance. (Bottom) Perfor-
mance from hand-drawn and precise rendering of a CAD sketch.

tails about this comparison are provided on supplementary.
Serialization Strategy: The serialization format used to
convert the parametric geometry into text can impact the
planner’s ability to understand the geometry. Motivated by
recent work on text-based serialization methods for tabu-
lar data [14], we compare commonly used formats such as
CSV, Markdown, HTML, and JSON.
Rendering-based Reasoning: We investigate visual repre-
sentations for geometric reasoning by providing the VLLM
planner with 2D renderings of the CAD sketch or 3D solid.

To examine the impact of the above strategies on CAD
program understanding and geometric reasoning, we exper-
iment on the CAD question answering benchmark SGP-
Bench [45]. This benchmark comprises multiple-choice
questions and captures three types of graphical programs,
i.e., SVG, CAD sketches, and 3D CAD models. For this
experiment, we report accuracy on the 2D CAD subset.
This subset is derived from 700 CAD sketches from Sketch-
Graphs [48]. A VLLM planner (GPT-4o) is provided with
a textual description of a 2D CAD sketch and tasked with



Method Planner 2D Acc 3D Acc

SGPBench [45]
GPT-4 mini 0.594 0.737
GPT-4 Turbo 0.674 0.762
GPT-4o 0.686 0.782

CAD-ASSISTANT
GPT-4 mini 0.614 0.783
GPT-4 Turbo 0.741 0.825
GPT-4o 0.791 0.857

Table 3. Comparison for the proposed CAD-ASSISTANT to base-
lines for CQA on the 2D and 3D subsets of SGPBench [45]. For
CAD-Assistant performance is reported for different planners.

answering a multiple-choice question about the design.
In Table 2 (top), we analyze the effect on the per-

formance of the parametrization and serialization strate-
gies used to parse the CAD sketch into a textual format.
Firstly, we observe that schema-embedded representation
like JSON performs better than tabular formats. Note that
this is in contrast with recent work [53], where HTML
was identified as the optimal serialization for tabular data.
Secondly, GPT-4o demonstrates high sensitivity to geom-
etry parametrization. The implicit parametrization used in
SGPBench [45] significantly under-performs compared to
a point-based parametrization for geometric primitives as
in [22]. Overall, using a JSON serialization along with
the point-based parametrization from [22] leads to sub-
stantial improvements over the original SGPBench format
and other text-based CAD sketch formats, such as DXF
and OCA. While over-parameterizing the sketches results
in a negligible drop in performance w.r.t. a point-based pa-
rameterization, we argue that it is safer to opt for over-
parameterization as other tasks might benefit from it. Fur-
thermore, as shown in Table 2 (bottom), rendering-based
question answering surpasses the performance reported for
text-based recognition. Following these findings, we equip
the CAD-Assistant with a specialized recognition tools
that generate an over-parameterized JSON representation of
CAD models as well as renderings of 2D CAD sketch or 3D
solid for comprehensive multimodal geometric reasoning.

4.2. CAD Benchmarks and Experimental Setup
As a generic framework, CAD-Assistant can be con-
ditioned to perform a wide range of tasks related to CAD
design. Given the lack of specialized evaluation bench-
marks for CAD agents, this work adapts an evaluation set-
ting based on the following existing CAD tasks.

CAD Question Answering: As in subsection 4.1, quanti-
tative evaluations of CAD Question Answering (CQA) is
performed on the recently introduced SGPBench [45]. We
do not provide the CAD code as part of the prompt as
in [45]. Instead, the CAD sketch or model is pre-loaded
into a FreeCAD project file, allowing CAD-Assistant
to utilize the FreeCAD integration and CAD-specific tools

to understand the design and answer questions. This ex-
perimental setup simulates a real-world question-answering
environment where a CAD designer can ask open-ended
questions about the design to support the iterative design
process. We report accuracy on the 2D and 3D CAD sets.

Autoconstraining: Parametric constraints are a key com-
ponent of feature-based CAD modeling [37] and a widely
adapted mechanism for explicit capturing of design in-
tent [41, 71]. Given a CAD sketch of n parametric primi-
tives {p1,p2, ...,pn} ∈ Pn (lines, arcs, circles, points) the
goal of autoconstraining is to infer a set of parametric con-
straints {ci}mi=1 ∈ Cm applied on these primitives. Each
constraint ci is composed of constraint type, participating
primitives pi, pj and subreferences (si, sj) specifying the
point of application (e.g. start, end, center). In contrast to
the evaluation setting of [48, 49], we incorporate the appli-
cation of the geometric solver (CAD software) to determine
the final configuration of sketch primitives. Performance
is measured in terms of Primitive F1 Score (PF1) and Con-
straint F1 Score (CF1) as in [65]. PF1 defines a true positive
as a primitive with the correct type and parameters within
five quantization units, and for CF1 a constraint is consid-
ered a true positive only if all associated primitives are also
correctly predicted. Quantitative evaluations are performed
on SketchGraphs [48]. We use the test set of [49] and eval-
uate on a subset of 700 CAD sketches due to the resource
intensive nature GPT4-o API requests.

Hand-drawn CAD sketch Parameterization: Given a bi-
nary sketch image X ∈ {0, 1}h×w, sketch parameteriza-
tion aims to recover the complete constrained CAD sketch
({pi}ni=1, {ci}mi=1). We report parametric accuracy com-
puted on quantized primitive tokens as in [22, 49] after solv-
ing the CAD sketch. We also compute bidirectional Cham-
fer Distance (CD) on the image space. For evaluation, we
use the same test split as in the autoconstraining task. For
hand-drawn sketch synthesis, we follow the strategy of [49].

4.3. Experimental Results

We evaluate the performance of CAD-Assistant on the
benchmarks described in the previous section.
CAD Question Answering: CAD-Assistant is able
to interact directly with a CAD model via its integration
with CAD software and is tasked with answering a question
about the design. Results for CQA on SGPBench [45] are
reported in Table 3. For this experiment, we also report the
performance of the GPT-4 mini and GPT-4 Turbo models
as planners. We observe that by leveraging available tools
such as the Python interpreter and the comprehensive mul-
timodal representation of CAD models generated via the
recognizer tools, CAD-Assistant improves CQA per-
formance for both CAD sketches and 3D CAD models, thus
highlighting the potential of tool-use for CAD understand-



Method Type PF1 ↑ CF1 ↑
GPT-4o zero-shot 0.693 0.274
Vitruvion [49] supervised 0.706 0.238
CAD-ASSISTANT zero-shot 0.979 0.484

Table 4. Evaluation on the task of autoconstraining. Performance
is measured in terms of PF1 and CF1 on the SketchGraphs [48].

CAD-Specific Tools Prompting PF1 ↑ CF1 ↑
MMrecog ConstrCheck Demonstr Docstr

✕ ✕ 0-shot ✓ 0.726 0.318
✓ ✕ 0-shot ✓ 0.747 0.329
✓ ✓ 0-shot ✓ 0.979 0.484
✓ ✓ 5-shot ✕ 0.981 0.514
✓ ✓ 5-shot ✓ 0.984 0.529

Table 5. Impact of CAD-specific tools and prompting strategies
for CAD-Assistant on the autoconstraining task.

ing. Notably, for the smaller GPT-4 mini, the performance
gain from CAD-Assistant is marginally above (2D sub-
set) or on-par (3D subset), emphasizing the need for pairing
tool-augmented frameworks with a powerful VLLM.

Autoconstraining: We evaluate our method on the task
of CAD sketch autoconstraining [49]. CAD-Assistant
is prompted to apply a set of parametric constraints with
proper design intent to a CAD sketch preloaded into a
FreeCAD project file, similar to the CQA setup. Perfor-
mance is compared to a GPT-4o baseline and the constraint
generation model Vitruvion [49], trained on a large-scale
dataset [48]. Results are reported on Table 4. Note that
the autoconstraining performance is reported after solving
the predicted constraints with a CAD solver. As we are
operating within CAD software, the CAD solver enforces
the predicted constraints (e.g., orthogonality between two
lines) on CAD sketches, adjusting the parameters of the af-
fected primitives accordingly (e.g., modifying the param-
eters of the two lines). We observe that both the base-
line and [49] tend to generate poorly parameterized con-
straints, which may lead to the arbitrary repositioning of
primitives when applied by the CAD solver, as evidenced
by the low PF1 values. In contrast, CAD-Assistant ef-
fectively utilizes tools to interact with the CAD software,
assesses the impact of constraints, and preserve the in-
tegrity of the geometry. Notably, constraints generated by
CAD-Assistant result in a high CF1 score despite zero-
shot prompting, further underscores the broad understand-
ing of CAD-Assistant in CAD design. In Table 5, we
investigate the impact of tools relevant to auto-constraining
on the effectiveness of CAD-Assistant. We find that
both the multimodal sketch recognizer (MMrecog) and the
constraint checker module (ConstrCheck) contribute to per-
formance gains. Table 5 also compares prompting strate-
gies for the proposed framework. While we primary focus

Method Acc ↑ CD ↓
Vitruvion [49] 0.659 1.586
Davinci [21] 0.789 1.184
CAD-ASSISTANT 0.784 0.680

Table 6. Evaluation on the task of hand-drawn image parametriza-
tion. Comparison against the task-specific models of [21, 49].

