
PhD-FSTM-2025-100
Faculty of Science, Technology and Medicine

DISSERTATION
Defence held on 23 September 2025 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Olivier Georges Rémy Zeyen
Born on 29 April 1997 in Luxembourg (Luxembourg)

Scaling up
Uniform Random Sampling

Dissertation defence committee

Dr. Maxime Cordy, Dissertation Supervisor
Assistant Professor, Université du Luxembourg, Luxembourg

Dr. Michail Papadakis, Chairman
Associate Professor, Université du Luxembourg, Luxembourg

Dr. Nicolas Navet
Professor, Université du Luxembourg, Luxembourg

Dr. Jean-Marie Lagniez
Professor, CRIL - Université d’Artois, France

Dr. Gilles Perrouin
Research associate, Université de Namur, Belgium

Abstract

Despite its NP-completeness, the Boolean satisfiability problem (SAT) gave
birth to highly efficient tools that can find solutions to a Boolean formula. Boolean
formulae can succinctly represent vast, constrained search spaces, such as the
configuration options of variability-intensive systems like the Linux kernel. Due
to the sheer size of these spaces, exhaustive exploration is typically infeasible.
As a result, most testing approaches rely on sampling a subset of solutions for
analysis. A desirable property of such samples is uniformity: each solution should
get the same selection probability. This property motivated the design of uniform
random samplers, relying on SAT solvers or model counters, and achieving different
trade-offs between uniformity and scalability.

In this thesis, we contribute to a deeper understanding of uniform random
sampling complexity through several advances. First, we introduce a novel, efficient
parallel algorithm to compute the number of equivalence classes in Boolean formulae,
a structural metric that strongly correlates with sampling time and memory usage.
Leveraging these correlations, we develop a classifier that accurately predicts whether
sampling will exceed computational budgets.

Second, we deepen our understanding of sampling complexity by exploring
synthetic formulae and phase transitions. We investigate how phase transitions
can explain the practical complexity of sampling. Our results, computed on 11,409
synthetic formulae and 4656 real-world formulae, show that phase transitions occur
in both uniform random sampling and SAT-solving, but at a different clause-to-
variable ratio than for SAT tasks. We further reveal that low formula modularity
is correlated with a higher uniform random sampling time. Overall, our work
contributes to a principled understanding of uniform random sampling complexity.

Third, we develop a statistical testing framework to support the evaluation and
development of new uniform random sampling algorithms. While assessing the
uniformity of a sampler shares similarities with testing pseudo-random number
generators (PRNGs), key differences make the problem more challenging: sampling
is significantly slower, and the space of valid solutions is often highly constrained by
the input formula. As a result, traditional PRNG testing methods are insufficient for
this domain. To address this, we introduce a suite of five statistical tests specifically

designed for evaluating uniformity in constrained sampling scenarios. We apply
these tests to seven existing samplers, showing their effectiveness and diagnostic
power. Additionally, we demonstrate the influence of the Boolean formula given as
input to the samplers under test on the test results.

Finally, we introduce a divide-and-conquer approach to knowledge compilation
(KC). At the time of writing, knowledge compilation is one of the most effective
methods to achieve uniform random sampling. However, KC still fails to scale
on some Boolean formulae, including some representing the variability of large
configurable systems. Concretely, our DivKC algorithm decomposes a large Boolean
formula into two smaller ones, which we can easily compile into the d-DNNF form.
When evaluated on a diversified benchmark of 4,656 formulae, DivKC compiles 114
formulae out of the 672 formulae that were previously out of reach for the D4 state-
of-the-art d-DNNF compiler. We then show how to leverage DivKC decompositions
to build an approximate model counter and a uniform random sampler.

Acknowledgments

I have received an incredible amount of support from many people throughout
my PhD journey, and I would like to take this opportunity to thank them all.

First and foremost, I would like to express my sincere gratitude to Dr. Maxime
Cordy, whose guidance and mentorship have been instrumental in shaping my
academic development. His thoughtful feedback and patience made this challenging
journey possible. I am truly thankful for the time and effort he invested in helping
me grow as a researcher.

I would also like to thank all of my co-authors and collaborators, whose insights
and critical feedback helped strengthen my work. Engaging in discussions with you
was an invaluable source of learning.

I am grateful to the Luxembourg National Research Fund (FNR) for financially
supporting my PhD through the AFR grant. This support made my research
possible and allowed me to pursue questions I deeply care about.

I want to thank my colleagues and friends, both inside and outside the lab,
who contributed to the human side of this experience. Your companionship and
occasional distractions made even the toughest moments easier to handle. Whether
through shared coffee breaks, academic debates, or simply being there, you brought
joy and balance to this journey.

I am deeply thankful to my family for their unwavering support and understand-
ing over the years.

Finally, I want to express my deepest gratitude to my partner, Melissa Giacometti,
whose love, patience, and steadfast support carried me through the most difficult
moments. Your faith in me never wavered, and your encouragement gave me the
strength to keep going when I needed it most.

Contents

1 Introduction 1
1.1 Context . 2
1.2 Challenges . 4
1.3 Overview of Contributions . 5

2 Background 7
2.1 Boolean Formulae . 8
2.2 Community Structure of Boolean Formulae 9

3 Related Work 11
3.1 Model Counting . 12
3.2 Uniform Random Sampling . 12
3.3 Empirical Sudies on Complexity . 14
3.4 Uniformity Testing . 15

4 Preprocessing is What You Need: Understanding and Predicting
the Complexity of SAT-based Uniform Random Sampling 17
4.1 Introduction . 18
4.2 Objectives and Methods . 19

4.2.1 Research Questions . 19
4.2.2 Complexity Metrics . 20
4.2.3 EQV: A Parallel Algorithm to Compute the Number of Equiv-

alence Classes . 20
4.3 Experimental Setup . 23

4.3.1 Samplers . 23
4.3.2 #SAT Preprocessing . 23
4.3.3 Dataset . 23
4.3.4 Infrastructure . 24

4.4 Results . 25
4.4.1 RQ1: Complexity Factors 25

4.4.2 RQ2: Complexity Prediction 26
4.4.3 RQ3: URS . 29
4.4.4 Perspectives . 30

4.5 Threats to Validity . 30
4.6 Conclusion . 31

5 Exploring the Computational Complexity of Uniform Random
Sampling and SAT Counting with Phase Transitions 33
5.1 Introduction . 34
5.2 Objectives and Methodology . 35

5.2.1 Research Questions and Methods 35
5.2.2 Data Preparation . 36
5.2.3 URS and #SAT Tools . 37
5.2.4 Infrastructure . 38

5.3 Results . 38
5.3.1 RQ1: Phase Transitions . 38
5.3.2 RQ2: Reasons for Phase Transitions 43
5.3.3 RQ3: Real-World Formulae 49

5.4 Threats to Validity . 52
5.5 Conclusion . 53

6 Testing Uniform Random Samplers: Methods, Datasets and Pro-
tocols 55
6.1 Introduction . 56
6.2 Statistical Test Methodology . 58

6.2.1 Combining Results from Multiple Formulae 58
6.2.2 Statistical Tests for Uniform Random Sampling 59

6.3 Experimental Study . 65
6.3.1 Research Questions . 65
6.3.2 Datasets . 65
6.3.3 Infrastructure . 67
6.3.4 Computation Budget . 67
6.3.5 Hyperparameters . 68

6.4 Results . 68
6.4.1 RQ1: Uniformity of Samplers 68
6.4.2 RQ2: Scalability . 72
6.4.3 RQ3: On the Influence of Formula Choice 74
6.4.4 Discussion on Uniformity and Statistical Test Results 78

6.5 Threats to Validity . 79
6.6 Conclusion . 79

7 DivKC: A Divide-and-Conquer Approach to Knowledge Compila-
tion 81
7.1 Introduction . 82
7.2 DivKC . 83

7.2.1 Overview of the Decomposition Algorithm 83
7.2.2 Choosing the Projection Set P 84
7.2.3 Application to Model Counting 85
7.2.4 Application to Uniform Random Sampling 87

7.3 Experimental Evaluation . 88
7.3.1 Experimental Setup . 90
7.3.2 Experimental Results . 91

7.4 Conclusion . 99

8 Conclusion 101
8.1 Summary of Contributions . 102
8.2 Perspectives . 103

List of Publications and Tools iii

List of Figures v

List of Tables vii

Bibliography xiii

1
Introduction

This chapter discusses the context and difficulties associated with uniform
random sampling. We start by introducing uniform random sampling with some
applications. We follow by discussing the issues related to the scalability of uniform
random sampling. Finally, we summarise the contributions of this dissertation.

Contents
1.1 Context . 2
1.2 Challenges . 4
1.3 Overview of Contributions 5

1

1.1 Context
Uniform Random Sampling (URS) is the problem of generating random SAT-

solutions from a Boolean formula, such that every solution of the input formula
gets a uniform probability of being returned. URS is a problem of both theoretical
and practical interest.

URS is especially relevant in software engineering, where configuration spaces
grow exponentially, making exhaustive testing infeasible. For instance, software
product lines (SPLs) often have huge configuration spaces due to combinatorial
explosion. Thus, to test an SPL, testing every configuration is often intractable
even for small numbers of features. For example, an older version of JHipster
[HNA+18] has 45 features, which result in 26256 possible configurations. Testing
every configuration would be very time-consuming or even unfeasible, depending
on the available computation budget. URS provides a practical solution: sample
a subset of configurations uniformly at random, allowing testing to scale with
available computational resources while preserving statistical soundness. Adjusting
the sample size allows practitioners to balance test coverage and confidence with
computational cost [OBM+17; OGB19; PAP+19].

Similarly, Oh et al. [OBM+17] showed that URS can be used to search for
optimal configurations. The authors use URS to guide a recursive search of the
configuration space of SPLs to directly find near-optimal configurations instead of
constructing a prediction model. The authors compared their approach to prior
approaches focused on training and using a performance model. They showed
that their use of URS is simpler and has better accuracy and efficiency than other
approaches.

Other applications include deep learning verification, where inputs are drawn
from an unknown distribution [BCM+21] or evolutionary algorithms, where de
Perthuis de Laillevault et al. [dPDD15] theoretically demonstrated the relevance of
repeated uniform random sampling when initialising populations. Improving URS
thus has a broad interdisciplinary impact.

When evaluating URS techniques (or samplers), two quality criteria matter:
uniformity and scalability. Uniformity evaluates how close the distribution of the
sampled solutions is to the uniform distribution. Uniformity is a central property
that ensures a fair and unbiased representation of the entire solution space. This
unbiasedness is crucial for reliable statistical estimates, robust software testing,
and sound decision-making in applications ranging from software product lines to
machine learning verification. Without uniformity, samples may be skewed toward
certain regions of the solution space, leading to biased results and potentially over-
looking critical configurations or solutions. Thus, maintaining uniformity guarantees
that conclusions drawn from sampled data are both valid and generalizable.

Scalability refers to the efficiency of the sampler to produce samples within

2

a specified amount of time, even for large formulae. Achieving scalability while
preserving uniformity is challenging because exact uniform sampling often relies
on computationally expensive operations such as model counting or knowledge
compilation, which can quickly become infeasible as formula size grows. Previous
studies [PAP+19] demonstrated the difficulty for existing samplers to satisfy both
quality criteria. Despite recent improvements [SGM20], state-of-the-art samplers
still fail to scale on complex real-world formulae (representing, e.g., the Linux
kernel configurations) without sacrificing uniformity. Therefore, scalability and
uniformity are two conflicting objectives. True uniform random samplers with
uniformity guarantees struggle to scale to larger formulae, and heuristic-based
random samplers, which have better scalability, suffer from a lack of uniformity
[PAP+19]. This trade-off forces practitioners to balance between the accuracy of
sampling and the feasibility of running it on large instances.

A classic exact URS method is based on recursive Shannon decomposition and
model counting. Suppose we have a formula F which is expressed over a set of
variables Var(F) with a ∈ Var(F). Then we can sample from F by counting the
total number of solutions to F , denoted by |RF |, and by computing the number of
solutions to F ∧ a, denoted by |RF ∧a|. We then know that to achieve uniformity
we should set a to true with probability P (a) = |RF ∧a|

|RF | . Once a value has been
decided for a, we can sample from either F ∧ a or F ∧ ¬a depending on the value
of a. Therefore, URS is closely related to model counting (#SAT) and knowledge
compilation. This algorithm was implemented in Smarch [OGB+20]. Similar
approaches, such as BDDSampler [HFG+22] and KUS [SGR+18], first compile the
input formula into a different form (such as a Binary Decision Diagram (BDD)),
and then run the recursive algorithm on the compiled form. Common compilation
targets are BDDs and deterministic decomposable negation normal forms (d-DNNF),
which allow for fast model counting. Therefore, compiling the formula to a different
language avoids repeated (costly) calls to a model counter. An illustration of this
advantage is given by Sharma et al. [SGR+18], who showed that sample size has
little influence on the runtime of KUS.

Despite these advances, compilation-based samplers face limitations. Some
formulae remain too large or complex to compile efficiently. To address this,
heuristic-based samplers like CMSGen [GSC+21] and STS [EGS12] have been
developed. These methods do not guarantee uniformity but scale better to large
inputs. However, studies such as [PAP+19; HFG+22] show that heuristic methods
often produce biased samples, compromising result quality. In summary, the
landscape of URS methods remains defined by a fundamental tension: uniformity
versus scalability.

3

1.2 Challenges
We have identified two main challenges in improving the scalability and reliability

of URS.

1. Lack of understanding of the average complexity. #SAT is a well-known
computational problem in the class #P, making it theoretically intractable in
the worst case [Val79]. As a result, URS methods that rely on exact model
counting inherit the same worst-case complexity. However, similar to SAT
solving, practical tools such as sharpSAT [Thu06] and D4 [LM17] for #SAT,
or SPUR [AHT18] and KUS [SGR+18] for URS, have been shown to be
remarkably effective on many real-world formulae. Despite this empirical
success, the reasons behind the performance of these tools remain poorly
understood. In particular, it is unclear why certain industrial formulae are
tractable for these methods while others, often of similar size or domain, are
not. This lack of insight into average-case or practical complexity hampers
progress in two ways: it limits our ability to predict whether a given formula
is solvable with current techniques, and it makes it difficult to design targeted
improvements for hard instances. Developing a deeper understanding of the
empirical complexity landscape of URS and #SAT remains an open and
important research challenge.

2. Lack of computationally affordable uniformity tests. At the time
of writing, only two statistical tests exist for evaluating the uniformity of
URS methods, most notably Barbarik [CM19] and SFpC [HFG+22]. While
these tests are valuable, they are computationally expensive and often require
significant time and resources to yield conclusive results. Additionally, Bar-
barik [CM19] requires a reference sampler which, if not uniform, can influence
the final result. As a consequence, validating the uniformity of new URS
approaches becomes a bottleneck, slowing down research and increasing devel-
opment costs. This challenge is further exacerbated by the fact that formal
proofs of uniformity may not always be feasible: either because the sampler is
based on heuristics, or because the analysis required is too complex. Even
when theoretical proofs exist, they typically apply to abstract models of the
sampler, not to its actual implementation. In practice, implementations may
diverge from the theoretical model due to bugs, optimisations, or unintended
side effects — any of which can break uniformity. In such cases, empirical
validation through statistical testing is the only way to detect violations
of the theoretical guarantees. For example, the development of CMSGen
[GSC+21] involved an iterative loop guided by Barbarik to refine the sampler
and validate its behaviour. While effective, this approach is resource-intensive,
highlighting the need for lightweight and robust statistical tests. Just as

4

statistical testing is used to validate the behaviour of pseudo-random number
generators (PRNGs), efficient uniformity tests would serve as essential tools
for both debugging and iterative development of URS methods. The lack of
such tools remains a significant barrier to progress in the field.

1.3 Overview of Contributions
This dissertation brings four main contributions to address the above challenges

and introduces a new divide-and-conquer approach to knowledge compilation with
applications to URS.

• Empirical study of the experimental complexity of URS and #SAT.
To address the first challenge, we conduct two extensive empirical studies on
the average complexity of URS and #SAT. In the first study, we find that there
is a correlation between the execution time (and memory) and various metrics
such as the number of variables and the number of clauses. Additionally, we
find that there is a strong correlation (Kendall coefficients > 60) with the
minimal independent support (resp. the number of equivalence classes) of
a formula and the execution time (and memory). We also demonstrate the
positive role of formula preprocessing, i.e., simplifying the formulae before
using URS or #SAT. Next, we lean on these results and develop a classification
model to predict whether a given sampling problem (i.e., using a given uniform
sampler to sample from a given formula) is affordable for a given time and
memory budget. We evaluate our model on all our 488 subject formulae
and show that it can achieve at best a classification F1-score of 0.97 and an
AUC-ROC of 0.98.

• Empirical study on phase transitions in URS and #SAT. We extend
our empirical investigation by studying phase transitions in the context of
#SAT and URS. Phase transitions refer to abrupt changes in computational
difficulty as certain structural parameters of a formula vary — a well-known
phenomenon in classical SAT. In this contribution, we explore whether similar
patterns emerge for #SAT and URS, with the goal of contributing to a more
principled understanding of their average-case complexity. Our study combines
two complementary approaches: empirical analysis of real-world formulae
and controlled experiments on synthetic benchmarks. Real-world instances
provide practical grounding, but their limited availability and high structural
heterogeneity prevent systematic exploration of the full parameter space.
To overcome this limitation, we design families of synthetic formulae using
controlled generation procedures, allowing us to isolate and vary structural
features such as constraint density and community structure. Our methodology
enables us to identify complexity peaks and assess how formula structure
influences scalability. Ultimately, the study deepens our understanding of

5

when and why URS and #SAT become computationally challenging, and
lays the groundwork for future complexity predictions and algorithm selection
strategies.

• A set of five statistical tests for URS. To address the second challenge,
we develop a set of five statistical tests specifically designed for URS. Each
test has different strengths and weaknesses and a different balance between
its ability to detect non-uniformity and computational cost. We evaluate
our statistical tests on a set of uniform random samplers and discover that
most available samplers fail multiple tests except for UniGen3. Next, we
explore another threat to the validity of uniformity testing: the input Boolean
formula used for testing. Indeed, while one could consider uniformity as a
universal property of sampling methods, the empirical nature of both sampler
implementation and uniformity tests creates an inherent risk for a test to
generate Type I and Type II errors. We, therefore, consider the use of multiple
formulae for uniformity testing and present a methodology to combine results
for individual tests into a statistically meaningful answer. Beyond this, we
study the question of dataset bias. In particular, we investigate how test
results obtained from synthetic formulae typically used in the URS research
community correlate with results on real-world formulae extracted from SPL
feature models. We find that while synthetic formulae can be designed to
allow for much faster testing, further testing with real-world formulae remains
necessary to obtain a high enough confidence in the uniformity result of the
statistical tests. In other words, synthetic formulae can be used to quickly
detect non-uniform samplers. However, some non-uniform samplers tend to
pass the statistical tests if only synthetic formulae are used. Therefore, further
testing with real-world formulae remains necessary.

• A divide-and-conquer approach to knowledge compilation. To improve
the scalability of knowledge compilation, we propose DivKC, a divide-and-
conquer strategy for compiling Boolean formulae into deterministic decompos-
able negation normal form (d-DNNF). The core idea is to decompose an input
formula F into two smaller subformulae that can be compiled independently
and more efficiently than F itself. This decomposition-based compilation has
multiple benefits: it supports parallelisation and enables practical applica-
tions in both #SAT and URS. One key advantage of DivKC is that it yields,
by construction, sound lower and upper bounds on the model count |RF |,
which can be refined using a statistical estimation method we introduce. This
estimation procedure produces significantly tighter bounds than the initial
decomposition provides, offering a practical approach for approximate model
counting. As for URS, we can similarly simplify the resolution of this problem
by successfully sampling from the two decomposed formulae.

6

2
Background

This chapter presents foundational concepts of Boolean formulae, model
counting (#SAT), and uniform random sampling (URS), which will be used
throughout this thesis.

Contents
2.1 Boolean Formulae . 8
2.2 Community Structure of Boolean Formulae 9

7

2.1 Boolean Formulae
A Boolean formula F is defined over a set of Boolean variables Var(F) and

evaluates to either true or false. A literal is either a variable x or its negation ¬x.
The notation Var(x) (or Var(¬x)) refers to the variable associated with the literal
x (or ¬x, respectively). We denote by |Var(F)| the number of variables of F .

A formula F is in negation normal form (NNF) if the negation only appears
in front of variables. A clause is a disjunction of literals and can be represented
as a set of literals. F is in conjunctive normal form (CNF) if F is written as a
conjunction of clauses (F = ∧

Ci

∨
l∈Ci

l). A CNF formula can be represented as a
set of clauses. A formula is a k-CNF if every clause has exactly k distinct literals.
For a CNF formula, we denote by |F | its number of clauses.

An assignment a to the variables Var(F) is a set of literals such that ∀x ∈
a : (¬x /∈ a). We say that the literal l evaluates to true in a if l ∈ a, otherwise l
evaluates to false in a. An assignment a is a partial assignment if ∃x ∈ Var(F) :
(x /∈ a∧¬x /∈ a). We denote by |a| the number of assigned variables. An assignment
a is a complete assignment if ∀x ∈ Var(F) : (x ∈ a∨¬x ∈ a). A model (or solution)
m of F (m |= F) is a complete assignment such that F evaluates to true under
m. We define RF as the set of models m of F (or the model space of F) such that
m ∈ RF if and only if m |= F . We define |RF | as the number of models of F .

A partial assignment a is sufficient if, for a CNF formula F , we have ∀c ∈ F :
(c ∩ a ̸= ∅), i.e., any complete assignment b with a ⊆ b is a model of F (b |= F).
Two assignments a and b are orthogonal if they disagree on at least one literal, i.e.,
∃x ∈ a : (¬x ∈ b). A set of partial assignments is orthogonal if and only if every
pair of assignments is orthogonal.

We write S ∈ RF
N to denote a sample S = (s1, s2, ..., sN), an N-dimensional

tuple containing models of F (i.e. ∀i ∈ {1, ..., N} : (si ∈ RF)). By abuse of notation,
we use m ∈ S to denote that there exists si = m for some i ∈ {1, ..., N}.

F is in deterministic decomposable NNF (d-DNNF) if every conjunction is
decomposable and every disjunction is deterministic. A conjunction ∧Ai is decom-
posable if ∀i ̸= j : (Var(Ai) ∩ Var(Aj) = ∅). A disjunction ∨Oi is deterministic if
∀i ̸= j : (ROi∧Oj

= ∅).
We denote by F |a the conditioning of F with a (i.e., the propagation of the literals

of a in F). Variable forgetting is defined as Forget(F, v) = (F [v ← false]) ∨ (F [v ←
true]), with F [v ← c] the formula obtained by substituting variable v by c in F
[Wan15; LLM16]. Projecting F on a set of variables P ⊆ Var(F) (denoted by
Project(F, P)) is equivalent to forgetting every variable in Var(F)\P . By definition,
we have RProject(F,P) = {m ∩ L|m ∈ RF}, with L = {x,¬x|x ∈ P}.

