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Abstract

We examine the decay of perturbations in an infinite homogeneous self-gravitating model with a Maxwellian
distribution function (DF) when weak collisions are present. In collisionless systems within the stable parameter
range, the eigenvalue spectrum consists of a continuous set of real frequencies associated with van Kampen (vK)
modes, which are singular eigenfunctions of the stellar DF. An initial perturbation in the stellar density and
gravitational potential decays exponentially through a superposition of these modes, a phenomenon known as
Landau damping. However, the perturbation in the stellar DF does not decay self similarly; it becomes increasingly
oscillatory in velocity space over time, indicating the absence of eigenfunctions corresponding to the Landau
damping eigenfrequencies. Consequently, we refer to perturbations undergoing Landau damping as quasi-modes
rather than true eigenmodes. Even rare collisions suppress the formation of steep DF gradients in velocity space.
C. S. Ng & A. Bhattacharjee demonstrated that introducing collisions eliminates vK modes and transforms Landau
quasi-modes into true eigenmodes forming a complete set. As the collision frequency approaches zero, their
eigenfrequencies converge to those of the collisionless Landau quasi-modes. In this study, we investigate the
behavior of the eigenfunction of the least-damped aperiodic mode as the collision frequency approaches zero. We
derive analytic expressions for the eigenfunction in the resonance region and for the damping rate as a function of
collision frequency. Additionally, we employ the standard matrix eigenvalue problem approach to numerically
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verify our analytical results.
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1. Introduction

Simplifying the Boltzmann kinetic equation equation by
discarding the collision term yields the A. A. Vlasov (1945)
equation. This simplification is often justified by comparing the
collision time with the characteristic dynamical times of the
system. When the collision time is significantly longer, the
Vlasov equation provides a useful approximation. This
simplified equation offers considerable advantages, especially
in the analytical study of stellar systems—for instance, in
investigating their stability or the evolution of perturbations
arising from various external sources.

It also clarifies conceptual aspects of stellar system
dynamics, particularly their eigenmode spectrum. The question
of mode spectra in collisionless electron plasmas, analogous to
stellar systems, was initially addressed by L. D. Landau (1946).
Though not explicitly framed as such, Landau’s work
examined the evolution of small perturbations in electron
density, or electric potential, and distribution function (DF). It
demonstrated that density/potential perturbations, at large
times, are a sum of decaying exponentials (Landau damping).
However, the DF does not decay; it develops increasing
corrugation in velocity space. Consequently, no DF eigenfunc-
tions correspond to the Landau damping rates.

Later, N. G. van Kampen (1955) and K. M. Case (1959)
clarified how Landau damping, discovered in an initial value
setting, relates to the eigenmode spectrum. They showed that

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

Landau damping follows from the decay of an initial
perturbation expressed as a continuous superposition of van
Kampen (vK) eigenmodes over real frequencies w. The DF
f.(v) of the vK modes is singular at v=c and corresponds to
the real eigenvalues w, or the phase velocity ¢ = w/k, where the
DF and potential perturbations are ocexp[—i(kx — wt)]. Thus,
Landau’s exponentially decaying solutions are not true modes,
i.e., not self-similar perturbations, but quasi-modes. The
relationship between true and Landau quasi-modes in a
gravitating system was analyzed in detail in E. V. Polyachenko
et al. (2021).

Completely neglecting collisions is an idealization that can
sometimes lead to contradictions or flawed conclusions. A
parallel arises in the hydrodynamics of shear flows: reducing
the fourth-order viscous Orr—Sommerfeld equation to the
second-order inviscid Rayleigh equation (see, e.g., P. Schmid
& D. Henningson 2012) can lead to impasses when examining
perturbations near the stability boundary. To resolve this, one
must revert to a viscous approach, at least formally, because
viscosity, though absent from the final formulas, is implicit in
their derivation. As detailed in C. C. Lin (1955), this situation
prompted the Landau-Lin bypass rule for studies of perturba-
tions in collisionless or inviscid systems.

