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ABSTRACT

Context. We consider tidal masses and ages of Milky Way open clusters, as well as a simple model of their distribution. This model is
presented as part of the Milky Way Star Cluster (MWSC) survey.
Aims. Our aim is to investigate the space of model parameters and the correspondence between modelled and observed two-
dimensional (2D) cluster age-mass distributions.
Methods. The model for cluster evolution is comprised of a two-section cluster initial mass function, constant cluster formation rate,
and a mass loss function. This mass loss function represents a supervirial phase after sudden expulsion of the remaining gas, clus-
ter mass loss due to stellar evolution and gradual cluster dissolution driven by internal dynamics and the Galactic tidal field. We
constructed different estimators of model fitness based on χ2-statistics, the Kullback–Leibler divergence (KLD) and a maximum-
likelihood approach, taking into account the uncertainty of our observed cluster parameters. Using these estimators and Markov chain
Monte Carlo (MCMC) sampling, we obtained best-fit values and posterior distributions for a selection of model parameters.
Results. The KLD returned a superior model compared to the other statistics, because it also reproduced the low-density regions of
the observed cluster age-mass distribution. The cluster initial mass function is well constrained and we find a clear signature of an
enhanced cluster mass loss in the first 50 Myr. Deviations from a constant cluster formation rate could not be determined due to its
strong degeneracy with the shape of the cluster mass loss function. In the KLD best model, clusters lose 72% of their initial mass
in the violent relaxation phase, after which cluster mass loss slows down, allowing for a relatively low rate of cluster formation of
0.088 M⊙ kpc−2 Gyr−1. The observed upper limit of cluster ages at approx. 5 Gyr is reflected in the model by a very shallow lifetime-
mass relation for clusters with initial masses above 1000 M⊙. The application of the model to an independent cluster sample based on
Gaia DR3 data yielded similar results except for a systematic shift in typical age and higher number densities.
Conclusions. We conclude that the observed cluster age-mass distribution is compatible with a constant cluster formation rate. Strong
correlations between model parameters reflect a sensitive dependence of the cluster age-mass distribution not just on the formation
rate and initial mass function, but the details of cluster mass loss and dissolution in particular. The enhanced number of young massive
clusters observed requires an early violent relaxation phase of strong mass loss. The cluster age limit cannot be fully explained by an
initial mass cutoff.

Key words. Galaxy: evolution – open clusters and associations: general – Galaxy: stellar content –
Galaxies: fundamental parameters – galaxies: photometry – galaxies: star clusters: general

1. Introduction
Two of the most fundamental parameters of a star cluster are its
age and mass. They become of particular interest in the study
of star cluster populations. The age structure of a cluster system
bears the imprint of its history of cluster formation and dissolu-
tion, which links to the star formation history of the host galaxy.
As the cluster mass changes across a cluster’s lifetime due to
stellar evolution and the loss of member stars, the cluster mass
function (CMF) depends on not only the conditions under which
clusters form, but also on the cluster ages and lifetimes. In order
to reconstruct the cluster formation rate (CFR) and the cluster

⋆ Corresponding author

initial mass function (CIMF) it would be best to use the full 2D
distribution of clusters in the age-mass plane. However, litera-
ture is scarce on quantitative analysis or modelling of the full 2D
cluster age-mass function (CAMF). Main reasons are the sparse
population of the age-mass plane and the inhomogeneity of the
datasets.

If only the total cluster age function (CAF) or CMFs in some
age ranges are available, a significant amount of information is
hidden, which results in a large amount of ambiguity. Typically,
the CAF is used to fit and evaluate cluster evolution models
quantitatively (e.g. Lamers et al. 2005; Piskunov et al. 2018).
In another approach, Gieles & Bastian (2008) linked the maxi-
mum cluster mass observed for different ages to the CIMF and
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the rate of mass-independent cluster disruption. Elmegreen &
Hunter (2010) discussed how observed regularities in the number
of clusters within a fixed mass range for different age bins reflect
features of cluster evolution. They used random sampling of dif-
ferent cluster evolution models to qualitatively reproduce these
regularities. For extragalactic cluster systems, detection limits
constrain the data base additionally to the high-mass end (see
e.g. Larsen 2009; Fouesneau et al. 2012, for the LMC and M83,
respectively).

Recently, Just et al. (2023) derived tidal masses for open clus-
ters of the MWSC catalogue (see Kharchenko et al. 2012, 2013;
Schmeja et al. 2014; Scholz et al. 2015) and constructed CMFs
for different cluster age ranges for a completeness-corrected
sample of Galactic open clusters. They described the CMFs in
terms of a low-mass and a high-mass power-law slope, and find
that while the high-mass slope remains close to one for all ages,
the low-mass slope is initially shallow for clusters younger than
20 Myr. For older clusters, the low-mass slope becomes approx-
imately −0.7 and changes little after the first 20 Myr. As the
cluster ages increase, the breakpoint of this low-mass slope is
shifted to higher masses. They present a simple analytical model
for cluster formation and evolution able to reproduce the general
shape and several features of these CMFs, in particular the high-
mass and low-mass slopes for ages above 20 Myr, as well as the
shift of the CMFs towards higher masses with increasing age.

It is our aim to investigate this model now in the context
of the full 2D CAMF, which describes the Milky Way cluster
surface density as a function in the cluster age-mass plane. We
construct the empirical CAMF and provide a quantitative anal-
ysis of the model’s correspondence to observations. Further, we
perform a study of the model parameter space in order to find
better estimates of the model parameters and related quantities
of interest in order to improve the quality of the model as a
description of the observed cluster population.

In Sect. 2, we use the MWSC cluster sample (Kharchenko
et al. 2013) to construct the observed CAMF for the solar neigh-
bourhood after correcting for completeness using the approach
of Piskunov et al. (2018). Two different views on the CAMF
are presented taking into account uncertainties in the observed
ages and masses. We proceed in Sect. 3 to describe and motivate
the analytical CAMF model first introduced in Just et al. (2023),
which is composed of functions governing the rate of cluster for-
mation, the cluster initial mass distribution and the evolution of
the cluster bound mass. In Sect. 4, we describe the methods used
to artificially introduce age-mass uncertainties to the model and
to fit the model parameters using a MCMC approach. The results
of this approach are discussed in Sect. 5, where we compare dif-
ferent fit statistics used and analyse our best-fitting model. In
Sect. 6, we compare our model to the cluster catalogue based on
Gaia data of Hunt & Reffert (2023). Finally, Sect. 7 contains a
summary of our results and conclusions.

2. Data

In contrast to cluster ages, data on cluster masses for Milky
Way clusters is not easy to compute and therefore not very
abundant. One can mention the earlier data of Lada & Lada
(2003) based on a collection of data of 76 embedded clus-
ters; of Lamers et al. (2005) and of Piskunov et al. (2007) for
520 clusters from early release of the Catalog of Open Cluster
Data (COCD, Kharchenko et al. 2005), and of Piskunov et al.
(2008) for 650 clusters from the final release of COCD. Later
Kharchenko et al. (2013) based on MWSC data determined tidal
radii and masses (Just et al. 2023) for 3061 open clusters. The

recent releases of the Gaia survey (Gaia Collaboration 2016b)
allow for new determinations of cluster masses based on the DR2
and (E)DR3 releases: Meingast et al. (2021) for ten nearby clus-
ters, Cordoni et al. (2023) for 78 clusters, Almeida et al. (2023)
for 773 objects, and by Hunt & Reffert (2024) for 6956 clusters
previously identified by them.

The most commonly used approach to mass determination is
the derivation of the so-called counted mass via the summation
of the masses of individual apparent cluster members (as in
Lada & Lada 2003; Lamers et al. 2005; Meingast et al. 2021;
Cordoni et al. 2023; Almeida et al. 2023; Hunt & Reffert
2024). Usually, direct summation of observed individual mem-
ber masses is accompanied by extrapolation of the constructed
member mass function (or its template) to the arbitrarily chosen
lower mass limit. The arbitrary use of the template parameters
(the slope and the limit) could lead to a serious distance-related
bias of the calculated mass. Further, the measurement of cluster
member masses typically depends on the cluster age, especially
for the most luminous, fastest-evolving stars.

The measurement of tidal radii and computation of the
corresponding bound masses using a model of the Galactic grav-
itational potential (Piskunov et al. 2008; Kharchenko et al. 2013)
is an alternative which is free from the above bias, and is proba-
bly the only direct measure of cluster mass available in practice.
This has only become possible with the publication of all-sky
surveys such as Hipparcos/Tycho (ESA 1997), the Two Micron
All Sky Survey (2MASS, Skrutskie et al. 2006), the PPMXL
Catalog of Positions and Proper Motions on the ICRS (PPMXL,
Röser et al. 2010), and Gaia (e.g. Gaia Collaboration 2018, 2021,
2023). Their use opens the possibility to determine extensive
lists of cluster tidal radii and masses, which can be used as an
independent source of data for the CMF. It should be noted,
however, that the determination of tidal masses is not without its
own difficulties; such as difficulties with fixing the cluster outer
boundary in dense or variable extinction environments. How-
ever, the independence from the age determination and weaker
assumptions about the behaviour of the unseen fraction of the
cluster population compensate for this drawback.

Once the cluster masses are fixed, one can construct the
CMF, or its 2D analogue, the age-mass distribution. The main
requirement is full statistical representativeness of the cluster
sample over the entire mass range. This means that the sam-
ple should provide a sufficient number of objects even at the
extremes of the mass and age scales. In practice, a sample of
several hundred clusters at the least is needed to resolve interest-
ing features in the age-mass plane. Further, the application of a
proper data completeness model to the raw distributions is nec-
essary to account for varying completeness at different masses
and ages. These conditions cut off all the poorly populated
samples mentioned above. The Hunt & Reffert (2024) sample
represents the most populated list of cluster masses and ages
ever published. However, the cluster age and mass distributions
derived from these data are based only on a provisional, mass-
limited completeness model. The magnitude-limited nature of
the Gaia survey suggests a completeness model based on clus-
ter luminosities, for which a completeness distance determined
solely by cluster masses is only a very limited substitute. How-
ever, cluster luminosities are neither constructed nor discussed
by Hunt & Reffert (2024), and no follow-up studies of the
catalogue’s completeness have been published at the time of
writing.

Though comparison with Gaia-based cluster catalogues
(such as in Hunt & Reffert 2023) give strong hints that the
MWSC is not complete at any distance, full completeness is not
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essential for analysis of the CAMF as long as a representative
cluster sample can be obtained. For validation of the com-
pleteness of the MWSC and Gaia based catalogues a detailed
comparison would be needed, which is out of the scope of
the work presented here. A complete sample is relevant for
determining absolute cluster counts, while an incomplete rep-
resentative sample can still be used to determine relative counts
and study cluster formation and evolution. As it has been shown
that the MWSC sample is magnitude-limited (see Kharchenko
et al. 2016; Piskunov et al. 2018; Just et al. 2023), construction
of such a representative subsample is possible with the appropri-
ate technique. Therefore, we prefer to use MWSC data for our
observational base.

While it may be desirable to augment MWSC data using
high-precision Gaia astrometry, this cannot be done from exist-
ing Gaia-based catalogues alone due to limited overlap in cluster
lists, and would in practice require a full redetermination of all
cluster basic parameters using Gaia data. Similarly, validating
the MWSC data using existing catalogues is a non-trivial task
that may be complicated by selection effects from limited cata-
logue overlap. As such, both approaches are beyond the scope of
this work.

The MWSC catalogue (Kharchenko et al. 2012, 2013), rep-
resents a heliocentric sample of Galactic star clusters built using
astrometry of PPMXL (Röser et al. 2010) in combination with
near-infrared photometry from 2MASS (Skrutskie et al. 2006).
It contains basic parameters for 3061 open clusters (Kharchenko
et al. 2013), 202 of which are newly discovered as part of the
MWSC survey (Schmeja et al. 2014; Scholz et al. 2015). Inves-
tigation by Kharchenko et al. (2016) determines that the MWSC
sample is magnitude-limited. Just et al. (2023) extend the list of
basic cluster parameters by the cluster tidal masses.

As the MWSC sample of open clusters can be characterised
as magnitude-limited, it is necessary to address the issue of in-
sample bias due to variable completeness. For this purpose, we
followed here the approach of ‘magnitude-dependent complete-
ness limits’ used by Piskunov et al. (2018); Just et al. (2023),
which requires the assumption of a uniform distribution of clus-
ters in the Galactic plane in the solar neighbourhood. Each
cluster was assigned an individual completeness distance

d̂xy = p − qI(MKS ), (1)

depending on its integrated magnitude I(MKS ) in the KS pass-
band. Here we adopted the values p = 0.36 kpc and q =
0.54 kpc mag−1 from Just et al. (2023). Only clusters which have
a heliocentric distance projected to the Galactic plane dxy smaller
than their individual magnitude-dependent completeness limit,
that is, which fall inside their completeness area

S (MKS ) = πd̂2
xy, (2)

contribute to the ‘representative’ subsample of clusters. We find
that of the 3061 MWSC open clusters, NCl = 2227 fall inside
their magnitude-dependent completeness limits.