I ⊆ Var(F) of a formula F is an independent support if every model of F can
be uniquely distinguished by using the variables in I only [IMM+16; CMV14] (i.e.,
|RProject(F,I)| = |RF |). An independent support is minimal (MIS) if removing any

8

variable from it does not yield an independent support.
Based on the above, we define the concepts of backbone and equivalence class:

Definition 1 (Backbone). The backbone BF of a formula F is defined as the set
of literals that appear in each model of the formula: BF = ⋂

m∈RF
m.

The backbone contains the literals that evaluate to true in every model of the
formula. If we generalise the idea of backbone, we find the notion of equivalence
class:

Definition 2 (Equivalence class). An equivalence class e is a set of literals that
evaluate to the same value in every model of F .

∀l, l′ ∈ e : ∀m ∈ RF : ((l ∈ m)⇔ (l′ ∈ m))

By this definition, we find that if {x, y} is an equivalence class, then {¬x,¬y}
is also an equivalence class. These two equivalence classes are redundant as they
represent the same result. We define two equivalence classes a and b as redundant
if and only if a = b or a = {¬x|x ∈ b} or a ⊆ b or b ⊆ a. If we have a ⊆ b, we
keep b and discard a. For the rest of the paper, without loss of generality, we only
consider non-redundant equivalence classes. We define the set EF as the set of
all non-redundant equivalence classes of a formula F and |EF | as the number of
equivalence classes of F . Note that we necessarily have |EF | ≤ |V ar(F)| because
we only consider non-redundant equivalence classes.

We next define three common problems for Boolean formulae: SAT solving,
model counting, and URS.

Definition 3 (SAT solving). SAT solving is the problem of determining whether
RF is non-empty.

Definition 4 (Model Count). Model Counting (# SAT) is the problem of computing
|RF |.

Definition 5 (Uniform Random Sampling). Uniform random sampling (URS)
is the problem of sampling a model from RF such that every model m ∈ RF has
probability 1

|RF | of being sampled.

2.2 Community Structure of Boolean Formulae
An undirected weighted graph G is defined as a pair G = (V, w), where V is

the set of nodes and w is the edge-weight function defined as w : V × V −→ R+.
Because G is undirected, we have w(x, y) = w(y, x).

The Variable Incidence Graph (VIG) [GL15] of a CNF formula F is the undirected
weighted graph whose nodes are the variables of F . There exists an edge between

9

two variables if they both appear in a clause c. To give the same relevance to
all clauses, we define the weight of an edge between nodes x and y as w(x, y) =∑

c∈F,x∈Var(c)∧y∈Var(c)
1

(|c|
2) , with |c| the number of literals in the clause.

A formula has a community structure if we can split the variables into at least
two groups such that we have a higher number of clauses that connect variables
within a group than clauses that connect multiple groups. This is an interesting
property for model counting and sampling because if we have a formula that does
not have any connection between the groups (i.e., no clauses connecting groups),
then we can compute the model count (or sample) of each group separately and
compute the product to obtain the final result. Thus, if we have a high community
structure, we expect that the algorithm will finish faster.

To measure the community structure of a formula F , we will use the notion of
modularity Q as defined in [NG03; GL15; AGL12] computed on the VIG G of the
formula F .

The modularity of a graph G is defined for a given partition C as follows:

Q(G, C) =
∑

Ci∈C

∑
x,y∈Ci

w(x, y)∑
x,y∈V w(x, y) −

(∑
x∈Ci

deg(x)∑
x∈V deg(x)

)2

The modularity of a graph is Q(G) = max{Q(G, C)|C} for any partition C.
Computing the modularity of a graph is NP-hard [BDG+08], thus most methods
usually approximate a lower-bound of Q. The modularity of a graph will be in the
range [0, 1] [AGL12], with one meaning a very strong community structure, and
zero meaning that the graph is fully connected.

10

3
Related Work

This chapter reviews related work on uniform random sampling and model
counting.

Contents
3.1 Model Counting . 12
3.2 Uniform Random Sampling 12
3.3 Empirical Sudies on Complexity 14
3.4 Uniformity Testing . 15

11

3.1 Model Counting
Model counting can be performed using specialised algorithms such as sharpSAT

[Thu06], GANAK [SRS+19], and McTW [FHH20], which directly compute the
number of satisfying assignments to a Boolean formula. An alternative strategy is
knowledge compilation, where the formula is transformed into a structured represen-
tation, such as a d-DNNF, that enables efficient and repeated model counting. This
compilation-based approach not only supports exact inference but also facilitates
reuse across multiple queries, as demonstrated by Sundermann et al. [SRH+24], who
also highlighted its practical limitations [SHN+23]. Several knowledge compilers
exist, including C2D [Dar+04], D4 [LM17], and DSharp [MMB+12], which can
handle large formulae. However, many formulae remain beyond the reach of current
compilers. This is not surprising, given that model counting is #P-complete, as
established by Valiant [Val79], and thus remains computationally intractable in the
general case.

To make better use of the available computing resources, Lagniez et al. [LMS18]
proposed DMC, a distributed model counter. DMC distributes the workload
similarly to work stealing. Worker nodes try to solve the problem and notify the
master node when they are idle. If a worker node is idle, the master suggests help
to busy worker nodes. A worker node can either accept the help and delegate some
work or reject the help.

Approximate model counters have been proposed to overcome the lack of scala-
bility of exact model counting. A notable approximate model counter is ApproxMC
[YM23; PMY25], which provides theoretical guarantees on the quality of the model
counts. ApproxMC is a hashing-based algorithm to compute approximate model
counts with strong theoretical guarantees. These strong theoretical properties come
at a cost: the hashing-based approach requires adding large clauses to formulae so
they can be sampled. These clauses grow quadratically in size with the number
of variables in the formula, which can raise scalability issues. Other approximate
model counters are ApproxCount [WS05], which offers no guarantees, and Sample-
Count [GHS+07], which returns a lower bound to the true model count with high
confidence. However, current approximate model counters have the disadvantage of
not generating a reusable data structure. Therefore, an approximate model counter
is unlikely to be suitable if multiple calls to a model counter are necessary.

3.2 Uniform Random Sampling
Uniform random sampling is a problem related to model counting. Model

counting can be used to sample uniformly at random from a formula, as is done
by SPUR [AHT18] and Smarch [OGB+20]. Smarch [OGB+20] produces models
by recursively assigning values to each variable of the formula. At each step, a

12

model counter is called with the formula and the current partial assignment to
compute the probability distribution of the next variable. SPUR [AHT18] is tightly
integrated with sharpSAT [Thu06] and is based on reservoir sampling [Vit85].
Reservoir sampling is a family of algorithms that operate on a stream. The models
of the formula are streamed into the algorithm, and with each model, the algorithm
updates an internal reservoir. Once all the models have been streamed, a uniform
random sample can be extracted from the reservoir.

A similar approach to uniform random sampling is based on knowledge compi-
lation. The formula is first compiled to BDD or d-DNNF, and the compiled form
is then used to produce samples. Notable examples are BDDSampler [HFG+22],
which is based on BDD, and KUS [SGR+18], which is based on d-DNNF.

The samplers based on model counting and knowledge compilation provide
theoretical guarantees of uniformity. Another approach to theoretically guaranteed
uniformity is UniGen3 [SGM20]. UniGen3 [SGM20] is a hashing-based algorithm
that generates models in a nearly uniform manner with strong theoretical guarantees:
it either produces models satisfying a nearly uniform distribution or it produces no
model at all. Similarly to ApproxMC, these strong theoretical properties come at a
cost: the hashing-based approach requires adding large clauses to the formula.

To overcome the scalability challenges of true uniform random samplers, several
heuristic-based alternatives have been proposed, including QuickSampler [DLB+18],
STS [EGS12], and CMSGen [GSC+21]. While these methods lack formal guarantees
of uniformity, they are significantly more scalable in practice [PAP+19].

QuickSampler is built on a set of heuristics designed to quickly generate assign-
ments across a wide range of industrial benchmarks [DLB+18]. However, it offers no
guarantees regarding the distribution, validity, or even termination of the sampling
process, therefore requiring post-verification using a SAT solver.

STS, in contrast, is a SAT-solver-based approach that recursively constructs
valid partial assignments, pruning invalid ones at each step. When the number of
partial assignments grows beyond a threshold, a random sub-sample is selected.
This process continues until complete assignments (models) are obtained. While
STS uses a SAT solver to ensure validity, it only approaches uniformity when the
parameters are large enough to enable near-complete model enumeration.

CMSGen [GSC+21] adopts a different strategy: its authors used the uniformity
testing tool Barbarik [CM19] to tune the parameters of the SAT solver CryptoMin-
iSAT [SNC09], with the goal of empirically achieving uniform sampling.

While heuristic-based samplers are interesting, especially when knowledge
compilation-based sampling does not scale, they offer no uniformity guarantees,
and sampling quality can vary depending on the formula [PAP+19].

13

3.3 Empirical Sudies on Complexity
As noted by Alyahya et al. [AMM22] and Ganesh and Vardi [GV21], studying

the complexity of SAT-based tasks is not new. One of the first approaches was
to characterise phase transitions linked to abrupt changes in solving complexity.
Monasson et al. [MZK+99] offered a structural metric, namely the clause-to-variable
ratio. They demonstrated that when this ratio increases, finding models for a given
synthetic formula is progressively harder up to a critical value of this ratio. When
the ratio exceeds this critical value, the formula becomes easy to solve again (often
by proving it UNSAT). Alyahya’s survey further covers metrics such as treewidth
correlated with solving time [Mat11].

Regarding FM-based formulae specifically, the body of knowledge is more limited.
Mendonca et al. [MWC09] studied the experimental complexity of SAT-solving
for FM-based formulae. The authors studied the clause-to-variable spectrum of
formulae similar to feature models. In their studies, the authors failed to observe
a phase transition and concluded that FM formulae do not suffer from the SAT
phase transition, thus explaining the general efficiency of SAT-based analysis of
feature models. Liang et al. [LGC+15] further confirmed these results on larger
industrial FMs. The authors found that FMs have a high number of unrestricted
variables due to the high variability of FMs. The authors also found that SAT-
solvers do little backtracking during search, thus explaining the high efficiency. The
authors followed by disabling SAT solver heuristics and found that the solver did
not suffer from any performance deterioration while solving FMs. In addition to
this extensive analysis, the authors ran a set of simplifications to the formulae and
found that they were highly efficient. Some of the instances were solved by the
simplification procedure alone. The remaining formulae were small in comparison
and thus efficiently solved by state-of-the-art SAT-solvers. Johansen discussed
the implications of these findings for combinatorial interaction testing of software
product lines [JHF11].

The body of literature on #SAT and uniform random sampling remains rela-
tively sparse. Sundermann et al. [SHN+23] evaluated 21 #SAT solvers on FM-based
formulae and analysed correlations between solver runtime and formula metrics.
Plazar et al. [PAP+19] investigated the scalability of the samplers UniGen [CMV14]
and QuickSampler [DLB+18], although the analysis is limited to UniGen, as Quick-
Sampler does not provide theoretical guarantees of uniformity. Escamocher and
O’Sullivan [EO22] explored the generation of hard instances for #SAT. Several
works examined phase transitions in related domains: [HD04; BL99; BP00] observed
phase transitions in knowledge compilation; Gupta et al. [GRM20] extended this by
analysing phase transitions in d-DNNF, SDD, and OBDD representations; and Gao
et al. [GYX11] conducted a similar study. However, these works do not address
phase transitions in URS, nor do they investigate the role of community structure or

14

solution density, as proposed by Gupta et al. [GRM20]. Overall, phase transitions
in URS and the impact of structural properties like community structure on solving
times remain unexplored.

3.4 Uniformity Testing
Assessing the quality of a pseudo-random number generator (PRNG) is similar

to assessing the quality of a uniform random sampler. One key property desired
by both is that every possible value should have a uniform probability of being
returned. In the case of URS, this means returning a model to a Boolean formula
at random. In the case of PRNGs, this means returning an integer (on a usually
predefined number of bits) uniformly at random. In other words, a PRNG is a
uniform random sampler for a Boolean formula with no constraints. Statistical
testing of PRNGs to assess their quality is quite common. One test suite is the
NIST test suite developed by Rukhin et al. [RSN+01]. Other, more recent test
suits include TestU01 [LS07], dieharder [BEB18] and PractRand [Dot]. All of these
test suites contain multiple statistical tests. Each test has different strengths and
weaknesses. Thus, each test is suitable to detect different kinds of weaknesses in the
generated stream of numbers. For example, the monobit test checks whether the
number of ones and zeroes is approximately equal in the binary stream of numbers
generated by a PRNG. Therefore, a PRNG passes the monobit test if it generates a
stream of alternating ones and zeros. However, the PRNG would produce ’random’
numbers of poor quality, thus highlighting the need for multiple tests.

Unfortunately, a large number of tests performed on PRNGs rely on the fact
that the solution hyperspace is unconstrained. Moreover, PRNGs are much faster at
generating samples than uniform random samplers. This is shown by Blackman and
Vigna [BV21] who tested PRNGs on up to 1015 generated bytes. This is feasible as
PRNGs are engineered to generate 32-bit or 64-bit words in the nanosecond or even
sub-nanosecond range. However, URS implementations often rely on NP-Oracles
such as SAT-solvers [EGS12] or on #P-Oracles [AHT18; SGR+18; Val79]. This
implies that URS is much slower than pseudo-random number generation. Thus,
URS needs its own set of specialised tests that can work with small sample sizes
and under the constrained hyperspace implied by the Boolean formula given as
input to the sampler under test.

As indicated by Plazar et al. [PAP+19], assessing the uniformity distribution of
SAT solutions is difficult, and a direct method is prohibitively expensive. Barbarik
by Soos et al. [SGM20] is a test which, by using a uniform random sampler as
reference, tests whether a given input sampler is uniform or not. In other words,
Barbarik tests whether both samplers sample from the same distribution. If the
reference sampler is uniform, then Barbarik tests the uniformity of the sampler
under test. The authors updated Barbarik [SGC+22] to support a more fine-grained

15

analysis of uniformity. The approach has the main downside of requiring a uniform
random sampler as a reference. If the reference sampler is not uniform, then the
results are unreliable. A high level of trust is thus required for the reference sampler.
Another way of assessing the solutions’ uniformity is the statistical test proposed
by Heradio et al. [HFG+22]. While the two kinds of approaches seem to agree on
the (non-)uniformity of most samplers, they seem to disagree on Smarch’s status
[OGB+20]. It is currently an open question of whether this disagreement stems from
a different test design or the selection of SAT formulae, which, though overlapping,
are not exactly the same. We note that there is a close relationship between the
design of URS techniques and testing uniformity: the improvements of Barbarik led
to CMSGen [GSC+21], while Heradio et al. [HFG+22]’s uniformity tests led them to
develop BDDSampler, a novel uniform sampler based on binary decision diagrams.

16

4
Preprocessing is What You Need: Understanding
and Predicting the Complexity of SAT-based
Uniform Random Sampling

Understanding why a formula is difficult to sample from is a challenging
problem. Multiple factors, along with their interactions, can affect the formula’s
hardness. In this chapter, we examine several structural metrics and investigate
potential methods to predict the computational cost of URS and #SAT.

Contents
4.1 Introduction . 18
4.2 Objectives and Methods 19
4.3 Experimental Setup . 23
4.4 Results . 25
4.5 Threats to Validity . 30
4.6 Conclusion . 31

17

4.1 Introduction
Why some formulae are harder to sample uniformly is a poorly understood problem.

A simple but wrong approach to determining sampling complexity is to count the
number of variables and clauses of formulae. As an example, UniGen3 [SGM20]
requires 8 seconds to produce 10000 models from the formula blasted_case64 —
96 variables and 299 clauses — and 13.5 seconds for the same number of models
from the JHipster feature model — 44 variables and 104 clauses. This indicates
that these simple metrics do not adequately characterise the complexity of sampling.
While there exist formula metrics that correlate with the complexity of SAT solving
— although with varying successes [AMM22] — the characteristics that make a
formula easier or harder to sample from remain unknown.

In this chapter, we assess and define meaningful metrics for understanding and
predicting URS difficulty (time and memory consumption). In addition to simple
metrics trivially computed from the formula structure, we consider other studied
metrics in the context of SAT solving (such as the minimal independent support size
and the treewidth). We also provide an efficient algorithm to compute equivalence
classes [CFM13]. To evaluate the relevance of these metrics to assess sampling and
solving complexity, we consider two uniform random samplers — SPUR [AHT18]
and UniGen3 [SGM20] — as well as SAT solvers [DB08; ES03] and a model counter
[LM17]. Motivated by previous studies showing that the formulae encoding the
variability spaces of configurable systems tend to be harder to uniformly sample
than others [PAP+19; GSC+21], we evaluate our metrics on a diversified dataset
(made available by Plazar et al. [PAP+19]) of 488 SAT formulae, 128 of which
encode configurable systems.

Equipped with a set of metrics measured on various formulae, we measure
correlations between these metrics and the performance of uniform samplers. We
demonstrate the existence of strong correlations (Kendall coefficients > 60) between
some (combinations of) metrics and sampling complexity (time and memory con-
sumption). We also demonstrate the positive role of formula preprocessing, i.e.,
simplifying the formulae and applying the metrics on the preprocessed formulae, for
complexity prediction. Next, we lean on these results and develop a classification
model to predict whether a given sampling problem (i.e., using a given uniform
sampler to sample from a given formula) is affordable for a given time and memory
budget. We evaluate our model on all our 488 subject formulae and show that it
can achieve at best a classification F1-score of 0.97 and an AUC-ROC of 0.98.

To summarise, this chapter makes the following contributions:
1. Correlation study. We study the correlation between the complexity

metrics and the computational cost of sampling (time and memory). We
demonstrate a strong correlation between the number of equivalence classes
and sampling cost.

18

2. Prediction. Based on these correlations, we build classification models
(random forests) that leverage the metrics to classify formulae according to
sampling cost, with F1-score up to 0.97 and AUC-ROC up to 0.98. We further
analyse the feature importance of these models to increase our trust in the
correlation study.

4.2 Objectives and Methods
Our objective is to understand and predict the capability (or lack thereof) of

state-of-the-art samplers to sample models from a Boolean formula uniformly.

4.2.1 Research Questions
Our first research question investigates the role of metrics in the complexity of

uniform random sampling:

RQ1: Which metrics of Boolean formulae correlate with URS time and memory
consumption?

In addition to simple characteristics like the number of variables and clauses,
we consider concepts that are intensively used in the problems of SAT solving,
model counting, and URS, e.g., the size of the minimal independent support and
the number of equivalence classes.

We aim to exploit our analysis results to develop an approach that, based on
the correlated characteristics, can predict whether a formula would be too costly to
uniformly sample from (i.e., would exceed a predefined time and memory budget).
This would enable engineers to estimate whether it is feasible to sample models with
uniform samplers without wasting computation resources on intractable problems.

RQ2: Can the correlated characteristics be used to predict the affordability of
URS in terms of time and memory consumption?

To answer this question, we train random forest models to classify Boolean
formulae into ’affordable’ or ’not affordable’, based on different combinations of the
characteristics we study.

Lastly, we study whether the intrinsic links between SAT solving, model counting,
and sampling translate into the same influence of formula characteristics on these
three problems.

RQ3: Are the characteristics of Boolean formulae correlated to the complexity of
URS, as they are to SAT solving and model counting?

19

A positive answer to this question would pave the way to improve the efficiency
of URS by working on the same formula transformations that reduce the difficulty
of SAT solving and model counting. A negative answer would invalidate this path
and call for specific solutions to reduce the complexity characteristics that impact
sampling.

4.2.2 Complexity Metrics
We consider simple metrics that are trivially computed from the structure of a

Boolean formula:
• the number of variables |Var(F)|
• the number of clauses |F |
• the number of literals #l

We, furthermore, consider underlying concepts that SAT solvers, counters,
and samplers have used to improve the performance of their algorithms. One
such metric is #mis, the size of the Minimal Independent Support (MIS). MIS is
typically computed to improve the performance of model counters (like D4 [LM17]
and sharpSAT [Thu06]) that some URS tools invoke during sampling.

Unfortunately, computing the MIS itself may be unaffordable for complex
formulae. To this end, we propose the number of equivalence classes (|EF |). The
advantage over MIS is that the computation of equivalence classes only requires a
simple SAT solver. We further increase the efficiency of this computation through a
parallel algorithm that we develop hereafter. Using this algorithm, we compute |EF |
for the Linux 2013 model (50000 variables) [PTR+19] in less than 1.5 wall-clock
hours while computing #mis times out at 24 hours. Another way of approximating
the MIS is to use Arjun [SM21], which is significantly faster than the computation of
equivalence classes. Unfortunately, using Arjun to compute an independent support
gave us lower correlations; therefore, we decided to use MIS [IMM+16] and |EF |. In
addition, we consider other metrics that have been studied in the context of SAT
solving, viz. treewidth [OD14] and deficiency [PS19]. Treewidth (tw) is used to
bound the worst-case size of the decision DNNF (D-DNNF) during solving [OD14].
Deficiency (δ) was proven to have intrinsic links with the worst-case time complexity
of SAT solving [PS19]. Though computing deficiency is an NP-hard problem, it
can often be approximated as the number of clauses minus the number of variables.

4.2.3 EQV: A Parallel Algorithm to Compute the Number
of Equivalence Classes

In [CFM13], the authors generalise the notion of backbone to equivalence classes
and propose an algorithm to compute the equivalence classes. However, their
algorithm requires adding n(n−1)

2 variables to a formula with n variables — in our
dataset, n can be as high as 486193 variables. Assuming every variable requires

20

4 bytes of RAM to be stored, the algorithm would necessitate around 472 GB of
RAM to store the additional variables. This is unaffordable and prevents us from
computing #eqv on most of the formulae we use in our experiments.

We therefore propose an adapted algorithm that requires less storage memory and
can improve efficiency via parallelisation. Our algorithm can divide the computation
of [CFM13] to reduce the number of added variables and enable spreading over
multiple cores. It introduces an overhead, though, as it may increase the number of
intermediate solver calls. As a result, our approach would run slower on a single-core
computer than [CFM13], but brings benefits on multi-core infrastructures.

Our method is depicted by Algorithm 1 with ⊕ being the logical exclusive or
operator. The algorithm uses a SAT procedure, which takes as input a Boolean
formula and either returns UNSAT if the formula is not satisfiable or returns the
set of literals that represents the model found by the SAT solver.