The question of eigenmodes in collisionless systems, such as
electron plasmas or stellar systems, exemplifies situations where
neglecting collisions leads to paradoxes. Specifically, the lack of
DF eigenfunctions corresponding to Landau quasi-modes, and
the emergence of vK modes with their singular structure, are
puzzling. Although N. G. van Kampen (1955), K. M. Case
(1959), and subsequent studies on collisionless plasma and
inviscid fluids (see, e.g., N. J. Balmforth & P. J. Morrison 1995;


https://orcid.org/0000-0002-4596-1222
https://orcid.org/0000-0002-4596-1222
https://orcid.org/0000-0002-4596-1222
https://orcid.org/0000-0002-6060-694X
https://orcid.org/0000-0002-6060-694X
https://orcid.org/0000-0002-6060-694X
http://astrothesaurus.org/uat/668
http://astrothesaurus.org/uat/1596
https://doi.org/10.3847/1538-3881/adb8da
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/adb8da&domain=pdf&date_stamp=2025-03-24
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/adb8da&domain=pdf&date_stamp=2025-03-24
https://creativecommons.org/licenses/by/4.0/

THE ASTRONOMICAL JOURNAL, 169:224 (8pp), 2025 April

E. V. Polyachenko & I. G. Shukhman 2022) clarified the
interpretation of these singular modes, their presence in physical
settings remains unsettling.

Accounting for any finite, even arbitrarily small collision
frequency v helps resolve this issue. At first glance, continuity
arguments suggest that the eigenmode spectrum in a collisional
medium should, as v— 0, revert to the real, singular vK
spectrum. However, this expectation proves incorrect: a series
of works by Ng and co-authors (see C. S. Ng et al. 1999, 2004;
C. S. Ng & A. Bhattacharjee 2021) show that including
collisions in the kinetic equation, even at v — 0, eliminates the
vK modes and yields a spectrum of damped modes whose
eigenfrequencies align with the Landau quasi-modes at v = 0.

This article examines, numerically and analytically, the
nature of eigenfunctions in the regime of infrequent collisions,
a topic not fully explored in prior works. We aim to clarify the
origin of the DF, specifically how the corrugated structure of
the DF, observed in the initial collisionless problem, relates to
the collision frequency when collisions are considered. We also
investigate how the localization and extent of this corrugation
depend on the damping rate. Following the approach of Ng and
co-authors, our calculations employ a model of a homo-
geneous, infinite medium using the Jeans swindle. Our
numerical calculations are not limited in accuracy, allowing
us to approach the collisionless limit ¥ =0 by reducing the
collision frequency to very small values, significantly smaller
than those in previous studies.

Section 2 analytically calculates the eigenvalues c¢ using
perturbation theory and examines the eigenfunction structure in
the limit of infrequent collisions, focusing on the physically
relevant least-damped mode. Section 3 validates these results
through high-accuracy numerical calculations using a matrix
eigenvalue problem solution. Section 4 discusses the findings.

2. Analytical Expressions

For very rare collisions, one can derive a correction to the
collisionless (Landau) eigenvalues ¢ = ¢ using perturbation
theory with respect to the small parameter p, the dimensionless
collision frequency.

We begin, as in C. S. Ng & A. Bhattacharjee (2021), with a
linearized system consisting of the one-dimensional Boltzmann
equation, incorporating a collision term of the A. Lenard &
I. B. Bernstein (1958) form

o of 8f 06d 0Of 0 0 of

— v - — L =y — v+

Ot Ox Ox Ov ov / ov M
where 0f (¢, x, v) and 6P(¢, x) represent perturbations of the DF
and gravitational potential, respectively. These perturbations
are related through the Poisson equation:

0%6P
Ox?
Here, G is the gravitational constant, v is the collision

frequency, and the unperturbed DF is assumed to be
Maxwellian:

— 47G f v §f. @)

2
fo) = (%Z_’% exp(—%‘z). 3)

Considering disturbances of the form
§f = f () eik=en, 6B = ¢ eithr=en @
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switching to dimensionless variables, and also using the
relation —k*¢ = 4G il fdv, we obtain:

(=) g =@ [ du'gw)

= i—[Zug(u) + (5)

dg(u)]
2i du du |
The dimensionless variables are defined as follows. The
dimensionless velocity (1), phase velocity (c), and collision
frequency (u) are given by:

u=-—— =2 =2 (6)
20 - 2k’ © V2ko

The dimensionless unperturbed DF go(u) and its perturbation

g(u) are:

NEX 1 2 20
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First, consider the collisionless case where 1 = 0. Depending
on the parameter «, specifically whether it is smaller or larger
than 1, initial perturbations will either decay or grow
exponentially. In terms of eigenvalues, for o > 1, there exist
two discrete modes: an unstable eigenmode ¢, = iy with v > 0,
and a stable eigenmode ¢_ = —i~, along with a set of singular
vK modes (see E. V. Polyachenko et al. 2021, for details). At
a =1, the discrete modes vanish, leaving only vK modes for
o < 1. The eigenfunctions of the discrete modes are given by:

n ()
gu) = ———. ©)
u — C+
These eigenfunctions satisfy the normalization condition,
which simultaneously represents the collisionless dispersion
relation for the eigenvalues:

2

b « o0 ue
du g(u) = — du =1. 10
J s == [ P (10)

Despite the disappearance of the discrete modes, it can be
shown that density and potential perturbations decay exponen-
tially for ao < 1, notably with the damping rate given by the
least-damped quasi-mode ~; that smoothly continues the
growth rate y(«) in the region o > 1 (S. Ikeuchi et al. 1974;
J. Binney & S. Tremaine 2008). This solution is obtained by
applying the Landau-Lin bypass rule (L. D. Landau 1946;
C. C. Lin 1955), which modifies the dispersion relation (10) as
follows:

2
ue

-1_ % -
D) =1 ﬁiduu_c 0. (11)

Here, the symbol “~” indicates that the integral is taken along
a contour in the lower half of the complex u plane, passing
below the point u=cy. Since this paper focuses on the
modification of ¢ and ¢, = —i . in the presence of collisions,
and both belong to the same branch obtainable from relation
(11), we will use ¢, = —i . for all a, although the index “L” is
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somewhat misleading for the unstable mode when a > 1. Note,
however, that no eigenfunction on the real u-axis corresponds
to the Landau solution for o< 1. For the latter, it is also
convenient to define the parameter

B=1-a (12)
because =0 corresponds to the marginal stability of our
model.

We now apply to g(u) the perturbation theory with respect to
175

g(p, u) = gOw) + g, u, c=cL+a(w. 13)

Here, ¢ represents the collisionless “eigenvalue” satisfying
(11). For the zeroth-order approximation of the eigenfunction
g(o)(u), we will use (9), with ¢, replaced by ¢, which yields:

g(o)(u) = M (14)
u — CcL

The key point here is that, although this is not an eigenfunction
of the collisionless problem for o < 1 on the real u-axis, it is
the eigenfunction on a complex-valued u contour that passes
below ¢ (E. V. Polyachenko et al. 2021). The perturbed
quantities g(l)(u, u) and ¢ () are assumed to be of order O(u).
To first order in u, substituting into (5) gives:

—a18Ow) + (u — cr) gV (1, )
@ e du'gV (u, u')

Nes
pd dg"® (u)
==—|2ugOw) + =——=|. 15
2i du[ ug ) du (1>

Dividing the equation by (¢ — ¢ ) and integrating over u along
the lower contour yields:

du g (u) o wue —u?
- du g™ 1= [ du
o [ W%L+fugwm f N

dg® (u)
du '