This completeness correction results in a sample with a sin-
gle formal global completeness fraction fG applying to all cluster
counts, such that the true cluster population is larger than the
observed one by a factor f −1

G . We omit this factor over the
course of our following analysis as we implicitly deal only with
observed cluster counts and derived quantities, and note that
in-sample determination of fG is, in general, not possible.

We consider now the distribution of clusters in the plane
spanned by cluster ages and masses. For ease and brevity of

notation, we denote in the following

τ = log t/yr and µ = log m/M⊙ (3)

as shorthand for logarithmic ages and masses. Here we use log
to denote the decadic logarithm and ln for the natural logarithm.

We define the CAMF as a number surface density of clusters
per interval in age and mass in linear and logarithmic space by

ς(m, t)dt dm = ς̃(µ, τ)dτ dµ, (4)

resulting in

ς̃(µ, τ) =
m t

(log e)2 ς(m, t). (5)

From the observed clusters, we can construct the CAMF for
some finite logarithmic age step ∆kτ and mass step ∆lµ by sum-
ming over the contributions S −1

i of the ∆k,lN clusters inside the
age-mass interval to the cluster surface density:

ς̃k,l =
1

∆kτ∆lµ

∆k,lN∑
i=1

1
S i
. (6)

If we now consider that the cluster ages and masses are
only known up to a certain accuracy, we can extend the CAMF
to include these uncertainties by considering for a given age-
mass interval the probability Pi,k,l of a given cluster to have age
and mass falling into the intervals ∆kτ and ∆lµ, respectively.
Equation (6) then becomes a sum over all NCl clusters as

ς̂k,l =
1

∆kτ∆lµ

NCl∑
i=1

Pi,k,l

S i
. (7)

The Pi,k,l were computed by assuming a Gaussian error in
logarithmic age-mass space. We define the Gaussian function

G(x, δ) =
1
√

2πδ
exp

(
−

x2

2δ2

)
, (8)

and write

Pi,k,l =

∫
∆kτ

G(τ − τi, δτ,i)dτ
∫
∆lµ

G(µ − µi, δµ,i)dµ, (9)

where τi and δτ,i are the cluster’s logarithmic age and its uncer-
tainty, and µi and δµ,i are the cluster’s logarithmic mass and its
uncertainty.

Uncertainties in the tidal masses are given in the MWSC cat-
alogue for all clusters for which tidal masses were determined.
However, only a small subset of clusters has explicitly given age
uncertainties. We referred to Kharchenko et al. (2013, Table 6)
for upper and lower bounds on the uncertainty of cluster age
determination and used estimated uncertainties of δτ = 0.1 for
clusters with age τ > 8.2 and δτ = 0.14 for clusters with age
τ ≤ 8.2.

We note that this approach is conceptually very similar to
that of kernel density estimation, where some kernel function is
used to estimate an underlying smooth density function from a
set of discrete data points. Here, however, kernels of different
size were used for the different clusters, and directly represented
the uncertainties of cluster age-mass determination.

This ‘error-smoothed’ CAMF possesses two advantages in
representing the underlying ‘true’ CAMF compared to the
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Fig. 1. Observed logarithmic cluster age-mass distribution constructed
for step sizes ∆τ = ∆µ = 0.1 dex. The left panel contains the CAMF
constructed just from cluster ages and masses (see Eq. (6)) and the
right panel contains the CAMF according to Eq. (7), taking into account
uncertainties in age and mass.

binned CAMF of Eq. (6). Firstly, the issue of sparseness and
the effects of binning, which particularly affect the low-density
edges of the CAMF, are significantly reduced. Secondly, the
strongly varying uncertainties of the properties of individual
clusters are taken into account.

Our completeness-corrected sample of MWSC clusters spans
a range of tidal masses µ = 0–4.4 and ages τ = 6–9.8. For the
sake of our analysis, we excluded 57 young clusters with τ < 6.5.
The reasoning for this is twofold: Firstly, the age determination
was done using Padova isochrones, for which the lower age limit
is τ = 6.6, and secondly clusters younger than 3 Myr may still
be in the gas-embedded, star-forming phase, which we do not
consider here. This leaves us with a sample of 2170 clusters.

In Fig. 1, the CAMFs constructed according to Eqs. (6) and
(7) are plotted for logarithmic step sizes ∆τ = 0.1 and ∆µ =
0.1. We can see already some features of the CAMF that bear
relevance for modelling.
• The upper-limit of observed cluster age at τ = 9.7 appears

relatively independent of cluster mass. This observation sug-
gests that the cluster lifetime is only weakly dependent on the
cluster mass for cluster lifetimes close to this age limit.
• The high-mass contours change with cluster age in a specific

way. The logarithmic age bins cause an increasing number
of clusters per bin at fixed mass as bin sizes in linear age
grow, leading to mass contours rising with age (cf. Eq. (5)).
Cluster mass loss shifts the contours to lower masses as age
increases, counteracting the effect of logarithmic binning.
For ages τ > 7.8, the high-mass edge rises with age, which
means the effect of logarithmic binning is stronger than that
of cluster mass loss. The almost constant high-mass edge for
τ < 7.8 suggests that cluster mass evolution is more rapid
for these young clusters. (An alternate visualisation can be
found in Appendix A.)

3. Cluster formation and evolution model

We used a model for the CAMF that is based directly on the
model presented in Just et al. (2023), which itself is an extension
of an earlier model used in Piskunov et al. (2018) to model the
cluster age distribution.

We define the infinitesimal cluster surface density at age t
and mass m

σ(m, t)dmdt = Ψ(t)dt f (M)dM (10)

via the product of the cluster formation rate (CFR) Ψ(t) and the
cluster initial mass function (CIMF) f (M), where M is the initial

cluster mass directly after formation. The CFR gives the rate at
which clusters form as a function of time in terms of cluster sur-
face density per unit time and the CIMF gives the initial mass
distribution of newly formed clusters, here normalised to unity.

The initial mass M of a cluster and its current mass m at time
t are related by a bound-mass function m(M, t) which models
cluster mass evolution and is implicitly assumed to be invertible,
such that at a given age, exactly one initial mass corresponds
to any given m. The mass evolution of real clusters is a deeply
stochastic process (driven for instance by IMF sampling, stellar
evolution and complex gravitational dynamics; cf. e.g. Wang &
Jerabkova 2021; Ernst et al. 2008) which depends not just on
the initial mass but on the specific dynamical state. Therefore,
this model of mass evolution must be understood on the pop-
ulation level as the average mass evolution of an ensemble of
individual clusters with fixed initial mass M. This mass evolution
model also accounts for the destruction of clusters, as clusters
with an evolved bound mass of 0 have become fully unbound
and dissolved, and no longer contribute to the CAMF.

Consequently, the modelled age-mass distribution is
given by

σ(m, t) = Ψ(t) f (M)
∂M
∂m
. (11)

We note that σ(m, t) is computed using the inverse M(m, t) of the
mass evolution function m(M, t). As this inverse may in general
not have an analytic expression, it is useful to keep in mind the
relation

∂M(m, t)
∂m

=

(
∂m(M, t)
∂M

)−1

(12)

for the mass derivative ∂M/∂m appearing in Eq. (11).
Analogously to the observed CAMF, we can, using some

model δτ(µ, τ) and δµ(µ, τ) for the typical logarithmic error in
age and mass respectively, define

σ̃(µ, τ) =
m t

(log e)2σ(m, t) (13)

and

σ̂(µ, τ) =
∫∫

σ̃(µ′, τ′)G(τ − τ′, δτ(µ′, τ′))

×G(µ − µ′, δµ(µ′, τ′))dτ′dµ′
(14)

as a CAMF including uncertainty of age and mass determi-
nations. For the continuous model distribution, the summation
of Gaussian kernels over a set of clusters is represented by a
convolution with a Gaussian function.

Values of the model CAMF for an age-mass bin can be
computed via

σ̃k,l =

∫
∆kτ

∫
∆lµ

σ̃(µ, τ)dµdτ (15)

and analogously for σ̂(µ, τ).
In the following, we briefly describe the input functions we

used. Table 1 contains the set of parameters corresponding to
the model presented by Just et al. (2023), which we call here the
‘base model’.
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Table 1. Parameters of the base model.

Parameter Value

β 0.81 kpc−2 Myr−1

k 1.5 × 10−4 M−1
⊙

M∗ 1000 M⊙
s 2.4
x1 0
x2 1.2
mS 85 000 M⊙

p0 1.0078
p1 −0.07456
p2 −0.02002
p3 0.00340

nb 0.1
tv 5 Myr

a1 −0.2
a2 0.9
c 6.34 Myr−1

Mbr 5000 M⊙

3.1. Cluster formation rate

The CFR Ψ(t) gives the number of newly formed clusters per
squared kpc of Galactic disc surface and per Myr. We used a
constant CFR

Ψ(t) = β, (16)

as this should be sufficient for our relatively simple model and
provide a good baseline for later comparison with more elaborate
functions based for example on models for the star formation
rate.

This parameter β was chosen such that the modelled total
cluster surface density Σ was equal to the observed total sur-

face density
NCl∑
i=1

S −1
i . The physical intuition behind this is that

the total cluster content corresponds to the CFR by integration
over time, taking the dissolution of clusters into account via their
mass evolution. The total cluster surface density

Σ =

∫
σ(m, t)dmdt (17)

was computed by integrating the cluster age-mass distribution
for integration bounds log t/yr = 6.5–10 and log m/M⊙ = 0–
4.5 corresponding to the observed age-mass range of open star
clusters in our sample.

3.2. Cluster initial mass function

The CIMF gives the mass distribution of clusters at initial age
t = 0. We used a CIMF that is informed by the shape of the
CMF for young clusters with ages up to 20 Myr (as in Just et al.
2023, Fig. 9). It takes the shape of a two-slope broken power
law with a smooth transition region and allows for an exponen-
tial, Schechter-type cut-off. Our CIMF, defined as the fraction of
clusters dN in initial mass interval dM, is given by

f (M) =
dN
dM
= k

(
M
M∗

)−(x1+1) [
1 +

(
M
M∗

)s] x1−x2
s

exp
(
−

M
mS

)
(18)

with low-mass power-law index x1 for M < M∗ and high-mass
power-law index x2 for M > M∗. The exponent s controls the
‘sharpness’ of the transition between the power laws. A larger
value of s results in a less extended transition region around M∗
and vice versa for lower values of s. Finally, mS is the Schechter
cut-off mass above which the CIMF drops exponentially. The
CIMF was normalised to unity by the normalisation constant k
on the initial mass interval with lower limit mlower = 2 M⊙ and
no upper limit.

We can express the logarithmic initial mass distribution in
terms of the CIMF as

dN
d log M

=
M

log e
f (M). (19)

3.3. Cluster bound-mass function

Our bound-mass function is given as the product of three
different mass loss contributions

m(M, t) = nL(t) nV(t) nsec(M, t) M, (20)

where nL(t) is the mass loss factor from stellar evolution, nV(t)
gives the bound mass fraction from violent relaxation, and
nsec(M, t) is the bound mass fraction from secular dynamical
evolution.

The mass loss factor from stellar evolution depends on the
details of stellar evolution as well as the stellar initial mass
function. Following Lamers et al. (2010), we approximated the
remaining stellar mass fraction nL(t) by a third order polynomial
in logarithmic time

nL(t) =
3∑

i=0

pi
[
log(t/Myr)

]i , (21)

with the parameters p0, . . . , p3 depending on the initial mass
function and metallicity of the stellar population. The polyno-
mial fits of Lamers et al. (2010) were done using a Kroupa (2001)
IMF from 0.01 to 100 M⊙ and metallicities ranging from Z =
0.0004 to 0.02. Just et al. (2023) used the values for Z = 0.008,
listed in Table 1.

The violent relaxation phase that occurs in infant clus-
ters after gas expulsion has been investigated in detail by
Shukirgaliyev et al. (2017, 2018, 2019, 2021) using N-body mod-
els. They find that the fraction of stars nb remaining bound to
a cluster after virialisation depends strongly on the global star
formation efficiency, but not on the initial mass and weakly on
the initial size of the cluster. This motivates us to formulate the
bound mass fraction from violent relaxation nV(t) as a function
of time only, without dependence on the initial cluster mass M.
We defined

nV(t) = nb + (1 − nb) cosh−1
(

t
tV

)
(22)

with bound fraction nb and violent relaxation timescale tV.
We note that some star clusters do not survive gas expulsion

and rapidly dissolve in this supervirial phase. Cluster surviv-
ability is linked to star forming efficiency (Shukirgaliyev et al.
2017, 2018), density profile (Shukirgaliyev et al. 2021), primor-
dial mass segregation (Vesperini et al. 2009; Haghi et al. 2014;
Brinkmann et al. 2017), initial stellar mass function (Haghi et al.
2020), and crucially the dynamics of gas expulsion itself (Smith
et al. 2013; Zamora-Avilés et al. 2019). We did not model this
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early rapid disruption of clusters due to the low number of clus-
ters observed at young ages, which makes estimating the fraction
of clusters affected difficult and limits the impact on the CAMF.