Figure 4. Classification of failure case types for erroneous re-
sponses in the CAD Question Answering task.

on zero-shot prompting, which promotes agentic behavior
by eliminating the need for CAD designers to create tai-
lored examples for unique use cases, we find that a few high
quality demonstrations can further enhance performance as
shown by the results for 5-shot prompting.

Hand-drawn CAD sketch Parameterization: Our frame-
work utilizes the sketch parameterization tool that processes
hand-drawn inputs to generate a textual description of prim-
itives and constraints, as well as the constraint analysis
module to assess the impact of constraints on CAD ge-
ometry. Performance is compared to task-specific models
in Table ??. We observe that CAD-Assistant effec-
tively translates the text-based parameterization recovered
by the sketch parameterizer (based on [21]) into a FreeCAD
sketch, resulting in high accuracy. Additionally, it success-
fully applies constraints without compromising the solved
geometry, as evidenced by the reduction in CD.

Human Evaluations. We conduct a failure case analysis
on the CQA task, shown in Figure 4. A human annotator
reviews 100 agent trajectories associated with misclassified
answers and categorizes the error types. Most failures are
caused from incorrect reasoning by the VLLM or misin-
terpretation of tool-generated renderings, such as visually
confusing a trapezoid with a triangle. To evaluate the ef-
fectiveness of CAD-Assistant in tool usage, two human
annotators examine 200 autoconstraining / parameterization
trajectories for tool-use validity. The analysis shows a high
validity rate of 98.5%, with the few errors observed primar-
ily due to incorrect use of the FreeCAD API.

4.4. Exploring New Capabilities
Beyond Simplified CAD Commands: Research on com-
mon CAD tasks generally focuses on the limited sets of
CAD commands captured by large-scale datasets [48, 61].



ACTION: 

             ENVIRONMENT: Execution Success.

ACTION: 

USER QUERY: Create a solid by rotating this
sketched profile around its axis.

 

PLAN: I need to extract the geometric elements and constraints from the
hand-drawn image.

             ENVIRONMENT: {{ Returns primitives in JSON format }}

ACTION: 

 PLAN: I will create a FreeCAD sketch and add the detected geometries.
Then, I'll revolve the sketch around an axis to create a 3D solid.

ACTION: 

 PLAN: The red arrow in the sketch suggests an extrusion operation. 
I will perform an extrusion on the sketch.

             ENVIRONMENT: Execution Success.

ACTION: 

 PLAN: The sketch contains a red "X" over a circle, which indicates a deletion
command. I will delete the circle from the sketch.

 PLAN: reverse engineer the mesh, we need to extract a cross-section of the
mesh on the z-plane, parameterize it into a sketch, and then extrude it by
10mm

ACTION: 

             ENVIRONMENT: Execution Success.

Cross Section

 PLAN: The cross-sectional image has been successfully extracted. Now, we
need to parameterize this image.

ACTION: 

             ENVIRONMENT: {{ Returns primitives in JSON format }}

 PLAN: Now, we need to create an extrusion of this sketch for 10mm. We'll
create a new sketch in FreeCAD, add the detected geometries, and then
perform the extrusion

USER QUERY: Interpret the command drawn
(in red) on this CAD sketch and perform the
operation.

USER QUERY: Interpret the command drawn
(in red) on this CAD sketch and perform the
operation.

USER QUERY: Reverse engineer this 3D scan
by parameterizing the cross section on the z
plane and extruding for 10mm.

             ENVIRONMENT: Execution Success.

             ENVIRONMENT: Execution Success.

3D Scan Reverse Engineering Visual CAD DesignSketch to 3D Solid

FreeCAD Model FreeCAD Model FreeCAD Sketch

FreeCAD Model

2D Cross Section Image

Revolution Docstring

Figure 5. Real-world CAD use cases. (Left) The CAD-Assistant generated a 3D solid conditioned on a handdrawn sketch image.
(Center) Our method reconstructs a 3D scan via cross-section parameterization. (Right) The CAD-Assistant semantically interprets
the drawn operation and fulfills user requests directly without composing CAD-specific tools.

As a train-free framework, CAD-Assistant can leverage
the full range of commands available within the FreeCAD
API requiring only the corresponding docstring. On Fig-
ure 5 (left) and Figure 7 (supplementary) we showcase ex-
amples of our method utilizing the CAD commands Revolu-
tion and Fillet that are not included in existing datasets [61].
Real-world use cases: Tool augmentation allows interac-
tion with multimodal inputs such as sketches and 3D scans.
Figure 5 (center) showcases CAD-Assistant’s ability to
process 3D scans along with textual queries to extract cross-
sections, parameterize features, and reverse engineer CAD
models from scans. In Figure 5 (right), the VLLM plan-
ner determines to semantically interpret drawn operation

directly without utilizing additional CAD-specific tools for
fulfilling user requests. Note that generated FreeCAD code
is interpretable, editable and easily extendable.

5. Conclusion

In this work, we propose CAD-Assistant, a generic
tool-augmented CAD agent using CAD-specific tools. Our
framework responds to multimodal queries via generated
actions that are executed in a python interpreter integrated
with FreeCAD. We assess CAD-Assistant on diverse
CAD benchmarks and demonstrate the potential of tool-
augmented VLLMs in real-world CAD workflows.
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Supplementary Material

This supplementary material includes various details
that were not reported in the main paper due to space
constraints. To demonstrate the benefit of the proposed
CAD-Assistant, we also expand our qualitative evalu-
ation.

7. CAD-specific Tool-set

This section provides a detailed discussion of the CAD-
specific tool set utilised by the proposed framework.
CAD-ASSISTANT is equiped with the following tools:

Hand-drawn Image Parameterizer: To enable visual
sketching, we employ a task-specific model for hand-drawn
image parameterization [21]. This module extracts parame-
ters and constraints as text, allowing CAD-Assistant to
reuse primitive parameters for CAD code generation.

CAD Sketch Recognizer: We equip CAD-Assistant
with a CAD sketch recognition utility. This routine re-
turns both a summary of geometries and parametric con-
straints in .json format, along with a visual rendering of
the CAD sketch. The rendered sketch image includes nu-
meric markers of the primitive ID overlayed on the rendered
geometries. Motivated by [64], this approach enhances vi-
sual grounding for GPT-4o, i.e. its ability to associate visual
content with the textual description of primitives.

3D Solid Recognizer: For CAD model recognition, we also
incorporate a 3D solid recognizer that generates a .json
summary of model parameters (for both sketch and extru-
sion operations) along with visual renderings of the 3D solid
from four different angles, providing a multimodal repre-
sentation of structure and geometry.

Constraint Checker: We include a dedicated function that
evaluates the parameters of a parametric constraint to de-
termine its validity and whether it causes movement in ge-
ometric elements. The constraint analyzer facilitates effec-
tive interaction with the CAD solver by assessing the impact
of commands like parametric constraints on geometry.

Cross-section Extract: Cross-sections are critical com-
ponents of CAD reverse engineering workflows [6].
CAD-Assistant includes a specialized routine for 2D
cross-section images from 3D scans across 2D planes.

FreeCAD API: CAD-Assistant is integrated with the
open-source FreeCAD software [11] via the FreeCAD
Python API. This API enables programmatic control over
the majority of commands available to designers and ac-
cess to the current state of the CAD design. In this work,
we consider a range of components from the Sketcher

and Part modules of the FreeCAD API, focusing on CAD
sketching, the addition and manipulation of primitives, ge-
ometric constraints, and extrusion operations for construct-
ing 3D solids. A summary of the exact classes, methods
and class attributes of the FreeCAD API integrated with
CAD-Assistant is provided in the supplementary.

Python: Beyond facilitating actions at, the planner can uti-
lize Python as a tool to conduct essential logical and math-
ematical operations, such as calculating segment lengths,
determining angles, and deriving parameter values.

8. System Details
CAD-Assistant’s implementation is based
on the Autogen [57] programming framework
for Agentic AI. We report CAD-Assistant’s
performance with gpt-4o-mini-2024-07-18,
gpt-4-turbo-2024-04-09 and gpt-4o-2024-08-06
as VLLM planners, accessed via API calls.