The algorithm begins with an initial call to the SAT solver, which returns a
model m, under the assumption that the formula is satisfiable. The algorithm then
initializes two partitions of m, namely e and v. We use e to track separations —
i.e., literals that are not in the same equivalence class, and v to track unions —
i.e., equivalences for which we have proof that they hold. Thus, the partition e
represents the set of possible but unverified equivalence classes.

From the candidates in e (lines 6–9), the algorithm repeatedly selects a pair
{x, y} that are considered equivalent in e but not yet in v. We then assume that x
and y are equivalent and attempt to prove this assumption. To do so, we call the SAT
solver and request a model in which x and y are different (i.e., SAT(ϕ ∧ (x ̸⇔ y))),
aiming to disprove their equivalence.

If the solver returns UNSAT, the equivalence is proven, and v is updated by
merging the sets that contain either x or y. On the other hand, if the SAT solver
returns a model tmp, we know that there exists a model of the formula in which
x and y are not equivalent, and therefore they cannot be in the same equivalence
class. We can also learn from the model tmp by comparing it with the initial model
m. If two literals x and y are supposed to be equal in all models, then the presence
of x in both m and tmp should imply the presence of y as well. In other words, any
change in x from m to tmp should be mirrored by a change in y. Using this insight,
we update e between lines 18 – 24 by further splitting its elements.

Therefore, v contains the verified equivalence classes, and e captures confirmed
separations. The partition e thus helps avoid unnecessary SAT calls when two
models have already shown that two literals are not equivalent.

The loop on line 6 is the for loop that may be parallelised. The critical sections
of Algorithm 1 may seem very large, but the data structures e and v can be updated
efficiently (especially considering that v may be implemented using the UnionFind
data structure). Moreover, the SAT calls are done outside of a critical section and

21

Algorithm 1 EQV(ϕ)
Require: ϕ a satisfiable Boolean formula

1: m← SAT(ϕ)
2: e← {m}
3: v ← {{x}|x ∈ m}
4: crit← mutex
5: do in parallel
6: for all {x, y} ∈ P(m) do
7: lock(crit)
8: C ← (∃i ∈ e : {x, y} ⊆ i) ∧ ¬(∃i ∈ v : {x, y} ⊆ i)
9: release(crit)

10: if C then
11: tmp← SAT(ϕ ∧ (x ̸⇔ y))
12: lock(crit)
13: if tmp = UNSAT then
14: {the SAT solver proved the equivalence of x and y}
15: t← ⋃

i∈v|x∈i∨y∈i i
16: v ← {i|i ∈ v ∧ x /∈ i ∧ y /∈ i}
17: v ← v ∪ {t}
18: else
19: {the SAT solver disproved the equivalence of x and y}
20: r ← ∅
21: for all i ∈ e do
22: a← {l|l ∈ i ∧ l ∈ tmp}
23: b← {l|l ∈ i ∧ ¬l ∈ tmp}
24: r ← r ∪ {a} ∪ {b}
25: end for
26: e← r
27: end if
28: release(crit)
29: end if
30: end for
31: return v

22

thus in parallel, which should grant us a significant speedup.

4.3 Experimental Setup
We detail below the general experimental protocol that applies to all research

questions. The specific settings of each research question are detailed in Section 4.4.

4.3.1 Samplers
For this study, we use both SPUR and UniGen3 as these are the state-of-the-art

samplers with theoretical guarantees of uniformity.
In our study, we would also like to explore the relationship between URS and

SAT solving and the relationship between URS and SAT counting. To compare
URS with SAT solving, we explored the two solvers MiniSAT [ES03] and Z3 [DB08].
To compare with SAT counting, we used the two state-of-the-art model counters
D4 [LM17] and sharpSAT [Thu06]. Since another sampler called KUS [SGR+18]
is based on D4, this should also give us insights into the complexity of KUS. We
do not evaluate KUS as most of the complexity related to the sampling process is
absorbed by the call to D4 as demonstrated in [SGR+18].

We added an implementation of bounded SAT solving (BSAT) using Z3. BSAT
is a function BSAT(ϕ, n) defined as follows: the function recursively calls Z3 on ϕ
and removes the returned model from the formula until either the formula becomes
unsatisfiable or the number of iterations is greater than n. BSAT is thus a form of
SAT sampler which is almost guaranteed to be very far from uniform.

4.3.2 #SAT Preprocessing
We would like to study the influence of formula preprocessing on the complexity

of URS and the correlations with our metrics. To this end, we use a preprocessor
called Arjun [SM21]. Arjun computes an independent support I of the input
formula F and removes the variables that are not in the independent support I if
the projection can be done in a reasonable time and space. We thus obtain a new
formula F ′, which is the projection of F on the set of variables I. Arjun ensures that
RF ′ is the projection of RF on the independent support I and that |RF ′ | = |RF |.
Thus, using Arjun as a preprocessor to URS does not influence the uniformity of a
sampler if the sampler is guaranteed to be uniform.

4.3.3 Dataset
We use well-known and publicly available models in our study, which are of

various complexities and are either feature models or general Boolean formulae.
Feature Model Benchmark.

Overall, we use the feature models of 128 real-world configurable systems (Linux,
eCos, toybox, JHipster, etc.) with varying sizes and complexity. We first rely on 117

23

feature models used in [KTM+17; KTS+18]. The majority of feature models contain
between 1,221 and 1,266 features. Of these 117 models, 107 comprise between
2,968 and 4,138 cross-tree constraints, while one has 14,295, and the other nine
have between 49,770 and 50,606 cross-tree constraints [KTM+17; KTS+18]. Second,
we include ten additional feature models used in [LGC+15] and not in [KTM+17;
KTS+18]; they also contain a large number of features (e.g., more than 6,000).
Third, we add the JHipster feature model [Rai15; HNA+18] to the study, a realistic
but relatively small feature model (45 variables, 26,000+ configurations). We later
refer to these benchmarks as the feature model benchmarks. Once put in conjunctive
normal form, these instances typically contain between 1 and 15 thousand variables
and up to 340 thousand clauses. The hardest of them, modelling the Linux kernel
configuration, has more than 6,000 variables and 340,000 clauses. It is generally
seen as a milestone in configurable system analysis.

General Boolean Formulae.

In addition to these feature models, we have replicated the initial experiments
on industrial SAT formulae as conducted in [DLB+18]. We use these results to
ensure that we are using the tools with the same configurations that were previously
compared. Moreover, since these original formulae are much smaller than the feature
models we use (typically a few thousand clauses), they will provide a basis for
statistical analysis in case a solver cannot produce enough samples on the harder
formulae.

Both of these datasets, the feature model benchmark and the general Boolean
formulae, have been collected by Plazar et al. [PAP+19].

4.3.4 Infrastructure
The experiments regarding the computation of the equivalence classes, the MIS

computation, as well as the time and memory usage of the samplers were computed
on an HPC containing 318 nodes, each of which has 256 GB of RAM and 2 AMD
Epyc ROME 7H12 CPUs running at 2.6 GHz.

To measure the memory usage of the samplers, we developed a wrapper program
that reads the appropriate file in the /proc folder, which contains information about
the virtual memory usage of the program. We asked the samplers to compute 1000
models while using less than 64 GB of RAM and in under 5 hours.

The treewidth was computed with the tool described in [HS15]. The correlations
were computed using the SciPy Python library. To train the predictors, we used
Python and the scikit-learn library [PVG+11]. We used standard parameters for
random forests. We set the number of trees to 100, used Gini impurity for splitting,
and set the number of features to consider at each split to the square root of the
total number of features.

24

4.4 Results
4.4.1 RQ1: Complexity Factors

|Var(F)| |F | #l tw δ #mis |EF | Z3 time Z3 mem
SPUR time 45.7 48.5 50.0 34.5 49.2 62.2 68.4 34.2 39.9
SPUR mem 42.2 46.1 47.9 31.5 47.0 60.1 62.7 32.6 37.9

SPUR (+Arjun) time 58.8 79.1 75.6 64.0 75.5 50.8 - 34.5 46.5
SPUR (+Arjun) mem 61.9 79.1 75.2 64.1 74.2 53.9 - 35.6 47.5

UniGen3 time 47.2 45.5 45.0 34.6 44.1 54.5 74.8 25.0 22.2
UniGen3 mem 47.8 45.2 45.0 37.6 43.4 68.6 71.3 24.8 24.4

UniGen3 (+Arjun) time 88.9 46.0 44.7 41.6 44.0 81.1 - 21.9 32.5
UniGen3 (+Arjun) mem 86.9 38.8 37.9 35.2 36.5 88.1 - 19.4 29.5

Table 4.1: Kendall rank correlation coefficients of the used metrics with SPUR (416
data points), SPUR (+Arjun) (441 data points), UniGen3 (241 data points) and
UniGen3 (+Arjun) (309 data points). All of the p-values are lower than 0.001.

Table 4.1 shows the Kendall rank correlation coefficients for the SPUR and
UniGen3 samplers. The coefficients have been computed on the instances on which
we successfully managed to compute 1000 models in less than 5 hours, and using
less than 64GB of virtual memory. This means that the table was computed on
416 formulae for SPUR and 241 formulae for UniGen3. The columns |Var(F)|, |F |,
and #l represent, respectively, the number of variables, the number of clauses, and
the number of literals, with the number of literals being the sum of the lengths
of all clauses. The time and mem columns indicate the computation time and
the amount of virtual memory used by a single call to Z3, respectively. We have
two groups in our table, the regular group where we compute the correlations over
our formulae, and the (+Arjun) group where we first preprocess the formula with
Arjun [SM21] and then call SPUR or UniGen3 on the output of Arjun. Some
solvers take advantage of a possible MIS declaration inside the DIMACS files.
Unfortunately, not all of the solvers take advantage of the MIS declaration. We thus
removed the MIS declarations from the DIMACS files. The results with the MIS
declaration are nonetheless available on our companion GitHub [Zey23]. There are
no correlations between the (+Arjun) groups and the equivalence classes because
Arjun automatically removes redundant variables. The time and memory usage of
Arjun is ignored (the median runtime was 0.15 seconds, with the longest runtime
being 17 minutes). All the p-values are lower than 10−3. We computed the MIS
by using the tool in [IMM+16] on both the initial formulae and the preprocessed
formulae. Although Arjun [SM21] returns an independent support, we find that the
correlations are worse. We thus decided to compute the MIS with [IMM+16].

For both SPUR and UniGen3, we observe that the most correlated metrics with
the computation time or the virtual memory usage are either the size of the MIS

25

or the number of equivalence classes. However, if we add Arjun as a preprocessing
step, we observe that the correlations change between SPUR and UniGen3. SPUR
(+Arjun) is highly correlated with the number of clauses and with δ, while UniGen3
(+Arjun) is highly correlated with the number of variables and the size of the MIS.
This difference can be explained through their respective algorithms. UniGen3 adds
clauses to the formula, and the size and number of added clauses depend on the
number of variables (or on the MIS if the MIS is declared in the DIMACS file).
SPUR, on the other hand, is based on an exhaustive DPLL algorithm, which means
that SPUR spends a lot of time doing Boolean constraint propagation, which is
sensitive to the number of clauses.

Answer to RQ1: The number of equivalence classes and the number of
variables in the MIS strongly correlate (Kendall rank correlation coefficients > 62
for all formulae) with computation time and memory usage of both UniGen3
and SPUR. If the formulae are preprocessed with Arjun, then we find that the
highest correlations are with the number of variables, the number of clauses, δ,
and the size of the MIS.

4.4.2 RQ2: Complexity Prediction
We cover here the results regarding formula classification using our trained

random forests. We consider binary classification here. We selected the formula
processed within the following affordability limits: 30 minutes of computation time
and less than 4GB of virtual memory. This selection allowed balanced training
data.

|Var(F)| |F | #l tw δ #mis |EF | Z3 time Z3 mem
SPUR 9.8 6.5 4.6 10.9 7.7 13.0 37.8 3.3 5.9

UniGen3 7.0 8.3 11.0 2.7 8.7 27.0 31.6 1.4 1.9
SPUR (+Arjun) 4.0 16.2 20.8 25.3 17.8 2.9 - 2.9 9.8

UniGen3 (+Arjun) 27.6 20.9 12.6 4.4 10.5 18.2 - 1.8 3.5

Table 4.2: Feature importances in a random forest containing 1000 instances

Table 4.2 shows the different Gini importances (i.e., feature importances) of our
different metrics in a random forest that contains 1000 instances. The lines where
the SAT sampler is suffixed with ’(+Arjun)’ are the lines where the formulae were
first preprocessed with Arjun [SM21]. The time and memory used for a single Z3 call
play a negligible role. The two main features are the number of equivalence classes
and the size of the MIS. If, however, we use Arjun as a preprocessor, we observe that
the number of variables, the number of clauses, the number of literals, and δ seem
to be interesting choices as well, further confirming our initial correlations. The

26

treewidth has high importance for SPUR (+Arjun) but is expensive to compute,
diminishing its value for large formulae.

SPUR SPUR (+Arjun) UniGen3 UniGen3 (+Arjun)
#mis 67.4 73.3 91.3 90.9
|EF | 80.9 - 91.2 -

δ′ 62.7 85.7 83.0 90.7
|Var(F)| 60.0 62.4 86.6 93.7
|F | 65.4 86.1 85.4 91.4
all 83.9 91.2 97.3 96.7

|Var(F)|, |F |, #l, tw, δ, #mis, |EF | 85.1 92.6 97.9 96.9
|Var(F)|, |F |, tw, δ, #mis, |EF | 83.2 91.0 98.0 96.7
|Var(F)|, tw, δ, #mis, |EF | 84.4 91.0 97.8 96.9
|Var(F)|, tw, δ′, #mis, |EF | 83.0 92.6 98.4 96.9
|Var(F)|, δ′, #mis, |EF | 83.5 - 97.8 -
|Var(F)| + δ′ + #mis 78.7 89.2 97.1 96.2
|Var(F)| + δ′ + |EF | 83.3 - 94.6 -
|Var(F)| + δ′ 68.6 88.5 89.5 95.8

|Var(F)| + |F | + δ′ 66.6 90.1 89.5 95.8
|Var(F)| + |F | + #l + δ′ 68.7 88.7 89.8 95.8

Table 4.3: F1-scores with different features of a random forest containing 100
instances estimated using LOO

In Table 4.3, we explore the F1-scores of a random forest containing 100 instances
that were trained on different metrics. The ’all’ line indicates the predictor trained
on all of the metrics. We also use δ′ instead of δ in some of the experiments. δ′ is
defined as δ′ = |F |−|Var(F)|. While this is only an estimation of δ, our experiments
show that it is usually a very good estimation, and it is a lot faster to compute as
well. As previously reported, we report sampler results with and without the Arjun
preprocessing step. |EF | is always ignored when Arjun is used as a preprocessor.
Arjun automatically simplifies the equivalence classes in the formula; thus, we find
|Var(F)| = |EF | for the preprocessed formulae, eliminating the need to compute
|EF |. The table entries that involve both Arjun and |EF | are simply computed by
ignoring |EF |. The predictions were done using a leave-one-out strategy, and the
F1-scores were evaluated on the predictions. This means that for every data-point x,
we trained a model on the complete data-set excluding x and performed a prediction
for x. The predictions are collected in a table, and the scores are computed on the
prediction table. Table 4.4 shows the ROC AUCs, just like Table 4.3 shows the
F1-scores.

We observe that while the model trained on all features seems to perform best,
the model trained on only a fraction of the features performs almost identically.
The tables also show that if we were to take only one metric, then the number of
equivalence classes is the best, unless Arjun is used as a preprocessor, in which

27

SPUR SPUR (+Arjun) UniGen3 UniGen3 (+Arjun)
#mis 80.1 83.8 90.8 83.8
|EF | 87.6 - 90.4 -

δ′ 77.5 90.4 81.3 90.4
|Var(F)| 76.0 78.7 85.2 78.7
|F | 79.4 91.8 84.0 91.8
all 89.2 95.2 97.0 95.2

|Var(F)|, |F |, #l, tw, δ, #mis, |EF | 89.9 95.5 97.7 95.5
|Var(F)|, |F |, tw, δ, #mis, |EF | 88.6 94.5 97.9 94.5
|Var(F)|, tw, δ, #mis, |EF | 89.3 94.5 97.7 94.5
|Var(F)|, tw, δ′, #mis, |EF | 88.1 95.5 98.3 95.5
|Var(F)|, δ′, #mis, |EF | 88.2 - 97.7 -
|Var(F)| + δ′ + #mis 85.8 92.9 96.8 92.9
|Var(F)| + δ′ + |EF | 87.8 - 94.2 -
|Var(F)| + δ′ 80.8 92.8 88.2 92.8

|Var(F)| + |F | + δ′ 79.5 93.7 88.2 96.3
|Var(F)| + |F | + #l + δ′ 80.4 93.5 88.7 96.3

Table 4.4: ROC AUCs with different features of a random forest containing 100
instances estimated using LOO

case δ′ and the number of clauses seem to be very good candidates. If we focus on
easily computable metrics, then the models that seem most promising are the ones
trained on the number of variables, δ′, and on the number of equivalence classes.
If we preprocess the formulae with Arjun, then the number of variables combined
with δ′ seems sufficient. Furthermore, we find that using Arjun increases both F1
scores and ROC AUCs.

SPUR SPUR (+Arjun) UniGen3 UniGen3 (+Arjun)
DT 82.4 89.2 95.6 94.8

RF 10 83.1 89.0 95.0 95.0
RF 100 84.8 88.5 95.4 96.7
RF 1000 83.5 88.3 95.2 96.5

Table 4.5: F1-scores with different models trained on |Var(F)|, δ′ and |EF | estimated
using LOO

In Table 4.5, we reported the F1-scores of decision trees (DT) and random forests
(RF) using a different number of instances. The models were trained using |Var(F)|,
δ′, and |EF | (if Arjun is not used) and were evaluated using a leave-one-out strategy.
We observe that a random forest containing 100 instances performs slightly better
than the other models.

28

Answer to RQ2: We find that the number of equivalence classes alone
forms an excellent predictor to classify sampling difficulty according to an
affordability budget. Similarly, we observe that if Arjun is used to preprocess a
formula, then prediction becomes easier.

4.4.3 RQ3: URS

|Var(F)| |F | #l tw δ #mis |EF | Z3 time Z3 mem
Z3 time 69.2 72.5 71.9 55.7 71.6 45.9 47.3 100.0 72.1
Z3 mem 76.9 81.5 79.9 64.7 80.9 49.5 56.5 72.1 100.0

MiniSAT time 68.0 74.2 74.0 64.6 76.4 45.8 55.3 64.3 73.4
MiniSAT mem 72.6 76.1 74.3 62.2 75.6 46.6 52.1 66.1 80.8

BSAT time 77.7 74.9 75.5 55.5 72.3 67.5 65.4 60.5 66.4
BSAT mem 89.1 86.0 83.5 65.2 82.9 62.4 71.1 66.8 76.0

D4 time 54.9 55.8 56.1 45.2 55.9 59.4 70.3 39.5 48.1
D4 mem 64.5 63.8 62.3 49.9 62.5 58.3 62.9 47.9 56.8

sharpSAT time 49.3 50.0 51.3 37.9 50.4 60.6 64.0 34.9 41.0
sharpSAT mem 35.8 35.8 36.5 22.3 34.9 49.2 42.8 21.8 25.8

Table 4.6: Kendall rank correlation coefficients of the used metrics with Z3 and
MiniSAT (488 data points), as well as BSAT using Z3 (488 data points), D4 (437
data points) and sharpSAT (416 data points).

Table 4.6 shows the Kendall rank correlation coefficients for the MiniSAT and Z3
SAT solvers as well as our implementation of BSAT using Z3 and the state-of-the-art
model counters D4 and sharpSAT.

All the 488 formulae have been used for the lines involving Z3, MiniSAT, and
BSAT, as all managed to be sampled in less than 5 hours and with less than 64GB
of virtual memory. The BSAT algorithm seems strongly correlated with the size of
the MIS as well as the number of equivalence classes, but it is even more correlated
with the number of variables, clauses, and literals. BSAT shows similar correlation
coefficients to SPUR and UniGen3 with respect to the size of the MIS and the
number of equivalence classes. We do find that D4 and sharpSAT have very similar
correlation coefficients to both SPUR and UniGen3. This would indicate that in
practice, the complexity of model counters and uniform random samplers is very
close.

For both MiniSAT and Z3, we observe a strong correlation with the number of
variables, the number of clauses, and the number of literals. We do not, however,
observe a high correlation with the MIS or the number of equivalence classes. The
correlation coefficients seem to be very different between SAT solving and URS. On

29

the other hand, BSAT seems to be a combination of SAT solving and URS in terms
of correlations.

Answer to RQ3: SAT solving and URS correlate with different metrics
and are thus different tasks. SAT model counting seems to be very close to
URS. BSAT seems to be a combination of both SAT solving and URS in terms
of correlation.

4.4.4 Perspectives
Our results demonstrate that the number of equivalence classes in a formula has

strong correlations with the computational complexity of sampling. This opens the
perspective of increasing sampling efficiency by transforming the input formulae
into an equivalent formula with fewer equivalence classes, similarly to Arjun.

We also revealed that, though less than the equivalence classes, the MIS also
shows strong correlations with sampling complexity. Therefore, efficient ways to
compute the MIS and project a formula onto its MIS would also increase URS
efficiency. This is demonstrated through the usage of Arjun, which further confirms
our results. Moreover, Arjun allowed the samplers to solve more instances and
increased the performance of our prediction models.

4.5 Threats to Validity
As for any empirical study, there are several threats to consider.

Construct Validity
To assess the validity of our findings, we used the Kendall rank correlation

coefficient on the existing and our new |EF | metrics. The Kendall rank correlation
coefficient is non-parametric (and therefore agnostic to the data distribution) and was
used in the past to establish a relationship between structural metrics and runtime
measures [AMM22]. Regarding the evaluation of our random forest predictors, we
used both F1-score and Receiver Operating Characteristics (ROC) in order to cope
with different classification thresholds. The main reason for this is that we have
highly imbalanced data, and both metrics react differently to imbalance.
External Validity

We cannot guarantee that our findings generalise to any formula and all tools in
each category (sampling, solving, counting). The reason behind this is the lack of
general understanding of the complexity of SAT-based tasks [GV21], which we aim
to address with new metrics. To mitigate this threat, we selected a range of SAT
formulae from two different sources. They come from SAT Benchmarks used for the
evaluation of uniform samplers [CMV14; CFM+15; DLB+18] and feature models

30

representing configurable systems of various types and sizes [PAP+19; APC21].
In both FM and non-FM categories, formulae encode different types of models:
electronic circuits, algorithmic problems, etc., for the former, and Linux kernels,
Unix command line tools, or configuration tools [HNA+18] for the latter.