The final factor nsec(M, t) gives the bound mass fraction from
secular evolution of a star cluster in the Galactic tidal field.
This mass loss characterised by slow evaporation and eventual
dissolution must depend on the initial cluster mass in order to
recover a dependence of the cluster lifetime on the initial clus-
ter mass. Our approach here mirrors that of Lamers & Gieles
(2006); Lamers et al. (2005), with both the mass loss rate and
the cluster lifetime being characterised by power laws in initial
mass. However, we did not consider different effects separately
and thus did not fix parameters a priori.

We defined the secular bound fraction as

nsec(M, t) =
(
1 −

t
tCl(M)

) 1
1−a1

, (23)

where a1 < 1 and tCl(M) the cluster lifetime, such that the secular
evolution follows the power law

dnsec

dt
(M, t) = −

1
(1 − a1)tCl(M)

na1
sec(M, t) (24)

for t < tCl(M). The implicit convention here is nsec(M, t) = 0 for
t ≥ tCl(M).

We used the lifetime-mass relation

tCl(M) =
1

c(1 − a1)

(
M

M⊙

)1−a1
[
1 +

(
M

Mbr

)a2
]−1

. (25)

This lifetime follows a broken two-slope power-law with index
1 − a1 for low masses M ≪ Mbr and index 1 − a1 − a2 for high
masses M ≫ Mbr. The constant c governs the overall rate of sec-
ular mass loss. We note that this lifetime is parametrised slightly
differently than in Just et al. (2023). There, c was scaled to
the lifetime at Mbr, while c was here scaled to the lifetimes of
low-mass clusters M ≪ Mbr. As such, the value of c given in
Table 1 differs from the one of Just et al. (2023) by a factor of
(Mbr/M⊙)1−a1 .

4. Methods

4.1. Error model

In order to compute a modelled CAMF that includes smooth-
ing by age and mass errors, we need to model the measurement
errors of cluster age and mass. We did this using functions
δτ(µ, τ) and δµ(µ, τ) as introduced in Sect. 3. As the age errors
we used are relatively small and mostly the same across all ages,
we used simply

δτ(µ, τ) = 0.1, (26)

as this is consistent with the uncertainties claimed by
Kharchenko et al. (2013). For the mass errors, we consid-
ered correlations of the logarithmic cluster age and mass with
the logarithmic mass error and found that the error is largely
independent of the mass, but does depend on age.

As the mass errors have a large variation between clusters of
similar ages and masses, we constructed mean and median errors
for windows of 0.1 dex in age and mass. Using these ‘local’ esti-
mates of typical mass errors, we arrived at the linear relation

δµ(µ, τ) = 0.05τ − 0.025, (27)
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Fig. 2. Error residuals δµ,i − δµ(µ, τ) (circles) as functions of cluster
mass (left panel) and age (right panel). The size of the circles is pro-
portional to the clusters’ contributions to the total surface density. Mean
and median of the residuals (solid red and black lines, respectively) were
computed using a sliding window of width 0.1 dex. Dotted lines in red
and black denote the corresponding intervals enclosing one standard
deviation and the 16th to 84th percentile, respectively. We note that a
single outlying cluster with δµ > 2.5 lies beyond the y-axis range and is
not shown.

which provides a good description of the typical mass errors.
The error residuals, defined here as δµ,i − δµ(µ, τ), are plot-

ted in Fig. 2. The good agreement between the typical errors
and the modelled errors indicates that there is little to gain by
introducing higher order terms in µ or τ to the modelled error.
We note that while the error model appears to be no longer
valid at the extremes of the observed ranges for cluster ages and
masses (i.e. for µ < 0.3, µ > 3.9 or τ > 9.6), there are few (43 in
total) clusters in these ranges. As such, this possible systematic
deviation, if not an artefact of poor statistics, is not significant
compared to the large scatter of cluster mass errors.

When using this error model to compute an error-smoothed
model CAMF following Eq. (14) to compare to the observed
error-smoothed CAMF constructed according to Eq. (7), we
applied a factor of

√
2 to the modelled errors. This was to

account for the fact that in addition to the explicit application
of the uncertainties to the CAMF, the observed values of cluster
ages and masses are already scattered from their true values on a
scale estimated by their given uncertainties.

4.2. χ2-statistic

The most straight-forward approach to quantifying the difference
between our model and the observed cluster sample is to con-
sider the difference between the corresponding error-smoothed
CAMFs. We write the χ2-statistic

χ2 =

Nbin∑
k,l

(
ς̂k,l − σ̂k,l

)2

ϱ
(
σ̂k,l + ϵς̄

) , (28)

where the surface density ϱ = 1kpc−2dex−2 scales the variance
of the modelled CAMF and the constant offset ϵς̄ avoids the
singularity for σ̂k,l = 0. Here

ς̄ =
1

Nbin

Nbin∑
k,l

ς̂k,l (29)

is the mean observed surface density per age-mass bin. Using
this small offset is equivalent to comparing ς̂ + ϵς̄ and σ̂ + ϵς̄
instead of ς̂ and σ̂ directly.
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4.3. Kullback–Leibler divergence

Our second approach to judge the correspondence of the model
to the observed CAMF was based on the Kullback–Leibler diver-
gence (KLD). For two discrete probability distributions p, q, the
KLD

DKL(p ∥ q) =
∑

i

pi ln
pi

qi
(30)

gives a measure of the difference between distributions. We note
that the KLD is semidefinite positive, but not symmetric as
DKL(p ∥ q) , DKL(q ∥ p). Typically, p is a true or observed dis-
tribution, while q is a model or approximation thereof. In this
picture, the KLD gives a measure of the amount of information
lost when using the model to approximate the data.

We can convert our observed and modelled error-smoothed
CAMFs into probability distributions by normalising them to
unity, letting us write

DKL(ς̂+ϵς̄ ∥ σ̂+ϵσ̄)=
1

Nbin

Nbin∑
k,l

ς̂k,l + ϵς̄

(1 + ϵ)ς̄
ln

(
ς̂k,l + ϵς̄

σ̂k,l + ϵσ̄

)
− ln

(
ς̄

σ̄

)
,

(31)

where σ̄ = 1
Nbin

Nbin∑
k,l
σ̂k,l, for the KLD between observed and mod-

elled CAMFs including measurement uncertainties. As with the
χ2-statistic, we included an artificial constant offset regulated by
ϵ which avoids singularities that arise when the modelled CAMF
goes to zero.

4.4. Expected likelihood

In the previous section, we argue that by normalising the binned
CAMF to unity, we can interpret it as a discrete probability
distribution, where the value of the normalised CAMF for a
given bin corresponds to the probability of a random cluster
having age and mass within the 2D interval of that age-mass
bin. We extend this concept now to the continuous CAMF: the
normalised model CAMF, σ(m, t)/Σ, gives the probability mass
distribution for clusters forming and evolving according to the
model. That is, for a given model, the probability of a single clus-
ter having age and mass in the interval [t, t + dt]× [m,m+ dm] is
given by

PM(m, t) dm dt =
σ(m, t)
Σ

dm dt. (32)

To obtain from the true age and mass the observed age and
mass of a cluster, we need to model the probability mass function
for a cluster’s observed age and mass conditioned on the true
values: PO|M(mobs, tobs|m, t). We argue that we can approximate
this function using a Gaussian centred on the true values with
widths in age and mass given by the measurement uncertainties.
Indeed this holds if the measurements are unbiased and the errors
are Gaussian. This is the same assumption we have already used
in Sect. 2 when constructing the observed CAMF including age-
mass uncertainties (see Eq. (7) and following). We have then

PO|M(mobs, tobs|m, t)≈
m t

(log e)2 G(τ − τobs, δτ,obs)G(µ − µobs, δµ,obs),

(33)

where again µobs = log mobs/M⊙, and τobs = log tobs/yr. The fac-
tor m t/(log e)2 arises from transforming the Gaussian error in
logarithmic age-mass space into linear age-mass space.

Further, the probability mass function for an observed cluster
of given age and mass, implicitly conditioned on the model, is

PO(mobs, tobs) =
∫∫

PO|M(mobs, tobs|m, t)PM(m, t) dm dt, (34)

and we can then approximate

PO(mobs, tobs) ≈
∫∫

m t
(log e)2 G(τ − τobs, δτ,obs)

×G(µ − µobs, δµ,obs)PM(m, t) dm dt
(35)

for all observed clusters.
Now we construct an estimator of the expected value of the

log-likelihood for a cluster from our sample

E[ln PO] =
NCl∑
i=1

ni ln PO(mi, ti), (36)

where

ni =
1

S iΣ
, (37)

with Σ =
NCl∑
k=1

S −1
k . ni represents the fraction of clusters that have

the same properties as the i-th cluster of our sample, using the
same argument by which the binned normalised CAMF rep-
resents a discrete probability distribution of cluster age–mass
intervals.

We used this expected log-likelihood as a measure of model
fitness by the following argument: Given a representative sample
S of N clusters and a prior probability of the model Pprior, the
model likelihood given the sample is, by Bayes’ theorem,

ln P(model|S) = ln Pprior − ln P(S) +
N∑

i=1

ln PO(mi, ti), (38)

where P(S) is the (unknown) probability of the sample, which
does not depend on the choice of the model. Since for N → ∞

1
N

N∑
i=1

ln PO(mi, ti)→ E[ln PO(m, t)], (39)

maximising the expected log-likelihood of a single cluster also
maximises the model likelihood for a given sample of suf-
ficiently large size. In this sense, use of the expected log-
likelihood is equivalent to a maximum likelihood approach.

The reason that we did not use the likelihood of the observed
cluster sample directly lies in the fact that our sample features
individual completeness limits. As in Eq. (36), we can construct
relative weights ni for the individual cluster log-likelihoods using
the completeness areas, however it is not readily evident what

effective sample size Neff =
NCl∑
i=1

ni should be used to construct the

total sample likelihood. As such, we used
NCl∑
i=1

ni = 1 to estimate

only the expected log-likelihood for a single cluster.
We note that when evaluating Eq. (35) numerically, we lim-

ited the integration domain to the 3σ-intervals of the Gaussians.
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4.5. Parameter constraints and priors

From the list of parameters as given in Table 1, we varied the
parameter vector

θ = { log M∗/M⊙, s, x1, x2, log mS/M⊙,

log c/yr−1, a1, a2, log Mbr/M⊙,
log nb, log tV/yr},

which gave us a total of Npar = 11 free parameters. In particu-
lar, since we fit model to data in the logarithmic age-mass plane,
we varied parameters that represent times and masses such as
M∗, mS, Mbr and tV in logarithmic space directly, likewise c,
which has dimension of inverse time, and nb, which is a mass
fraction.

Regarding the remaining parameters, k normalises the CIMF
and was thus fixed by the other CIMF parameters. Since k has
inverse mass dimension, we give in the context of parameter fit-
ting also its value in logarithmic space. The parameter β was
fixed given all other model parameters by matching the mod-
elled total cluster surface density with the observed one (see for
this Sect. 3.1). The parameters of µL(t) remained fixed to the val-
ues from Lamers et al. (2010) for Z = 0.008 given in Table 1.
This was because the mass loss from stellar evolution gives a
comparatively small contribution, such that varying it gives little
benefit. Moreover, µL(t) depends on underlying physical assump-
tions regarding stellar evolution and the stellar IMF that are not
easily translated into constraints for the parameters p0, p1, p2
and p3. As such, in the context of parameter fitting, one approach
would be to instead vary the underlying parameters such as the
metallicity and compute the corresponding values of the pi by
interpolating from tabulated values.

The remaining parameters were constrained in considera-
tion of three aspects: The definition of the model functions, the
computability of the model CAMF and the physicality of the
model. The first aspect refers to the fact that certain parame-
ters are required to have certain properties, such as, for instance,
non-negativity, by the definition of their corresponding model
functions. As such, we required non-negativity for x1, s, and a2,
as well as x1 < x2, a1 < 1 and log nb < 0. The second aspect
mainly refers to the requirement for the lifetime-mass relation to
be monotonic such that m(M, t) can be inverted to compute M
for given m, t. We required 1 − a1 − a2 > 0.1 instead of simple
positiveness in order to avoid poor numerical conditioning. Simi-
larly, we imposed finite bounds for s in order to avoid undesirable
behaviour of the CIMF in the limits s→ 0 and (x2 − x1)/s→ 0.
The third aspect refers to the observational and physical con-
straints we impose on the model from prior knowledge. We know
that some clusters reach ages τ > 9.5, but others dissolve within
the observed range of ages, which gives us constraints for the
cluster lifetimes. The existence of clusters of a given mass places
constraints on the Schechter cut-off mass. Prior work on N-body
dynamics gives limits on the timeframe during which violent
relaxation will take place (see Shukirgaliyev et al. 2017, 2018,
2019, 2021).

In Table 2, the ranges to which each parameter was confined
are given in the third column, and the more complex constraints
involving multiple parameters are listed in the fourth column.

In the second column of Table 2, Gaussian priors with mean
µG and standard deviation σG are given in the form µG ± σG for
some parameters. These priors represent information that could
easily be extracted from the data without performing a full fit in
eleven-dimensional parameter space.

Table 2. Parameter priors and constraints.