9. CAD Representations
In this section, we provide a formally introduction of 2D CAD
sketches and 3D CAD models.

9.1. Constrained CAD Sketches
A constraint CAD sketch is commonly represented by a
graph G = (Pn, Cm) comprising a set of n primitive
nodes {p1,p2, ...,pn} ∈ Pn and m edges between nodes
{c1, c2, ..., cm} ∈ Cm denoting geometric constraints. Primitives
pi are of type line li, arc ai, circle ci or points di. VLLM and
LLM planners can be sensitive to the parameterization strategy
followed for representing pi. This work conducts an investigation
on the impact of sketch parameterization on visual program under-
standing in black-box VLLMs presented in section 4.1 where we
compare the following parameterization strategies:

Implicit: This is the parameterization strategy utilized for repre-
sentation of 2D CAD sketches by the SGPBench [45]. Primitives
pi are represented as follows:

ai = (xc, yc, vx, vy, bwc, θs, θe) ∈ R4 × {0, 1} × [0, 2π)2

ci = (xc, yc, r) ∈ R3

li = (xp, yp, vx, vy, ds, de) ∈ R6

di = (xp, yp) ∈ R2

Table 7. Implicit parameterization strategy for arcs ai, circles ci,
lines li and points pi.

where and (xc, yc) denotes center point coordinates, (ds, de)
are signed start/end point distances to a point (xp, yp), the unit
direction vector is denoted as (vx, vy), radius is denoted with r,



(θs, θe) are the start/end angles to the unit direction vector in radi-
ans and bwc is a binary flag indicating if the arc is clockwise.

Point-based: We contrast the implicit parameterization to the
point-based approach from [21, 22, 49] as described on the fol-
lowing table.

ai = (xs, ys, xm, ym, xe, ye) ∈ R6

ci = (xc, yc, r) ∈ R3

li = (xs, ys, xe, ye) ∈ R4

di = (xp, yp) ∈ R2

Table 8. Point-based parameterization strategy for arcs ai, circles
ci, lines li and points pi.

where (xs, ys), (xm, ym), (xe, ye) are start, middle and end
point coordinates and r is the radius.

Overparameterized: This strategy is a simple combination of the
implicit and point-based parameterization.

ai = (xc, yc, vx, vy, xs, ys, xm, ym, xe, ye, bwc, θs, θe) ∈ R10 × {0, 1} × [0, 2π)2

ci = (xc, yc, r) ∈ R3

li = (xp, yp, vx, vy, ds, de, xs, ys, xe, ye) ∈ R10

di = (xp, yp) ∈ R2

Table 9. Overparameterized parameterization strategy for arcs ai,
circles ci, lines li and points pi.

We identify the overparameterized strategy as the safest ap-
proach, as it enables the VLLM planner to leverage a broader and
more diverse set of parameters, better accommodating the varying
requirements of different input queries. In addition to paramet-
ric primitives pi, a CAD sketch incorporates constraints defined
by CAD designers, ensuring that future modifications propagate
coherently throughout the design. A constraint is defined as an
undirected between primitives pi and pj . They might also include
subreferences (si, sj) ∈ J1..4K2, to specify whether the constraint
is applied on start, end, middle point, or entire primitive for both
pi and pj . Note that some constraints may involve only a single
primitive pi (e.g. a vertical line); in such cases, the constraint is
defined as the edge between the primitive and itself. In this work
we consider the following types of constraints: coincident, paral-
lel, equal, vertical, horizontal, perpendicular, tangent.

9.2. CAD Models

Following the feature-based CAD modeling paradigm [37, 61],
a CAD model C ∈ C is constructed as a sequence of design
steps. In this work, evaluation is performed on CAD models
from the 3D partition of SGPBench [45] sourced from the Deep-
CAD dataset [61]. These models are constructed exclusively via a
sketch-extrude strategy, where 2D CAD sketches Gi are followed
by extrusion operations that turns the sketch into a 3D volume.
Extrusions include the following parameters:

Parameter Description Parameter Notation

Sketch plane orientation (θ, ϕ, γ) ∈ [0, π]× [0, 2π)2

Sketch plane translation (τx, τy, τz) ∈ R3

sketch scale σ ∈ R
Extrusion distance (d−, d+) ∈ R2

Extrusion type β ∈ {1, 2, 3, 4}

Table 10. Extrusion Parameters description.

where extrusion type β can be among new, cut, join and intersect.

9.3. Parameter Quantization
Unlike prior task-specific models for CAD-related tasks such
as hand-drawn sketch parameterization [21, 22, 49], CAD
sketch generation [49], or 3D CAD model generation [61], the
CAD-Assistant does not rely on the common practice of pa-
rameter quantization. Typically, these methods use a 6-bit uni-
form quantization scheme to convert continuous sketch and extru-
sion parameters into discrete tokens, enabling prediction through
transformer-based sequence architectures trained with cross-
entropy loss [21, 22, 49, 61]. In contrast, the CAD-Assistant
employs a VLLM planner that directly regresses primitive and ex-
trusion parameters as continuous numerical values. We apply the
6-bit uniform quantization to the outputs of CAD-Assistant, to
facilitate direct comparisons with task-specific methods for auto-
constraining and hand-drawn sketch parameterization reported on
section 4.2 of the main paper.

QUERY:  How many vertices does the CAD object have? A) 4  B) 5  C) 6  D) 7

 PLAN 1: I will count the distinct start and end points of these line segments.

 ACTION 1 

             ENVIRONMENT: Execution Success. Number of unique vertices: 11

 PLAN 2: The calculation of unique vertices seems incorrect as 11 is not one of
the possible answers. I need to carefully examine the coordinates and ensure
that similar points are not counted multiple times due to minor differences.

 ACTION 2 

             ENVIRONMENT: Execution Success. Number of unique vertices: 7

Figure 6. Correction of an inaccurate answer for a CQA example.

10. Verification of Responses
The proposed workflow allows for verifying incorrect responses.
The generated plan can be updated based on intermediate code ex-
ecution results, including error logs (see ft in Eq. 4). Figure 6
shows that when an error occurs (i.e., answer 11 is not among
the possible choices of the question), the planner detects this mis-
take and updates the plan accordingly. Exploring the potential of



combining tool-augmentation with more advanced planning and
verification algorithms (e.g. [2]) is left as interesting future work.

11. Costs
The proposed CAD-Assistant utilizes a GPT-4o planner ac-
cessed through API calls. Table 11 provides a summary of the
costs associated with each user query across CAD benchmarks.

12. CAD-Assistant Prompts
In this work, we use a unified prompt template, similar to [19]
for all CAD-specific problems. The prompt consists of three key
components: (1) a general context, (2) a list of tools provided to
the VLLM planner via docstrings, and (3) a multimodal user re-
quest. A summary of the FreeCAD API commands is provided
in Table 12, and the full set of docstrings supplied to the plan-
ner is presented in Section 15. Note that as the set of considered
API commands increases, the input context of the VLLM plan-
ner could increase. To address this, a preprocessing step could
be implemented to dynamically select relevant docstrings before
execution. The general context available to the VLLM planner is
shown in Figure 8.

13. Beyond Simplified CAD Commands
Extending the discussion of Sec. 4.4, we provide an additional
qualitative example of the proposed CAD-Assistant. Figure 7
shows the utilization of the CAD operation Fillet by our method. It
can be observed that CAD-Assistant computes the intersection
of the lines to be able to perform the Fillet operation on the corners
by analyzing its docstring. Moreover, we find that VLLM planner
performance might vary across CAD commands. This highlights
the necessity of developing CAD-specific benchmarks tailored to
CAD agents. Such benchmarks are crucial for gaining deeper in-
sights into the capabilities and limitations of VLLM planners on
generic CAD task solving.

14. Qualitative Evaluation
This supplementary material presents examples of complete agent
trajectories for the CAD benchmarks used in this study. Detailed
examples from the 2D and 3D subsets of SGPBench are provided
in subsections 14.1 and 14.2. Trajectories for the autoconstraining
task are illustrated in subsection 14.3, while examples of hand-
drawn parameterization are presented in subsection 14.4.

ACTION: 

 

PLAN: To smooth the 4 corners of the rectangle, I need to first identify the indices of the lines
forming the rectangle in the sketch. Then, I can use the `fillet` method at each corner.

             ENVIRONMENT: {{ Returns primitives in JSON format }}

ACTION: 

 PLAN: The rectangle is formed by four line segments. I will apply a fillet to each corner. I
need to calculate the start points for the fillet on each pair of lines at the corners.

             ENVIRONMENT: Execution Success.

FreeCAD Sketch

USER QUERY: Smooth out the 4 corners of this
CAD sketch

Fillet Docstring

Figure 7. Example of the proposed CAD-Assistant utilizing
the Fillet CAD command.



Task Avg Input Tokens Avg Output Tokens Avg Cost per User Request

CAD Question Answering 11280 178 $0.0299
Autoconstraining 28422 852 $0.0795
Handdrawn sketch parameterization 31170 1081 $0.0887

Table 11. Cost per user request for the CAD-Assistant utilizing GPT-4o as VLLM planner.