P du i[214(1;(0)(14) +

2i u— cp du
~A

(16)

The round bracket vanishes due to (11). Then, it is
straightforward to obtain ¢; = —ip ¢y I,/(21), where

_u? —u?
IlzifduLz, Izzifdue—4.
NTd o (u =) NToY o (u =)

The explicit expressions for these integrals are (see Appendix):
1

h=—(@B-2d), A7)
cL

4 2 . 4
h=2+Z2@-2¢) =2
2= 3 3(5 )

Finally, we obtain

2
+ 5 CcL 11. (18)

a_ By y 2 2 1
’ 3[ e (@) (19)

For the least-damped aperiodic mode of interest, we obtain the
first-order correction in g to the damping rate of the Landau
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quasi-mode, ¢; = —i Avy= —i [y(u) — I

Y =1im2 - L 1+%. (20)
n=0 fi 3 B+ 2L
Near the stability boundary, where |5| < 1:
. B Axy
LN ——, — & — 21
L e P F 5 (21)

This implies that the damping rate correction changes sign
across the stability boundary: in the stable region where 3 > 0,
it acts to destabilize the system (reducing the damping rate),
while in the unstable region where 5 < 0, it acts to stabilize the
system (reducing the growth rate). Exact numerical calcula-
tions, which do not rely on perturbation theory in the small
parameter p, confirm this approximate analytical result with
high precision and extend it to the second order in p. Note also,
that Equation (20) is consistent with the results obtained by
P.-H. Chavanis (2013) using a different approach.

We now seek an approximate analytical description of the
least-damped mode eigenfunction g(u, u) near resonance. For
the aperiodic mode (Re ¢ =0) with small damping rates, this
eigenfunction is localized near u = 0. We refer to this narrow
region around u =0 as the inner region, and the rest of the u-
axis as the outer region. We proceed using matched asymptotic
expansions (see, e.g., R. E. O’Malley 2014), a technique for
solving singularly perturbed differential equations. We intro-
duce h(u) by writing g(u, u) = h(u) exp(—u?), which trans-
forms the Equation (5) to:

(u—c)h—iufoc du h(u) e

2
dh 2uﬁ . (22)
21 du du

We express the eigenvalue as ¢ = —ivy(u) and introduce the
inner variable U = u/¢6, also defining I" = /6. We then set

§=(u/2)V3. (23)

It is worth noting that in the hydrodynamic stability theory of
nearly inviscid shear flows U(y), a similar spatial scale,
l,= v/ 3, known as the width of the viscous critical layer, is
introduced near the critical level y =y,., where U(y.) = ¢ and v
is the inverse of the Reynolds number (see, e.g., D. J. Benney
& S. A. Maslowe 1975; S. M. Churilov & I. G. Shukhman
1987, 1996a, 1996b). This scale also arises in weakly
collisional plasma in connection with plasma echo (C. H. Su
& C. Oberman 1968).

Imposing the same normalization for g(u) as in (10), we
obtain, to leading order in 4, the inner problem equation:

d*h ia

— iU+ i)h=—-—U, 24

0 ¢ ) N (24)
which must be matched with the inner asymptotics of the outer
solution. The outer solution is given by

PR Uwoz(

ST U+l 7

Hence, the matching condition requires that & — «/J7 as
|U| — oo. It is therefore convenient to first extract this constant

T
1—i 5). (25)
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by setting h(U) = H(U) + «/7. For H(U), we obtain the
equation

d*H

a
— —i(U+iIY"H=——T, 26
ar ) T 20
with H(U) decreasing as |U| — oc:
al
HWU) — —i . 27
) = U (27

Equation (26) is now amenable to solution using the Fourier
transform. For

A(g) = @) f_ Y AU HU) eV, 28)

we obtain a first-order equation:

dH(q) 2 17 a

—+ T - H(g) = -T — 6(g), 29
g I = ¢ H(g) N (@) (29)

where (g) is the Dirac delta function. It is straightforward to

solve this equation:

~ al
H(q) = — exp(¢®/3 — ' q) ©(—q), (30)
JT
where ©(x) is the Heaviside step function. After inverse Fourier
transformation, we have:

_al = i Ty — ¢
H(U)fﬁj(; dgexpl—iq (U +iD) — ¢*/3]. (1)

It is readily verified by integration by parts in (31) that for
|U| > 1, the outer limit of the inner solution matches the inner
limit of the outer solution (27) as expected. Finally, for h(u), we
obtain:

3

ay ™ Y —iu q o
huw =20 [ 4 L. ) &)
® 5ﬁfo lep( 5 1 3)+ﬁ 52)

3. Numerical Validation

For the numerical evaluation of the eigenvalue problem at
finite 1, we will adopt an expansion in a series of normalized
Hermite polynomials H,(u), similar to C. S. Ng et al. (1999):

gy = e hw) = e Y7 AH @, (33)
where H,(u) = H,(u)/(2"/*\/n! 7'/%) and

n

Hyw) = (— 1y e L () (34)

u}’l

are the physicist’'s Hermite polynomials (see, e.g.,
I. S. Gradshteyn et al. 2015). For n=0, we obtain
Hy(u) = 7'/4, so that normalizing g(u,u) to unity yields
Ag=7""*for all p.

Equation (22) leads to the following system of linear
equations for the expansion coefficients A,;:

Al = \/5 CA(), (35)
Ay = (¢ + in) A — (B/N2) Ao, (36)

Ayt = /L[(chiun)An— ﬁAnl] (37)
n—+1

for n > 2.

[\
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However, in contrast to C. S. Ng et al. (1999), we formulate
this problem as a standard matrix eigenvalue problem. For the
aperiodic mode of interest, where c(u)=—iy(p), it is
convenient to rewrite it in a purely real form. Introducing
5 =27, i = V2, and A, = i" A,, we obtain:

’7A~n - Z Mnm(,a) A~ms (38)
m=0

where M,,,,(ji) is a tridiagonal matrix:

0 —J1 0 0 0

6 -2 0 0
M) = | 0 N2 28 =3 0 ..

0 0 3 35 -4 ..

0 0 0 V4 4i

The eigenvector A, then contains only real values.

The sum in the matrix Equation (38) is truncated at a large
number ny,x. To solve this, we employed the Matlab sparse
matrix function eigs, enhanced by the Advanpix package for
multiple precision calculations. This function enables us to find
a single eigenvalue close to a pre-set approximate value for
Rmax = 107 with quadrupole precision (128 bits) on a work-
station with 256 GB of memory. Our experiments indicate that
this is sufficient to reliably determine the solution for 1> 107",

For smaller values of y, we implemented finding eigenvalues
and eigenvectors in C from scratch, utilizing the GNU Multiple
Precision Floating-Point Reliable Library. This allowed us to
increase Ny to 107 with quadrupole precision (128 bits),
enabling us to reach p < 107, The characteristic equation for
determining 4 is given by the vanishing of the determinant of
the truncated matrix M,,,,(it) — 7 Oum, i.€.,

3 P, ) + B (11, ) = 0, (39)

where P and Q are polynomials in 4 and ji of order 7. This
code calculates an eigenvalue from Equation (39) for a given
parameter p using the bisection method. The corresponding
eigenvector is then approximated using a method that combines
inverse iteration with a direct solve for a tridiagonal system.

Our numerical validation of the analytical results is presented
in Table 1 and Figures 1-4. Table 1 shows calculated
damping/growth rates y(u) for stable and unstable «. The last
column gives the numerical Avy/u = [v(u) —y.]/p, compar-
able to the analytical ' from (20), valid for small j (last row of
each block). High-precision calculations also allow us to infer
the approximate second-order correction, valid for small p and
|8] (figures not in table for brevity):

2
Y() ~ L — F B — 0.014 B2, (40)

where Equation (21) has been taken into account. It is observed
that the second-order correction acts in the same direction as
the first-order correction, reducing the absolute value of the
damping/growth rate and vanishing for the marginally stable
case a = 1.