Parameter Prior Range Constraints

log M∗/M⊙ 2.5 ± 1 [0, 5]
s [0, 20] x1 < x2x1 0 ± 0.6 [−2, 2] x2−x1

s ∈ (0.2, 5)
x2 1 ± 0.3 [0, 2]
log mS/M⊙ [3, 6]

log c/yr−1 [−11, 11]
τCl(1M⊙) < 10

a1 [−1.2, 1]
τCl(106M⊙) > 9.5a2 [0, 2.1] 1 − a1 − a2 > 0.1

Mbr [−1, 7]

log nb −0.6 ± 0.4 [−2, 0]
log tv/yr 7.2 ± 0.7 [6, 8]

As discussed in Just et al. (2023) (see in particular Table 3
therein), the high-mass power-law slope of the CMF is close to
x2 = 1 independent of age, while the low-mass slope changes
significantly as the cluster population evolves, being shallow ini-
tially and steeper for higher cluster ages. Extrapolating from this,
we adopted priors for x1 and x2 that reflect a high-mass slope
close to one and a more uncertain, but likely shallow low-mass
slope.

Regarding the parameters of violent relaxation, we consid-
ered the first two moments of the cluster mass as a function
of age, in particular the mean and the standard deviation of
the cluster mass. Within the context of our model, the bound
mass fraction nV(t) applied as a factor equally to both of these
moments. Assuming that violent relaxation dominates the early
mass evolution, we could thus extract information on nb and tV
from them.

We identified a transition in the cluster masses consistent
with our expectations of violent relaxation in the age range of
τ = 7–7.5. As such, we compared masses for age ranges τ = 6.5–
7 and τ = 7.5–7.8 to estimate nb. We found log nb = −0.42±0.13
from the mean cluster mass and log nb = −0.53 ± 0.07 from the
standard deviation. These figures, however, likely underestimate
the effect of violent relaxation as they neglect mass loss during
the first 10 Myr of cluster evolution. The prior we adopted for
the bound mass fraction is thus slightly lower. The transition in
the mass moments at ages τ = 7–7.5 informed the prior for the
relaxation timescale tV.

Finally, we considered again the CMF for Initial-Age clus-
ters (τ = 6.4–7.3 as per Just et al. (2023)). Here the transition
between power-law slopes occurs around µ = 2.3. As this age
group overlaps with the period of violent relaxation, we can infer
that probably log M∗/M⊙ > 2.3 and log M∗/M⊙ + log nb < 2.3.
As such, the prior for nb informed our prior for M∗.

For the remaining parameters, we did not find Gaussian pri-
ors. Instead, we used flat priors which are uniform within the
parameter constraints.

4.6. Markov chain Monte Carlo sampling

The parameter fitting was then done using the standard Bayesian
approach where both the likelihood L(θ) = P(sample|θ) of
observing our cluster sample given a model with parameter
vector θ and the prior probability P(θ) of the parameters are
combined into the posterior probabilityP(θ) according to Bayes’
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theorem. Logarithmically, we can write

ln
P(θ)
P0
= ln

L(θ)
L0
+ ln

P(θ)
P0
, (40)

for some normalising constants P0, L0, and P0 for posterior,
likelihood, and prior, respectively. Explicitly knowing these
normalising constants is not necessary to sample the poste-
rior probability distribution, which was done using a MCMC
approach. By constructing a sufficiently large and representative
sample of the posterior, we can estimate parameter uncertainties
and correlations as well as find best fit values of the parame-
ters by finding parameter vectors which maximise the posterior
probability.

In detail, this approach was varied here in how the likelihood
L(θ) is estimated. For the χ2-statistic (see Eq. (28)), we used

ln
L
L0
= −χ2

red, (41)

where χ2
red =

χ2

ndof
is the reduced χ2-statistic for ndof = nbins −

npars − 1 degrees of freedom. We used an offset with ϵ = 0.005.
For the KLD (see Eq. (31)), we used

ln
L
L0
= −κKLDDKL(ς̂ + ϵς̄ ∥ σ̂ + ϵσ̄) (42)

with scaling constant κKLD = 20 and offset parameter ϵ = 10−4.
Similarly, we used

ln
L
L0
= κELE[ln P(m, t|θ)] (43)

with scaling constant κEL = 5 for the expected log-likelihood
(see Eq. (36)), representing the model by its parameter vector.

Both scaling constants were chosen such that the likelihood
varied across similar-sized ranges for all three fit statistics.

We note that in our approach, the likelihood L(θ) is not for-
mally the probability of the observed data given a model with
parameters θ. Instead, it represents a degree of plausibility of the
data arising from such a model based on how well they agree
as measured by the fit statistic used. In this sense, the posterior
P(θ) does not directly assign probabilities to different models,
but is instead used to gauge what kinds of models can plausibly
explain our cluster sample. A MCMC sample of P(θ) is thus a
set of plausible model parameters where models that appear to
be more plausible are more frequent within the sample.

Nonetheless, the fit statistics can be related to the model log-
likelihood (by a constant factor and a normalisation offset) under
certain additional assumptions. −χ2 describes the likelihood
asymptotically if the number of clusters contributing to each
age-mass bin is Poisson-distributed. For large cluster numbers
per bin, the Poisson distribution is approximated by a Gaussian
distribution, and the terms of the χ2-statistic each become pro-
portional to the exponent in the Gaussian corresponding to the
bins. Following our discussion in Sect. 4.4, E[ln P] describes the
log-likelihood for a cluster sample with uniform completeness
across its entire range of ages and masses. The relation between
KLD and log-likelihood is more subtle. It can be shown gener-
ally that a model maximising the log-likelihood will minimise
the KLD, which implies that close to the maximum likelihood
parameters, log-likelihood and KLD differ (up to third order)
only by a constant factor and offset.

We used the Python emcee module (Foreman-Mackey et al.
2013) for MCMC sampling, which uses an implementation of

Table 3. Overview of MCMC runs.

Fit statistic χ2 DKL E[ln P]

MCMC steps 98 000 105 000 78 000
Acceptance fraction 0.197 0.197 0.221
Burn-in 1951 2092 1548
Thinning 292 306 238
Sample size 17 056 17 472 16 692

the affine-invariant ensemble sampler described by Goodman &
Weare (2010). This ensemble sampler runs a number Nwalker >
Npar of samplers in parallel, using the space spanned by them
to sample the high-dimensional parameter space more effi-
ciently. In terms of run setup, we broadly followed the advice
of Foreman-Mackey et al. (2013) as well as the emcee documen-
tation. We used Nwalker = 52 for our 11-dimensional parameter
space, running the chain in 13 parallel CPU processes using the
emcee module’s multiprocessing support. Convergence of the
chain was tested using the estimated integrated autocorrelation
time t̂θθ of the parameters, as computed using the emcee mod-
ule. It was further used in taking a more representative set of
samples from the final chain by discarding the first max(2t̂θθ)
samples as burn-in and taking only every min(t̂θθ/2)-th sample
of the remaining chain to ensure independence of the samples.
The resulting set of parameter combinations was then taken to
be a sufficiently large and representative sample of the posterior.

The number of sampler steps taken until convergence as well
as the burn-in and thinning for all three runs are listed in Table 3.
Another parameter we list to gauge the well-behavedness of the
chain is the acceptance fraction for parameter proposals across
all walkers and steps. Foreman-Mackey et al. (2013) suggest that
well-behaved chains will typically have acceptance fractions of
20–50%. The run using E[ln P] fulfils this criterion, and the
runs using χ2 and DKL have acceptance fractions still very close
to 20%.

5. Results

5.1. Best-fitting models

The results of the fits are summarised in Table 4. For each
MCMC run, the parameter set with highest posterior probability
was chosen as the best-fitting model. The interval from the 16th
to the 84th percentile was used to estimate the uncertainty of
the individual parameters. This is motivated by that this interval,
containing the central 68% of the total probability, corresponds
to the 1σ-interval of a Gaussian distribution.

We note that while the best-fitting models are those which
best agree with the data within each MCMC sample, they are
not best-fit models in the sense of representing a local optimum
of a fit statistic. In the same sense, the percentile ranges do not
constitute a fitting error, but a range of values the parameters typ-
ically take for models that agree reasonably well with the data.
Nonetheless, for brevity we refer to the MCMC runs in the fol-
lowing as χ2-fit, DKL-fit, and E[ln P]-fit, and to the respective
best-fitting models as the χ2-fit model, the DKL-fit model, and
the E[ln P]-fit model. In principle, it is possible to use the best-
fitting parameter sets as starting points to find such local optima,
but as we discuss in the following, such a best-fit model may not
actually be a useful improvement.

The values of the different fit statistics are given in Table 5
for the base model as well as for the different best-fitting models.
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Table 4. Parameter fit results

Parameter Base χ2-fit DKL-fit E[ln P]-fit Fit to Hunt & Reffert sample

β, kpc−2Myr−1 0.81 0.8448+2.1
−0.51 1.015+1.5

−0.73 0.4090+2.7
−0.21 9.162+71

−5.6

⟨M⟩, M⊙ 505 95+260
−44 87+380

−25 224+290
−180 219+280

−190

CFR, M⊙kpc−2Myr−1 409 80.2+210
−20 88.4+230

−26 91.6+250
−50 2011+3000

−1100

log k/M−1
⊙ −3.8 −3.268+1.3

−0.76 −2.718+0.57
−1.4 −3.254+1.4

−0.59 −3.751+2.7
−0.18

log M∗/M⊙ 3 2.495+0.55
−0.87 1.980+1.2

−0.19 2.565+0.45
−1.1 2.765+0.24

−1.9

s 2.4 1.160+4.3
−0.24 1.955+3.7

−0.93 1.888+4.1
−0.86 2.159+5.3

−1.1

x1 0 0.078+0.21
−0.72 0.109+0.13

−0.80 −0.062+0.32
−0.68 0.156+0.18

−1.5

x2 1.2 1.073+0.30
−0.25 0.974+0.41

−0.16 1.046+0.33
−0.20 1.140+0.38

−0.34

log mS/M⊙ 4.9 3.321+1.7
−0.054 3.950+0.95

−0.73 3.914+1.5
−0.42 4.743+0.75

−0.86

log nb −1 −0.525+0.14
−0.48 −0.552+0.18

−0.45 −0.521+0.20
−0.48 −0.474+0.24

−0.67

log tV/yr 6.7 7.262+0.38
−0.66 7.383+0.23

−0.82 7.006+0.65
−0.45 6.934+0.80

−0.58

a1 −0.2 −0.347+0.33
−0.56 −0.665+0.66

−0.26 −0.086+0.13
−0.80 0.538−0.11

−1.2

a2 0.9 0.922+0.17
−0.74 1.455−0.31

−1.3 0.808+0.21
−0.65 0.067+0.97

+0.048

log c/yr−1 −5.2 −5.647+1.2
−1.1 −5.129+0.80

−1.6 −6.196+1.6
−0.81 −6.988+1.9

−0.20

log Mbr/M⊙ 3.7 3.097+2.0
−2.6 2.683+2.2

−2.1 3.253+2.1
−2.9 6.026−0.89

−5.9

Table 5. Fit statistics for the best-fitting models.

Fit statistic Base χ2-fit DKL-fit E[ln P]-fit

χ2
red 1.057 0.651 0.545 0.939

DKL 0.0620 0.0407 0.0304 0.0541
E[ln P] −2.064 −2.082 −2.045 −2.048

As expected, the best-fitting models perform better than the base
model for all statistics, with the exception of the χ2-fit model
having a lower E[ln P] value. We note also that the DKL-fit model
outperforms (in the sense of better or equally good fit statis-
tics) the other best-fitting models in the same manner, while the
E[ln P]-fit model appears to perform the worst in terms of χ2

red
and DKL.

The CAMFs corresponding to the best-fit models are plotted
in Fig. 3 in comparison to the observed CAMFs. The top row
gives the bare modelled CAMF with mass loss tracks for ini-
tial masses µ = 1, 2, 3, 4, 5, and 6. The bottom row gives the
modelled CAMF including age and mass uncertainties accord-
ing to our error model from Sect. 4.1 multiplied by a factor

√
2,

together with contours of the observed CAMF smoothed using
individual cluster uncertainties.

Comparing the different best-fit models with the data, we
find that the χ2-fit model does not reproduce the high-mass
edge of the observed CAMF due to a low Schechter cut-off
scale (log mS/M⊙ = 3.3) which suppresses high mass clusters
with µ > 3. Even accounting for observational uncertainties, the
observed old high-mass clusters with τ > 8.5, µ > 3.8 are not
represented in the model. In the DKL-fit model and the E[ln P]-
fit model, a Schechter cut-off scale that is four times higher
allows for the existence of clusters with µ > 3.5 and a better
reproduction of the observed high-mass edge.

Further, the sharp age cut-off at τ = 9.7 is apparently diffi-
cult to reproduce using our model, due to both its sharpness and

high uniformity across cluster masses. Only the DKL-fit model
reproduces such a sharp age cut-off, because it is the only model
which features a shallow increase of the cluster lifetime at the
high mass end (tCl ∝ M1−a1−a2 = M0.21).