FreeCAD Class Class Methods Class Attributes

Sketcher.Sketch init () , recompute() , delGeometries(indx) ,

addConstraint(const) , addGeometry(geometry)

Name , Geometry , Constraints , State ,

ConstraintCount , GeometryCount ,

Placement

Sketcher.Constraints init (constraintType, *args) Name

Part.Circle init (center, normal, radius) Center , Radius

Part.Point init (point) X , Y , Z

Part.ArcOfCircle init (circle, startParam, endParam) ,

init (startPoint, endPoint, midPoint)

Center , Radius , StartPoint , EndPoint ,

FirstParameter , LastParameter

Part.LineSegment init (startPoint, endPoint) StartPoint , EndPoint

Part.Extrude init () Base , DirMode , LengthFwd , LengthRev ,

Solid , Reversed , Symmetric ,

TaperAngle , TaperAngleRev

Part.Solid fuse(shape) , cut(shape) , common(shape) TypeId , Volume , BoundBox

Table 12. Summary of FreeCAD API classes, methods, and attributes utilized by the CAD-Assistant framework. The VLLM planner
is supplied with docstrings that clarify their use, including detailed descriptions, function signatures and usage examples.



Prompt Template: 
You are a helpful multimodal Computer Aided Design (CAD) AI assistant.
Solve tasks using your vision, coding, and language skills.
The task can be free-form or multiple-choice questions.
You can answer the user's question. If you are not sure, you can code.
You are coding in a Python jupyter notebook environment. The environment has also access to the PYTHON FREECAD API.
You can suggest python code (in a python coding block) for the user to execute. In a dialogue, all your codes are executed with the same jupyter
kernel, so you can use the variables, working states in your earlier code blocks.
Solve the task step by step if you need to.
The task may require several steps. Give your code to the user to execute. The user may reply with the text and image outputs of the code
execution. You can use the outputs to proceed to the next step, with reasoning, planning, or further coding.
When using code, you must indicate the script type in the code block. The user cannot provide any other feedback or perform any other action
beyond executing the code you suggest. The user can't modify your code. So do not suggest incomplete code which requires users to modify. Don't
use a code block if it's not intended to be executed by the user.
Don't include multiple code blocks in one response. Do not ask users to copy and paste the result. Instead, use 'print' function for the output when
relevant. Check the execution result returned by the user.
For each turn, you should first do a "PLAN", based on the images and text you see.

Here are the commands that you can use.  Call them as described by the following docstrings 
<DOCSTRINGS>

The jupyter notebook has already executed the following code to import the necessary packages:

# REQUIREMENTS #:
1. The generated actions can resolve the given user request # USER REQUEST # perfectly. The user request is reasonable and can be solved. Try
your best to solve the request.
2. The arguments of a tool must be the same number, modality, and format specified in # DOCSTRINGS #;
3. If you think you got the answer, use ANSWER: <your answer> to provide the answer, and ends with TERMINATE.
4. All images should be stored in PIL Image objects. The user will send generated image outputs to you.
5. Only the FreeCAD commands that are provided to you. Do not used different commands or import new modules, as they will not be accessible.
6. Use as few tools as possible. Only use the tools for the use cases written in the tool description. You can use multiple tools in a single action.
7. You must return an answer with the choice letter if the user request is a multiple-choice question.

USER REQUEST # <REQUEST HERE>

Now please generate only PLAN and ACTION in RESULT. If no action needed, also reply with you answer and ends with TERMINATE in the RESULT:# 

Figure 8. Prompt template for the CAD-Assistant. A detailed docstring disambiguating the use of the FreeCAD API and CAD-specific
tools is provided as part of the prompt. The docstring is shown in section 15. On this example, the VLLM planner has a handdrawn sketch
image preloaded. For different usecases, loading can be 3D scans or FreeCAD project files.



14.1. More qualitative results on CAD question answering for the 2D Subset of SGPBench.

USER QUERY:  You are given a FreeCAD project file that inludes a 2D CAD sketch. The
FreeCAD project is already loaded for you. 
Question: What is the position of the smallest rectangle relative to the largets rectangle?
A) Above B) Below
C) left D) right

PLAN: To determine the position of the smallest rectangle relative to the largest rectangle in
the sketch, I need to analyze the sketch. I will use the `sketch_recognizer` function to get a
JSON representation of the sketch's geometries and constraints, as well as a rendered
image of the sketch. This will help me identify the rectangles and their relative positions.

ACTION: 

PLAN: The JSON data and the rendered image show two rectangles. The largest rectangle is
defined by the lines with IDs 0, 1, 2, and 7. The smallest rectangle is defined by the lines with
IDs 3, 4, 5, and 6. The smallest rectangle is positioned to the right of the largest rectangle.

ANSWER: D, TERMINATE.

           ENVIRONMENT: Execution Success

    Returs primitive parameters in JSON format here.

Rendered Sketch Image

USER QUERY:  You are given a FreeCAD project file that inludes a 2D CAD sketch. The
FreeCAD project is already loaded for you. 
Question:  What type of triangle is shown in the image based on its side lengths?
A) Equilateral B) Isosceles
C) Scalene D) Right

PLAN: To determine the type of triangle based on its side lengths, I need to examine the
sketch and identify the lengths of its sides. I will use the `sketch_recognizer` function to
analyze the sketch and obtain a JSON representation of its geometric elements, which will
help me understand the side lengths of the triangle.

ACTION: 

PLAN:  The sketch shows a triangle with three main line segments: 0, 1, and 2. I need to
calculate the lengths of these segments to determine the type of triangle.

           ENVIRONMENT: Execution Success

    Returs primitive parameters in JSON format here.

ACTION: 

           ENVIRONMENT: Execution Success

           Output:

        (0.7906, 0.957590056, 0.9576313656)

PLAN:  The lengths of the triangle's sides are approximately 0.7906, 0.9576, and 0.9576.
Since two sides are equal, the triangle is isosceles.

ANSWER: B) Isosceles, TERMINATE

USER QUERY:  You are given a FreeCAD project file that inludes a 2D CAD sketch. The
FreeCAD project is already loaded for you. 
Question:  How many right angles are present in the CAD object?
A) Two B) Four
C) Six D) Eight

PLAN:  To determine the number of right angles in the CAD object, I need to analyze the
sketch. I will use the `sketch_recognizer` function to obtain a JSON representation of the
sketch's geometries and constraints, as well as a rendered image of the sketch. This will help
me identify the number of right angles present in the object

ACTION: 

PLAN: The sketch consists of a series of connected line segments forming a shape. To
determine the number of right angles, I need to examine the connections between these line
segments. Each connection between two perpendicular lines forms a right angle.
From the JSON data and the rendered image, I can identify the following right angles:
1. Between line segments 0 and 1
2. Between line segments 1 and 2
3. Between line segments 2 and 3
4. Between line segments 3 and 4
5. Between line segments 4 and 5
6. Between line segments 5 and 6
7. Between line segments 6 and 7
8. Between line segments 7 and 0
There are eight right angles in total.

ANSWER: D, TERMINATE.

           ENVIRONMENT: Execution Success

    Returs primitive parameters in JSON
    format here.

Rendered Sketch Image

Rendered Sketch Image

Figure 9. Complete agent trajectories of the CAD-Assistant for CAD Question Answering on the 2D subset of SGPBench.



14.2. More qualitative results on CAD question answering for the 3D Subset of SGPBench.

USER QUERY:  You are given a FreeCAD project file that inludes a 3D CAD model. The
FreeCAD project is already loaded for you.
Question: What is the shape of the main body of the CAD object?
A) Cylinder  B) Sphere
C) L-shape  D) Cube

PLAN: To determine the shape of the main body of the CAD object, I need to analyze the 3D
model in the FreeCAD project. I will use the `solid_recognizer` function to get a visual
representation and JSON serialization of the model's attributes. This will help me understand
the shape of the object.

ACTION: 

PLAN: The rendered image of the 3D model shows an L-shaped object. This matches the
description of an L-shape, which is one of the options provided in the multiple-choice
question.

ANSWER: C, TERMINATE.

           ENVIRONMENT: Execution Success

    Returs primitive parameters in JSON 
    format here.

USER QUERY:  You are given a FreeCAD project file that inludes a 3D CAD model. The
FreeCAD project is already loaded for you.
Question:  How many holes are visible on the flange of the CAD object?
A) Two  B) Three
C) Four  D) Five

PLAN: To determine the number of holes visible on the flange of the CAD object, I need to
analyze the 3D model. I will use the `solid_recognizer` function to get a visual rendering and
JSON serialization of the CAD model, which will help me identify the number of holes

ACTION: 

           ENVIRONMENT: Execution Success

    Returs primitive parameters in JSON
    format here.