Figure 1 displays the curve of ', representing the first-order
correction to 7y, as a function of «, as given by Equation (20),
along with numerical values of Avy/u for selected models from
Table 1.
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a

Figure 1. The ratio Avy/u vs. a Equation (20). Red circles indicate selected
data points from Table 1.

Table 1
Damping Rates (1) and Corrections A/ for the Models Shown
a 2 gl Av/p
0.37 0 0.49552 51860 75220
1073 —0.22789 16095
107 —0.22786 68569
1073 —0.22786 43821
Formulae —0.22786 41071
0.85 0 0.08970 84009 02124
1074 —0.03498 63258
1073 —0.03498 37029
107 —0.03498 36791
Formulae —0.03498 36764
0.90 0 0.05860 21552 01507
1073 —0.02256 80608
10— —0.02256 80460
1077 —0.02256 80445
Formulae —0.02256 80444
0.95 0 0.02873 80319 79385
107° —0.01093 48149
1077 —0.01093 48142
1078 —0.01093 48142
Formulae —0.01093 48141
0.99 0 0.00566 25218 19357
1077 —0.00213 46775 05
1078 —0.00213 46774 92
10~° —0.00213 46774 90
Formulae —0.00213 46774 90
1.10 0 —0.05448 42519 74364
1073 0.02004 98460
10°° 0.02004 98348
1077 0.02004 98337
Formulae 0.02004 98336

Note. The first row in each block provides the Landau damping rate for ;4 = 0,
~(0) = ., with subsequent rows presenting corrections. “Formulae” gives the
analytic 7' from Equation (20). The matrix size was nmex = 3/, except for
(@ =099, p = 1079) where npa = 3 - 108, Models with a < 0.9 were
calculated using Advanpix (Matlab), and models with o > 0.9 using GMP
(GNU). A negative damping rate for « = 1.1 indicates a growth rate.
Corrections reduce the magnitude of both damping and growth rates. The bold
text denotes to models used in Figure 4.
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6 o a=1.1 « le—-04 + 1le—-06
10° 1 le-05 « le-07

103 .
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Al

10—3 .

10—6 .

10—9 .

10712 4m——rrrm e —
100 10! 102 103 104 10° 106
n
Figure 2. Expansion coefficients A, of the least-damped eigenfunction g(u)
expanded over normalized Hermite polynomials for n > 1 (A9 = 7~ '/* in all
cases). Colored circles (different colors indicate different ;o values) depict |4, |
for the stable case (v = 0.95), showing significant variations as p — 0. Black
open circles show |A, | for one unstable case (« = 1.1); here, coefficients remain

nearly indistinguishable as p decreases, converging to the collisionless
limit (u = 0).

Figure 2 illustrates the contrasting behavior of the eigenvalue
vector A, in stable and unstable cases as y — 0, approaching
the collisionless limit. All components are real, with alternating
signs from n=1. In the unstable case, the eigenvector
components vary only slightly with u, making the markers
nearly indistinguishable; therefore, we present only one
eigenvector for a« = 1.1 (black open circles). In contrast, for
the stable case (o =0.95), the absolute values |A,| increase,
reaching a maximum at n < - /u. This suggests a convergence
issue with the sum in (33) in the collisionless limit, reflecting
the absence of eigenfunctions on the real u-axis in the purely
collisionless case.