Other features, such as the high-density region of clusters
with intermediate ages and masses as well as the low-mass limit
are more consistently reproduced across the models considered.
We notice also that our models all produce an overabundance of
low-mass clusters (µ < 1) at intermediate ages τ = 7.7–8.5.

5.2. Comparison of fit statistics

Considering the parameter posteriors in Table 4, we find some
common results that appear independent of the fit statistic used.

Firstly, the CIMF slopes behave as expected, with x2 ≈ 1 and
a shallower x1 < 0.3. We note that while we can infer an upper
limit to the low-mass slope, it is more difficult to find a lower
limit above the slope of −0.7 observed in the evolved CMFs at
higher ages. The reason for this lack of constraint may be the
limited statistics from observations of clusters with initial masses
much smaller than M∗.

Secondly, we find that the parameters of violent relax-
ation are not significantly constrained beyond their priors. To
quantify this, we considered the Kolmogorov-Smirnov statistic
(KS-statistic) of the marginalised posteriors for the respective
priors, that is, the maximum of the absolute difference between
the cumulative distribution functions of the marginalised pos-
terior and the prior. As we see in Table 6, the KS-statistic is
significantly lower for tV than for the parameters of the CIMF,
independent of the fit statistic used. For nb, the KS-statistic is
still below all but the lowest value found for any combination
of fit statistic and CIMF parameter. The reason for this may be
that while the entire cluster sample contains implicit information
on the shape of the CIMF, only young clusters with τ < 8 con-
tain information on violent relaxation, which is a smaller sample
containing only 497 clusters. Moreover, this sample was already
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Fig. 3. Modelled CAMFs following Eq. (11) for the best-fit parameters with mass loss tracks (top row) in comparison to their smoothed counterparts
following Eq. (14) overplotted with contours of the smoothed observed CAMF (bottom row). Contour levels of the smoothed data are marked with
solid lines on the colour scale bar.

Table 6. Kolmogorov-Smirnov statistic of the marginalised posterior
against the prior for parameters with Gaussian priors.

Parameter χ2-fit DKL-fit E[ln P]-fit

M∗ 0.1326 0.0831 0.1465
x1 0.1669 0.1862 0.1791
x2 0.1354 0.1439 0.1627
nb 0.0938 0.0833 0.0296
tV 0.0257 0.0258 0.0064

used to derive prior constraints, limiting the information that
could be extracted additionally by the fitting procedure.

5.2.1. Construction of synthetic cluster samples

In order to better understand the differences between the fit
statistics, we considered synthetic cluster samples as realisations
of a given model. We constructed such a realisation by drawing a
sufficient number N of clusters from the model, applying random
Gaussian errors according to the error model from Sect. 4.1, and
then evenly distributing them across a heliocentric disc of radius
R =

√
N/ (πΣtot) such that the cluster surface density corre-

sponded to the observed value of Σtot = 134.1 kpc−2. In analogy
to the magnitude-dependent completeness limit, a completeness
limit depending on the logarithm of its mass was drawn for each
cluster. These limits were drawn from a Gaussian with mean and
standard deviation of the form

d̂xy = w + vµ, (44)

with values wmean = 0.60 kpc, vmean = 0.84 kpc for the mean
and wstd = 0.43 kpc, vstd = 0.12 kpc for the standard deviation

obtained by performing linear regression on the completeness
limits of the observed cluster sample. A minimum completeness
distance of 0.2 kpc was chosen to disallow divergent contribu-
tions to the synthetic CAMF. These completeness limits then
also allowed the definition of a sufficient number of clusters such
that the radius of the resulting heliocentric disc is at least as large
at the greatest completeness distance. In practice, this was done
by choosing N such that R ≥ 6.8 kpc.

The final synthetic sample was then obtained by selecting
only clusters within their completeness limits. While this proce-
dure produces samples with similar properties as the observed
one by coarsely approximating the measurement and selection
process used to arrive at a completeness-corrected sample, it can-
not directly fix global properties of the samples such as number
of clusters and total cluster surface density, which as a result vary
between realisations and models.

For each of the base, χ2-fit, DKL-fit, and E[ln P]-fit models,
5000 realisations of synthetic cluster samples were drawn and
the fit statistics with respect to the corresponding models com-
puted. While the total cluster surface density and cluster number
of these realisations was not fixed, their construction causes them
to reproduce the observed cluster surface density well, with a
stochastic scatter of about 6 kpc−2. The corresponding number of
clusters also varies, with systematic deviations from the cluster
number of the observed sample being introduced by the differing
structure of the model CAMFs. In particular, realisations of χ2-
fit model and E[ln P]-fit model tend to produce fewer clusters,
while realisations of the DKL-fit model produce cluster numbers
consistent with the observed sample.

5.2.2. Fit statistic distributions for model realisations

Further, the fit-statistic distributions allowed us assign a Q-value
to the observed value of the fit statistic. This represents the
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Table 7. Statistics for synthetic cluster samples from the best-fitting models.

Base model χ2-fit model DKL-fit model E[ln P]-fit model
Statistic Q-values for the fit statistics

χ2
red 0.064 0.135 0.171 0.113

DKL 0.018 0.072 0.139 0.065
E[ln P] 0.469 0.055 0.027 0.112

Global statistics of synthetic samples

Σtot, kpc−2 134.1 ± 5.4 134.1 ± 5.5 134.2 ± 5.4 134.0 ± 5.9
NCl 2383 ± 46 2103 ± 43 2140 ± 43 2126 ± 44

quantile at which the observation sits and gives the fraction of
model realisations with a lower degree of agreement with the
model as measured by the statistic, that is, a larger value for χ2

and KLD, and a smaller value for E[ln P]. This Q-value gives an
indication how typical the level of disagreement between model
and data would be for a realisation of the model, both in terms
of atypically high or low values of the statistic. A very low Q-
value means that it is unlikely that a random realisation of the
model will disagree with the model at least as much as the data.
As such, it signals that the model does not fit the data well. Con-
versely, a very high Q-value means that it is unlikely for random
realisations of the model to agree with the model better than the
data. In this sense, it signals that the model may be ‘overfitted’.
What we refer to here as overfitting is when a model is fitted to
not just a dataset’s general features, but also its specific noise.
Such a model will produce spurious features, which is why this
is an undesirable property. When overfitting occurs for a given
combination of data and fit statistic, the data will match the
model better than a typical realisation of the model itself, as a
greater discrepancy is expected simply from the stochastic noise
included in the forward modelling.

The results of drawing synthetic cluster samples for the dif-
ferent models and computing their statistics are listed in Table 7.
This includes Q-values for the different fit statistics, mean cluster
surface densities, and mean cluster numbers.

In Fig. 4, the distribution of χ2
red, DKL, and E[ln P] for reali-

sations of the base model is plotted, as well as the distributions
of the respective fit statistics for the χ2-fit, DKL-fit, and E[ln P]-
fit models. These distributions behave qualitatively very similar
for the different best-fitting models, being sharply peaked with a
long, one-sided tail.

For the χ2-fit model, the observed sample has fairly low val-
ues of DKL and E[ln P] (each within the lowest 8%), with the
value for χ2

red being more typical with a Q-value at 13%. The χ2-
fit model tends to produce lower cluster numbers than observed
for samples of the same total surface density, which means
that the model clusters have on average lower completeness
distances, corresponding to lower average masses.

In the DKL-fit model, the value of χ2
red falls within the central

68% (corresponding to a Gaussian 1σ-interval), and the value of
DKL is still fairly typical with a Q-value at 14%. However, for
E[ln P], we have a very low Q-value of 2.7%. As we discuss
in Sect. 5.2.3, this may indicate the model realisations being
systematically more centrally concentrated than the observed
sample. The DKL-fit model samples also reproduce the observed
cluster number well.

The E[ln P]-fit model has Q-values close to 11% for χ2
red and

E[ln P], and a lower Q-value of 6.5% for DKL. In this sense, it
represents neither a particularly good nor particularly bad fit of

base model

0

0.
02

0.
04

0.
06

0.
08

0.
1

D
K

L

0
0.
8

1.
6

2.
4

3.
2

4.
0

χ2
red

−2
.4
−2
.3
−2
.2
−2
.1
−2
.0

E
[l

n
P

]

0
0.
02

0.
04

0.
06

0.
08 0.

1

DKL

−2
.4
−2
.3
−2
.2
−2
.1
−2
.0

E[lnP ]

0
0.
8

1.
6

2.
4

3.
2

4.
0

χ2
red

χ2−fit

0
0.
02

0.
04

0.
06

0.
08 0.

1

DKL

DKL−fit

−2
.3
−2
.2
−2
.1
−2
.0
−1
.9

E[lnP ]

E[lnP ]−fit

Fig. 4. Distribution of the different fit statistics for synthetic cluster
samples. From left to right, the columns correspond to χ2

red, DKL, and
E[ln P], respectively. The three topmost rows show the distribution for
the base model, including binned 2D distributions. The contour lines
enclose 11.8%, 39.3%, 67.5% and 86.4% of samples. This corresponds
to levels of 0.5σ, 1σ, 1.5σ, and 2σ for a 2D Gaussian. Samples outside
the contours are drawn as individual dots. The bottom row contains his-
tograms for samples of the χ2-fit, DKL-fit, and E[ln P]-fit models. The
blue lines mark the values of the fit statistics for the observed sample
listed in Table 5.

the observation. We have already seen from the absolute values
of the fit statistics for the observed sample that the E[ln P]-
fit model reproduces the observed CAMF better than the base
model, but not as good as the DKL-fit model, which is supported
by this analysis of the model’s realisations. Similar to the χ2-fit
model, it produces slightly lower cluster numbers than observed,
indicating a lower average cluster mass.
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Altogether, the fits appear fairly well-behaved and not close
to overfitting judging by their Q-values. A brief comparison with
the Q-values resulting for the base model indicates that real-
isations of these models are indeed closer to observations as
judged through χ2

red and DKL. However for E[ln P], the base
model has a high Q-value of 47%, which implies that for
this model, the expected likelihood cannot reliably distinguish
between observations and model.

We note that while the E[ln P]-distribution for the base
model shows that for some models, the expected likelihood can-
not distinguish between observations and model realisations, the
distribution for the E[ln P]-fit model demonstrates that this does
not hold in general. The low value of E[ln P] for the observed
sample in the DKL-fit model shows that there are well-fitting
models that can be identified using the expected likelihood. As
such, the apparent comparative weakness of the E[ln P]-fit is
not necessarily the result of a deficiency of the fit statistic, but
possibly of a too small value of the scaling constant κEL.

5.2.3. General remarks and conclusions

We observe for all four models sampled a strong linear correla-
tion between χ2-statistic and KLD, while both are more weakly
correlated to the expected log-likelihood. This is seen for the
base model in the 2D distributions in Fig. 4. Such a linear
relation between χ2-statistic and KLD when both are small is
expected theoretically, since∑

i

pi ln
pi

qi
=

∑
i

(pi − qi)2

2qi
+ O

(
(pi − qi)3

)
, (45)

which can be seen using Taylor expansion of the KLD around
pi = qi. Written in terms of pi and qi, the χ2-statistic becomes
proportional to

∑
i

(pi − qi)2/qi, and thus χ2 ∝ DKL for pi ≈ qi.

This relation holds for small values of χ2-statistic and KLD.
For larger values of the statistics, the difference between pi
and qi may become large for individual bins, leading to differ-
ing behaviours of χ2-statistic and KLD as higher-order terms of
pi − qi become relevant in the KLD.

The expected likelihood is more difficult to compare to
the other two statistics as it operates without a binning of the
observed clusters. This in itself may be seen as an advantage
as it bypasses the problem of biases arising from the choice
of the age-mass bins, but it also makes it more difficult to
intuitively interpret. If we consider the expected likelihood of
different representations of a model as a proxy for the case of
small differences between data and model, it is clear that realisa-
tions with a high expected likelihood will have clusters from the
dense regions of the CAMF overrepresented, while realisations
with low expected likelihood will have those clusters underrep-
resented. Correspondingly, the CAMF of the model will be more
densely concentrated than that of the sample if E[ln P] is small
compared to a typical realisation, while in the case of a compara-
tively large E[ln P], the model CAMF will be more diffuse than
the sample. This effect may be the cause for the unexpectedly
high value of E[ln P] for the base model, which is less centrally
concentrated than the best-fit models. This may also explain why
the DKL-fit model has a surprisingly low Q-value for E[ln P]
despite its rather good agreement with the data as per the other
fit statistics, as it may indicate that the model and its realisations
are more densely concentrated than the observed sample. How-
ever, other discrepancies than underrepresentation of clusters in
dense regions of the CAMF can also cause a comparatively small
value of E[ln P].

From our analysis of the fit statistics of synthetic cluster sam-
ples, it is clear that one factor which limits parameter fitting is
the large impact of sampling noise on the fit statistics, which
limits their ability to discriminate between models based on the
observed cluster sample. This is likely because our fit statistics,
as we constructed them in Sect. 4.2, 4.3 and 4.4, do not take the
Poisson noise of the cluster sample into account correctly. In our
sample, faint clusters have large weight, which increases their
impact on the noise.