PLAN: The JSON data and the rendered image show that there are four circles in the
sketches, which likely correspond to holes on the flange. The image confirms the presence of
four holes.

ANSWER: C, TERMINATE.

USER QUERY:  You are given a FreeCAD project file that inludes a 3D CAD model. The
FreeCAD project is already loaded for you.
Question: What basic geometric shape forms the primary body of the CAD object?
A) Cylinder  B) Cube
C) Sphere   D) Pyramid

PLAN: To determine the primary geometric shape of the CAD object, I need to analyze the
3D model. I will use the `solid_recognizer` function to obtain a rendered image and JSON
representation of the CAD model. This will help me identify the basic geometric shape.

ACTION: 

PLAN: The rendered image shows a cylindrical shape as the primary body of the CAD object.
The JSON data also indicates the presence of arcs and line segments that form circular
profiles, which are extruded to create a cylindrical shape.

ANSWER: A, TERMINATE.

           ENVIRONMENT: Execution Success

    Returs primitive parameters in JSON 
    format here.

USER QUERY:  You are given a FreeCAD project file that inludes a 3D CAD model. The
FreeCAD project is already loaded for you.
Question: What is the primary shape of the top part of the CAD object?
A) Square  B) Triangle
C) Circle   D) Arch

PLAN: To answer the question about the primary shape of the top part of the CAD object, I
need to examine the 3D CAD model. I will use the `solid_recognizer` function to analyze the
model and obtain a rendered image of the object. This will help me identify the primary
shape of the top part.

ACTION: 

           ENVIRONMENT: Execution Success

    Returs primitive parameters in JSON
    format here.

PLAN: The rendered image of the 3D model shows that the top part of the CAD object has a
curved shape, resembling an arch. The JSON data also indicates the presence of an arc in
the sketch geometry, which supports this observation.

ANSWER: D) Arch TERMINATE.

Rendered 3D Solid

Rendered 3D Solid

Rendered 3D Solid

Rendered 3D Solid

Figure 10. Complete agent trajectories of the CAD-Assistant for CAD Question Answering on the 3D subset of SGPBench.



14.3. More qualitative results on CAD sketch autoconstraining.

USER QUERY: Analyze the provided sketch to identify geometric relationships and apply the appropriate parametric
constraints, ensuring that all elements are properly constrained according to design principles. The `sketch` object is
already loaded for you. Use the Coincident, Parallel, Equal, Vertical, Tangent, Perpendicular and Horizontal constraints.

PLAN: To analyze the sketch and apply the appropriate constraints, I will first use the `sketch_recognizer` function to
understand the current geometries and constraints in the sketch. This will help me identify the geometric relationships
and determine which constraints to apply

ACTION: 

PLAN: The sketch contains multiple line segments, arcs, and points. To ensure the sketch is fully constrained, I will apply
the following constraints: 1. Coincident constraints to connect endpoints of line segments and arcs. 2. Horizontal and
vertical constraints for line segments that are aligned with the axes. 3. Parallel constraints for line segments that should
remain parallel. 4. Perpendicular constraints for line segments that should be perpendicular. 5. Tangent constraints for
arcs and line segments that should be tangent. I will analyze each constraint before applying it to ensure it is valid and
does not move the geometries.

ACTION: 

             ENVIRONMENT:  Execution Success

           ENVIRONMENT: Execution Success

    Returs primitive parameters in JSON
    format here.

PLAN: The constraints have been successfully analyzed and applied without moving
the geometries. The sketch should now be fully constrained according to the design
principles. The sketch has been analyzed and the appropriate constraints have been
applied. The sketch is now fully constrained with coincident, horizontal, vertical,
parallel, perpendicular, and tangent constraints. TERMINATE.

USER QUERY: Analyze the provided sketch to identify geometric relationships and apply the appropriate parametric
constraints, ensuring that all elements are properly constrained according to design principles. The `sketch` object is already
loaded for you. Use the Coincident, Parallel, Equal, Vertical, Tangent, Perpendicular and Horizontal constraints.

PLAN: To analyze the sketch and apply parametric constraints, I will first use the `sketch_recognizer` function to understand
the current geometries and constraints in the sketch. This will provide a JSON representation and an image rendering of the
sketch, which will help in identifying the geometric relationships and determining the necessary constraints.

PLAN: The sketch contains multiple circles and line segments. To ensure proper constraints, I will: 1. Apply Coincident
constraints to ensure circles share centers where needed.2. Apply Parallel constraints to line segments that should be
parallel. 3. Apply Equal constraints to circles with the same radius. 4. Apply Vertical and Horizontal constraints to line
segments that should be aligned accordingly. 5. Ensure loops are closed with Coincident constraints. I'll start by analyzing
and applying Coincident constraints for shared centers and endpoints.

ACTION: 

             ENVIRONMENT:  Execution Success

           ENVIRONMENT: Execution Success

    Returs primitive parameters in JSON  format here.

PLAN: The Coincident constraints have been successfully applied. Next, I will apply Parallel, Equal, Vertical, and Horizontal
constraints. 1. Apply Parallel constraints to line segments that should be parallel. 2. Apply Equal constraints to circles with
the same radius. 3. Apply Vertical and Horizontal constraints to line segments that should be aligned accordingly.

ACTION: 

             ENVIRONMENT:  Execution Success

PLAN: The constraints have been successfully applied, and the
sketch is now fully constrained according to design principles. The
sketch should now have proper geometric relationships and be
robust against modifications.  TERMINATE.

ACTION: 

Rendered Sketch Image

Constrained FreeCAD Sketch

Rendered Sketch Image

Constrained FreeCAD Sketch

Figure 11. Complete agent trajectories of the CAD-Assistant for CAD sketch autoconstraining



14.4. More qualitative results on handdrawn CAD sketch parameterization.

USER QUERY: Transform the provided hand-drawn image into a constrained
CAD sketch on FreeCAD and add appropriate parametric constraints.

PLAN:  I need to extract the geometric elements and constraints from the hand-drawn image using the
`sketch_from_image` function. Then, I'll analyze each constraint to ensure they are valid and do not move the geometries
before applying them to the FreeCAD sketch.

ACTION: 

PLAN:   I need to create a FreeCAD sketch and add the detected geometries. Then, I'll analyze each constraint to ensure
they are valid and do not move the geometries before applying them.

ACTION: 

             ENVIRONMENT:  Execution Success

           ENVIRONMENT: Execution Success
    Returns primitive and constraint parameters in JSON format here.

PLAN:  Now that the geometries are added to the sketch, I need to analyze each constraint to ensure they are valid and
do not move the geometries before applying them.

ACTION: 

           ENVIRONMENT: Execution Success
    Constraint [1] rejected: It causes unintended geometry movement.

PLAN:   The constraint that was rejected caused unintended
geometry movement. I will proceed with the valid constraints
and finalize the sketch. The hand-drawn image has been
successfully transformed into a constrained CAD sketch in
FreeCAD. The valid constraints were applied without causing
unintended geometry movement TERMINATE.

USER QUERY: Transform the provided hand-drawn image into a constrained
CAD sketch on FreeCAD and add appropriate parametric constraints.

PLAN:  To transform the hand-drawn image into a constrained CAD sketch, I'll first use the `sketch_from_image` function
to extract geometric elements and constraints from the image. Then, I'll analyze each constraint using
`analyse_constraint` to ensure they are valid and do not move the geometries before applying them.

ACTION: 

PLAN:  I have the detected geometries and constraints. Next, I'll create a FreeCAD sketch and add these geometries.
Then, I'll analyze each constraint to ensure they are valid and do not move the geometries before applying them.

ACTION: 

           ENVIRONMENT: Execution Success
    Returns primitive and constraint parameters in JSON format here.

           ENVIRONMENT: Execution Success

    Returs primitive parameters in JSON
    format here.

PLAN: The sketch has been successfully transformed with the
geometries and constraints applied. The constraints were
analyzed to ensure they are valid and do not move the
geometries. The rendered image confirms the transformation.
The hand-drawn image has been successfully transformed into
a constrained CAD sketch in FreeCAD. All constraints were
validated and applied without moving the geometries
TERMINATE.

Constrained FreeCAD Sketch

Rendered Sketch Image

Constrained FreeCAD Sketch

Figure 12. Complete agent trajectories of the CAD-Assistant for handdrawn CAD sketch parameterization.



15. Docstrings
This section provides the complete docstring of the toolset available to the VLLM planner.
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def sketch_recognizer(sketch: Sketch) -> None:
    """Analyzes a 2D CAD sketch, providing both a JSON serialization of the Attributes for the geometry 
    and constraints and an image rendering of the sketch. Use this function to understand the current FreeCAD sketch.