Figures 3 and 4 compare numerical solutions for the
normalized eigenfunctions g(u) of the least-damped mode
(solid lines) with the analytic expression (32), shown as dashed
colored lines. The zeroth-order approximation g©(x), given by
(14), is, in fact, the outer solution, and is shown as black dotted
lines. The eigenfunctions exhibit symmetry: the real part is
even, and the imaginary part is odd. Therefore, we present only
the positive-u portion. To accommodate the wide range of
function variations, we use symlog scaling for both coordinate
axes, combining logarithmic and linear scaling near zero, with
linear regions indicated by gray shading. The final eigenfunc-
tion is calculated using (33), truncating the sum at ng,,
determined as the maximum n for which |4,| exceeds
€01 - max|A,|. By default, we used a Matlab routine with

quadrunpole precision and g, = 107" for & <0.9, and a C
routine with higher precision (256 bits) and ¢, = 107 for
more demanding calculations where o > 0.9.

Figure 3 shows three panels corresponding to gradually
decreasing values of p at fixed v =0.95. In the outer region,
the numerical solutions follow the zeroth-order approximation
g @(u), but begin to oscillate as u approaches zero. One can
observe one oscillation for ;=107 in the top panel, two
oscillations for 1= 10"° in the middle panel, and numerous
oscillations for ;=107 in the bottom panel. This figure
illustrates how the eigenfunction changes as p decreases, with
the evident absence of an eigenfunction in the collisionless
limit.
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Figure 3. The normalized eigenfunction g(x) of the least-damped mode is shown for ov = 0.95 and ;= 107>, 107, and 10", Real parts of g(x) are even functions,
while imaginary parts are odd functions, and only the region u > 0 is displayed. Both the approximate analytic solution (32) and the exact numerical solution (33) are
presented. Dotted lines represent the solution in the outer region (14). As p approaches zero, the number of oscillations and their amplitudes increase sharply. The

solutions are plotted using symlog scaling for both coordinate axes. Symlog scaling
shading).

Figure 4 illustrates the dependence of the resonance regions
on the damping rates. We present three eigenfunctions g(u) for
values of o where the damping rates ~y are approximately in the
ratio 0.5:0.05:0.005. The specific models used here are denoted
by a bold in Table 1. The half width of the resonance region
(i.e., for the positive part u > 0) is approximately 2+.

In all cases, the agreement between the numerical solutions
obtained from (33) and the approximate analytic expression
given by (32) is excellent.

4. Conclusion

This paper continues our study E. V. Polyachenko et al.
(2021) of an infinite homogeneous self-gravitating medium
with a Maxwellian DF, in which we present various specific
properties of Landau damping solutions. In particular, we
argued that these solutions are not true modes because an
arbitrary perturbation of the DF, depending on real velocity u,
does not decay self similarly but becomes increasingly
oscillatory in velocity space over time, despite the

combines logarithmic scaling with linear scaling near zero (indicated by gray

corresponding density perturbation decaying exponentially at
sufficiently large times with the smallest Landau damping rate.
The spectrum of eigenmodes for the stable Maxwellian DF is
peculiar, consisting only of singular vK modes (N. G. van
Kampen 1955; K. M. Case 1959). It can be shown that Landau-
damped solutions are, in fact, superpositions of vK modes. On
the other hand, we showed in E. V. Polyachenko et al. (2021)
that considering hypothetical perturbations on complex-valued
u contours allows presenting a true eigenfunction even for
damped Landau solutions, but the contour must pass below the
corresponding eigenvalue cy.

In a recent paper by C. S. Ng & A. Bhattacharjee (2021), it
was shown that introducing collisions eliminates vK modes and
transforms Landau quasi-modes into true eigenmodes. This is
intuitively understandable, since even infrequent collisions
suppress the formation of steep DF gradients in velocity space,
from which vK modes suffer. The authors presented numerical
evidence that, as the dimensionless collision frequency p tends
to zero, the eigenvalue of the collision problem tends to the
Landau-damped solution of the collisionless problem.
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Figure 4. The normalized eigenfunction g(u), analogous to Figure 3, is shown for o = 0.37, 0.9, and 0.99 (see Table 1). These cases have approximate damping rate
ratios of 0.5:0.05:0.005. The half width of the resonance region, measured as the rightmost zero of the EF’s imaginary part, is approximately 2-.