4.6 Conclusion
To understand the complexity of SAT-based uniform sampling, solving, and

counting, we have proposed an efficient algorithm to compute the equivalence classes
(EF) of a Boolean formula F . This metric possesses two desirable properties that
other structural metrics fail to have both: i) a strong correlation to the computation
time and memory consumption and ii) its computation scales even on complex
formulae, thanks to its ability to exploit parallel computing infrastructures. We
showed that |EF | can accurately (ROC AUC scores > 87%) predict if a formula F
is going to be easy or difficult to sample uniformly.

Furthermore, we showed that preprocessing techniques like Arjun can not only
improve the scalability of samplers but also make the performance predictions of
said samplers easier and more accurate, further motivating the development of
efficient preprocessing techniques for URS and model counting.

We also highlighted that |EF | helped understand where URS complexity stands
compared to two other SAT-based tasks: solving and model counting. We found
that, at least in practice, URS is closer to model counting than to SAT solving. On
the one hand, this prevents the naive use of standard solvers as uniform samplers.
On the other hand, it further motivates research at the intersection of model
counting with uniform sampling [SM21]. We expect our metric as well as Arjun to
play a role in this bidirectional relationship, e.g.,, supporting the development of
new knowledge compilation techniques.

31

32

5
Exploring the Computational Complexity of
Uniform Random Sampling and SAT Counting
with Phase Transitions

In this chapter, we further investigate formula difficulty by examining synthetic
formulae and phase transitions. Analysing synthetic formulae allows us to isolate
and study the impact of specific formula metrics while controlling for other
variables.

Contents
5.1 Introduction . 34
5.2 Objectives and Methodology 35
5.3 Results . 38
5.4 Threats to Validity . 52
5.5 Conclusion . 53

33

5.1 Introduction
In this chapter, we explore phase transitions in URS and #SAT to deepen

our understanding of formula hardness. Phase transitions are abrupt changes in a
system’s properties due to small variations in a parameter. Phase transitions in
SAT, #SAT, and URS are defined as a critical point in a parameter space (e.g.,
clause-to-variable ratio) where solver behaviour changes abruptly, often following an
easy-hard-easy pattern — problems are easy to solve before and after the transition,
but hard near the critical point [GRM20; GYX11]. For 3-SAT problems, Mitchell
et al. [MSL92] observed an easy-hard-easy pattern in the clause-to-variable ratio.
As the ratio increases, the SAT solver runtime remains low until it spikes near
4.25, then decreases again for higher ratios. This phenomenon, known as the SAT
phase transition, has driven research into algorithms focused on instances at this
critical point [GLY17; DD06; PJM19; CLS14; MH15], highlighting its theoretical
and practical significance [GW94]. Gupta et al. [GRM20] studied phase transitions
for knowledge compilation and found that the phase transition for knowledge
compilation occurs at a different clause-to-variable ratio than for SAT solving.
However, these existing works did not study phase transitions for URS. Moreover,
they did not study the effects of community structure on the phase transition, which
is known to occur in real-world formulae [AGL12].

In this chapter, we contribute to a principled understanding of URS and #SAT
complexity by studying whether phase transitions also occur in these problems. Our
investigations require both experimental analysis (based on controlled experiments
and artifacts) and empirical analysis (uncontrolled observations made on existing
practices). While empirical observations on real-world formulae are needed to
validate conclusions in practice, the low availability and high heterogeneity of these
formulae entail an insufficient coverage of all possible structural variations to draw
general conclusions. Therefore, we also conduct experiments on synthetic formulae
created through systematic and controlled procedures to identify trends and limit
cases. Doing so allows us to explore the role of specific characteristics in the
complexity of URS and #SAT.

We begin by studying the complexity of model counters and uniform random
samplers using k-CNF formulae, where each clause has exactly k literals. k-CNF
formulae are commonly used in SAT studies [MSL92], enabling direct comparison
with SAT solving and other knowledge compilation studies [GRM20]. We vary the
clause-to-variable ratio, a key factor in phase transitions for SAT [MSL92], and
set k = 3, as in previous SAT studies. We observe phase transitions in both URS
and #SAT at a lower ratio than the SAT phase transition (2.00 vs. 4.25). This
holds regardless of the formula’s community structure [AGL12], though a weaker
community structure leads to larger increases in computation time.

Next, similarly to [GRM20], we investigate the causes of the phase transitions.

34

While SAT phase transitions are linked to a sudden change in satisfiability probabil-
ity, URS and #SAT, which explore all models rather than finding just one, require
a different explanation. We find that the complexity of URS and #SAT can be
explained by analysing the number of models relative to the number of variables,
known as the solution density [BMC05; GRM20].

Finally, we empirically analyse real-world formulae to verify if the trends observed
in synthetic data hold. Real-world formulae have a heterogeneous structure, as seen
in Chapter 4, mixing clauses of varying sizes, which complicates general conclusions.
Nevertheless, our observations suggest that phase transitions may not occur in
real-world formulae — a finding that aligns with prior work by Mendonca et al.
[MWC09], who report the absence of a SAT phase transition in formulae generated
from feature models.

Altogether, this chapter makes the following contributions:

1. The first systematic study of phase transitions in both URS and
#SAT. Our analysis of 2 samplers, 3 #SAT solvers, and 11,409 synthetic
formulae shows that phase transitions occur in these problems, but at a
different clause-to-variable ratio than in SAT. Thus, a formula that is easy
for a SAT solver may not be easy for URS or #SAT.

2. A novel exploration of the reasons behind the complexity of URS
and #SAT. Through our in-depth study of formula characteristics and the
observation of phase transitions, we bring a fundamental contribution to the
understanding of URS and #SAT complexity.

5.2 Objectives and Methodology
We detail below our research methods, the protocol to prepare the dataset

(Boolean formulae), the samplers and model counters we used, and our computing
infrastructure.

5.2.1 Research Questions and Methods
To achieve a principled understanding of URS and #SAT problem complexity, we

explore the phenomenon of phase transitions [MSL92] similarly to SAT problems and
knowledge compilation [GRM20]. Mitchell et al. [MSL92] showed that the solving
difficulty of random k-CNF formulae changes drastically across the clause-to-variable
spectrum. Indeed, they found that formulae are much harder to solve for a part of
this spectrum. Around a clause-to-variable ratio of 4.25 (for k = 3), the formulae are
exponentially harder to solve. This discovery has major importance as it shows that
some of the synthetic formulae drawn from the same distribution are much harder
to solve than others. This motivated the development of algorithms that perform
better near the phase transition. Similarly, Gupta et al. [GRM20] investigated phase

35

transitions in knowledge compilation and identified a phase transition, though at
a different clause-to-variable ratio compared to SAT solving. Even though phase
transitions have been studied for #SAT and knowledge compilation [GRM20; HD04;
GYX11; BL99], they remain a mainly observed phenomenon; as such, no formal
definition is available. Because available real-world formulae are too scarce and
heterogeneous to draw general conclusions (regarding structural properties such
as the number of variables/clauses), our study combines experimental analysis
(using synthetic artifacts under experimental control) with empirical analysis (based
on real-world artifacts collected in the literature). These are necessary to draw
theoretical (general) conclusions and validate them in practice.

Our study globally aims to answer three research questions:
• RQ1: Do phase transitions generally occur in synthetic URS and #SAT

problems?
• RQ2: What are the reasons for the phase transitions in synthetic formulae?
• RQ3: Are phase transitions also observed on real-world formulae?

To draw general conclusions for RQ1 and RQ2, we rely on controlled experiments.
To complement our findings with empirical observations, we answer RQ3 using
real-world data.

5.2.2 Data Preparation
Synthetic Formulae

For our experimental analysis, we conduct controlled experiments with 11,409
formulae that we synthesise by varying multiple structural characteristics (number
of variables, number of clauses, clause size, modularity, etc.). Thus, we can observe
finely complex phenomena like phase transitions.

To generate our datasets, we use the classical k-CNF generation [MSL92] and
the community attachment model from [GL15]. The classical model enables us to
control various parameters: number of variables v, number of clauses n, and clause
size k. It then generates a clause by selecting k unique variables and negating them
with a 1

2 probability, and adds the clause to the set of clauses. We use this model
to generate a dataset containing 2,162 synthetic formulae, which will be used to
answer RQ2.

The community attachment model from [GL15] gives additional control over
the desired modularity Q of the formula. Controlling Q enables us to experiment
on how it affects URS and #SAT time. The community attachment model requires
specifying an initial number of communities c (groups of variables that are mostly
dependent on each other but may have some dependencies with other communities).
The generation then starts by splitting the variables into (roughly) equally-sized
communities. It iteratively chooses to generate a clause with variables of a given
community with probability P = Q + 1

c
; otherwise, all of the variables of the clause

36

to be generated will be part of distinct communities. We use this model to generate
a dataset containing 9,247 formulae, which will be used to answer RQ1.
Real-World Formulae

We collected multiple datasets from Lagniez and Marquis [LM17], Soos [Soo24],
Sundermann et al. [SBK+24], and Plazar et al. [PAP+19] to study whether our
observations made on synthetic formulae also transfer to the real world.

The Lagniez and Marquis [LM17] dataset is a diverse dataset containing 1979
formulae. The dataset contains diverse problems ranging from Bayesian networks to
digital circuits and configuration. This dataset also contains handmade and random
formulae. The Soos [Soo24] dataset contains 1896 formulae from various sources,
including the Model Counting Competitions. The Sundermann et al. [SBK+24]
dataset consists of 278 formulae, most of which come from the configurable software
domain. The dataset contains multiple versions and variants of each formula. To
avoid having too many similar formulae, we restricted our experiments to the most
recent version and variant of each formula. The Plazar et al. [PAP+19] is a dataset
of 503 formulae consisting of a feature model benchmark (133 formulae) as well as
other formulae collected from [DLB+18].

Overall, the dataset includes formulae featuring between five and 1,370,369
variables, and between ten and 5,798,978 clauses. The clause-to-variable ratio of
the formulae ranges from 0.46 to 290.93 with an average value of 3.41 and a median
value of 2.5.

5.2.3 URS and #SAT Tools
We selected diverse counters and samplers to explore phase transitions for

different URS and #SAT algorithms.
We chose SPUR [AHT18] and UniGen3 [SGM20] as samplers as they both offer

theoretical guarantees regarding their uniformity. Other sampling tools exist, e.g.,
[DLB+18]. These alternatives offer no uniformity guarantee or rely on other tools
such as sharpSAT [Thu06] or D4 [LM17]. We chose sharpSAT [Thu06] as a model
counter because it is the fastest model counter to date [SHN+23]. We also chose D4
[LM17] as it is a model counter based on knowledge compilation and decision-DNNF,
which is slightly different from sharpSAT. Moreover, D4 [LM17] will serve as a
sanity check for our experimental setup because it has already been studied by
Gupta et al. [GRM20]. We would like to highlight that a d-DNNF can be extracted
from the execution trace of a model counter based on exhaustive DPLL. Therefore,
we do not expect the results between D4 and sharpSAT to deviate significantly.
Similarly, the results for SPUR and sharpSAT should be very close given their
similarities. Finally, to have better diversity, we tested McTW [FHH20] because it
is an algebraic-based model counter [SHN+23].

37

5.2.4 Infrastructure
We used a computing facility containing 354 nodes, each of which has 256 GB

of RAM and 2 AMD Epyc ROME 7H12 CPUs running at 2.6 GHz. To measure
the memory usage of the samplers, we developed a wrapper program that reads the
appropriate file in the /proc folder, which contains information about the virtual
memory usage of the program. We set a timeout of five hours and a limit of 64GB of
virtual memory for counting and sampling experiments. Additionally, we requested
1000 models for each sampler.

5.3 Results
5.3.1 RQ1: Phase Transitions

To observe phase transition occurrences in URS and #SAT problems, we analyse
the execution time of different sampling and counting tools on formulae system-
atically synthesised. Inspired by the work of Mitchell et al. [MSL92] on phase
transitions in SAT problems, we aim to observe phase transitions on the clause-to-
variable ratio (i.e. |F |/|V ar(F)|) spectrum. All of our results are available on our
companion GitHub [Zey25b].

Setup

We generate 3-CNF formulae defined over a set of 75 variables, with community
structure. We set k = 3 because this clause size is typically used to analyse SAT
problems, as it is the smallest non-trivial value for k. Indeed, k = 1 and k = 2 are not
enough to create non-trivial dependencies between variables, whereas setting a value
higher than 3 drastically increases sampling/solving time — as we also illustrate in
RQ2. We set the number of variables to 75 because we experimentally determined
this was a good trade-off for sampling/counting time (more variables reduce the
impact of runtime noise in our results, but more than 75 was computationally
prohibitive on our infrastructure).

Because we use 3-CNF formulae, we can compare our findings on URS and #SAT
with the clause-to-variable ratio at the phase transition peak of SAT solving in
[MSL92]. In the SAT experiments of Mitchell et al. [MSL92], solvers’ execution time
peaks at |F |/|V ar(F)| = 4.25, and it corresponds to the ratio at which half of the
3-CNF formulae with this ratio are unsatisfiable. For lower ratio values (respectively
higher), most of the formulae were satisfiable (respectively unsatisfiable). Since
URS and #SAT on unsatisfiable formulae (or, more generally, on formulae with
few models) can be efficiently reduced to one (or a few) call(s) to a SAT solver,
we limit the clause-to-variable ratio to 10 (i.e., about twice the ratio at which
SAT complexity is maximal). We also removed accidentally generated unsatisfiable
formulae (i.e., with |RF | = 0). Thus, we vary the number of clauses from 1 to 750

38

in steps of 1 (corresponding to a clause-to-variable ratio ranging from 1/75 to 10),
and for each clause count, we generate five formulas to account for randomness in
clause generation.

Finally, using the community attachment model from [GL15], we repeat the
generation with different target modularity values Q (ranging from 0.3 to 0.8 with
a 0.1 increment, as these values have been shown to be common in [AGL12] and
in our experiments) to observe the impact of variable dependencies. This yields
a total of 9,247 formulae. The community attachment model requires setting the
desired number of communities. We choose to use 5 communities, as 15 variables
per community should keep the probability of having an unsatisfiable community
sufficiently low (considering that a community requires at least 2k clauses on k
variables to be unsatisfiable because a k-CNF formula expressed on k variables
requires at least 2k clauses to be unsatisfiable). For the sake of generality, our
companion GitHub [Zey25b] page includes result plots for additional numbers of
communities.
Results

Figure 5.1 shows the execution time for each URS and #SAT tool. The x-axis
is the clause-to-variable ratio, while the y-axis is the execution time. Each data
point represents a generated formula, and each colour corresponds to a different
modularity value targeted by the generation algorithm. We only plot the values
that have a clause-to-variable ratio in the range [0; 5] because the formulae outside
this range were unsatisfiable and therefore removed from the dataset.

We observe that phase transitions indeed occur for all tools (these are the ’peaks’
we observe in each plot). Contrary to the SAT problem [MSL92], the hard instances
are at a wildly different clause-to-variable ratio, i.e., around 2. URS and #SAT
share the same clause-to-variable ratio for the hard instances, with the exception
of the McTW model counter, whose performance is generally worse than other
#SAT tools. The phase transitions that we observe align with the phase transitions
observed in [GRM20; GYX11; HD04]. However, the phase transitions observed in
[BP00; BL99] are shifted toward smaller clause-to-variable ratios, which may be due
to better optimisations of the algorithms. A more surprising result is that the phase
transition observed for UniGen3 is located at a similar clause-to-variable ratio than
the phase transitions observed in our study and in [GRM20], even though UniGen3
has a different algorithm and a different purpose.

We also observe that lower target modularity coincides with a taller peak
in execution time during the phase transition, indicating that tools exploiting
modularity may better resist the complexity of URS and #SAT during the phase
transition. A particular observation of UniGen3— which fundamentally exploits
modularity less than other tools because the constraints added by the algorithm
to the formula break the community structure — corroborates this finding: its

39

(a) SPUR (b) UniGen3

(c) McTW (d) sharpSAT

(e) D4

Figure 5.1: RQ1: Phase transitions occur in URS for 3-CNF formulae. A higher
formula modularity decreases the height of the peak.

execution time peaks higher for high modularity values than the other tools. Similar
results have been shown for SAT solving [GL15], where SAT solvers specialised in
industrial formulae performed better on instances with a high modularity.

To complete these observations, we show in Figure 5.2 lower bounds to the actual
modularity of the generated formulae across the clause-to-variable ratio spectrum.
The colours indicate the target modularity parameter given to the community

40

Figure 5.2: RQ1: Modularity of the 3-CNF formulae (y-axis) w.r.t. their clause-to-
variable ratio (x-axis).

attachment model in [GL15], which may differ from the actual modularity given the
heuristic-based nature of the model. The actual modularity values were computed
by using the label propagation algorithm [AGL12] and are denoted by Q̃. This
algorithm computes a lower bound for the actual modularity and, being based on
label propagation, has stochastic components. Thus, to mitigate stochastic effects
and obtain a bound close to the real modularity value, we repeat the modularity
computation 100,000 times and take the highest value returned across all those
runs.

Figure 5.2 shows that formulae with a low clause-to-variable ratio tend to have a
high actual modularity (in particular, higher than the desired modularity specified
in the generation algorithm), as is also shown in [GL15]. This is also one of the
reasons why the phase transition does not occur at these lower clause-to-variable
ratios.

Finally, to further confirm our results, we compute the Kendall rank correlation
[Ken38] coefficients between the computed modularity Q̃ and the execution time
of the different tools. We use the Kendall rank correlation [Ken38] because the
relationship is unknown. Therefore, a rank correlation is better suited. Because
of the observed phase transition, we find that computing Kendall’s τ gives poor
results. We thus decide to compute Kendall’s τ over a sliding window. In other
words, we compute Kendall’s τ at a clause-to-variable ratio of x with the formulae
that have a clause-to-variable ratio in the range x± ε. In our case, we set ε = 0.3.

The Kendall rank correlations are shown in Figure 5.3, where we plot the
correlation coefficients across the different clause-to-variable ratios. The values
shown in orange have a p-value higher than or equal to 0.01, and the values
shown in green have a p-value higher than or equal to 0.05. We observe strong
negative correlations across most of the clause-to-variable ratio spectrum with low
p-values. This means that an increase in modularity is correlated with a decrease in
computation time, as previously observed. Moreover, almost all of the samplers and

41

(a) SPUR (b) UniGen3

(c) McTW (d) sharpSAT

(e) D4

Figure 5.3: RQ1: Kendall’s τ coefficients computed between Q̃ and the execution
time in a sliding window across the clause-to-variable ratio spectrum.

model counters have strong correlations. The only sampler with lower correlation
coefficients is UniGen3, which still shows a moderate correlation of -0.40, close to the
observed phase transition. sharpSAT also exhibits a more surprising behaviour with
positive correlations after a clause-to-variable ratio of 4. However, these correlations
have high p-values. We thus conclude that community structure has a positive
impact on the computation time of uniform random samplers and model counters.

42

RQ1 — Conclusions: Our results confirm the existence of phase transitions
for URS and #SAT on 3-CNF formulae, which occur at different clause-to-
variable ratios (starts at ≈ 1 and peaks at ≈ 2) than for classical SAT (peaks at
4.25). A higher formula modularity decreases the height of the peak. Formulae
with a low clause-to-variable ratio (< 1) have a higher modularity, which might
explain why URS and #SAT problems are easier to solve for those formulae.

5.3.2 RQ2: Reasons for Phase Transitions
We investigate the reasons behind the occurrences of phase transitions in URS

and #SAT problems. In the case of SAT, the phase transition peaks at a 4.25
clause-to-variable ratio [MSL92], which corresponds to the ratio at which half of
the 3-CNF formulae with this ratio are unsatisfiable. SAT solvers typically work
by exploring a search tree where branches represent variable assignments [ES03].
Formulae with a low number of clauses per variable necessitate few assignments
to be solved (it is easy to find a model), whereas formulae with a large number of
clauses quickly lead to unsatisfiable branches (it is easy to conclude on the absence
of models). At the ratio of 4.25, the SAT solver has to explore many deep branches
to conclude the (un)satisfiability of the formula [MSL92].

By contrast, #SAT (and by extension URS, which relies on the same algorithmic
principles) requires exploring all branches of the search tree to complete the counting,
an exploration known as ’exhaustive DPLL’. Fortunately, the model counter can
prune a part of a branch that has become trivial to solve. This can happen, e.g., if
all of the constraints are satisfied by the current assignment a, in which case the
current model count is 2|V ar(F)|−|a|. Thus, the complexity of URS and #SAT is
intrinsically linked with the minimal number of variables necessary to have at least
as many models as the initial formula. In the above example, the minimal number of
variables necessary to express the models in the branch is (|V ar(F)|−|a|)/|V ar(F)|.

Tool k = 3 k = 4
D4 8.6 3239.97

sharpSAT 0.42 230.49
McTW 207.5 18000.0
SPUR 1.13 542.22

UniGen3 12.07 500.23

Table 5.1: RQ2: Maximum execution time (in seconds).

Gupta et al. [GRM20] generalise this idea and hypothesise that what matters
in knowledge compilation complexity is the solution density. In other words, the

43

ratio of the minimal number of variables necessary to have at least as many models
divided by the number of variables of the initial formula. We extend the hypothesis
to URS and explore the ratio r = log2(|RF |)/|V ar(F)|. The logarithm of |RF |
expresses the minimal number of variables needed to encode |RF | models. Dividing
this by the total number of variables allows us to have a normalised ratio.

We note that r is a semantic metric as it necessitates computing |RF |, which
may not always be feasible. However, our objective here is not to provide a metric
to predict occurrences of phase transitions (the clause-to-variable ratio, which is
always easy to compute, would be a more appropriate metric for that). Instead,
we aim to study the phenomena behind phase transitions, and our findings (which
corroborate Gupta et al.’s earlier investigations [GRM20]) indicate that r is a more
effective metric for this purpose. Note that, since we exclude formulae with no
model in our experiments, r takes a value between 0 and 1; moreover, we have
log2(|RF |) ≤ |V ar(F)| since |RF | ≤ 2|V ar(F)|.
Setup

If our hypothesis is true, repeating our RQ1 experiments while setting k = 4
(instead of 3) should yield a shift in the observed phase transition. This is because
for the same ratio |F |/|V ar(F)|, increasing the number of literals in each clause
yields a higher model count, as a larger clause is more likely to be satisfied by a
random assignment. Thus, a higher clause-to-variable ratio should be necessary to
observe the phase transition for k = 4 than for k = 3. To verify this, in addition
to 3-CNF formulae, we also generate 4-CNF formulae. Because raising k from 3
to 4 significantly increases the URS and #SAT’s tools execution times, we limit
formulae to 50 variables.