    This function processes the given sketch and returns a JSON representation describing its geometric 
    elements (e.g., lines, arcs, points, circles) and constraints from the `sketch.Geometry` 
    and `sketch.Constraints` lists. Attributes for Geometries and constraints are extracted directly from these lists, 
    serialized into a structured JSON format for easy interpretation. 
    
    Additionally, this function generates an image rendering of the sketch for visual examination. The sketch
    is rendered as a black and white image. Primitives of the CAD sketch are labeled with a unique numerical ID,
    shown by a marker that is positioned over the primitive.
    
    Parameters:
    ----------
    sketch (Sketch): 
        The input sketch object to be analyzed, containing the geometries and constraints.
            
    Prints:
    -------
    Displays the sketch's parameters and constraints for quick review. It also returns a
    sketch_image (PIL.Image.Image or np.ndarray) rendering of the sketch.

    Usage Example:
    --------------
    >>> sketch_recognizer(sketch)
    The sketch contains the following geometries and constraints, serialized in JSON format:
    {
        "Geometry": [
            {
                "Index": 1,
                "Type": "Line segment",
                "StartPoint": {
                    "x": ...,
                    "y": ...
                },
                "EndPoint": {
                    "x": ...,
                    "y": ...
                },
                "isConstruction": ...
        ],
        "Constraints": [
            { ... }
        ]
    }
    Rendered image of the sketch:
    [Image displays here]
    """

def solid_recognizer(doc: App.Document) -> None:
    """Analyzes a 3D CAD Model, providing both a JSON serialization of the Attributes for the geometry 
    and constraints and an image rendering of the sketch and extrude opeartions. Use this function to understand the current FreeCAD sketch.

    This function processes the given sketch and returns a JSON representation describing its sketches and extrusions. 
    Attributes for Geometries and constraints are extracted directly from these lists, 
    serialized into a structured JSON format for easy interpretation. 
    
    Additionally, this function generates an image rendering of the 3D CAD model for visual examination. The sketch
    is with multiple views.
    
    Parameters:
    ----------
    doc (App.Document): 
        The FreeCAD document including a list of Objects that can be sketch and extusion operations
            
    Prints:
    -------
    Displays the sketch and extrusion parameters for quick review. It also returns a
    cad_image (PIL.Image.Image or np.ndarray) rendering of the sketch.

    Usage Example:

    --------------
    >>> solid_recognizer(sketch)
    The 3D CAD model contains the following sketch and extrusion operations, serialized in JSON format:
    {
        "Sketch0": {
            "Geometry": [
                {
                    "Index": 1,
                    "Type": "Line segment",
                    "StartPoint": {
                        "x": ...,
                        "y": ...
                    },
                    "EndPoint": {
                        "x": ...,
                        "y": ...
                    },
                    "isConstruction": ...
            ],
            "Constraints": [
                { ... }
            ]
        },
        "Extrusion1": { ... }
    }
    Rendered image of the 3D Model:
    [Image displays here]
    """
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def sketch_from_image(img: PIL.Image.Image) -> None:
    """Extracts a Sketch object from a given sketch image.

    This function processes an input imag and detects 
    parametric geometric primitives within the sketch (e.g., lines, circles, arcs, points) and the corresponding constraints. The function handle 
    input images as a PIL image. Detected geometric entities are printed and can be used for further analysis or manipulation.
    
    Usage:
    ------
    This function is called a deep learning network that is imperfect and makes mistakes. Note that predicted constraints might be inaccurate and 
    applying them without analysing them might drastically change the sketch geometry. Use the provided `analyse_constraint` function to make sure
    that predicted constraints are valid and do not move geometric entities of the sketch.
    
    Parameters:
    ----------
    img (PIL.Image.Image or np.ndarray):
        The input image of a handdrawn 2D CAD sketch.

    Prints:
    -------
    A dictionary in JSON format containing the detected geometies and constraints. 
    
    Usage Example:
    --------------
    >>> sketch_from_image(img)
    The handdrawn parametarization tool detected the following sketch geometries and constraints, serialized in JSON format:
    {
        "Geometry": [
            {
                "Id": 1,
                "Type": "Line segment",
                "start_vector": {
                    "x": ...,
                    "y": ...
                },
                "end_vector": {
                    "x": ...,
                    "y": ...
                },
        ],
        "Constraints": [
            { ... }

        ]
    }
    """

def get_crosssection_image(mesh: o3d.geometry.TriangleMesh, normal: np.ndarray, origin: np.ndarray) -> PIL.Image.Image
    """
    Generates a 2D cross-sectional image from a 3D mesh.

    This function takes a 3D mesh and extracts a cross-section based on a specified plane, defined by a normal vector
    and an origin point. The extracted cross-section is then projected onto a 2D plane and normalized to a fixed size
    suitable for visualization. The resulting image is centered, cropped, and rescaled to 128x128 pixels, capturing the
    silhouette of the cross-section.

    Parameters:
    ----------
    mesh : o3d.geometry.TriangleMesh
        The 3D mesh from which the cross-section will be extracted. It should contain vertices and faces attributes.
    normal : np.ndarray, shape (3,)
        The normal vector defining the orientation of the cross-sectional plane.
    origin : np.ndarray, shape (3,)
        A point on the plane to define its position in 3D space.

    Returns:
    -------
    img : PIL.Image.Image
        A grayscale PIL Image object of size 128x128 representing the 2D cross-section of the mesh.
    """

def analyse_constraint(sketch: Sketch, constraint: Constraint) -> (bool, bool):
    """Evaluate the impact of a given constraint on a sketch without applying it, 
    and determine if it causes significant changes to the geometry. 

    This function returns two binary flags: one indicating whether the constraint is valid, 
    and another indicating if it would cause geometries to move. Use this function to analyze 
    the effect of constraints on CAD geometries and ensure they behave as intended before 
    adding them to the sketch.

    Parameters:
    -----------
    sketch (Sketch):
        The original FreeCAD sketch object containing geometric elements and constraints.
    
    constraint (Constraint):
        The constraint to be evaluated.

    Returns:
    --------
    (is_valid, moves_geometries): (bool, bool)
        - `is_valid`: `True` if the constraint does not introduce conflicts or invalid states; 
            `False` if the constraint is invalid.
        - `moves_geometries`: `True` if the constraint causes movement of one or more geometries; 
            `False` if no significant movement occurs.

    Prints:
    -------
    Displays a summary of the effect of the constraint on the geometric entities of the Sketch.Geometry list.
    It also displays the is_valid and moves_geometries binary flags.

    Usage:
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    Usage:
    ------
    Use this function to test constraints before committing them to the sketch. 
    This allows you to detect unintended movements or conflicts early in the design process.

    Example:
    --------
    >>> # Add a coincident constraint to align the start of geometry 1 with the end point of geometry 2.
    >>> coincident_constraint = Sketcher.Constraint('Coincident', *(1, SubRef.START.value, 2, SubRef.END.value))
    
    # You can analyse the effect the constraint would have on the sketch geometry
    >>> is_valid, moves_geometries = analyse_constraint(sketch, coincident_constraint) # the function automatically prints an analysis of the constraint.
    Analysis of Constraint[0] (without applying it to the sketch):
        Type: Coincident

        Elements:
            - First: 1
            - FirstPos: START
            - Second: 2
            - SecondPos: END
        Movement:
            Sketch.Geometry[5]:
                - START moved from: (-0.500, -0.407) to (-0.297, 0.407)
        Moves Geometries: True
        IsValid: True
    >>> is_valid
    True
    >>> moves_geometries
    True

    Note:
    -----
    This function does not modify the original sketch. It only provides a preview of the 
    potential impact of the given constraint.
    """
    
class Sketch:
    """Represents a 2D sketch object in FreeCAD, used for creating and defining geometric shapes, 
    constraints, and profiles that can later be referenced in 3D operations (e.g., extrusion, revolution).

    The Sketch class provides methods to add, modify, and constrain geometric elements such as 
    lines, arcs, circles, and points. Sketches serve as essential building blocks in parametric 
    modeling, allowing users to control the relationships between elements through constraints.

    Attributes:
    -----------
    Name (str):
        The name of the sketch object.
    Geometry (List[Union[LineSegment, ArcOfCircle, Circle, Point]]):
        A list of geometric elements in the sketch (e.g., lines, arcs, circles, points).
    Constraints (List[Sketcher.Constraint]):
        A list of constraints applied to the sketch elements (e.g., coincidence, equality, tangency).
    ConstraintCount (int):
        The total number of constraints applied to the sketch.
    GeometryCount (int):
        The total number of geometric elements present in the sketch.
    Placement (Placement):
        Defines the position and orientation of the sketch in 3D space. This attribute allows 
        the sketch to be moved or rotated within the document, affecting how it will be aligned 
        with other objects in FreeCAD.
    State (List[str]):
        A list representing the current status of the sketch. Possible values include:
        - 'Touched': The sketch has been modified since the last update.
        - 'Untouched': The sketch has not been modified since its last valid state.
        - 'Invalid': The sketch contains errors or unsatisfied constraints.