Of our best-fitting models, the DKL-fit model performs the
best across all fit statistics and reproduces the cluster number
when sampled. It reproduces the observed sharp age limit while
still allowing for high-age high-mass clusters with τ > 8.5, µ >
3.5 when accounting for uncertainties in mass determination. A
caveat remains in that the synthetic sampling of the model shows
that the value of E[ln P] for data and model is lower than for typ-
ical realisations. This may suggest that the model CAMF is more
concentrated in the age-mass plane than the observed CAMF. As
such, we took the DKL-fit model to be the best model we found
in our investigation of model parameter space.

5.3. Parameter correlations

Previously, we evaluated the uncertainties of the model param-
eters individually based on their marginalised one-dimensional
posteriors. We next considered the full eleven-dimensional pos-
terior to derive a better understanding of the uncertainties of the
model parameters and their correlations.

As the high dimensionality of the parameter posterior dis-
tribution makes it challenging to analyse or visualise the full
complexity of the posterior, we used principal component anal-
ysis in an attempt to make the posterior tractable without losing
too much information. This was done by first normalising the
parameters to zero mean and unit standard deviation, and then
performing an eigenvector decomposition on the covariance
matrix of the posterior in normalised parameter space. The
resulting eigenvectors ui for indices i = 0 . . . 10, ordered by
the size of the corresponding eigenvalues, form an orthonormal
basis of the normalised parameter space and are uncorrelated
in the sense that Cov(ui, u j) = λiδi j where λi is the eigenvalue
corresponding to ui. This means that the eigenvalues represent
the variance of the posterior distribution along the direction of
the corresponding eigenvectors. If we consider the distribution
in the eigenvector basis, then the i-th parameter has zero mean,
standard deviation

√
λi and no linear correlation to another

parameter. While higher-order correlations certainly exist, this
at least allows us to consider independence of these principal
components as a first-order approximation. In this picture, the
posterior corresponds to an ellipsoidal distribution with principal
axes given by the eigenvectors ui.

As such, if λi is smaller, then the posterior is more con-
strained along the axis ui, while it is less constrained if λi is
larger, with the vectors with largest eigenvalues having the great-
est contribution to the uncertainty of the parameters. Conversely,
the eigenvectors with lowest eigenvalues may give us insight
in the way our model is well-constrained within the posterior
beyond the marginalised uncertainties of single parameters.

We note that if two or more eigenvalues are equal, their corre-
sponding eigenvectors are not uniquely determined. Such a set of
components then forms a subspace of the full parameter space in
which the posterior distribution is spherical. This is relevant for
intermediate eigenvectors with eigenvalues close to unity, which
may not be determined with much certainty.
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Fig. 5. Eigenvalue spectra of the normalised parameter posteriors from
different fit statistics.

In order to check that the parameters in eigenvector space
are indeed less strongly correlated, we checked the marginalised
posteriors in two principal components. We confirmed that the
transformed posteriors are indeed significantly closer to the
idealised assumption of an elliptical distribution.

The eigenvalue spectra for the posteriors of the different
fits are shown in Fig. 5. We can see that they agree very well
between parameter fits for different fit statistics. In order to
further check the agreement of the eigenvector spaces, we con-
sidered the angles between eigenvectors for different fits. We
found that the eigenvector spaces of the posteriors from χ2-fit
and DKL-fit agree quite well, with eigenvectors with the same
index corresponding to one another within angular deviations of
up to 26 degrees, and less than 9 degrees if considering only
indices λ = 0, 1, 2, 10. The eigenvector space of the E[ln P]-
fit differs more strongly from the first two eigenvector spaces.
While u0, u1, u2 and u10 agree within 14 degrees, the eigen-
vectors for intermediate eigenvalues show angular deviations
between 17 and 54 degrees. In particular, u7 and u8 for the
E[ln P]-fit do not correspond well to u7 and u8 for the other two
fits. This means that the posteriors agree well when it comes
to the combinations of parameters subject to particularly strong
or weak constraints, in particular with respect to eigenvectors
u0, u1, u2 and u10. The intermediate eigenvectors with eigenval-
ues closer to unity are less certainly determined in general, so we
do not expect a strong correspondence here.

Upon analysis of the impact of the different parameter eigen-
vectors on the model CAMF, we find that u0 shifts the high-age
edge of the distribution along the age-axis. u1 and u2 together
shift the position of the CAMF in the age-mass plane while
affecting its shape only weakly. u10, which corresponds to the
component of largest uncertainty, scales the CAMF along the
mass-axis by shifting the low-mass edge of the distribution. The
remaining eigenvectors affect the shape of the CAMF in more
nontrivial ways and vary significantly between posteriors for
different fit statistics. We can thus link u0 to the observed age cut-
off at τ = 9.7, which apparently places the strongest constraint on
the model. u10 can be linked to the high uncertainty of our sam-
ple’s low-mass cluster content, which is caused by low-number
statistics due to the faintness and corresponding difficulty of
detection for these clusters.

5.4. Compatibility of the best model with observations

We consider now our best-fitting CAMF model, which is the
DKL-fit model following our discussion in Sect. 5.2. Its parame-
ters can be found in the fourth column of Table 4. We discuss first
the properties of the resulting model functions and then analyse

how well the model matches the observed cluster sample in more
depth.

The CIMF was strongly constrained by prior considerations
and is largely consistent with them. At low masses, the CIMF
slope is very shallow, but at higher masses above a transition
mass of M∗ = 95 M⊙, it is close to 1. This behaviour appears
consistent with the CMF constructed for clusters younger
than 20 Myr in Just et al. (2023). The Schechter cut-off at
log mS/M⊙ = 3.950 lies above the majority of observed cluster
masses, with ten sample clusters having higher masses.

With a CFR of β = 1.015 kpc−2Myr−1, the mean ini-
tial cluster mass of 87 M⊙ corresponds to a contribution of
0.088 M⊙ pc−2Gyr−1 of long-lived clusters to the local star for-
mation rate (SFR). Comparing this figure to the present-day SFR
of Sysoliatina & Just (2021), who used data from the second Gaia
data release (Gaia Collaboration 2018) to parametrise a model
of the local Galactic disc, this corresponds to a relative contribu-
tion of 6% to the present-day SFR from star formation in bound
clusters. Bovy (2017) used the Tycho-Gaia Astrometric Solution
catalogue (Gaia Collaboration 2016a) to reconstruct the local star
forming history from the observed column densities for different
types of main sequence stars. We find a relative contribution
of 5.1±1.3% to the present-day SFR from their work, which
appears consistent with the result of Sysoliatina & Just (2021).

In the model, clusters undergo a violent relaxation phase dur-
ing which they lose 72% of their member stars on a timescale
of 20 Myr. Half of this mass loss occurs between ages of
15 to 40 Myr, which means that in our model, violent relax-
ation happens later and more slowly than in the simulations of
Shukirgaliyev et al. (2017, 2018, 2019, 2021). The bound fraction
of 28% corresponds to around 18% global star formation effi-
ciency for Plummer models with centrally peaked star formation
(Shukirgaliyev et al. 2021). However, as discussed earlier, the
violent relaxation parameters are not very well constrained by
our cluster sample due to the low number of clusters younger
than 100 Myr. Accounting for all effects and integrating over
cluster initial masses, half of the total initial mass is lost within
30 Myr, and 80% becomes unbound within the first 100 Myr,
making violent relaxation the dominant channel of mass loss
during early cluster evolution.

The model’s cluster lifetime-mass relation is compared to
other relations from the literature in Fig. 6. We consider the rela-
tions used in Piskunov et al. (2018), which are based on Ernst
et al. (2015) half-mass time relations from N-body simulations
of Roche volume under-filling, filling and over-filling clusters.
We also consider the cluster mass loss model from Lamers &
Gieles (2006) for a 100 M⊙ cluster remnant. The base model and
the χ2-fit and E[ln P]-fit models are also shown.

The best-fitting models for the χ2-fit and E[ln P]-fit lie very
close to the best model and follow most closely the relation
for Roche volume underfilling clusters for intermediate ini-
tial masses 100 M⊙ < M < 2000 M⊙. For clusters with initial
mass below 1000 M⊙, the lifetime-mass relations of our mod-
els are steeper than those for filling and overfilling clusters.
For M < 200 M⊙, they are also steeper than the relation for
underfilling clusters. At high masses M > 3000 M⊙, the best
model’s lifetime-mass relation is very shallow, diverging from
the other two best-fitting models and following most closely the
relation for overfilling clusters. Due to the high-mass restric-
tions imposed by the CIMF, cluster lifetimes are effectively
limited by the observed upper age limit of 5 Gyr. Lifetimes
are generally higher by a factor of about 3 to 5 compared to
the base model and the model by Lamers & Gieles (2006) for
masses 30 M⊙ < M < 3000 M⊙. The main reason for the shorter
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positive log-ratio corresponds to a modelled cluster surface density
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lifetimes in Lamers & Gieles (2006) is the impact of encounters
with giant molecular clouds on the cluster mass loss, which is
not taken into account in our model. (To do this, an additional
factor could be added to Eq. (20), or Eqs. (23) and (25) could be
adjusted to include contributions from such encounters.) These
high cluster lifetimes are responsible for the comparatively low
model CFR. As clusters survive longer, fewer clusters need to
be formed to reach the observed total surface density integrated
over all ages.

In Fig. 7, we plot the logarithm of the ratio of modelled
and observed CAMF, both including uncertainties in age and
mass as per Eqs. (7) and (14). We observe the best agreement
between CAMFs at intermediate ages and masses, where the
cluster surface densities are high.

For young clusters τ < 7, the modelled cluster density is sys-
tematically lower than the observed density. We further see large
disagreements between CAMFs for low masses µ < 1, where the
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Fig. 8. CAMF in initial mass space constructed using the bound-mass
relation of the best-fitting model. Cluster densities were computed for
linear bin widths in age and logarithmic bin widths in initial mass. The
coloured bar on the left represents the product of model CIMF and
CFR, which is constant with age. The dashed line represents the model
lifetime-mass relation.

data is quite noisy due to low number statistics. At high masses
µ > 3.5, the model density is generally lower than observed.

Except for low masses and the outermost high-age edge
where no clusters are observed, the model tends to have lower
densities than the observation towards the edges of the CAMF,
but higher densities at the centre of the CAMF. This appears
to be consistent with the model CAMF being more concen-
trated in the age-mass plane than the observation, as was already
indicated by the E[ln P] distribution in Sect. 5.2.

In order to test the consistency of the best-fitting model with
the data in more detail, we considered the CAMF in initial-mass
space. We recall Eq. (10), which implies that in initial-mass
space, the CAMF is given by the product of CFR and CIMF.
By using the bound-mass function to infer initial cluster masses,
we can thus reconstruct the CIMF and the CFR from the cluster
sample data.

We constructed the CAMF in initial-mass space in Fig. 8,
using a linear age scale for bin normalisation in order to visualise
the factorisation of the CAMF according to Eq. (10). As our CFR
is constant and the CIMF does not depend on cluster age, this
initial-mass CAMF is ≈ β f (M)∆M/∆ log(M/M⊙) within a bin
centred on initial mass M, independent of cluster age. We see
that Fig. 8 seems compatible with the adopted constant CFR and
unchanging CIMF. While we observe few higher-mass clusters
with µ > 3.5 at young ages τ < 8, this can easily be explained
by stochastic noise due to the generally lower number of clus-
ters at younger ages. If we want to gain further information from
this CAMF, more assumptions must be made. In particular, by
assuming our model CIMF to be the correct one, we can extract
the CFR from the CAMF, and vice versa to extract the CIMF.

To reconstruct the CFR, we considered the clusters with
ages in an infinitesimal interval dt around age t. The number
of clusters formed at that age was then Ψ(t)dt, with a surviving
fraction of

fsurv(t) =

∞∫
M0(t)

f (M)dM, (46)
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Fig. 9. CFR reconstructed from the cluster sample using CIMF and
lifetime-mass relation of the best-fitting model. Error bars represent
uncertainties from Poisson noise. The solid red line represents a lin-
ear fit of the CFR, with the shaded area giving the uncertainty of the fit.
The horizontal dashed line gives the constant CFR of the model.

where M0(t), defined by tCl(M0) = t as the inverse of the cluster
lifetime-mass relation, gives the lower limit of the initial mass
required for a cluster to survive until age t.

The total cluster surface density at age t is thus fsurv(t)Ψ(t)dt,
and we could then reconstruct the CFR given CIMF and cluster
lifetime-mass relation by computing

Ψ̂rec(ti) =
1

∆t,i fsurv(ti)

∑
tk∈∆t,i

S −1
k , (47)

where the sum gives the total surface density of clusters within
the age bin ∆t,i.

We reconstructed the CFR from observations using the
CIMF and lifetime-mass relation of our model and plot it in
Fig. 9 together with the model CFR as well as a linear fit to
the reconstructed CFR to check for age-dependent trends. We
note that while the model CFR in principle extends to τ = 10,
the reconstructed CFR could only be constructed up to τ = 9.75,
beyond which no clusters were observed. The slope of the lin-
ear fit at −0.040 ± 0.005kpc−2Myr−1dex−1, which is statistically
significant, indicates that while the reconstructed CFR systemat-
ically deviates from a constant, it does so only slightly. As such,
we interpret this as primarily a weakness of the model fit and not
a fundamental incompatibility of the data with a constant CFR.