With the above settings, we obtain 663 satisfiable formulae for k = 3 and 1499
formulae for k = 4 by using the k-CNF generation algorithm proposed by [MSL92].
We have more formulae for k = 4 because a higher clause-to-variable ratio is required
to observe unsatisfiable formulae. To illustrate this increasing complexity, Table 5.1
reports the maximum execution time (in s.) of all tools across all formulae with
k = 3 and k = 4; we observe that McTW has reached the timeout of five hours.

In Figure 5.4, we study the execution time of the URS and #SAT tools on all
formulae with respect to their clause-to-variable ratio (x-axis). On the y-axis, we
normalise execution time based on the maximum time taken by each tool for k = 3
and k = 4 separately, based on the values reported in Table 5.1. This normalisation
helps us compare the trends for k = 3, 4, which would not be feasible otherwise due
to large differences in execution time when increasing k.

In this figure, we observe that for k = 4 the phase transition indeed peaks at
larger ratios for SPUR (3.5), sharpSAT (3.5), and UniGen3 (5), whereas for k = 3,
the execution time peaks at a ratio of 2. There is also a large difference for McTW
(3 vs 4.5). For D4, the two clause-to-variable ratios are closer to each other, though

44

(a) SPUR (b) UniGen3

(c) McTW (d) sharpSAT

(e) D4

Figure 5.4: RQ2: Phase transitions w.r.t. the clause-to-variable ratio, on 3-CNF
and 4-CNF formulae.

k = 4 observably yields a peak at a higher ratio. This observed shift is the first
indication that our hypothesis indeed holds.

To confirm our hypothesis, we study the relationship between URS and #SAT
execution time and the new ratio r = log2(|RF |)

|V ar(F)| . We compute |RF | with D4 [LM17]
for every formula. Because our formula synthesis algorithm is not driven by r or
|RF |, we first check that our population of formulae is sufficient to conduct analyses

45

(a) k = 3 (b) k = 4

Figure 5.5: RQ2: Distribution of log2(|RF |)/|V ar(F)| with respect to k.

based on r (i.e., the formulae are sufficiently uniform with respect to r). Figures
5.5a and 5.5b show the distribution of r for the generated 3-CNF and 4-CNF
formulae. We observe that the distribution is balanced, except for a small deficit
when approaching r = 0. This can be explained by the fact that at such r values,
a synthesised formula has a higher probability of being unsatisfiable. Fortunately,
this bias in the population does not affect the phase transition, which should occur
far from r = 0 (as later confirmed in our results).
Results

Figure 5.6 plots the tools’ normalised execution time (y-axis). We observe that
the hard instances for SPUR and sharpSAT occur at a ratio r = log2(|RF |)/|V ar(F)|
close to 0.65 for both 3-CNF and 4-CNF formulae, whereas the value r for UniGen3
is between 0.55 and 0.6. As for D4 and McTW, we also observe a phase transition,
though the peaks deviate slightly between k = 3 and k = 4 (from 0.68 to 0.74 for
D4, similarly to [GRM20], from 0.40 to 0.55 for McTW).

To evaluate whether r provides a better characterisation of the phase transition
than the clause-to-variable ratio, we compute the mean absolute error (MAE)
in each case. As a reference, we define a function f(x), computed on the dataset
corresponding to k = 4, where each value x is associated with the mean of all data
points within the interval x ± ε. Specifically, we use ε = 0.3 when analysing the
clause-to-variable ratio, and ε = 0.028 when analysing r. These values of ε were
chosen to reduce noise-induced fluctuations while preserving the overall trend of
the data. In both cases, the size of the sliding window was adjusted to include, on
average, the same number of data points — approximately 86± 1.

The function f(x) is then normalised to lie within the interval [0, 1]. Finally,
we compute the MAE between the normalised reference function f(x) and the
corresponding dataset to compare the performance of r and the clause-to-variable
ratio in describing the phase transition.

46

(a) SPUR (b) UniGen3

(c) McTW (d) sharpSAT

(e) D4

Figure 5.6: RQ2: Phase transitions w.r.t. r = log2(|RF |)/|V ar(F)| on 3-CNF and
4-CNF formulae.

Table 5.2 reports the computed MAEs for both the clause-to-variable ratio and
the parameter r, for k = 3 and k = 4. The left half of the table corresponds to the
results shown in Figure 5.4, while the right half relates to Figure 5.6.

The MAE values for k = 4 serve as a sanity check, as the reference function
f(x) is constructed from the k = 4 dataset. We observe that for k = 3, the
MAE consistently decreases when switching from the clause-to-variable ratio to

47

clause-to-variable ratio r
Tool k = 3 k = 4 k = 3 k = 4
D4 0.368 0.109 0.175 0.109

sharpSAT 0.353 0.113 0.158 0.110
McTW 0.185 0.054 0.299 0.057
SPUR 0.377 0.116 0.138 0.117

UniGen3 0.314 0.119 0.184 0.119

Table 5.2: RQ2: Mean absolute errors of the datasets with the k = 4 dataset as
reference.

r, suggesting that the apparent shift between the curves for k = 3 and k = 4 is
reduced when using r. This supports the conclusion that r more accurately aligns
the phase transitions across different values of k.

The only exception is observed in the case of McTW, where the MAE increases
when switching from the clause-to-variable ratio to r. We attribute this deviation to
the large number of timeouts encountered by McTW, which may affect the accuracy
of the underlying data.

Overall, the results indicate that r provides a better description of the phase
transition than the clause-to-variable ratio.

Figure 5.7: RQ2: Modularity w.r.t. r = log2(|RF |)/|V ar(F)|.

Discussion Our observations seem to indicate that the hard instances of URS
and #SAT need model spaces RF that are large but with sufficient differences
between each model (in terms of assignments). In other words, instances with a
high r (equivalently, a low clause-to-variable ratio) are easy to solve because they
are underconstrained and quickly generate unconstrained (free) variables during
the DPLL exploration, making parts of some search branches trivial to count. By
contrast, instances with a low r (or high clause-to-variable ratio) are overconstrained,
and their model count is low, which is, therefore, easy to enumerate and count. The

48

instances in between do not allow for an effective processing because the models are
too different from each other, while the large |RF | prohibits model enumeration.

A complementary explanation relates r to modularity. Figure 5.7 shows the
actual modularity of the 3-CNF and 4-CNF formulae across the r spectrum. As
before, we compute modularity with the label propagation algorithm in [AGL12]
repeated 100,000 times and took the maximum modularity value (maximum lower
bound). We observe that a high ratio r coincides with a high modularity. This
indicates that we have a strong community structure in the formulae and that
the solvers would need to satisfy fewer clauses before having entirely disjoint
communities. These disjoint communities can then be processed independently,
which is D4’s strategy [LM17]. Lower values of r have a low modularity as these
formulae are overconstrained.

RQ2 — Conclusions: Phase transitions in URS and #SAT are better
described by the ratio of variables required to encode the space of models.
Formulae with a high ratio are easy to solve because they are underconstrained,
enabling URS and #SAT to take shortcuts and consider unconstrained variables
separately. Conversely, those with a low ratio r have few models that are fast
to enumerate. The phase transition is due to intermediary situations wherein
the number and diversity of models impede both model counting and effective
solving.

5.3.3 RQ3: Real-World Formulae
Setup

Our last RQ analyses real-world formulae. Unlike synthetic k-CNF formulae,
real-world formulae are likely to include constants and variables that do not appear
in clauses (this typically happens, e.g., to formulae derived from feature models
because some features may be mandatory and other features may not have any
constraints) [LGC+15]. To avoid noise in our computed ratios, we first pre-process
the formulae to eliminate these constants and unconstrained variables (without
altering the formulae’s semantics). This modification does not affect our analysis
of the tools’ execution time since the underlying algorithms also remove them
during their pre-processing. Furthermore, we also remove redundant clauses, i.e.,
clauses that are subsumed by another. Assume we have ci, cj ∈ F with i ̸= j and
ci =⇒ cj. Then we only need to consider ci and can safely ignore cj because ci

ensures that cj is satisfied. We thus compute the size of the formula |F | as the
number of clauses minus the number of redundant clauses. |V ar(F)| is computed
as the total number of variables minus the number of variables that do not appear

49

in any (non-redundant) clause. Both the URS and #SAT tools were executed on
the original formulae.

Our statistics on the capacity of the URS and #SAT tools to analyse real-world
formulae indicate that URS and #SAT tools have approximately the same success
rate with respect to timeouts and out-of-memory exceptions. UniGen3 performed
significantly worse, with only 2510 formulae that were successfully processed. The
other tools processed with success between 3034 and 3996 formulae, with McTW
processing successfully 3034 formulae and D4 processing successfully 3996 formulae.

Results

Figure 5.8 shows the execution times of the different model counters and samplers
on our real-world formula dataset. The x-axis denotes the clause-to-variable ratio.
The reason we use this ratio and not r is that model counting (which is required
to compute r) is intractable for a significant number of formulae in our dataset;
discarding these formulae would leave us with a smaller number of formulae to
conduct our analysis. Additional Figures using r are available on our companion
GitHub [Zey25b].

The double y-axis reports two measures: the number of real-world formulae
(left-hand side scale) and the execution time (right-hand side scale). Thus, the
grey histogram shows the frequency of each clause-to-variable ratio among the set
of formulae, while the coloured dots represent the execution time of each formula
on the considered tool. The colours distinguish the formulae that were processed
with success (blue), the formulae for which the model counter or sampler ran out of
memory (orange), and the formulae for which the model counter or sampler reached
the 5-hour timeout (green).

In Figure 5.8, we see that while there are some clusters, overall, patterns for
phase transitions are difficult to observe. To complement this view, we show in
Figure 5.9 the cumulative distribution of the total number of formulae, the number
of formulae processed with success, and the number of formulae that could not be
processed with respect to their clause-to-variable ratio. While there do seem to
be spikes in the line representing failure (the green line), these seem to align with
the total number of formulae as shown in the histogram in Figure 5.8. Generally,
the absence of clearly observable phase transitions, coupled with the significant
number of formulae intractable for URS, indicates that there are additional factors
in feature-model formulae that explain their hardness. This means that specific
applications of URS to feature models necessitate dedicated complexity studies,
as results valid for synthetic formulae are not enough to explain this complexity.
Furthermore, the lack of a phase transition for URS and #SAT in real-world
formulae is consistent with the findings of Mendonca et al. [MWC09], who did not
observe a phase transition for SAT in feature models.

50

(a) SPUR (b) UniGen3

(c) McTW (d) sharpSAT

(e) D4

Figure 5.8: Results on real-world formulae.

RQ3 — Conclusions: In the case of feature models, the observation of
phase transitions is blurred by additional complexity factors that do not occur
in synthetic formulae. This calls for novel complexity studies specific to feature
models and dedicated methods to decompose this complexity in a form that
makes it tractable for URS.

51

(a) SPUR (b) UniGen3

(c) McTW (d) sharpSAT

(e) D4

Figure 5.9: CDF of real-world formulae wrt. |F |/|V ar(F)|.

5.4 Threats to Validity
Internal Validity

This threat concerns the implementation and the choice of specific parameters
during our experiments. We chose to execute our experiments on random formulae
with 50 and 75 variables, which is fewer than most real-world formulae. This was
necessary to execute this large synthetic benchmark on multiple solvers and avoid
long executions and timeouts. Yet, our experiments showed that synthetic formulae

52

are much more difficult to count or sample from than some real-world formulae with
more variables. Regarding the community attachment model, we set the number
of communities to 5. This may introduce a bias towards formulae with specific
modularity. Thus, we reran the experiments with different numbers of communities
and provided the results on our companion GitHub [Zey25b].
External Validity

There is no guarantee that our results generalise precisely to any formula and
any model counter or sampler in each category. The reason behind this is the lack
of general understanding of the complexity of SAT-based tasks [GV21], which we
aim to address. To mitigate this threat, we selected a range of SAT formulae from
multiple sources. They come from SAT Benchmarks used for the evaluation of
uniform samplers [CMV14; CFM+15; DLB+18] and various other sources such as
feature models representing configurable systems of various types and sizes [PAP+19;
APC21; SBK+24]. The datasets that we use include formulae that encode diverse
types of models: electronic circuits [LM17], algorithmic problems, Linux kernels
[PAP+19; SBK+24], Unix command line tools, or configuration tools [HNA+18].
Thus, we are confident that our general conclusions are valid for a large class of
real-world formulae.

5.5 Conclusion
In this chapter, we analysed the experimental complexity of counting and uniform

random sampling for Boolean formulae, under the prism of phase transitions and
community structure. Our investigation initially focused on synthetic formulae,
allowing us to finely explore phase transitions and the role of community structure
in a controlled way. Hence, we demonstrated that phase transitions indeed occur in
URS and #SAT, while the community structure impacts the amplitude of the peak.
We also showed that phase transitions are harder to observe in real-world formulae,
although many of these formulae remain intractable. We therefore believe that
additional complexity factors are at play and need feature-model-specific studies
to be explained. Overall, our work contributes to a principled understanding of
URS and #SAT complexity, and we hope it can inspire future research in designing
effective methods to approach these problems.

53

54

6
Testing Uniform Random Samplers: Methods,
Datasets and Protocols

Demonstrating that a uniform random sampler truly produces uniform samples
can be challenging. Furthermore, such proofs typically apply to the algorithms
rather than their specific implementations. Consequently, it is important to
empirically test uniform random samplers. In this chapter, we introduce five
statistical tests specifically designed for evaluating the uniformity of random
samplers.

Contents
6.1 Introduction . 56
6.2 Statistical Test Methodology 58
6.3 Experimental Study . 65
6.4 Results . 68
6.5 Threats to Validity . 79
6.6 Conclusion . 79

55

6.1 Introduction
The key role of URS in its applications is that uniformity enables unbiased

sampling from a large model space. Some samplers provide theoretical guarantees
of uniformity, thereby proving that their algorithm generates samples with uniform
probability [AHT18; SGM20]. However, these proofs of uniformity are hard to
provide for multiple reasons. First, some samplers favour practical heuristics
that trade off potential theoretical guarantees for improved efficiency [EGS12].
Second, the theoretical guarantees are provided for the algorithm and not for the
implementation of an algorithm, which may break the theoretical guarantees due
to the way the sampler is implemented, or merely if the implementation contains
undetected bugs.

In this chapter, we seek to establish a methodological ground for testing sampler
uniformity in practice by means of a set of statistical tests. Our contributions not
only enable researchers to compare practical uniformity confidence across multiple
sampler candidates, but they can also be useful to detect implementation mistakes
leading to non-uniform tools, although based on a theoretically uniform method.
The statistical tests composing our method constitute an actionable solution for
URS researchers to assess the uniformity of novel approaches while removing the
necessity of developing arbitrarily complex (and, as argued before, only partially
reliable) theoretical proofs. All in all, our contribution aims to foster and accelerate
research in URS by automating empirical testing and enabling comparison with a
wide range of existing samplers.

To achieve this, we inspire ourselves from the pseudo-random number generator
(PRNG) community [LS07; Dot; BEB18], which has solid experience in practical
testing approaches. Unfortunately, we cannot reuse these PRNG tests because
the model space of a PRNG is unconstrained, unlike Boolean formulae in URS.
Nevertheless, we follow the good practices of the PRNG community to establish our
own test protocol. In particular, this community has long used multiple statistical
tests to test their tools, as each test has different strengths and weaknesses [RSN+01].
Relying on a single test A is bad practice, as a PRNG could be engineered to
specifically pass test A without necessarily producing high-quality pseudo-random
numbers.

Applying this lesson learned from the PRNG community, we start by providing
a statistical test suite that is designed to test the uniformity of uniform random
samplers. These tests have been selected and adapted from the available literature
to form a consistent testing approach for URS. After describing the different tests
that make up our suite, we apply them in an empirical study involving the available
URS tools. Throughout this study, we can not only compare the uniformity test
results for the samplers but also reveal the consistency of all tests (or lack thereof)
on a given sampler. Through these investigations, we confirm the existence of

56

an experimental bias in the choice of a specific test and, thereby, the necessity of
conducting different tests.

Through our applications of our tests to state-of-the-art URS tools, we find
that different tests not only have different reliability but also come with varying
computational costs. Based on these insights, we suggest a testing process that
executes different tests in a sequence such that tests with a lesser computational
cost — and a potentially higher Type II error rate1 — are executed first. We also
indicate which of these tests reveal less information regarding sampler uniformity
and can be omitted in the case of constrained computational resources.

Next, we explore another threat to the validity of uniformity testing: the input
Boolean formula used for testing. Indeed, while one could consider uniformity as
a universal property of sampling methods, the empirical nature of both sampler
implementation and uniformity tests creates an inherent risk for a test to generate
Type I and Type II errors. We, therefore, consider the use of multiple formulae
for uniformity testing and present a methodology to combine results for individual
tests into a statistically meaningful answer. Beyond this, we study the question of
dataset bias. In particular, we investigate how test results obtained from synthetic
formulae typically used in the URS research community correlate with results on
real-world formulae extracted from feature models. Establishing these correlations
(or their absence) would determine the importance and limitations of synthetic
datasets in uniformity testing.

To summarise, this chapter makes the following contributions:

1. A uniformity testing procedure. Our method includes five tests, of which
three have never been applied as statistical tests for sampling uniformity. Our
procedure also considers the relative computational costs of the tests in order
to quickly eliminate non-uniform samplers and limit the execution of more
expensive tests.

2. Uniformity results on state-of-the-art samplers. We report on a large
experimental study studying the uniformity of state-of-the-art samplers ac-
cording to our different tests. We reveal that among our tested samplers,
only UniGen3 is uniform, unlike what previous studies concluded. These re-
sults show the importance of conducting multiple independent tests to ensure
reliability, while also avoiding the pitfall of previous approaches in using a
supposedly uniform sampler as a reference [SGC+22].

3. Insights into dataset choice. We reveal that URS tools that fail to
sample uniformly from synthetic formulae are also unlikely to produce uniform

1Our null hypothesis is that a given sampler is uniform. Therefore, a Type I error refers to the
rejection of this hypothesis while the sampler is uniform. Type II error refers to the conclusion
that a sampler is uniform when it is not.

57

samples from real-world formulae. The contraposition, however, does not hold,
revealing the need to benchmark samplers against a diverse set of real-world
formulae.

6.2 Statistical Test Methodology
Our objective is to provide a statistically grounded method to test the uniformity

of URS tools. The key assumption of our method is that uniformity testing typically
suffers from two pitfalls: the reliance on a single, specific test and the biases
introduced by the choice of the input formula. Given these pitfalls, our approach
advocates the use of several statistical tests and the combination of results obtained
from different formulae into a single statistical answer.

6.2.1 Combining Results from Multiple Formulae
In contrast to testing pseudo-random number generators (PRNGs), testing

samplers also requires a formula to be given as input to the sampler under test.
To alleviate possible biases due to the input formula, we apply each statistical
hypothesis test (aka statistical test) described below to multiple formulae. Unless
otherwise stated, by the term test we refer to the particular application of a given
statistical test to a given sampler using a given Boolean formula. Thus, for a given
statistical test and sampler, we conduct one test per available formula.

Each test produces a single p-value, which can be used to make inferences. The
family-wise error rate (FWER) is the probability of making at least one Type I
error when performing multiple tests. The probability α of making a Type I error
is the probability of rejecting the null hypothesis H0 when H0 is true. Or in our
case, the probability of wrongly rejecting the uniformity of a sampler even though
the sampler is uniform.

The probability of making a Type I error if we perform N tests is computed as
follows:

α′ = 1− (1− α)N

with α the significance level of a single test. Thus, α′ increases as the number of
tests N (in our case, formulae) increases. This is undesirable as it may lead us to
wrong conclusions about the sampler under test. If we set α = 0.01 and N = 20
we find α′ = 0.18. This means that we have a probability of 0.18 (if H0 is true)
that at least one test will reject the null hypothesis, which may lead us to a wrong
conclusion. Considering our research questions, this issue needs to be addressed.
There exists a multitude of controlling procedures to alleviate this issue.
Bonferroni Correction

The Bonferroni correction is a classical way of controlling the FWER. If N tests
are performed and we want to ensure a probability of performing a Type I error

58

of at most α, then we set αi = α
N

with αi the significance level of the individual
tests. The Bonferroni correction thus ensures that α′ = 1− (1− αi)N ≤ α without
imposing any assumptions about the dependence between the p-values.
Harmonic Mean p-value (HMP)

The harmonic mean p-value (HMP) [Goo58; Wil19] assesses the significance
of groups of hypothesis tests while also controlling the strong-sense family-wise
error rate. The Harmonic mean p-value improves on the power of the Bonferroni
correction. Additionally, the HMP does not require the p-values to be independent.

The harmonic mean p-value is defined as follows:

p̊R =
∑

i∈R wi∑
i∈R

wi

pi

(6.1)

With R any subset of the m tests, wi the weights of each test, ∑m
i=1 wi = 1 and,

pi the p-value of each test. To perform a family of tests at a significance level of
approximately α, we reject the null hypothesis that none of the p-values in the
subset R are significant when p̊R ≤ αwR (with wR = ∑

i∈R wi). The approximation
is reasonable for a small significance level α and improves with smaller values. In
other words, if we find p̊R ≤ αwR then we can safely assume that at least one of
the tests was significant and thus reject the null hypothesis with a significance level
of approximately α.

In this chapter, we use the HMP. We perform the desired statistical test on a
set of formulae on a given sampler. This gives us a vector of p-values on which we
compute the HMP p̊. We may then compare p̊ to the appropriate significance level
α. If we find p̊ ≤ α (because we compute p̊ on all the p-values we have wR = 1),
then we know that at least one of the tests is significant and we can reject H0.
Otherwise, we fail to reject H0.

6.2.2 Statistical Tests for Uniform Random Sampling
We propose five statistical tests to empirically assess sampler uniformity. The

intuition behind the use of multiple tests is that each test assesses whether a partic-
ular statistical value from the model space is preserved in the sample. Therefore,
the result for a single test is bound to the statistical value it evaluates, which makes
it necessary to execute multiple tests to obtain higher confidence regarding sampling
uniformity. To build the tests, we consider the following hypotheses:

• H0 (null hypothesis): the sampler samples uniformly,
• Ha (alternative hypothesis): the sampler does not sample uniformly.

Pearson’s χ2 Statistical Test (GOF)
The process of examining how well a sample agrees with a probability distribution

is known as a goodness of fit test. We describe below how one can apply Pearson’s

59

χ2 test [Pea00] to uniform random samplers.
Pearson’s χ2 test requires two vectors E and O. The vector E contains the

expected data under H0, and O contains the observed data of a sample S with
S ∈ RF

N , the tuple containing the sampled models.
We define O = (O1, O2, ..., O|RF |) for a sample S as Oi = |{m ∈ S|id(m) = i}|.