    Usage Example:
    --------------
    >>> import FreeCAD
    >>> from FreeCAD import Part, Sketcher
    >>> doc = FreeCAD.newDocument("ExampleDoc")
    >>> sketch = doc.addObject('Sketcher::SketchObject', 'sketch')
    
    Methods:
    --------
    addGeometry(self, geometry: Union[LineSegment, ArcOfCircle, Circle, Point]) -> int:
        This method is used to adds a geometric element to the sketch. 
        
        Parameters:
        ----------
        geometry: 
            a geometric element to be added on the sketch (e.g., lines, arcs, circles, points).

        Returns:
        --------
        index (int):
            The index of the added geometry on the sketch.Geometry list.

        Usage Example:
        --------------
        >>> line = Part.LineSegment( App.Vector(0.2, 0.3, 0),  App.Vector(0.3, 0.2, 0))
        >>> line_index = sketch.addGeometry(line)  # A line is added.
        >>> sketch.recompute()
        >>> line = sketch.Geometry[line_index]

    delGeometries(self, identifiers: List[int]) -> None:
        Deletes one or more geometries from the sketch, based on their indices on the sketch.Geometry list.

        Parameters:
        ----------
        identifiers (List[int]):
            A list of zero-based identifiers specifying which geometries to delete from the sketch.
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        Usage Example:
        --------------
        >>> sketch.delGeometries([1])  # This will delete the geometry at index 1
        >>> sketch.recompute()

    addConstraint(self, constraint: Sketcher.Constraint) -> int:
        Adds a constraint to the sketch. 
        Returns the index of the added constraint.

        Parameters:
        ----------
        constraint (Sketcher.Constraint): 
            a geometric constraint to be added on the sketch.
        
        Returns:
        --------
        index (int):
            The index of the added constraint on the sketch.Constraints list.
                
        Usage Example:
        --------------
        >>> parallel_constraint = Sketcher.Constraint('Parallel', 4, 6)  
        >>> sketch.addConstraint(parallel_constraint)
        >>> sketch.recompute()
        
    recompute(self) -> None:
        Forces a recompute of the sketch to apply and update any pending changes. 
        This ensures that all modifications (such as added or deleted geometries and constraints) 
        are reflected in the document.
        
        Parameters:
        ----------
        None
        
        Returns:
        --------
        None
     """

class LineSegment:
    """Represents a line defined by two endpoints in 3D space.
    This class is part of the FreeCAD Part module and should be instantiated using `Part.LineSegment`.

    Constructor:
    ------------
    __init__(self, start_vector: App.Vector, end_vector: App.Vector)
        Initializes a LineSegment with specified start and end points in 3D space.

        Parameters:
        ----------
        start_vector (App.Vector): 
            A 3D vector representing the coordinates of the line's start point.
        end_vector (App.Vector): 
            A 3D vector representing the coordinates of the line's end point. 
                    
    Attributes:

    -----------
    StartPoint (App.Vector):
        The start point of the line segment.
    EndPoint (App.Vector):
        The end point of the line segment.

    Usage Example:
    --------------
    >>> # Create a LineSegment from start and end points. 
    >>> start_point = App.Vector(0, 0, 0)
    >>> end_point = App.Vector(1, 1, 1)
    >>> line = Part.LineSegment(start_point, end_point)
    >>> line.StartPoint.x 
    0 # access the x coordinate of the start point
   """

class Circle:
    """Represents a circle in 3D space defined by a center point, a normal vector and a radius using FreeCAD's Vector objects.
    This class is part of the FreeCAD Part module and should be instantiated using `Part.Circle`.

    Constructor:
    ------------
    __init__(self, center_vector: App.Vector, normal_vector: App.Vector, radius: float):
        Initializes a Circle with a specified center, normal vector, and radius.

        Parameters:
        ----------
        center_vector (App.Vector):
            A 3D vector with the coordinates of the center point of the circle.
        normal_vector (App.Vector): 
            A 3D vector representing the direction normal to the circle's plane.
        radius (float): 
            The radius of the circle.
            
    Attributes:
    -----------
    Center : (App.Vector)
        The center point of the circle.
    Radius : (float)
        The radius of the circle.

    Usage Example:
    --------------
    >>> center = App.Vector(6.0, 3.0, 0)
    >>> normal = App.Vector(0, 0, 1)
    >>> radius = 1.1
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    >>> radius = 1.1
    >>> circle = Part.Circle(center, normal, radius)
    >>> circle.Center
    Vector (6.0, 3.0, 0.0)
    """

class Point:
    """Represents a point in 3D space.
    This class is part of the FreeCAD Part module and should be instantiated using `Part.Point`.

    Constructor:
    ------------
    __init__(self, point_vector: App.Vector):
        Constructor of the Point class

        Parameters:
        ----------
        point_vector (App.Vector):
            A 3D vector with the coordinates of the point.

    Attributes:
    -----------
    X (float):
        The x-coordinate of the point.
    Y (float):
        The y-coordinate of the point.
    Z (float):
        The z-coordinate of the point.

        
    Usage Example:
    --------------
    >>> point = Part.Point(App.Vector(1.0, 2.0, 3.0))
    >>> point.X
    1.0
    """

class ArcOfCircle:
    """Represents a circular arc derived from a given circle, defined by start and end angles in radians.
    The arc is drawn counterclockwise from the start angle to the end angle. Angles are expressed in radians
    where 0 radians correspond to the positive x-axis and increase counterclockwise.

    This class is part of the FreeCAD Part module and should be instantiated using `Part.ArcOfCircle`.

    Constructor:
    ------------
    __init__(self, circle: Circle, start_param: float, end_param: float)
        Initializes an ArcOfCircle instance from a circle and specified start and end parameters.

        Parameters:
        ----------
        circle (Circle): 
            The Circle object from which the arc is derived.
        start_param (float): 
            The starting parameter (angle in radians) on the circle's circumference that defines the beginning of the arc.
        end_param (float): 
            The ending parameter (angle in radians) on the circle's circumference that defines the end of the arc.
            
    Attributes:
    -----------
        Radius : (float)
            The radius of the circle from which the arc is derived.
        StartPoint : (App.Vector)
            The start point of the arc.
        EndPoint : (App.Vector)
            The end point of the arc.
        Center : (App.Vector)
            The center point of the circle from which the arc is derived.
        FirstParameter : (float)
            The start angle of the arc in radians.
        LastParameter : (float)
            The end angle of the arc in radians.

    Usage Example:
    --------------
    >>> #Create counterclockwise ArcOfCircle with center, radius, and start and end angles in radians. 
    >>> arc_center = App.Vector(0.0670, -0.0000, 0.0)  # Center of the arc
    >>> arc_radius = 0.0130  # Radius of the arc
    >>> start_param = -1.6008  # Start parameter in radians
    >>> end_param = -0.0000  # End parameter in radians
    >>> arc_direction = App.Vector(0, 0, 1)
    >>> # Create the arc using Part.ArcOfCircle
    >>> arc = Part.ArcOfCircle(Part.Circle(arc_center, arc_direction, arc_radius), start_param, end_param)
    """

class Arc:
    """Represents an arc defined by a start point, an end point, and an intermediate point on the arc.

    This class is part of the FreeCAD `Part` module and should be instantiated using `Part.Arc`.
    The arc is uniquely determined by three points: the start, the end, and a point somewhere 
    on the arc (referred to as the midpoint, though it need not be the geometric middle). The 
    arc lies on the circle that passes through these three points.

    After calling `recompute()` on a FreeCAD sketch, an `Arc` object is automatically 
    transformed into an `ArcOfCircle` object. This is because FreeCAD optimizes the 
    geometry representation for arcs, converting them to arcs of circles after 
    the geometry is fully processed.

    Constructor:
    ------------
    __init__(self, start_vector: App.Vector, end_vector: App.Vector, mid_vector: App.Vector)
        Initializes a Arc with specified start, end and mid points in 3D space.

        Parameters:
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        Parameters:
        ----------
        start_vector (App.Vector): 
            A 3D vector representing the coordinates of the arc's start point.
        end_vector (App.Vector): 
            A 3D vector representing the coordinates of the arc's end point. 
        mid_vector (App.Vector): 
            A 3D vector representing a point on the curcomference of the arc.    

    Usage:
    ------
    Use this function to create ArcOfCircle objects from start, end and mid points.
    