While the high values of the reconstructed CFR for the
youngest ages may correspond to clusters that do not survive gas
expulsion and violent relaxation (as discussed in Sect. 3.3), the
data for such clusters is sparse. This effect may also be explained
by stochastic noise. Similarly, the high CFR in the final age bin
is likely an effect of noise. As the surviving fraction is very close
to zero at the high-age edge, a small number of clusters can have
a disproportionate impact on the reconstructed CFR. Still, this
high CFR value could also reflect a period of enhanced star for-
mation earlier in the Milky Way’s history (as e.g. in Fantin et al.
2019; Xiang & Rix 2022).

For reconstructing the CIMF, we considered the total cluster
surface density per unit mass n(M) at a given initial mass M.
This is given by

n(M) = f (M)

tCl(M)∫
tmin

Ψ(t)dt = f (M)β(tCl(M) − tmin) (48)
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Fig. 10. CIMF reconstructed from the cluster sample using CFR and
bound-mass function of the best-fitting model. Error bars represent
combined uncertainties from Poisson noise and mass determination
errors. The dashed line represents the CIMF of the model. The dotted
vertical line marks the lower mass limit of the model CIMF.

for our model of constant CFR, where tmin is the lower age limit
of the cluster sample. As such, we constructed the CIMF from
a cluster population given the bound-mass function to compute
cluster initial masses and a constant CFR as

f̂rec(Mi) =
1

β(tCl(Mi) − tmin)
1
∆M,i

∑
Mk∈∆M,i

1
S k
, (49)

where
∑

Mk∈∆M,i

1
S k

is the total surface density of clusters within the

inital-mass bin ∆M,i. The logarithmic CIMF can be constructed
analogously using logarithmic initial-mass bins instead.

As for the CFR, we reconstructed the CIMF using our CAMF
model, in particular via bound-mass function and CFR, plot-
ting the result in Fig. 10. We see that the reconstructed CIMF
is highly consistent with our model for intermediate masses of
µ = 2.5 to 4. For initial masses above µ = 4, the reconstructed
CIMF does not fall off as fast as the model CIMF, and may thus
be compatible with a higher Schechter cutoff mass than present
in the model. However, uncertainties here are relatively large and
both CIMFs still mostly agree within the errors. At lower masses,
a break in the reconstructed CIMF power law is observed. Com-
pared to the model CIMF, a sharper transition between power
laws at a higher transition mass M∗ also seems permissible, pos-
sibly in combination with a slightly steeper low-mass power-law
slope. Modelled clusters with initial masses between mlower =
2 M⊙ and 10 M⊙ are not observed due to their short lifetimes,
which makes it difficult to assess the CIMF below the breaking
point of the high-mass power-law slope.

This also indicates that the sample (and the best model in
particular) would be consistent with a higher value of the lower
limit to the initial cluster masses. However, this makes little
difference to the resulting CAMF as the total cluster surface den-
sity remains fixed. When setting mlower = 10 M⊙ for our best
model, this resulted in changed parameter values log k/M⊙ =
−2.489 and β = 0.5989 kpc−2Myr−1. All other parameter values
remained unchanged, and the mean initial cluster mass increased
to ⟨M⟩ = 144 M⊙, such that the CFR was only slightly decreased
to 86.4 M⊙ kpc−2 Myr−1.

Overall, we find the reconstructed CFR and CIMF to agree
within their uncertainties with the corresponding model func-
tions. We interpret this as the model being compatible with the
data in a self-consistent manner, and make no further claims
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about the reconstructed CFR and CIMF beyond their use as a test
for consistency between model and observations, as their shapes
depend sensitively on the details of the cluster lifetime-mass
relation and the bound mass function.

6. Comparison to a cluster sample based
on Gaia DR3

As we mention in Sect. 2, mass determinations of large cluster
catalogues based on Gaia astrometry have so far been relatively
sparse in the literature. Due to the high scientific interest in
the Gaia data releases (Gaia Collaboration 2016a, 2018, 2021,
2023), the state of the literature on Milky Way clusters using
Gaia data has been rapidly evolving, so this will likely change
in the near future. It seems therefore expedient to demonstrate
that the CAMF and CAMF models can prove useful tools for
analysing cluster systems also in the context of Gaia-based
cluster catalogues.

The catalogue published by Hunt & Reffert (2023) is a Gaia-
based sample of 7167 clusters detected using the HDBSCAN
algorithm. It contains distance measures and age determina-
tions based on a machine learning approach using variational
inference to estimate uncertainties.

During the preparation of this work, this catalogue was sup-
plemented by Hunt & Reffert (2024) with Jacobi masses based
on apparent stellar masses and a classification of objects into
bound clusters and unbound moving groups. This gives us the
opportunity to demonstrate the application of our CAMF model
to a different cluster sample, as well as compare our results to
more recent cluster data.

As an in-depth analysis of the catalogue’s completeness does
not yet exist, we used the simple mass-based completeness model
that is presented in Hunt & Reffert (2024) as an approximate
estimate.

Their completeness distance is defined as

R100% = min{α × ln(MJ/M⊙) + β,Rbreak}, (50)

where MJ is the Jacobi mass, with parameters α = 633.1 ±
7.3 pc, β = −1582.6 ± 39.5 pc, and Rbreak = 2792.9 ± 8.2 pc.

Using these individual completeness limits, the construction
of a representative, completeness-corrected sample proceeds
analogously as for the MWSC in Sect. 2.

In addition to the distance-related correction, Hunt & Reffert
(2024) recommend a mass cut at 40 M⊙, below which their clas-
sification of bound clusters and the determination of cluster
masses become unreliable. The completeness-corrected sample
of the Hunt & Reffert (2023, 2024) catalogue then uses the pre-
scription dXY < R100% and MJ > 40 M⊙. In total, it contains 2481
of the 5647 open clusters listed in the catalogue.

Using the given completeness distances, ages, masses and
corresponding uncertainties from the catalogue, we constructed
CAMFs as we did using MWSC data. However, the 40 M⊙ lower
mass cutoff enforced different mass limits than for the MWSC.

We obtained a total surface density of

Σµ>1.6 = 257.3kpc−2, (51)

contrasted to Σµ>1.6 = 86.3 kpc−2 for the MWSC sample. This
means that the observed cluster counts are roughly three times
higher. The CAMFs both without and with consideration of
individual age-mass uncertainties can be found in Fig. 11.

We observe that like for the MWSC sample, there is evidence
for a period of enhanced mass loss at early ages from the change
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Fig. 11. CAMFs derived from the Gaia-based catalogue of Hunt &
Reffert (2023, 2024). In the left panel is the CAMF without age-mass
uncertainties. In the right panel is the CAMF taking into account uncer-
tainties in age and mass. The horizontal dashed lines mark the 40 M⊙
mass cutoff.

in the high-mass contours, as well as some effective upper age
limit above which cluster densities drop rapidly. The major dif-
ference is that both enhanced mass loss and age limit, as well as
the cluster density maximum, appear at earlier ages than in the
MWSC sample, with a constant high mass edge for τ < 7.3 and a
high-age edge in the range of τ = 9–9.5. The density maximum
occurs at τ ≈ 8 in contrast to τ ≈ 8.7 for the MWSC sample. The
high-age edge is further more strongly dependent on mass as well
as more diffuse. As we will discuss below, this may be related to
the age-mass uncertainties and their dependence on cluster age.

In order to quantitatively compare the modelled with the
observed CAMF, we again needed to take the uncertainties
in age and mass into account. We find that age uncertain-
ties vary weakly for ages τ = 7–9, typically remaining within
0.23 ± 0.06 dex. For τ < 7, they are slightly reduced. No clear
dependence on mass was apparent. In the same age range, mass
uncertainties show little systematic variation with age apart
from a slight increase for τ < 7, but a linear decrease of about
0.025 dex per decade in mass, with typical values at 0.07 ± 0.03.
As the cluster sample spans less than three decades in mass,
this trend can account for less than 40% of the total variance in
mass uncertainties. For τ > 9, age uncertainties, and to a lesser
degree mass uncertainties, are higher and vary more strongly,
with age uncertainties at 0.30 ± 0.19 dex and mass uncertainties
at 0.08 ± 0.04 dex.

The increase in uncertainty coincides with the age limit and
corresponding drop in the number of clusters observed. This may
suggest that some of these clusters are poorly parametrised ‘out-
liers’ in the sense that they are strongly observationally scattered
from a different part of the true CAMF. The generally higher
age uncertainties may partially explain the more diffuse high-age
edge of the CAMF compared to the MWSC sample.

We here used the simplest possible model of constant age
and mass errors with

δτ(µ, τ) = 0.25, δµ(µ, τ) = 0.08, (52)

while acknowledging that this is not accurate at high ages. How-
ever, at the level of this proof-of-concept analysis, we deemed it
sufficient.

Using this error model in conjunction with our CAMF
model, we compared our best-fitting model for MWSC data to
the Gaia-based CAMF, rescaling the CFR parameter β such that
the total cluster density for µ > 1.6 matches the observation. This
resulted in an alternate choice of β = 3.037 kpc−2Myr−1, about
three times higher than for the MWSC sample.
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As we note above, the observed CAMF generally sits at
lower ages compared to the MWSC data. Likewise, the CAMF
of the best-fitting model has high-age edge, density maximum
and violent relaxation mass loss at higher ages compared to
observation.

We used steps of 0.05 dex to find that a shift of the model
to lower ages by 0.8 dex minimises the KLD between observed
CAMF and error-smoothed model CAMF to DKL = 0.113 from
DKL = 0.666 without an age shift. Such a shift in cluster age is
equivalent to rescaling the parameters β, c, and tV, which respec-
tively govern cluster formation rate, lifetimes, and the violent
relaxation timescale.

We find that while this aligns the central regions of the
CAMFs, correspondence between model and data remains poor
for high masses and ages. Compared to observations, the model
contains too few high-mass clusters, which are suppressed in the
model by a Schechter cutoff at log mS/M⊙ = 3.950. For τ > 9.5,
the model has a lack of clusters compared to the data. While the
deficiency of longer-lived high-mass clusters also contributes to
this, our error model underestimates the age uncertainties, lead-
ing to a lacking contribution of lower-age clusters from error
smoothing. A relative abundance of old compared to young
clusters in the model relative to the data may suggest that the
dissolution rate is too low in the model, which means that too
many clusters survive for too long due to cluster lifetimes rising
too quickly with mass.

We finally used the KLD and the above error model to per-
form a model fit using MCMC sampling as we did for the MWSC
sample. For simplicity, we reused the same parameter constraints
as they fit also this sample. For the Gaussian priors, we adopted
the same means as a baseline, but used twice the standard devi-
ations to account for the Gaussian priors being specific to the
MWSC sample and avoid unduly constraining the parameter
space.

The MCMC took 221 000 steps with an average acceptance
rate of 0.161 until convergence. With a burn-in of 4404 samples
and a thinning factor of 528, the final posterior sample contains
21 320 parameter sets. The best model has a KLD of DKL =
0.034, which represents a significant improvement compared to
the age-shifted best-fitting MWSC model. The rightmost col-
umn of Table 4 contains a list of this model’s parameters with
uncertainties derived from the posterior distribution.

As the cluster sample contains no clusters below 40M⊙, it
cannot constrain the low-mass region of the CAMF and CIMF.
This results in poorer constraints for the low-mass CIMF slope
x1. The Schechter cutoff is better constrained due to lower mass
uncertainties. In these models, 40+45

−31% of clusters have initial
masses below 40M⊙ and contribute to the CFR, but not the
observable region of the CAMF, leading to a high uncertainty
of the CFR. However, these low-mass clusters only represent
a small fraction of the total cluster mass, making the CFR in
terms of stellar mass formed within clusters significantly less
uncertain.

The lifetime scaling parameters are no longer informed by
the dissolution behaviour of clusters near the end of their life,
which is encoded in the low-mass region of the CAMF. This
allows for high values of a1. This, in combination with a less
sharp age-cutoff, results in models where the break in the cluster
lifetime-mass relation can partially or even fully disappear.

Indeed the best model, with its CAMF shown in Fig. 12, does
not feature a break in the cluster lifetime-mass relation and has a
high value of a1 at 0.538, resulting in slow dissolution at the end
of clusters’ lifetimes and a high number of clusters with masses
below 40 M⊙. The Schechter cutoff mass at log mS/M⊙ = 4.743
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Fig. 12. Modelled CAMF for the fit to Hunt & Reffert (2023, 2024)
data. In the right panel, the model CAMF with no smoothing is shown.
Dashed lines are mass loss tracks corresponding to initial masses of
1 M⊙, 10 M⊙, 102 M⊙, 103 M⊙, 104 M⊙, 105 M⊙, and 106 M⊙. In the left
panel, the contours of the smoothed observed CAMF are plotted over
the error-smoothed model CAMF. Contour levels of the smoothed data
are marked with solid lines on the colour scale bar.

corresponds to lifetimes close to the age limit and seems mostly
sufficient to reproduce it.