With id, a bijective function id : RF → {1, 2, ..., |RF |} ⊆ N. We follow by defining
E = (E1, E2, ..., E|RF |) as Ei = N

|RF | . This follows from the definition of H0. As
we want uniform probability, we expect the same number of occurrences for every
model.

Pearson’s χ2 test statistic is defined as follows:

χ2 =
|RF |∑
i=1

(Oi − Ei)2

Ei

(6.2)

The p-value for Pearson’s one-sided χ2 test (with |RF | − 1 degrees of freedom)
can be derived from the statistic. The p-value is then compared to a desired
significance level α. If the p-value is smaller than α, H0 is rejected and Ha is
accepted. Otherwise, no clear conclusion can be reached, and we fail to reject H0.
In our case, we will simplify the conclusion by accepting H0.

The main disadvantage of the test is that it works with the entire probability
distribution. Thus, it requires an array of elements representing the probability
distribution. This means one value for each possible output. In the case of a PRNG,
this means having an array of size 232 or 264 in the case of 32-bit or 64-bit PRNGs,
respectively. In the case of Boolean formulae, the problem is similar; the hyperspace
is often too large, which prohibits us from allocating an array of the required size,
as a lot of formulae have more than 264 models. Moreover, the GOF test is known
to be unreliable if any expected frequency is below five [Yat34]. In other words, in
the case of uniform random sampling, the test requires us to sample at least five
times the total number of models to get reliable results. Thus, GOF only scales to
small hyperspaces.
Variable Frequency (VF) Statistical Test

Plazar et al. [PAP+19] developed a test in which they compare the expected
variable frequencies with the observed variable frequencies of the sample. We extend
their work by replacing the fixed threshold with a GOF test. This allows us to have
more reliable results.

A uniform sample is expected to be representative of the set of models. Thus,
the observed variable frequencies should not deviate significantly from the expected
frequencies. The VF test only tests that the observed variable frequencies are
representative of the real variable frequencies. While this is not enough to certify
true uniformity, it may be enough depending on the use case. As an example,

60

suppose that a variable a is of interest because the software component a has a bug.
If we know the variable frequency of a, then we have an idea of how widespread the
problem is relative to the entire software product line.

Next, we show how to perform the VF test. The resulting test is similar to the
test performed by Plazar et al.

To test our sampler, we sample N models. Let S ∈ RF
N be the tuple containing

the sampled models. We then perform a frequency test for each variable. We ignore
variables that are always true or always false because any sampler would generate
the correct distribution for these variables as long as the sampled assignments are
models of the formula under test.

To test the individual variable frequencies, we perform Pearson’s χ2 test on
the vectors O and E defined as follows. We define Ov=1 = |{m ∈ S|v ∈ m}|
(resp. Ov=0 = |{m ∈ S|v ̸∈ m}|) as the number of sampled models with the target
variable v set to true (resp. false). We define Ev=1 = N

|RF | |{m ∈ RF |v ∈ m}| (resp.
Ev=0 = N

|RF | |{m ∈ RF |v ̸∈ m}|) as the expected number of models with the target
variable set to true (resp. false) under H0.

We compute Pearson’s χ2 test statistic for each variable as follows:

χ2
v =

∑
i∈{1,0}

(Ov=i − Ev=i)2

Ev=i

(6.3)

We follow by deriving individual p-values pF
v from each one-sided test (with one

degree of freedom). Unfortunately, a direct comparison with a significance level α is
impossible, as performing multiple tests raises the family-wise error rate (FWER),
i.e., performing multiple tests raises the probability of rejecting H0 even though H0
is true (Type I error). To mitigate this, we use the harmonic mean p-value defined
in Subsection 6.2.1. We thus compute all the p-values pF

v associated with every
variable v of F (that satisfies Ev=0 ̸= 0 ∧ Ev=1 ̸= 0) and compute p̊F as shown in
equation 6.4 on the entire set of p-values (we give equal weights to all the p-values).

p̊F =
∑

v∈ΓF
wF

v∑
v∈ΓF

wF
v

pF
v

(6.4)

With ΓF = {v ∈ F |Ev=0 ̸= 0 ∧ Ev=1 ̸= 0} and wF
v = 1

|ΓF | . We reject H0 if we
find p̊F ≤ α.

One may wish to ignore a variable v if Ev=1 or Ev=0 is very small, as this will
increase the required sample size. The reason is that the approximation to the χ2

distribution in the GOF test is known to break down if any expected number of
occurrences is below five [Yat34]. Thus, if we want Ev=i ≥ 5, then we need to adjust

61

N accordingly. If one variable v is true (resp. false) in most models in RF , then
N will increase. Therefore, we may wish to ignore some variables with very low or
very high frequencies if the computational cost is of importance.

Because we will have to repeat the VF test by using multiple formulae as input,
we ask if we may compute the HMP of HMPs. By inserting the HMP formula into
itself, we find:

p̊R =
∑

F ∈R wF∑
F ∈R

wF

p̊F

=
∑

F ∈R wF∑
F ∈R

wF∑
v∈ΓF

wF
v∑

v∈ΓF

wF
v

pF
v

(6.5)

With wF , the weight of a p-value obtained by performing the VF test on a
specific formula F and R, the subset of formulae on which the HMP is computed.
We define wF

v as the weight of a single test within the VF test performed on variable
v of formula F .

In our case, because we compute the HMP over all the individual tests, we know
that ∀ΓF : (∑v∈ΓF

wF
v = 1). We thus obtain:

p̊R =
∑

F ∈R wF∑
F ∈R

wF

1∑
v∈ΓF

wF
v

pF
v

=
∑

F ∈R wF
∑

v∈ΓF
wF

v∑
F ∈R

∑
v∈ΓF

wF wF
v

pF
v

=
∑

F ∈R,v∈ΓF
wF wF

v∑
F ∈R,v∈ΓF

wF wF
v

pF
v

(6.6)

We conclude that in our case, computing the HMP of HMPs is correct, as it is
equivalent to computing the HMP of the original p-values.
Selected Features per Configuration (SFpC) Statistical Test

Heradio et al. [HFG+20] proposed a statistical test called the selected features
per configuration test (SFpC).

62

The main idea of the test is that a formula F will have nk models with exactly
k variables set to true and the remaining |V ar(F)| − k variables set to false with
nk defined as follows

nk = |{m ∈ RF | k = σ(m)}| (6.7)

σ(m) = |{v ∈ V ar(F)|v ∈ m}| (6.8)

nk can be computed for every 0 ≤ k ≤ |V ar(F)| with k ∈ N. If we compute
nk

|RF | for every k, we obtain the expected discrete probability distribution, i.e., the
distribution that should be mimicked by the sampler if the sampler is uniform.

Testing a sampler is performed as follows. Let S ∈ RF
N be the tuple containing

the sampled models. The authors follow by defining Ek = nk
N

|RF | , the expected
number of models with exactly k variables set to true and Ok = |{m ∈ S| σ(m) = k}|,
the number of observed models in the sample S with exactly k variables set to true.

We compute Pearson’s χ2 test statistic as follows:

χ2 =
∑
k∈Γ

(Ok − Ek)2

Ek

(6.9)

with Γ = {k ∈ N| 0 ≤ k ≤ |V ar(F)| ∧ Ek ≠ 0}. A p-value p is derived by
performing Pearson’s one-sided χ2 test (with |Γ| − 1 degrees of freedom). We reject
H0 if we find p ≤ α with α, a predefined significance level.

The original SFpC test implementation [HFG+20] uses the Jensen-Shannon
divergence [Lin91] and computes the χ2 test statistic with the results from [GBC+02].
Our implementation differs from the original implementation in [HFG+20] (by using
equation 6.9 to compute the χ2 test statistic) because we could not run their code.
Modbit Statistical Test

Next, we detail a variant of the SFpC test. The SFpC test can be very effective,
but it tends to require large sample sizes. One effective way of reducing the sample
size is to reduce the number of categories.

The SFpC test defines one category for each value 0 ≤ k ≤ |Var(F)|. To reduce
the number of categories, we define a category for each value k (mod q) with q an
integer such that 2 ≤ q ≤ |Var(F)|+ 1. Our strategy for this test is the following.
We redefine nk for the modbit test as follows.

nk = |{m ∈ RF | k ≡ σ(m) (mod q)}| (6.10)

σ(m) = |{v ∈ V ar(F)|v ∈ m}| (6.11)

The remainder of the test is performed similarly to the SFpC test.
Let S ∈ RF

N be the tuple containing the sampled models. We follow by defining
Ek = nk

N
|RF | , the expected number of models with exactly k (mod q) variables set

63

to true and Ok = |{m ∈ S| k ≡ σ(m) (mod q)}| , the number of observed models
in the sample S with exactly k (mod q) variables set to true.

We compute Pearson’s χ2 test statistic as follows:

χ2 =
∑
k∈Γ

(Ok − Ek)2

Ek

(6.12)

with Γ = {k ∈ N| 0 ≤ k ≤ |V ar(F)| ∧ Ek ̸= 0}. A p-value p is derived by
performing Pearson’s one-sided χ2 test (with |Γ| − 1 degrees of freedom). We reject
H0 if we find p ≤ α with α, a predefined significance level.

The main strength of this test is its scalability. Since the number of categories
can vary greatly with the parameter q, we can expect the required sample size N
for the test to be relatively small when q is small. However, the reliability of the
test is also limited by the fact that the number of categories is small when q is
small. The test is unable to detect the non-uniformity of a sampler if the sampler
under test somehow generates a sample with the right Oi values. This may happen
if a sampler was specifically designed to have this property. To truly assess the
uniformity of a sampler, other tests and larger values of q should be used.
Birthday Problem Statistical Test

We finish by introducing a test inspired by the birthday paradox and adapted
from an existing test on PRNGs [ONe18]. Although the test is not necessarily
considered to be the most reliable within the PRNG community, it does have some
advantages. First, the test is simple enough to adapt to URS, as the required
knowledge is limited to the sample size and the total number of models for the input
Boolean formula. Second, it shows us whether a sampler produced either too many
or not enough duplicates during the sampling process. If too many duplicates are
produced, then the sample may be of little value as the number of unique models is
low. If too few duplicates have been produced, then the sample may not be uniform,
but at least it likely explores a larger portion of the hyperspace. We derive below
the statistical test from the classical birthday problem [BH19] to test the hypothesis
that a sampler samples uniformly at random.

The statistics considered, noted R, is the number of repeated models, i.e., the
number of sampled unordered pairs where both models are equal. The distribution of
the statistic R under the null hypothesis (uniform random sampling) is a well-known
result of the ’birthday problem’. The number of repeated pairs R has approximately
a Poisson distribution: R ∼̇Pois(λ) with λ = (N

2)
|RF | , N the number of sampled

models [BH19, p. 179]. Empirically, we sample N models with the sampler under
test to compute the observed number of repeated models noted r. We consider a
two-sided test here, since our alternative hypothesis can imply a deviation from
uniform sampling by the right (a higher number of repeated models) or by the

64

left (a lower number of repeated models). The p-value of our two-sided birthday
problem statistical test can be computed as follows:

p = 2 min{P(R≥ r | H0), P(R≤ r | H0)}
= 2 min{1− FPois(λ)(r − 1), FPois(λ)(r)}

(6.13)

with FPois(λ)(r) the cumulative distribution function (CDF) of the Poisson distribu-
tion parameterised by λ. Then, the p-value of our birthday problem statistical test
allows us to reject or not the null hypothesis.

6.3 Experimental Study
We define below our research questions and the general experimental settings

common to all our experiments. The specific settings of each research question are
detailed in Section 6.4.

6.3.1 Research Questions
Our study aims to answer the following research questions:
1. RQ1: Which URS tools are uniform according to the different

statistical tests? We assess the uniformity of the current implementations
of state-of-the-art sampling methods. To achieve this, we apply our proposed
statistical tests over a set of formulae and report the results for each statistical
test and sampler.

2. RQ2: What is the execution time of each statistical test? Statistical
tests have differences in reliability, meaning that the statistical values they
focus on differ, leading to distinct abilities to detect non-uniformity. We
therefore measure the execution time of each test on all samplers and input
formulae. We contrast these measurements with the ability of each test to
conclude non-uniformity.

3. RQ3: How do different formula datasets compare in non-uniformity
detection ability? We hypothesise that statistical test outcomes are strongly
bound to the formulae used and that this can be a source of bias in uniformity
test results. Specifically, we investigate to what extent synthetic formulae

— which are simpler and faster to process — are useful to conclude about
samplers’ uniformity on real-world formulae.

6.3.2 Datasets
We use a large number of well-known and publicly available models in our study,

which are of various complexities and are either feature models or general Boolean
formulae.

65

Feature Model Benchmark Properties

In total, we use the feature models of 128 real-world configurable systems (Linux,
eCos, toybox, JHipster, etc.) with varying sizes and complexity. We first rely on 117
feature models used in [KTM+17; KTS+18]. Most feature models contain between
1,221 and 1,266 features. Of these 117 models, 107 comprise between 2,968 and
4,138 cross-tree constraints, while one has 14,295, and the other nine have between
49,770 and 50,606 cross-tree constraints [KTM+17; KTS+18]. Second, we include
10 additional feature models used in [LGC+15] and not in [KTM+17; KTS+18];
they also contain a large number of features (e.g., more than 6,000). Third, we
also add the JHipster feature model [Rai15; HNA+18] to the study, a realistic but
relatively smaller feature model (45 variables, 26,000+ configurations). We later
refer to these benchmarks as the feature model benchmark. Once put in conjunctive
normal form, these instances typically contain between 1 and 15 thousand variables
and up to 340 thousand clauses. The hardest of them, modelling the Linux kernel
configuration, contains more than 6 thousand variables, and 340 thousand clauses,
and is generally seen as a milestone in configurable system analysis.

General Boolean Formulae

In addition to these feature models, we use the industrial SAT formulae as used
in [DLB+18]. Since these formulae are much smaller than the feature models we use
(typically a few thousand clauses), they will provide a basis of results for statistical
analysis, in case a solver cannot produce enough models on the harder formulae.
We later refer to these benchmarks as the non-feature model benchmarks.

Both of these datasets, the feature model benchmark and the general Boolean
formulae, have been collected by Plazar et al. [PAP+19].

Filtered Dataset Ω

Performing tests on samplers requires us to generate a large number of models.
Thus, to limit the computation time, we combine both the feature model dataset
and the general Boolean formulae. We then ran the UniGen3 sampler on all of
these formulae and measured the time and memory UniGen3 required to sample
1000 models. We removed all the formulae that required more than 10 minutes or
more than 400MB of memory, which left us with 195 formulae. In the following
sections, we will refer to this dataset as the Ω dataset.

We chose UniGen3 as a reference sampler as it has theoretical guarantees and
it is the slowest sampler on our list according to our experiments (if we exclude
Smarch). Given how slow Smarch was in our experiments, relying on Smarch to
filter the dataset would have left us with a smaller dataset.

66

Synthetic Formulae

To test the importance of a dataset, we also generated synthetic k-CNF formulae.
To generate a k-CNF formula, we use the classical k-CNF model used by [MSL92].
The model generates clauses of the desired length k until the formula has the desired
number of constraints. A clause is generated by selecting k unique variables from a
predefined set of variables. Each variable is negated with probability 1

2 .
The first synthetic dataset is r30c90, which contains 300 satisfiable 3-CNF

formulae consisting of 30 variables and 90 clauses. The second synthetic dataset is
r30c114, which contains 300 satisfiable 3-CNF formulae consisting of 30 variables
and 114 clauses.

We also generated a dataset named r30c150b1000, which contains 300 3-CNF
formulae. The r30c150b1000 dataset was generated with the model proposed by
[EO22]. Each formula is generated with 30 variables and 150 clauses. Then, for each
formula, 1000 random variable assignments are generated (not necessarily models
of the formula). For each generated variable assignment, we check that each clause
is satisfied by the assignment; if not, we randomly negate a literal of the unsatisfied
clause. Negating a single literal is enough to render the clause satisfied.

The datasets and the programs used to generate the datasets are available on
our companion GitHub [Zey25c].

6.3.3 Infrastructure
The experiments were computed on an HPC containing 354 nodes, each of which

has 256 GB of RAM and 2 AMD Epyc ROME 7H12 CPUs running at 2.6 GHz.

6.3.4 Computation Budget
We performed each statistical test on each sampler and each dataset. We define

a unit as one statistical test, one sampler, and one dataset. Each unit had two
days on a full node of the HPC. If the test was not finished by then, it would be
interrupted, and we would use the available results.

As we require large amounts of models (and because some samplers are designed
to generate no duplicate models, even though some statistical tests require them),
we decided to generate models in batches. This means that we repeatedly called
the samplers asking for 1000 models until the required number of models was met.
The sampling process had a timeout of 5 hours. This means that if sampling the
required number of models would take longer than 5 hours, then the test is not
performed on the input formula (but may be performed on other formulae within
the unit). Additional results for batch sizes of 2000 and 4000 models are available
on our companion GitHub [Zey25c].

67

6.3.5 Hyperparameters
Some samplers require hyperparameters to function, and almost all require a

random seed to initialise their pseudorandom number generator. In the absence
of consistent documentation specifying seed formats or ranges, we conservatively
restrict seeds to 31-bit signed integers (from 0 to 231−1), which ensures compatibility
with older and simpler PRNGs that are limited to 32-bit or 31-bit seeds. A new
seed is generated for each invocation using Python’s random module.

STS requires a buffer size, which is the number of partial assignments kept in
memory during the search. We set the buffer size to the same value as the batch
size to maximise model space exploration. This is larger than the default value of
50. For CMSGen and UniGen3, we use the default hyperparameters provided by
the authors. In the version used, UniGen3 was configured with κ = 0.638, ϵ = 0.8,
and δ = 0.2. For CMSGen, the fixedconfl parameter was set to 100, specifying
the number of allowed conflicts before a restart is triggered.

The expected frequencies (Ei) required by the statistical tests were computed by
first compiling the input formula to d-DNNF. We then applied algorithms similar
to those presented in [HFM+19] to calculate the expected frequencies. Since the
goodness-of-fit (GOF) test is known to be unreliable when any expected frequency
falls below five [Yat34], and because our analysis relies on the GOF test, we
conservatively set the sample size N such that all expected frequencies Ei exceed
ten. As a result, the value of N depends on the structure of the input Boolean
formula.

6.4 Results
6.4.1 RQ1: Uniformity of Samplers

In this section, we present the general results regarding uniformity performed on
our Ω dataset. Tables 6.1 and 6.2 report the results. For each test, we split them
into two columns: the first column is the number of formulae on which we managed
to perform the test, and the second is the p-value. A bold p-value indicates that
the p-value is greater than our predefined significance level α = 0.01 (and thus
is uniform according to our test). The tests were not necessarily performed on
all the formulae because the sampler may have crashed or the sampling process
may have been too time-consuming and thus interrupted before it could terminate,
incidentally cancelling the test.

We observe that half of the samplers fail the modbit test on the Ω dataset,
even for a low threshold (q = 2), with the exception of KUS, SPUR, UniGen3, and
BDDSampler. Only UniGen3 and BDDSampler pass the variable frequency (VF)
test. This result is of particular interest because SPUR, which is used as a reference
sampler in Barbarik [MPC20], is detected as non-uniform by our tests. These

68

findings are consistent with those reported by Heradio et al. [HFG+22], reinforcing
concerns about SPUR’s uniformity. Among all evaluated tools, UniGen3 appears
to be the only sampler that consistently passes all tests, suggesting it is likely the
only truly uniform sampler in our study.

The birthday test fails to detect the non-uniformity of Smarch, which is identified
by all other tests. Moreover, Smarch contains an off-by-one error, as demonstrated
by its behaviour in edge cases: it crashes when given a formula with only one model
and consistently returns the same model when the formula has exactly two models.
This highlights the limitations of the birthday test as a standalone measure. While
it is a useful test, it appears less reliable than others. Therefore, its results should
be interpreted in conjunction with stronger tests such as the VF and SFpC tests.

Our results suggest that the VF test is a reliable method for detecting non-
uniformity. The SFpC test serves as a useful complement to confirm VF results.
The modbit test also shows strong reliability, but only when applied with higher
values of q (q ≥ 64).

BDDSampler performs well in most tests but fails the SFpC test and the
modbit test at higher values of q (q ≥ 64), indicating potential weaknesses under
more demanding conditions. Given that BDDSampler comes with theoretical
guarantees and only fails the more stringent tests, we hypothesise that this is
due to a suboptimal choice of PRNG. To test this hypothesis, we applied the
BigCrush test suite from the TestU01 library [LS07], which is specifically designed
to evaluate the quality of PRNGs. The PRNG used by BDDSampler consistently
failed the WeightDistrib, SumCollector, and HammingIndep tests, indicating that
this PRNG is likely unsuitable for high-quality randomness.

The results obtained for KUS are somewhat surprising, given that KUS provides
theoretical guarantees of uniformity. Fortunately, KUS outputs the model count of
the parsed d-DNNF during execution, which allows for verification. By comparing
these model counts with those produced by D4, we observed discrepancies in several
cases. This suggests that KUS may contain a bug in either its d-DNNF parsing
or model counting procedure, which could explain the observed deviations from
uniformity in our tests. We note that KUS passed the GOF test. This is somewhat
surprising, as it contradicts our other results. However, given that the GOF test
was performed successfully on a much lower number of formulae, we argue that the
test is less reliable.

To further validate our general conclusion and mitigate potential biases intro-
duced by the chosen batch size, we repeated our experiments with batch sizes of 2000
and 4000 models. The results are available in our companion GitHub repository
[Zey25c]. We reached the same conclusion across different batch sizes, indicating
that batch size has a negligible influence on our results.

As noted above, most samplers are not uniform. Moreover, it is well-known that

69

VF Birthday SFpC GOF
Sampler #F p-value #F p-value #F p-value #F p-value

KUS 192 0.000 142 0.001 92 0.000 69 0.138
QuickSampler 186 0.000 139 0.000 77 0.000 62 0.000

Smarch 127 0.000 78 0.023 24 0.000 28 0.000
SPUR 189 0.000 145 0.000 99 0.000 78 0.000
STS 191 0.000 138 0.000 81 0.000 69 0.000

CMSGen 143 0.000 93 0.000 71 0.000 61 0.000
UniGen3 183 0.083 130 0.274 76 0.253 71 0.353

BDDSampler 118 0.099 92 0.274 68 0.000 66 0.000

Table 6.1: Experimental results for the Ω dataset. For each test (and for each
formula), each sampler was called multiple times to generate samples of size 1000.
The bold p-values are all greater than our significance level α = 0.01. #F indicates
the number of formulae on which the test was successfully performed (i.e., without
timeouts or out-of-memory errors).

q = 2 q = 8 q = 32 q = 64
Sampler #F p-value #F p-value #F p-value #F p-value

KUS 193 0.137 193 0.000 189 0.000 135 0.000
QuickSampler 189 0.000 188 0.000 188 0.000 126 0.000

Smarch 187 0.000 186 0.000 142 0.000 46 0.000
SPUR 193 0.142 193 0.185 193 0.000 142 0.000
STS 193 0.000 193 0.000 192 0.000 132 0.000

CMSGen 144 0.000 144 0.000 144 0.000 116 0.000
UniGen3 192 0.159 192 0.234 192 0.268 122 0.116

BDDSampler 118 0.165 118 0.182 118 0.058 76 0.000

Table 6.2: Experimental results for modbit test on the Ω dataset. For each test
(and for each formula), each sampler was called multiple times to generate samples
of size 1000. The bold p-values are all greater than our significance level α = 0.01.
#F indicates the number of formulae on which the test was successfully performed
(i.e., without timeouts or out-of-memory errors).