    Usage Example:
    --------------
    >>> start_point = App.Vector(5.0, 0, 0)
    >>> end_point = App.Vector(0, 5.0, 0)
    >>> mid_point = App.Vector(3.54, 3.54, 0)
    >>> arc = Part.Arc(start_point, mid_point, end_point)
    <Arc object>
    >>> sketch.addGeometry(arc)
    >>> sketch.recompute()
    >>> arc
    <ArcOfCircle object>
    """

class SubRef(Enum):
    START = 1
    END = 2
    CENTER = 3

class Constraint:
    """Represents a geometric constraint in a FreeCAD sketch.
    Constraints define relationships between geometric elements (lines, arcs, circles, points), ensuring specific properties or behaviors.
    Constraints can be created using the `Sketch.addConstraint()` method.

    Constructor:
    ------------
    __init__(self, constraint_type: str, *args)
        Initializes a Sketcher.Constraint instance with a specified type and parameters.

        Parameters:
        -----------
        constraint_type (str): 
            The type of constraint to apply. Supported types include:
            - 'Coincident'
            - 'Parallel'
            - 'Equal'
            - 'Vertical'
            - 'Horizontal'
            - 'Perpendicular'
            - 'Tangent'

        *args (varies): 
            Additional parameters specific to the constraint type. These define the geometries or points 
            to which the constraint applies and any additional constraint-specific requirements.

        Usage:
        ------
        Supported Constraint Types and Their Arguments:
        1. Coincident: Enforces that two points or vertices coincide (i.e., share the same location in space).
            - args: ('Coincident', First, FirstPos, Second, SecondPos)
                - First (int):
                    The index of the first geometry.
                - FirstPos (int):
                    The vertex (1 for start, 2 for end, 3 for center) of `Geometry_index1` to fulfill the constraint.
                - Second (int):
                    The index of the second geometry.
                - SecondPos (int):
                    The vertex (1 for start, 2 for end, 3 for center) of `Geometry_index2` to fulfill the constraint.

        2. Parallel: Ensures two lines remain parallel.
            - args: ('Parallel', First, Second)
                - First (int):
                    The index of the first Line segment to be made parallel.
                - Second (int):
                    The index of the second Line segment to be made parallel.

        3. Equal: Makes two lines or circles equal in length or radius.
            - args: ('Equal', First, Second)
                - First (int):
                    The index of the first line segment or circle.
                - Second (int):
                    The index of the first line segment or circle.
                
        4. Vertical: Forces a line segment to be vertical.
            - args: ('Vertical', First)
                - First (int): The index of the Line segment.

        5. Horizontal: Forces a line segment to be horizontal.
            - args: ('Horizontal', First)
                - First : (int)
                    The index of the line segment.

        6. Perpendicular: Ensures that two line segments are perpendicular.
            - `args`: ('Perpendicular', Geometry_index1, Geometry_index2)
                - Geometry_index1 : (int)
                    The index of the first line segment.
                - Geometry_index2 : (int)
                    The index of the second line segment.
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        7. Tangent: Makes a line tangent to a curve.
            - args: ('Tangent', Geometry_index1, Geometry_index2)
                - Geometry_index1 : (int)
                    The index of the first geometry.
                - Geometry_index2 : (int)
                    The index of the first geometry.

        Usage Example:
        --------------
        >>> coincident_constraint = Sketcher.Constraint('Coincident', *(1, SubRef.START.value, 2, SubRef.END.value))
        >>> sketch.addConstraint(coincident_constraint)
        >>> sketch.recompute()
        >>> sketch.State
        ['Touched']
        # Check the total number of constraints applied to the sketch.
        >>> print(f"Number of constraints: {len(sketch.Constraints)}")
        Number of constraints: 2
        # Remove the most recently added constraint.
        >>> sketch.delConstraint(len(sketch.Constraints) - 1)
        # Remove the constraint on specific index.
        >>> sketch.delConstraint(coincident_constraint_index)
        >>> sketch.addConstraint(Sketcher.Constraint('Horizontal', 0))
        >>> sketch.recompute()
        >>> sketch.State # Use the State Variable to ensure that all added constraints are valid.
        ['Touched', 'Invalid'] 
    """

class Extrusion:
    """Represents an extrusion of a sketch in FreeCAD.
    This class is part of the FreeCAD Part module and should be instantiated using a sketch object and the desired extrusion parameters.

    Attributes:
    -----------
    Base (Sketch):
        The sketch object that is extruded into a 3D solid.
    DirMode (str):
        Direction mode of the extrusion (default: "Normal").
    LengthFwd (float): 
        Forward extrusion length.
    LengthRev (float): 
        Reverse extrusion length.
    Solid (bool): 

        Whether the extrusion is a solid (default: True).   
    Reversed (bool): 
        Whether the extrusion direction is reversed.
    Symmetric (bool): 
        Whether the extrusion is symmetric along the sketch plane.
    TaperAngle (float): 
        Taper angle for the extrusion.
    TaperAngleRev (float):
        Reverse taper angle for the extrusion.

    Usage Example:
    --------------
    >>> extrude =  doc.addObject('Part::Extrusion', 'Extrude')
    >>> extrude.Base = sketch # extrude an existing sketch object
    >>> extrude.DirMode = "Normal"
    >>> extrude.DirLink = None
    >>> extrude.LengthFwd = 10.00
    >>> extrude.LengthRev = 0.0
    >>> extrude.Solid = True
    >>> extrude.Reversed = False
    >>> extrude.Symmetric = False
    >>> extrude.TaperAngle = 0.0
    >>> extrude.TaperAngleRev = 0.0
    >>> doc.recompute()
   """

class Solid:
    """Represents a 3D solid in FreeCAD, created as part of an `Extrusion` operation. 
    This shape object holds the geometry of the extruded solid and provides access to various 
    geometric properties, as well as methods for performing transformations and boolean operations 
    with other shapes.

    Attributes:
    -----------
    TypeId (str):
        The type of shape, typically "Part::TopoShape".
    Volume (float):
        The volume of the extruded solid.
    Area (float):
        The total surface area of the extruded solid.
    BoundBox (BoundBox):
        The bounding box of the shape, describing the spatial limits of the extrusion.

    Methods:
    --------
    fuse(shape: Shape) -> Shape:
        Performs a union operation, merging this shape with another solid to create a combined shape.

        Parameters:
        ----------
        shape (Shape):
            The other solid shape with which to perform the union operation.

        Returns:
        --------
        Shape:
            A new solid object representing the union of this shape and the specified shape.
        
        Usage Example:
        --------------
        >>> shape1 = extrude1.Shape  # Access the extruded shape
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        >>> shape1 = extrude1.Shape  # Access the extruded shape
        >>> shape2 = extrude2.Shape  # Access the extruded shape
        >>> result_shape = shape2.fuse(shape1)  # Union with another shape

    cut(shape: Shape) -> Shape:
        Performs a cut operation, subtracting the specified shape from this shape.

        Parameters:
        ----------
        shape (Shape):
            The solid shape to subtract from this shape.

        Returns:

        --------
        Shape:
            A new solid object representing the result of subtracting the specified shape from this shape.
        
        Usage Example:
        --------------
        >>> result_shape = shape1.cut(shape2)  # Subtract shape2 from shape1

    common(shape: Shape) -> Shape:
        Performs an intersection operation, keeping only the volume that is common between this shape and another.

        Parameters:
        ----------
        shape (Shape):
            The solid shape to intersect with this shape.

        Returns:
        --------
        Shape:
            A new solid object representing the intersected volume of the two shapes.
        
        Usage Example:
        --------------
        >>> result_shape = shape1.common(shape2)  # Intersect shape1 with shape2
    """



Text-based Reasoning

Serialization Parametarization 2D Acc

Common CAD Sketch formats
Serialized Graph Implicit 0.674
DXF 0.671
OCA 0.707

Serialization Strategy (Tabular formats)
CSV Point-based 0.703
Markdown Point-based 0.706
HTML Point-based 0.710

Serialization Strategy (Schema-embedded formats)
Serialized Graph Point-based 0.744
JSON Point-based 0.748
JSON Overparametarized 0.747

Rendering-based Reasoning

CAD Sketch Image Type
Hand-drawn Sketch 0.616
Precise Rendering 0.754

CAD Question Answering

Method Planner 2D Acc 3D Acc

SGPBench [1]
GPT-4 mini 0.594 0.737
GPT-4 Turbo 0.674 0.762
GPT-4o 0.686 0.782

CAD-ASSISTANT
GPT-4 mini 0.614 0.783
GPT-4 Turbo 0.741 0.825
GPT-4o 0.791 0.857

CAD Sketch Autoconstraining

Method Type PF1 ↑ CF1 ↑
GPT-4o zero-shot 0.693 0.274
Vitruvion [2] supervised 0.706 0.238
CAD-ASSISTANT zero-shot 0.979 0.484

Hand-drawn Sketch Image Parametrization

Method Acc ↑ CD ↓
Vitruvion [2] 0.659 1.586
Davinci [3] 0.789 1.184
CAD-ASSISTANT 0.784 0.680
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