Furthermore, in their earlier work C. S. Ng et al. (1999), which
focused on plasma, they presented numerical eigenfunctions for
finite values of .

In this paper, using our previous finding of the true
eigenfunction on complex-valued u contours, we derived the
first-order correction to the eigenvalue with collisions. Notably,
while the eigenfunctions become increasingly oscillatory and
ultimately do not converge in the collisionless limit, the
eigenvalues transition smoothly from the collisional to the
collisionless regime. Our first-order correction term demon-
strates this smooth eigenvalue transition. Then, using matched
asymptotic expansions, we obtained approximate analytical
solutions for the eigenfunctions, capturing their increasingly
oscillatory behavior. We observe numerically that the reso-
nance region’s half width is approximately 2v, and its
amplitude grows without limit as p approaches zero. It is also
worth noting that although 2+ can be several times larger than
0, this remains acceptable within the matched asymptotic
expansion method, as these quantities are considered of the
same order.

The diffusion form of the collisional term, specifically the
presence of the second derivative, is crucial for the disap-
pearance of vK modes and the emergence of discrete

eigenfunctions. The simpler Krook collision term (see
P. L. Bhatnagar et al. 1954), —v §f(v, 1), merely shifts the
continious vK spectrum of collisionless problem to the low
half-plane w, w= —iv+ kv, retaining the absence of regular
eigenfunctions. Conversely, the linearized Landau collision
term (see, e.g., E. M. Lifshitz & L. P. Pitaevskii 1995),
possessing a diffusion character, yields results qualitatively
similar to those in C. S. Ng & A. Bhattacharjee (2021) and the
present study.

The linearization of similar equations is a convenient and
widely used method of analysis in plasma physics, with well-
established applicability. Nonlinearity becomes significant
when the damping rate - is comparable to or smaller than the
bounce frequency 2, of particles trapped in the potential
wells of the wave. For our analysis to be valid, the
gravitational potential amplitude must satisfy ® < (v, /k)>.
For scenarios violating this inequality, we refer the reader to
T. O’Neil (1965) and A. A. Galeev & R. Z. Sagdeev (1979)
for a description of perturbation evolution in the essentially
nonlinear regime.

Numerical validation confirmed our analytical findings,
including the adopted ordering of scales. In contrast to C. S. Ng
et al. (1999), we employed standard matrix eigenvalue problem
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solvers, which are particularly efficient for sparse tridiagonal
matrices. Using a moderate workstation with 256 GB of
memory, we are able to handle matrices with ny,, = 10° with
high precision accuracy. Given that the maximum of the
eigenvalue coefficients |A,| is attained at n <+/u, and that
several multiples of this n are required for convergence of the
eigenvalue and eigenvector calculation methods, we can
achieve values of g on the order of 107° 3. Here, =1 — o
is a parameter that characterizes the proximity to the stability
boundary of the Maxwellian DF.

The code is freely available at the GitLab repository: https://
gitlab.com/epolyach/collision_gravity_rare_collisions.
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Appendix
Evaluation of the Integrals I ,

Here we evaluate the integrals required to derive the first-
order correction in Equation (19). For I;, we have

o« ue - —u
Il:«?fdu(u—c)zia/_fd u—cpL

2
(0] e
Tz f du =

Nz
=7 2e1% f du —J — 2cy, (A1)
u—cCcL

where, for the last equality, Equation (11) was used, and we
introduced

z—f du ——— (A2)
M—CL

The integral J can be readily calculated from the dispersion
equation. We have

o0
2
4] ue™" a —u?
1= [ = [ e
—CcL

R}

+ o =a+cpd. (A3)

Hence J= (1 — a)/c. = 8/cL and, finally we obtain

B~ 2
CL '

1= (A4)
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For I,, after three integrations by parts,

2

u 2 «
b= «@ e _ @
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Finally,
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