70

Uniformity Observed number of repetitions
Sampler #F p-value min max average median

KUS 142 0.001 0 18 9.01 10
QuickSampler 139 0.000 0 29858 480.01 4

Smarch 78 0.023 3 22 10.71 10
SPUR 145 0.000 4 307 34.48 12
STS 138 0.000 0 27 5.20 4

CMSGen 93 0.000 5 12846 991.37 33
UniGen3 130 0.274 3 18 9.78 10

BDDSampler 92 0.274 3 17 9.96 10

Table 6.3: Extended experimental results for the birthday test with the Ω dataset.
For each formula, each sampler was called multiple times to generate samples of
size 1000. The bold p-values are all greater than our significance level α = 0.01.
#F indicates the number of formulae on which the test was successfully performed
(i.e., without timeouts or out-of-memory errors).

there exist formulae for which uniform sampling does not scale. Thus, heuristic-
based samplers become interesting. However, not all heuristic-based samplers are
equal.

The birthday test provides very insightful information on samplers (in addition
to the p-value), as the birthday test studies the number of repetitions. The observed
number of repetitions may be of particular interest if the user wishes to use a
heuristic-based sampler. A sampler with too many repetitions is non-uniform
and often returns the same model. A sampler with too few repetitions is non-
uniform and seldom returns the same model. The first case would lead to the
exploration of a smaller part of the model space. On the other hand, generating
fewer repetitions than necessary for uniformity on large model spaces would indicate
a better exploration of said model space. Suppose that a user wishes to sample
uniformly from a formula, but none of the theoretically uniform tools fit into the
user’s budget. The user thus has the choice between QuickSampler, CMSGen, and
STS. The user may sample from the target formula by using all the samplers and
comparing the observed numbers of repetitions. The sampler generating the fewest
repetitions is likely a good candidate.

Table 6.3 shows the detailed results for the Birthday test on our Ω dataset. In
our experiments, we set the expected number of repetitions to be approximately 10,
as shown by the average number of repetitions observed on the models generated
by UniGen3 (9.78). The CMSGen sampler generated on average 991.37 repetitions.
This number is likely too high for most users. The same is true for QuickSampler,
which generated an average of 480.01 repetitions. STS on the other hand generated

71

VF Birthday SFpC GOF
Sampler #F time (h) #F time (h) #F time (h) #F time (h)

KUS 192 7.3 142 12.3 92 52.8 69 33.4
QuickSampler 186 17.3 139 32.3 77 63.1 62 42.2

Smarch 127 143.8 78 69.1 24 14.2 28 21.7
SPUR 189 4.4 145 19.9 99 37.6 78 14.4
STS 191 26.7 138 20.8 81 38.1 69 26.0

CMSGen 143 1.1 93 16.5 71 16.8 61 30.3
UniGen3 183 31.2 130 51.1 76 41.0 71 32.4

BDDSampler 118 3.2 92 4.5 68 9.6 66 8.6

Table 6.4: Scalability results for the Ω dataset. For each test (and for each formula),
each sampler was called multiple times to generate samples of size 1000. The
indicated time (in hours) is the accumulated time across all the formulae for which
the test was performed successfully. #F indicates the number of formulae on which
the test was successfully performed (i.e., without timeouts or out-of-memory errors).

an average of 5.2 repetitions, which is too low to be uniform but likely preferable
to QuickSampler and CMSGen. Thus, a user who cannot afford uniform sampling
should likely rely on STS for their sampling tasks.

Answer to RQ1: According to our results, the modbit test is not very
reliable for lower values of q (q < 64). The variable frequency test detected the
non-uniformity of every sampler, except for UniGen3 and BDDSampler. The
SFpC and modbit (q ≥ 64) tests detected a lack of uniformity in the sample
generated with BDDSampler. The GOF test requires too many models to be
usable, given the computational cost of sampling.

The birthday test is an interesting addition to the set of tests. It allows for
uniformity testing and provides further insight into the capacity of samplers to
explore the model space.

6.4.2 RQ2: Scalability
In this subsection, we explore the scalability of each test, or in other words, the

computational cost of each statistical test presented in this chapter.
Tables 6.4 and 6.5 show the sequential execution time of each test for the Ω

dataset on each sampler. The sequential execution time is the sum of the execution
times for each formula computed on the indicated number of formulae (and it
does not contain the formulae that timed out or had an error). A first striking
observation is that Smarch is significantly slower than all the other samplers. A

72

q = 2 q = 8 q = 32 q = 64
Sampler #F time (h) #F time (h) #F time (h) #F time (h)

KUS 193 0.8 193 0.8 189 5.1 135 34.9
QuickSampler 189 6.6 188 4.0 188 11.2 126 61.9

Smarch 187 205.6 186 203.0 142 218.7 46 52.6
SPUR 193 4.1 193 4.2 193 5.5 142 38.0
STS 193 8.1 193 8.1 192 23.1 132 47.7

CMSGen 144 0.1 144 0.1 144 0.8 116 26.4
UniGen3 192 2.5 192 2.6 192 11.2 122 58.1

BDDSampler 118 0.7 118 0.7 118 6.8 76 7.6

Table 6.5: Scalability results for the modbit test on the Ω dataset. For each test
(and for each formula), each sampler was called multiple times to generate samples
of size 1000. The indicated time (in hours) is the accumulated time across all the
formulae for which the test was performed successfully. #F indicates the number of
formulae on which the test was successfully performed (i.e., without timeouts or
out-of-memory errors).

second, more subtle observation is that the execution time increases when switching
from the modbit (q ≤ 32) test to the VF test and from the VF test to the SFpC
test. At the same time, the number of formulae on which the tests were performed
successfully gradually decreases from one test to another. This indicates that the
SFpC test requires more computation time than the VF test, which requires more
computation time than the modbit (q ≤ 32) test. The birthday test is more nuanced
regarding the accumulated computation time. However, regarding the number of
formulae on which the birthday test was performed successfully, we find that the
birthday test is more expensive than the VF test and cheaper than the SFpC test.
The GOF test was successfully performed on the smallest number of formulae. We
thus conclude that GOF is the most expensive test to perform.

Given our results, if we order the tests according to their computational cost,
we find the following ordering: Modbit (q ≤ 32) ≤C VF ≤C Birthday ≤C Modbit
(q ≥ 64) ≤C SFpC ≤C GOF, with modbit (q ≤ 32) the cheapest test and GOF the
most expensive test.

Smarch seems to observe a decrease in execution time when reading the table
according to our ordering. However, this is coupled with a drastic decrease in the
number of formulae successfully processed.

By considering our results on scalability and uniformity, we propose the ordering
presented in Figure 6.1. The dashed lines indicate optional transitions. A user with
computational budget limitations would start testing with the VF test and then
proceed with the SFpC test. If the user has a bigger computational budget, then they

73

start VF

Modbit (q ≤ 32)

Birthday Modbit (q ≥ 64)

SFpC GOF

Figure 6.1: Statistical test ordering for uniform random sampling. The dashed lines
indicate optional transitions. A user may thus adapt the executed tests depending
on their needs and computational budget.

may include the modbit (q ≤ 32) test before the VF test or the birthday and modbit
(q ≥ 64) tests after the VF test. The choice depends on the user’s requirements. If
the user wants to analyse the observed number of repetitions, then the birthday
test is interesting. However, if the user has many non-uniform samplers, then the
modbit (q ≤ 32) test may be a good candidate for fast ’pre-testing’. Additionally,
the choice depends on the user’s computational budget, as the modbit (q ≤ 32) test
is cheaper than the birthday test. The GOF test is optional as it only scales to the
smallest formulae.

Answer to RQ2: After an analysis of the computational cost of each
test, we find the following ordering: Modbit (q ≤ 32) ≤C VF ≤C Birthday ≤C

Modbit (q ≥ 64) ≤C SFpC ≤C GOF, with Modbit (q ≤ 32) the cheapest test
and GOF the most expensive test.

We recommend performing the tests according to the ordering in Figure 6.1.
If performing every test is too expensive, we recommend excluding the GOF
test first.

6.4.3 RQ3: On the Influence of Formula Choice
In this section, we explore the influence of the dataset on the uniformity results.

The goal is to understand if the dataset influences the uniformity result returned
by our statistical tests. A negative answer would allow us to focus our testing on
small formulae that are easy to sample from. A positive answer would mean that
to obtain reliable results, one needs to choose their dataset carefully.

To explore the influence of the dataset, we also performed the statistical tests
with synthetic formulae. We may then compare these results with the results on
real-world formulae.

74

Modbit q = 32 VF Birthday SFpC GOF
Sampler #F p-value #F p-value #F p-value #F p-value #F p-value

KUS 300 0.133 300 0.065 300 0.061 300 0.131 300 0.096
QuickSampler 300 0.000 300 0.000 300 0.000 300 0.000 300 0.000

Smarch 39 0.074 293 0.017 300 0.201 42 0.134 23 0.036
SPUR 300 0.105 300 0.106 300 0.000 300 0.129 300 0.000
STS 300 0.069 300 0.000 300 0.000 300 0.007 300 0.993

CMSGen 300 0.000 300 0.000 300 0.000 300 0.000 300 0.000
UniGen3 300 0.100 300 0.102 300 0.207 300 0.028 300 0.151

BDDSampler 300 0.120 300 0.093 300 0.100 300 0.134 300 0.169

Table 6.6: Experimental results for the r30c90 dataset. For each test (and for each
formula), each sampler was called multiple times to generate samples of size 1000.
The bold p-values are all greater than our significance level α = 0.01. #F indicates
the number of formulae on which the test was successfully performed (i.e., without
timeouts or out-of-memory errors).

Uniformity

We start by exploring the uniformity results obtained by performing the sta-
tistical tests on synthetic datasets. Tables 6.6, 6.7, and 6.8 show the uniformity
results on the synthetic datasets. As with Table 6.1, a bold p-value indicates that
the p-value is greater than our predefined significance level α = 0.01 (and is thus
uniform according to our test).

Our first observation is that KUS seems to be uniform on the synthetic formulae
as it fails no test. We also observe that CMSGen fails the modbit test on every
synthetic dataset. Moreover, CMSGen fails every other test on every dataset, and
we thus conclude that CMSGen is not uniform.

We follow by observing that the dataset used in Table 6.6 is slightly more
effective at detecting non-uniformity than the dataset used in Table 6.7. However,
the VF test fails to detect the non-uniformity of Smarch with the r30c90 dataset,
while it succeeds with the r30c114 dataset. Thus, to detect the non-uniformity of as
many samplers as possible by using the VF test and synthetic datasets, we would
need to combine the results obtained with both datasets, r30c90 and r30c114. The
dataset used in Table 6.8 seems to add little value to the other synthetic datasets.

We continue this subsection by comparing the uniformity results with the ones
found in Table 6.1, which were computed on our Ω dataset. This should give us
insights into the importance of dataset choice.

We start by noting that overall, the tests are significantly less reliable on synthetic
formulae as they eliminate fewer samplers than in Table 6.1. Next, our results on
synthetic formulae indicate that KUS is uniform and gives us mixed results on STS.
The results in Table 6.1 are much clearer as both STS and KUS fail every test

75

Modbit q = 32 VF Birthday SFpC GOF
Sampler #F p-value #F p-value #F p-value #F p-value #F p-value

KUS 300 0.205 300 0.053 300 0.127 300 0.177 300 0.161
QuickSampler 296 0.000 296 0.000 300 0.000 296 0.000 300 0.000

Smarch 288 0.000 296 0.000 296 0.061 288 0.000 284 0.001
SPUR 300 0.101 300 0.084 300 0.000 300 0.216 300 0.000
STS 300 0.903 300 0.077 300 0.000 300 0.986 300 1.000

CMSGen 300 0.000 300 0.000 300 0.000 300 0.000 300 0.000
UniGen3 300 0.130 300 0.109 300 0.110 300 0.175 300 0.062

BDDSampler 300 0.161 300 0.076 300 0.180 300 0.138 300 0.164

Table 6.7: Experimental results for the r30c114 dataset. For each test (and for each
formula), each sampler was called multiple times to generate samples of size 1000.
The bold p-values are all greater than our significance level α = 0.01. #F indicates
the number of formulae on which the test was successfully performed (i.e., without
timeouts or out-of-memory errors).

Modbit q = 32 VF Birthday SFpC GOF
Sampler #F p-value #F p-value #F p-value #F p-value #F p-value

KUS 300 0.197 300 0.097 300 0.169 300 0.077 300 0.188
QuickSampler 300 0.000 300 0.000 300 0.000 300 0.000 300 0.000

Smarch 43 0.158 281 0.100 300 0.010 49 0.198 26 0.124
SPUR 300 0.061 300 0.057 300 0.000 300 0.170 300 0.000
STS 300 0.000 300 0.000 300 0.000 300 0.008 300 1.000

CMSGen 300 0.000 300 0.000 300 0.000 300 0.000 300 0.000
UniGen3 300 0.074 300 0.065 300 0.104 300 0.124 300 0.032

BDDSampler 300 0.161 300 0.087 300 0.178 300 0.087 300 0.157

Table 6.8: Experimental results for the r30c150b1000 dataset. For each test (and
for each formula), each sampler was called multiple times to generate samples of
size 1000. The bold p-values are all greater than our significance level α = 0.01.
#F indicates the number of formulae on which the test was successfully performed
(i.e., without timeouts or out-of-memory errors).

76

Modbit q = 32 VF Birthday SFpC GOF
Sampler #F time (h) #F time (h) #F time (h) #F time (h) #F time (h)

KUS 300 0.8 300 0.0 300 0.0 300 0.8 300 1.1
QuickSampler 300 2.5 300 0.2 300 0.1 300 2.5 300 3.5

Smarch 39 100.2 293 146.0 300 118.7 42 107.0 23 55.4
SPUR 300 0.3 300 0.0 300 0.0 300 0.3 300 0.4
STS 300 0.3 300 0.0 300 0.0 300 0.3 300 0.4

CMSGen 300 0.1 300 0.0 300 0.0 300 0.1 300 0.2
UniGen3 300 1.5 300 0.1 300 0.0 300 1.5 300 2.3

BDDSampler 300 0.1 300 0.0 300 0.0 300 0.1 300 0.2

Table 6.9: Scalability results for the r30c90 dataset. For each test (and for each
formula), each sampler was called multiple times to generate samples of size 1000.
The indicated time (in hours) is the accumulated time across all the formulae for
which the test was performed successfully. #F indicates the number of formulae on
which the test was successfully performed (i.e., without timeouts or out-of-memory
errors).

except for the GOF test (and the modbit (q < 8) test for KUS). Thus, we conclude
that the choice of the dataset is important for reliable test results.
Scalability

We continue this subsection by exploring the difference in scalability between
the real-world dataset and the synthetic datasets. This will give us further insights
regarding the relevance of synthetic datasets.

Table 6.9 shows the sequential execution time of each test for the r30c90 dataset
on each sampler. We observe that except for the Smarch sampler, the execution
times are generally very low (under 1 hour).

By comparing Tables 6.4 and 6.9, we notice that the synthetic dataset is
significantly faster to process than the Ω dataset. As an example, the VF test on
STS required 26.7 hours to be performed on the Ω dataset and required around 0.02
hours to be performed on the r30c90 dataset. The SFpC time budget for STS on
the synthetic dataset was 0.3 hours, which is also less than required by the VF test
on the Ω dataset and also less than the modbit (q ≤ 16) test on the Ω dataset (8.3
hours). However, all of these tests have the same conclusion: STS is not uniform.
We thus argue that fast ’pre-testing’ may be performed by using synthetic datasets
to detect the majority of non-uniform samplers quickly. This would allow one to
filter a lot of non-uniform samplers while testing and only perform more expensive
tests on more expensive datasets if a sampler ’survives’ the ’pre-testing’.

Answer to RQ3: We conclude that the dataset choice can drastically bias
the uniformity conclusion. Specifically, if a sampler fails a test on a synthetic

77

benchmark, then it is unlikely to pass the test on a real-world formula. The
contraposition, however, does not hold. Thus, we recommend using synthetic
formulae to quickly eliminate a large number of samplers before considering
larger, real-world formulae.

6.4.4 Discussion on Uniformity and Statistical Test Results
Every statistical test presented in this article has different strengths and weak-

nesses. For example, the modbit test operates on q categories. It is thus likely to
require fewer samples for small values of q as this means that it is easier to have the
required number of observations in each category (unless there is a strong imbalance
between the q categories). The low sample size is the modbit test’s biggest strength.
However, if the non-uniformity of a sampler does not generate an effect across
these q categories, then the modbit test will not detect it, thus the test’s biggest
weakness. A sampler may be engineered to specifically pass the modbit test. Our
results show that SPUR is uniform according to the modbit (q < 32) test but not
uniform according to the VF test, which further confirms our claim that using a
single statistical test gives unreliable results. This is also the conclusion of the
PRNG community as it is standard practice in statistical testing of pseudo-random
number generators (PRNG) [RSN+01].

We observe from our results that formula choice has an impact on test results.
For example, KUS was detected as not uniform on the real-world formulae while
being uniform on the synthetic datasets. This gives us two insights. First, testing a
sampler on a single formula is not enough. Second, the used dataset should contain
a variety of formulae to maximise the coverage of a sampler (similar to software
testing).

Our next observation is that in most cases, a sampler (whether uniform or not)
will usually fail a test on at least a few formulae. Statistical tests have a non-zero
probability of returning the wrong answer (i.e., Type I error). That is, sometimes a
non-uniform sampler will pass a test, and sometimes a uniform sampler will fail a
test. If a sampler is uniform, then the p-values returned by the statistical tests will
also have a uniform distribution [KPN09]. This means that a sampler failing a test
on a single formula (if we test with multiple formulae) is not enough to determine
if the sampler is not uniform. This raises the question: how many failed tests
are too many? Luckily, the issue of performing multiple statistical tests and its
consequences has been studied. We use the HMP to mitigate these issues. By using
the HMP, we can summarise the test results for a dataset with a single p-value,
thus simplifying the interpretation.

To conclude, we need to test our samplers by using multiple tests and by using a
diverse set of formulae to explore the uniformity of the samplers as much as possible.

78

Performing multiple tests means that we may find a sampler that will pass some
tests and fail others. To decide whether a sampler is uniform or not, we look at the
consistency of the results instead of the specific results. If we test a sampler with
five tests and the sampler fails three of the tests, then we may reject the uniformity
of the sampler with high confidence. However, if a sampler only fails one test, then
the sampler is likely uniform, and the failed test may be due to bad luck.

6.5 Threats to Validity
As for any empirical study, there are some threats to consider.

Internal Validity
As with any statistical test, there is the possibility of wrongly rejecting or

accepting H0. We mitigate the probability of falsely rejecting H0 by choosing a low
significance level α = 0.01. We believe that falsely accepting H0 is not an issue,
considering our results (UniGen3 being the only sampler that is deemed uniform by
our tests and having theoretical guarantees of uniformity).
External Validity

We cannot guarantee that our findings generalise to any formula and every
sampler. There are multiple reasons behind this. For example, a sampler could
be specifically engineered to overfit our battery of statistical tests without being
uniform, which would require the development of new statistical tests. Another
example was presented in this chapter with the synthetic formula benchmarks. As
shown in our results, the quality of the dataset is important to have reliable results.
As such, we cannot guarantee that there does not exist a dataset A, such that a
sampler would be uniform on the real-world formulae used in this chapter but not
uniform on the dataset A. To mitigate these threats, we selected multiple statistical
tests that test different properties of the sampler and a range of SAT formulae from
multiple sources. The formulae encode different types of models: Electronic circuits,
algorithmic problems, Linux kernels, Unix command line tools, configuration tools,
etc. [CMV14; CFM+15; DLB+18; PAP+19; APC21; HNA+18].

6.6 Conclusion
To conclude, we developed a series of statistical tests to test the practical

uniformity of uniform random samplers. By using these tests, we have shown that
most sampler implementations do not produce samples with uniform distribution,
thus demonstrating the need for more systematic testing of uniform random samplers
in general. Systematic testing would allow sampler developers to catch bugs in
their implementation (if the sampler is not heuristic-based) before publication. In
addition, our battery of tests can be used to accelerate the development of new
samplers as theoretical proofs of uniformity become less important.

79

Furthermore, we used synthetic formulae to demonstrate that the dataset used
to test the uniform random samplers is important. We have shown that before
any testing is done, a dataset should be constructed from a wide range of sources
to achieve reliable results. Sadly, these results also imply that exclusively using
small formulae to lower the computational cost of testing is not a good idea. If a
sampler is deemed non-uniform on a computationally easy dataset, then further
testing is likely not necessary. If, however, the sampler is deemed uniform, then
further testing on more diverse and often more computationally demanding datasets
is likely necessary.

Finally, we would like to highlight that all our results are available on our
companion GitHub [Zey25c]. Adding samplers and statistical tests to the repository
is possible via pull requests, thus creating a common playground for future statistical
tests and uniform random samplers.

80

7
DivKC: A Divide-and-Conquer Approach to
Knowledge Compilation

At the time of writing, knowledge compilation is one of the most effective ways
to achieve uniform random sampling, as shown by D4 and KUS. Nevertheless,
some formulae remain out of reach. In this chapter, we present a novel
divide-and-conquer approach to knowledge compilation.

Contents
7.1 Introduction . 82
7.2 DivKC . 83
7.3 Experimental Evaluation 88
7.4 Conclusion . 99

81

7.1 Introduction
Knowledge compilation (KC) is the problem of transforming Boolean formulae

into alternative representations that allow for more efficient reasoning [DM02].
Boolean formulae are typically expressed in conjunctive normal form (CNF), which
facilitates specific operations such as conditioning and conjunction. However,
fundamental tasks such as model counting (#SAT) and uniform random sampling
(URS) remain computationally intractable for large CNF instances. KC can mitigate
this intractability by transforming CNF formulae into target languages amenable
to #SAT [SRH+24] and URS [SGR+18].