The CFR implies that a majority of stars form as part of long-
lived clusters, though a large fraction of stars become unbound
from their parent cluster early in their life. Less than half the
newly formed stellar mass remains bound past 10 Myr, and 85%
of the initial mass are lost within 100 Myr. The bound fraction
after violent relaxation is comparatively high at 34%.

The model contours in the left panel of Fig. 12 appear to
match the observed CAMF fairly well. Synthetic cluster samples
drawn from the model contain on average 2447 ± 41 clusters for
a total surface density of Σµ>1.6 = 257.22 ± 0.50kpc−2 above the
mass limit, which appears consistent with observations within
the stochastic variation. However, all 5000 synthetic samples
we drew have lower values of the KLD than the observed sam-
ple, indicating the presence of systematic differences between
observation and model that cannot be explained by stochastic
noise.

One may attempt to improve this model through a better error
model, improved prior constraints of the model functions, a dif-
ferent fit statistic, or some combination thereof. We refrain at this
point from a more in-depth analysis of this sample on the basis
of its provisional nature and our primary aim of demonstrating
the use of our model and methodology.

We find that the CAMFs of the MWSC and Hunt & Reffert
(2023, 2024) catalogue are qualitatively similar, in particular
with respect to the mass structure for µ > 1.6, the presence of
a weakly mass-dependent age limit and the enhanced cluster
mass loss at early ages. However, there are strong systematic
differences in the age structure that cannot be explained by differ-
ences in age determination alone. As clusters grow fainter with
age, they become more difficult to detect. Therefore it seems
likely that there exist some unaccounted-for age-dependent clus-
ter detection effects in at least the Hunt & Reffert (2023, 2024)
sample, which uses an approximate completeness distance based
only on cluster mass. According to Hunt & Reffert (2023) (see
Fig. 15 therein), the fraction of MWSC clusters also found by
their search decreases with age for τ > 8. Further investigation of
this catalogue’s completeness limits will be important for future
work making use of it.

7. Summary and conclusions

In this paper we investigated the parameter space of a theoret-
ical model for the cluster age-mass function (CAMF), which
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was introduced in Just et al. (2023), where a base model was
presented. The model was constructed with a constant cluster
formation rate (CFR), a two-power law cluster initial mass func-
tion (CIMF) with an exponential Schechter cutoff, and a cluster
bound mass function m(M, t) describing the cluster mass loss as
function of initial mass and age. The cluster mass evolution is
adapted to the models of Shukirgaliyev et al. (2017, 2018) based
on a centrally concentrated star formation efficiency.

For finding the best model parameter set to reproduce the
observed CAMF, we compared three different statistics, χ2,
KLD, and maximum likelihood. All three resulting models are
able to reproduce the bulk of the CAMF reasonably. However,
only the KLD statistics returned a model which also fits the low
number density regimes of the CAMF successfully, in particular
in the high-age and high-mass regimes.

A posterior analysis by random sampling of the models
was used to determine whether a configuration similar to the
observed cluster sample is a likely configuration of such a model
sample. For this, the different statistics as well as the total clus-
ter number were used to quantify deviations between models and
their samples, and assess whether the observed cluster sample
can be differentiated from a model sample based on the observed
values of the different statistics. The base model, published in
Just et al. (2023), can be differentiated from observations by
χ2, KLD, and total cluster number, but not by the maximum
likelihood method. The models returned from χ2 and maximum
likelihood can be differentiated less easily, but also show devi-
ations in at least two of the statistics considered. The model
returned from the KLD in particular is best able to reproduce
the observed cluster number and can only be differentiated from
observations by the maximum likelihood method.

Using principal component analysis, we derived the ellip-
soidal shape of the 11-dimensional posterior distribution in
parameter space for the different MCMC runs. The semi-major
axes of the ellipsoids (given by the square root of the normalised
covariance matrix eigenvalues) vary by a factor of four, for exam-
ple from

√
λ0 = 0.341 to

√
λ10 = 1.486 for the DKL-fit (see also

Fig. 5). These eigenvalues give the variance of the parameter
vector in the direction of the eigenvector relative to the individual
parameter variances. An eigenvalue smaller than 1 corresponds
to a combination of parameters that is more tightly constrained
than the parameters are individually, while an eigenvalue larger
than 1 corresponds to a combination that is constrained less so.
The eigenvectors corresponding to both the smallest and largest
eigenvalues are similar for the posteriors of the different runs,
indicating that the different fit statistics realise the same con-
straints imposed by the observed CAMF. The model parameters
are very well constrained in two dimensions fixing the upper age
limit and the position of the maximum of the CAMF and badly
constrained in one dimension corresponding to low-mass end of
the distribution.

Finding tight constraints for individual model parameters and
related physically interesting quantities is made difficult by these
strong correlations between parameters. In several cases, these
correlations make intuitive physical sense, and can be expected
to generalise to other models. For instance, a model without a
sharp break in the lifetime-mass relation requires a sufficiently
small mass cut-off in order to reproduce the observed age limit.
A possible solution may be to restrict the input functions further
by applying prior knowledge of the physical processes involved.
The bound mass function and lifetime-mass relation are the best
candidates for such a treatment, as the CIMF is already quite
well-constrained and the shape of the CFR is very difficult to
constrain both a priori and through our cluster sample. While

the CFR can be expected to generally correlate with the SFR,
it is firstly not clear at all that there is a one-to-one relation
between the two, and secondly there is as of yet no consensus
as to the shape of the Galactic SFR (see e.g. Aumer & Binney
2009; Bovy 2017; Sysoliatina & Just 2021). Preliminary tests of
models with an additional free parameter for an exponentially
varying CFR have demonstrated that the observed cluster sample
is compatible with both exponentially increasing and decreas-
ing CFRs, but the results are not significant. The reason for this
is a strong degeneracy with the cluster mass loss and lifetime
parameters, which can compensate for moderate changes of the
CFR shape.

The base model was constructed to reproduce the mass func-
tions in four age bins (Just et al. 2023). The focus was on the
younger ages log t/yr < 8.3 and the maximum of the number
surface density. The best model resulting from the DKL-fit, which
we adopted as our best-fitting model, provides a similarly good
representation of these features of the CAMF and a significantly
improved model for the old and the high-mass regions.

The observed CAMF shows a clear signature of a fast clus-
ter mass loss in the violent relaxation phase as predicted by the
N-body models of Shukirgaliyev et al. (2017, 2018, 2019, 2021)
with low global star formation efficiency. This mass loss depends
chiefly on the details of cluster formation, in particular the star
formation efficiency and the density profile of the embedded
cluster. However, poor number statistics for the youngest clusters
and high tidal mass uncertainties limit how well the parameters
of violent relaxation can be determined in our model. In the best
model, the bound fraction after violent relaxation is 28%, which
corresponds to a global star formation efficiency around 18%.

The sharp mass-independent cutoff of the CAMF at high
ages of ∼5 Gyr cannot be reproduced by the Schechter mass
cutoff on its own, and requires a very weak dependence of the
cluster lifetime on the initial cluster mass. Comparisons with
mass-lifetime parametrisations by Ernst et al. (2015) suggest
a possible explanation for this variation in the mass-lifetime
relation: clusters with low initial masses may be born pre-
dominantly Roche-volume underfilling, while clusters with high
initial masses may be initially overfilling.

This lifetime boundary is connected to the strongest con-
straint in the 11-dimensional parameter space corresponding to
the smallest eigenvalue λ0. It may be relaxed if one allows for
a CFR that decreases with age, in particular more rapidly than
1/t for t > 1 Gyr. More investigation into relevant mechanisms
that may limit cluster lifetimes, a possible relation between ini-
tial filling factor and initial mass, as well as the Milky Way’s
cluster forming history are needed to decide which scenario is
more likely.

The CFR of the best model converts to a cluster forma-
tion rate in mass density of 0.088 M⊙ pc−2 Gyr−1, significantly
smaller than in the base model due to generally slower clus-
ter mass loss. This corresponds to 4−6.5% contribution from
observed clusters that survive gas expulsion to the star formation
rate of the disc. Depending on the completeness fraction of our
sample, the total contribution of long-lived clusters to star forma-
tion is expected to be higher. As discussed in Sect. 6, the cluster
surface density constructed using Hunt & Reffert (2023, 2024)
is about three times higher than that of the MWSC. However,
the fraction of stars bound in clusters is expected to drop rapidly
with age due to the effects of violent relaxation and the dissolu-
tion of low-mass clusters, which contributes to the uncertainty of
the CFR. In our best model, half the initial stellar mass formed
within bound clusters is lost within 30 Myr, and less than 20%
of the mass remains bound beyond the first 100 Myr.
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Overall, we find that the observed CAMF can be matched
well by a relatively simple analytical model. We demonstrate the
robustness of our approach by further using the KLD for fit-
ting and posterior analysis in conjunction with the Gaia-based
catalogue of Hunt & Reffert (2023, 2024). We constructed the
CAMF and notably found also the signature of enhanced mass
loss during the violent relaxation phase. With minimal modifi-
cation of our model, we were able to obtain a model describing
also this cluster sample fairly well despite the fundamental dif-
ferences in the underlying data. We conclude that modelling the
CAMF represents a general tool that can be used to extract infor-
mation on the evolution of a cluster system from its observed
age-mass structure.

However, there are two main challenges in inferring model
parameters and selecting best-fit models we identified over the
course of this work. Both challenges are expected to not be spe-
cific to the model functions and the cluster data we used, but
intrinsic to the problem of modelling the evolution of a cluster
system. We identified these first in the context of the MWSC
dataset and found them to also be relevant when using the
Hunt & Reffert (2023, 2024) catalogue. The first challenge lies in
the strongly correlated nature of model parameter space, which
makes constraining individual parameters difficult. For instance,
the rates of cluster formation and dissolution must be balanced
such that the model reproduces the observed cluster content, but
individually each of these rates are badly constrained. A possible
remedy for this problem may lie in better and more sophisticated
constraints on cluster mass evolution from prior physics consid-
erations such as N-body simulations. The second challenge lies
in the measuring of observation-model correspondence, where
uncertainties in the measurements of observed cluster properties,
the completeness limits of the observed cluster sample and the
varying cluster density across the age-mass plane must be taken
into consideration. In particular, the resolution of the observed
CAMF in the age-mass plane is limited by both sample size
and measurement uncertainties, which can make approaches that
work without explicit construction of the observed CAMF, such
as our expected log-likelihood approach, more attractive. We
demonstrate the use of forward modelling to check the behaviour
of a fit statistic for a given model, and discuss how a model fit-
ting procedure can be limited by the fit statistic used. More work
is needed to identify efficient statistics for measuring the corre-
spondence of a CAMF model to a cluster sample, especially in
view of the extensive, high-quality cluster catalogues based on
Gaia DR3 (Gaia Collaboration 2023) that are currently emerging
(e.g. Hunt & Reffert 2023).
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Fig. A.1. Observed CAMF constructed from MWSC data using loga-
rithmic bins in mass and linear bins in age. The left panel contains the
CAMF constructed just from ages and masses, and the right panel con-
tains the CAMF taking into account age-mass uncertainties.

Appendix A: Rapid mass evolution in the
observed CAMF using linear age binning

We argue in Sect. 2 that the constant high-mass edge for τ <
7.8 in the observed CAMF is evidence for rapid mass evolution
during the violent relaxation phase. One way to more accessibly
visualise this is to remove the effect of logarithmic age binning
by normalising using linear bin sizes in age instead (as also used
in Fig. 8 to visualise the factorisation of the CAMF in initial-
mass).

We show the observed CAMFs with and without uncertain-
ties in age and mass using linear age scaling in Fig. A.1. Without
the effect of logarithmic age binning, the high-mass contours
visually follow the change from rapid mass loss during violent
relaxation to more moderate masss loss during later evolution,
similar to the mass loss tracks in Fig. 3.

Appendix B: The modelled CAF

As is discussed in Sect. 1, the CAF is typically of interest in
the context of fitting cluster evolution models. While our 2D
approach does not consider or fit the CAF explicitly, correspon-
dence between observed and modelled CAF should nonetheless
arise by construction.

For our model, the CAF η(t), giving the cluster surface
density per age interval, can be computed at some age t by inte-
grating the CAMF over all masses. Recalling Eqs. (10) and (46),
with M0(t) as inverse of tCl(M), we find

η(t) =

∞∫
0

σ(m, t)dm =

∞∫
M0(t)

Ψ(t) f (M)dM = Ψ(t) fsurv(t). (B.1)

The CAF and CFR are thus simply related by the surviving
fraction of clusters.

In Fig. B.1, we plot η(t) for the base model as well as the best-
fitting models over the observed CAF. As discussed in Sect. 5.1,
the best model is the only one with reproduces the observed
age limit. In terms of the CAF, this means that the other mod-
els produce high-age clusters in excess of observations. Notably,
the bulk of the CAF is very similar for all models, highlight-
ing the additional information contained in the 2D structure of
the CAMF, which is lost when only considering mass or age
functions.
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Fig. B.1. Observed and modelled CAFs. The histogram shows the
observed CAF, error bars represent observational uncertainty from Pois-
son noise. Modelled CAFs are plotted for the base model, the χ2-fit, the
DKL-fit, and the E[ln P]-fit model. The bold dashed line corresponds to
the best model.
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