One such language is the deterministic decomposable negation normal form
(d-DNNF) [Dar00], which is known to scale well in practice [SHN+23]. Efficient
compilers for the d-DNNF language exist — most prominently D4 [LM17] — thereby
enabling efficient solving of #SAT and URS. Despite these significant advances,
formulae with large and intricate model spaces remain out of reach for existing
compilers [SHN+23]. Approximate algorithms exist for #SAT like ApproxMC 7
[PMY25]. However, approximate model counting does not generate the reusable data
structures that KC offers. Therefore, an approximate algorithm can be unsuitable
if multiple calls to a model counter are necessary or for problems that necessitate
solving other reasoning tasks.

In order to enhance the effectiveness of KC, we propose DivKC, a divide-and-
conquer approach for d-DNNF compilation. The key principle of our method is to
decompose an input formula F to produce two smaller formulae that can be compiled
independently and at a lower computational cost than F . This decomposition brings
many advantages, including its application to #SAT and URS and the production
(by construction) of sound lower and upper bounds for the model count of F . We
combine these advantages into an effective statistical method to estimate |RF |, the
number of models of F . This method relies on computing approximate lower and
upper bounds for |RF |, which are shown to be tighter than the two bounds obtained
during the decomposition. As for URS, we can similarly simplify the resolution of
this problem by successfully sampling from the two decomposed formulae.

To assess the benefits of our approach, we conduct extensive experiments on four
datasets totalling 4,656 formulae. By using our method, we manage to compile 114
formulae to d-DNNF out of the 672 formulae that were previously out of reach for D4
[LM17]. We thereby demonstrate that DivKC can enhance the compilation ability
of the state-of-the-art d-DNNF compiler. Moreover, we show that our statistical
method to compute upper and lower bounds of |RF | achieves 85% coverage of the
true model count, while producing intervals that are significantly smaller than the
theoretical bounds (9.5 × 10−9 times smaller for the median case). Finally, we
show that our random sampler based on DivKC is the first heuristic-based random
sampler to validate at least one test of the test suite proposed in Chapter 6. All

82

of the programs and experimental results are available on our companion GitHub
[Zey25a].

7.2 DivKC
Our approach is based on the idea that splitting a formula F into smaller parts

will make it easier to compile the formula into a target language. More specifically,
in Chapter 4 we show a strong correlation between the time and memory needed
to compile a formula to d-DNNF and the number of variables and clauses in the
formula. Our approach explicitly utilises this correlation by decomposing an input
formula into subformulae with fewer variables and/or fewer clauses.

7.2.1 Overview of the Decomposition Algorithm

Algorithm 2 Compile(F)
Require: F is a satisfiable Boolean formula in CNF

1: P ← Split(F)
2: GP ← Project(F, P)
3: GU ← {c ∈ F |Var(c) ̸⊆ P}
4: return ddnnf(GP), ddnnf(GU)

A high-level description of our approach is shown in Algorithm 2. To compile a
formula F into d-DNNF, we begin by applying a function Split(F), which returns
a set of variables P ⊆ Var(F) that will be used for projection (we present the
algorithm to appropriately determine this subset P in Section 7.2.2). We then
compute the projection of F onto P , yielding GP . To do so, we use a resolution-
based algorithm, which has been shown to be effective in [SM21; LLM16]. We
compute GU as the CNF resulting from the subset of clauses of F that have at least
one variable not in P . Finally, we compile GP and GU in d-DNNF form using an off-
the-shelf CNF to d-DNNF compiler. The main rationale behind our decomposition
is that we isolate reasoning over the clauses strictly containing variables in P (via
the compilation of GP), whereas the other clauses are represented in GU . The
decomposition of F into GP and GU can later be exploited to design effective
d-DNNF-based reasoning methods; We show how to exploit GP and GU for #SAT
and URS in Sections 4.3 and 4.4, respectively. Before going into the details of
these specific reasoning procedures, we demonstrate the structural and semantic
properties of this decomposition.

Theorem 1. Let Γ = ∨
y∈RGP

((GU |y) ∧ y) and RΓ = ⋃
y∈RGP

R(GU |y)∧y. If F is
satisfiable, then RF = RΓ.

Proof. We sequentially prove RF ⊆ RΓ and RΓ ⊆ RF .

83

RF ⊆ RΓ: Let m ∈ RF . We know that m ∈ RGU
because GU ⊆ F . By definition

of Project(F, P) we know that ∃y ∈ RGP
: (y ⊆ m). Moreover, since RΓ contains

the models of (GU |y) ∧ y, we have that m ∈ RΓ and RF ⊆ RΓ.
RΓ ⊆ RF : Let m ∈ RΓ. Let G′

U = F \ GU = {c ∈ F |Var(c) ⊆ P}. Hence,
RF = RGU

∩ RG′
U
. Therefore, to prove m ∈ RF we need to prove m ∈ RG′

U
and

m ∈ RGU
. By definition of Γ we have m ∈ RGU

. We continue by proving m ∈ RG′
U

.
By definition of Project(F, P), we have G′

U ⊆ GP . In other words, for any complete
assignment a to the variables in Var(F) we have (∃y ∈ RGP

: y ⊆ a)⇒ (a ∈ RG′
U
).

Since m ∈ RΓ, there exists a y ∈ RGP
such that y ⊆ m. Therefore, we have

m ∈ RG′
U

and RΓ ⊆ RF .
We conclude that RF = RΓ.

Theorem 2. If GU is in d-DNNF form then Γ = ∨
y∈RGP

((GU |y)∧y) is in d-DNNF
form.

Proof. If (GU |y) ∧ y is obtained by conditioning GU on the literals in y, i.e., propa-
gating the unit literals from y in GU , then (GU |y)∧y is a d-DNNF since conditioning
a d-DNNF creates a new d-DNNF [DM02].

Let a, b ∈ RGP
such that a ̸= b then ∧l∈a l ∧∧l∈b l is unsatisfiable because a and

b are two distinct models of GP . By definition, there exists at least one literal on
which a and b disagree. Otherwise, the models would not be distinct.

Therefore, the main disjunction of Γ is deterministic, and Γ is indeed in d-DNNF
form.

7.2.2 Choosing the Projection Set P

We decided to use hypergraph partitioning to choose a good projection set P .
Other methods exist [AGL12], but hypergraph partitioning offers a good balance
between simplicity and efficiency. While hypergraph partitioning is a very difficult
problem to solve, efficient solvers do exist [ÇA11]. Our approach is described in
Algorithm 3.

To take advantage of hypergraph partitioning tools, we have to formulate our
problem as a hypergraph partitioning problem. We construct the variable incidence
graph (VIG) as follows. Each node nv of the VIG is associated with a variable
v ∈ Var(F). Each clause of F (in CNF) is a hyperedge, i.e., for each clause c ∈ F
we construct a hyperedge that contains every node nv such that v ∈ Var(c).

We continue by running a hypergraph partitioning tool on the VIG of the
formula F . The partitioning tool returns a function that associates each node nv

with a partition p. Partitioning tools try to create balanced partitions by cutting
the smallest possible number of hyperedges. In our case, this means that the tool
will partition the set of variables Var(F) into subsets of roughly the same size.
Moreover, the hypergraph partitioner will try to minimise the number of clauses

84

expressed by using variables of different subsets. In other words, most clauses will
be expressed within a single subset of the partition.

With our partition p computed, we can continue by computing our projection set
P . We start by building a formula ∆ = {c ∈ F |∃x, y ∈ c : (p(Var(x)) ̸= p(Var(y)))}.
∆ contains every clause that connects at least two subsets of Var(F) as defined by
the partition p. We return P = Var(∆).

Notice that GU can be partitioned into subsets of clauses such that every
subset has zero variables in common. In other words, GU is built in such a way
that a d-DNNF compiler can create a conjunction node early in the compilation
process. An alternative is to form a partition GU1 ∪ ... ∪ GUn = GU such that
∀i, j : (i ̸= j ⇒ (Var(GUi

) ∩ Var(GUj
) = ∅)). A consequence of this is that every

component GUi
can be compiled independently and, thus, in parallel.

Algorithm 3 Split(F)
Require: F is a Boolean formula in CNF

1: vig ← {Var(c)|c ∈ F}
2: p← hypergraph_partitioner(vig)
3: {p is a partition function, p(var) tells us to which partition variable var belongs.}

4: P ← ∅
5: for all c ∈ F do
6: if ∃x, y ∈ c : (p(Var(x)) ̸= p(Var(y))) then
7: P ← P ∪ {Var(l)|l ∈ c}
8: end if
9: end for

10: {P contains the variables of every clause that connects multiple partitions.}
11: return P

7.2.3 Application to Model Counting
Direct Method Based on the GP , GU Decomposition

Our decomposition of F into GP and GU provides an immediate approach to
model counting. We illustrate this approach in Figure 7.1. We consider F =
(a ∨ b) ∧ (c ∨ d) ∧ (a ∨ c). Selecting P = {a, c} yields GU = (a ∨ b) ∧ (c ∨ d) and
GP = a ∨ c. By compiling GP to a d-DNNF, we find RGP

= {a ∧ c, a ∧ ¬c,¬a ∧ c}.
The resulting d-DNNF (according to Theorem 2) is shown graphically in Figure 7.1.
By computing the sum of |R(GU |y)∧y| for every y ∈ RGP

we find the model count of
F as indicated by Theorems 1 and 2.

The issue with this direct approach is that |RGP
| is often huge, therefore

prohibiting an exhaustive enumeration. To alleviate this, we use an optimisation

85

∨

m1 = a ∧ c

(GU |m1) ∧m1

m2 = a ∧ ¬c

(GU |m2) ∧m2

m3 = ¬a ∧ c

(GU |m3) ∧m3
|R| = 4 |R| = 2 |R| = 2

Figure 7.1: The d-DNNF that we obtain by using Algorithm 2 to compile F =
(a ∨ b) ∧ (c ∨ d) ∧ (a ∨ c) with P = {a, c}.

shown by Lagniez and Lonca [LL24], which reduces the number of computations by
enumerating orthogonal sufficient partial assignments of GP instead of models of GP .
The number of orthogonal sufficient partial assignments of GP is likely much smaller
than the number of models |RGP

|. Let a be such a sufficient partial assignment.
Then a satisfies every clause in G′

U = {c ∈ F |Var(c) ⊆ P}. The remaining variables
are unconstrained, and every model of a ∧GU is a model of F (cf. Theorem 1). In
other words, if we have a partial assignment a such that |a| < |Var(GP)| and GP is
satisfied by a (i.e., the variables not in a are unconstrained and GP will evaluate to
true under every assignment m such that a ⊆ m), then every model of (GU |a) ∧ a
is a model of F . Fortunately, d-DNNF compilation naturally generates orthogonal
sufficient partial assignments. In practice, we can focus on the number of paths
that start at the root of the directed acyclic graph that represents the d-DNNF of
GP instead of the number of models |RGP

|, with each path representing a sufficient
partial assignment to the variables of GP and with the d-DNNF requirements
ensuring orthogonality (i.e., there does not exist a model y that is a superset of
more than one path in the d-DNNF) [LL24].
GP and GU as Lower and Upper Bounds for F

In case enumerating RGP
and applying the direct method remains intractable

due to large |RGP
|, we demonstrate that our compilation process naturally generates

lower and upper bounds to |RF |.

Lemma 1. GP and GU are such that |RGP
| ≤ |RF | ≤ |RGU

|

Proof. By construction, we have ∀x ∈ RGP
: ∃y ∈ RF : (x ⊆ y) and RF ⊆ RGU

,
therefore, |RGP

| ≤ |RF | ≤ |RGU
|.

This implies that GP and GU can immediately be used to compute a sound
interval for |RF |. In practice, however, this interval can be too large (as confirmed
in our experiments). This is why we next propose a statistical computation of
tighter bounds.

86

Approximate Model Counting with Lower and Upper Bounds
Algorithm 4 shows how we approximately count the number of models of F

given GP and GU . According to Theorem 1 and Theorem 2 we find |RF | =∑
a∈RGP

|R(GU |a)∧a|. Instead of computing |R(GU |a)∧a| for every model a of GP ,
we can estimate |RF |

|RGP
| , i.e., the average number of models that each model of

GP contributes to the total number of models. Suppose we have the multiset
A = {|R(GU |a)∧a| |a ∈ RGP

}. If we sample uniformly at random from A then we
have a random variable Y with expected value E[Y] = ∑

Yi∈A Yi
1

|RGP
| = |RF |

|RGP
| . By

linearity of expectation, we have E[|RGP
| × Y] = |RF |. Therefore, our algorithm,

which approximates this expectation through sampling (see Algorithm 4), provides a
consistent unbiased estimator of |RF | as a consequence of the law of large numbers.

Moreover, we use the central limit theorem to construct asymptotic confidence
intervals with confidence level α ∈ (0, 1), i.e., empirical intervals which will, in the
limit N →∞, contain the true value of |RF | with probability at least 1− α.

Algorithm 4 AppMC (GP , GU , α, N)
1: v ← empty array
2: for all 1 ≤ i ≤ N do
3: a← random_model(GP)
4: Yi ← |R(GU |a)∧a| × |RGP

|
5: v ← v ∪ {Yi}
6: end for
7: Y ← average(v)
8: S2 ←

∑
Yi∈v

(Yi−Y)2

N−1

9: σ ←
√

S2√
N

10: Yl ← Y − zα
2
σ

11: Yh ← Y + zα
2
σ

12: return Y , Yl, Yh

7.2.4 Application to Uniform Random Sampling
Directly sampling a model from F by sampling a model a from GP and then

returning a model from (GU |a) ∧ a is unfortunately not uniform as we rarely have
∀x, y ∈ RGP

: (|R(GU |x)∧x| = |R(GU |y)∧y|). To this end, we propose to sample
S ⊆ RGP

with |S| = k. We then sample uniformly from RT = ⋃
a∈S R(GU |a)∧a as

demonstrated in Algorithm 5.
Ideally, we would want our sampling algorithm to have a uniform probability of

returning a model m ∈ RF (i.e., P (m) = 1
|RF |). While our algorithm does not allow

87

for such guarantees (at least not most of the time with reasonable values for k), we
can show that the value for P (m) is bounded.

Lemma 2. The probability P (m) that Algorithm 5 returns model m is bounded

as follows: PH
(|RGP

|−1
k−1)

(|RGP
|

k
) ≤ P (m) ≤ PL

(|RGP
|−1

k−1)
(|RGP

|
k

) , with PH = 1∑
h∈Hk

h
, PL = 1∑

l∈Lk
l
,

and Lk (resp. Hk) the multiset containing the k smallest (resp. largest) numbers of
A = {|R(GU |a)∧a| |a ∈ GP}.

Proof. Suppose we have the multiset A = {|R(GU |a)∧a| |a ∈ GP}. Let Lk and Hk be
the multisets containing the k smallest and k largest numbers of A, respectively.
Notice that for any subset S ⊆ RGP

, the sum of the respective model counts (i.e.,∑
a∈S |R(GU |a)∧a|) is bounded by the sum of the elements in Lk and Hk: ∑l∈Lk

l ≤∑
a∈S |R(GU |a)∧a| ≤

∑
h∈Hk

h. Therefore, if S is fixed, the probability of returning
a model m ∈ S is bounded as well: PH ≤ P (m|S) ≤ PL, with PH = 1∑

h∈Hk
h

and

PL = 1∑
l∈Lk

l
. We know that there are a total of

(
|RGP

|
k

)
different subsets of RGP

of size k and that for
(

|RGP
|−1

k−1

)
of those ways, the model m is part of the selected

subset of models (as a consequence of Theorem 2). Thus, the probability P (m) is

bounded as follows: PH
(|RGP

|−1
k−1)

(|RGP
|

k
) ≤ P (m) ≤ PL

(|RGP
|−1

k−1)
(|RGP

|
k

) .

We would like to add that if k = |RGP
|, we have P −1

H = P −1
L = |RF | and thus our

algorithm converges towards uniform random sampling with the limit k → |RGP
|.

7.3 Experimental Evaluation
We report on experiments assessing the benefits of DivKC. First, we demonstrate

the ability of Algorithm 2 to compile into the d-DNNF form for challenging formulae
that D4 [LM17] was not able to compile. Thereby, we demonstrate that DivKC
can complement D4 and enhance its knowledge compilation capability, making it
compile formulae it could not without DivKC.

Second, we want to show the benefits of DivKC in an application to #SAT. We
aim to demonstrate the quality of the confidence intervals produced by Algorithm
4 in terms of coverage and precision. For coverage, we measure the percentage of
formulae for which the true model count lies within the interval. For precision, we
compare the interval with that of the lower and upper bounds produced by Lemma
1 (which guarantees 100% coverage by construction). We measure the percentage
of formulae for which the confidence interval is included in the interval formed by
Lemma 1’s lower and upper bounds, and in these cases, we measure the relative
size of the two intervals.

88

Algorithm 5 K-Sampler(GP , GU , k, N)
1: R← ∅
2: for all 1 ≤ i ≤ N do
3: S ← subset of size k from RGP

4: L← ∅
5: lmc← 0
6: for all a ∈ S do
7: si ← |R(GU |a)∧a|
8: L← L ∪ {(a, si)}
9: lmc← lmc + si

10: end for
11: id← random_number(1 ≤ r ≤ lmc)
12: for all (a, si) ∈ L do
13: if id ≤ si then
14: R← R ∪ {random_model((GU |a) ∧ a)}
15: break current loop
16: else
17: id← id− si

18: end if
19: end for
20: end for
21: return R

89

Third, we evaluate the ability of DivKC to generate uniform random samples
for various formulae. For this, we generate samples using Algorithm 5 and execute
the uniformity test suite proposed in Chapter 6.

7.3.1 Experimental Setup
Datasets

To test the compilation and model counting abilities of DivKC, we collected
multiple datasets from Lagniez and Marquis [LM17], Soos [Soo24], Sundermann et al.
[SBK+24], and Plazar et al. [PAP+19]. For the sake of fine-grained traceability, we
keep these datasets and their identified subsets separated in our result table. Table
7.1 presents the characteristics of the formulae included in these (sub)datasets. Each
line represents a specific dataset. The line marked as global groups the datasets
into one. Each subsequent line represents a different dataset. The Lagniez and
Marquis [LM17] and Plazar et al. [PAP+19] datasets are further broken down into
smaller sub-datasets, as each sub-dataset may come from different sources and may
thus have different properties.

The Lagniez and Marquis [LM17] dataset is a diverse dataset containing 1979
formulae. The dataset contains diverse problems ranging from Bayesian networks to
digital circuits and configuration. This dataset also contains handmade and random
formulae.

The Soos [Soo24] dataset contains 1896 formulae from various sources, including
the Model Counting Competitions.

The Sundermann et al. [SBK+24] dataset consists of 278 formulae, most of
which come from the configurable software domain. The dataset contains multiple
versions and variants of each formula. To avoid having too many similar formulae,
we restricted our experiments to the most recent version and variant of each formula.

The Plazar et al. [PAP+19] dataset contains 503 formulae consisting of a feature
model benchmark as well as other formulae collected from [DLB+18].

To test the uniformity of our approach, we used the same dataset as in Chapter
6 to allow for a direct comparison with our previous results. Using the same dataset
allows us to use the results in Chapter 6 as a baseline and use our results to construct
a direct comparison between the samplers tested in Chapter 6 and our proposed
sampler.
Infrastructure

The experiments were computed on an HPC containing 354 nodes, each of which
has 256 GB of RAM and 2 AMD Epyc ROME 7H12 CPUs running at 2.6 GHz.
Computation Budget

We set the following computational budget for the evaluated approaches. Com-
piling a formula with D4 [LM17] is limited to 64GB of memory and five hours of

90

Dataset #Ftotal min(|Var(F)|) max(|Var(F)|) min(|F |) max(|F |)
Global 4656 0 8286433 0 7689680
↪→ Lagniez [LM17] 1979 5 229100 10 399794
↪→↪→ Bayesian Network 1116 32 229100 38 399794
↪→↪→ BMC 18 762 63624 2469 368352
↪→↪→ Circuit 68 26 8704 66 83902
↪→↪→ Configuration 35 1400 2038 1698 11342
↪→↪→ Handmade 68 61 3176 254 174160
↪→↪→ Planning 557 5 24816 10 148891
↪→↪→ QIF 7 251 4473 452 14011
↪→↪→ Random 104 75 150 150 525
↪→↪→ Scheduling 6 19500 22500 103887 123329
↪→ Soos [Soo24] 1896 2 8286433 1 7689680
↪→ Plazar [PAP+19] 503 14 486193 31 2598178
↪→↪→ Blasted Real 210 14 10329 35 33008
↪→↪→ Feature Models 133 45 62482 104 343944
↪→↪→ V15 30 17 25615 43 57946
↪→↪→ V3 30 17 25528 31 57586
↪→↪→ V7 30 17 25546 35 57662
↪→↪→ unsorted 70 67 486193 66 2598178
↪→ Sundermann [SBK+24] 278 0 31012 0 350120

Table 7.1: Dataset summary. The first column indicates the dataset, and the #F
column indicates how many formulae the dataset contains. The following columns
indicate the minimum and maximum number of variables (resp. clauses) in the
dataset.

computation for each formula. Algorithm 2 is limited to 30 minutes for the splitting
procedure, two hours for the computation of the projection GP (both within 64GB
of memory), and one hour and 16GB of memory to compile each component (GP

and GU) by using D4 [LM17]. Therefore, Algorithm 2 is given a total of three hours
and 30 minutes, considering that compiling GP and GU can be done in parallel.
Our approximate model counting procedure (Algorithm 4) is limited to one and
a half hours of computation and 64GB of memory. Therefore, our approach to
approximate model counting is limited to five hours of computation (including the
compilation phase), which is the same limit given to D4 [LM17].

7.3.2 Experimental Results
Knowledge Compilation

We compare DivKC with D4 to evaluate the compilation capabilities of our
approach. The results for our compilation algorithm are shown in Table 7.2. The
#Ftotal column indicates the total number of formulae in each dataset. The main
columns for our evaluation are #¬D4 and #DivKC ∧ ¬D4. The former shows how

91

Dataset #Ftotal #D4 ∧ ¬DivKC #¬D4 #DivKC ∧ ¬D4
Global 4656 643 672 114
↪→ Lagniez [LM17] 1979 256 214 54
↪→↪→ Bayesian Network 1116 127 70 53
↪→↪→ BMC 18 12 2 0
↪→↪→ Circuit 68 2 8 0
↪→↪→ Configuration 35 11 1 0
↪→↪→ Handmade 68 1 32 0
↪→↪→ Planning 557 102 92 1
↪→↪→ QIF 7 1 1 0
↪→↪→ Random 104 0 2 0
↪→↪→ Scheduling 6 0 6 0
↪→ Soos [Soo24] 1896 311 394 54
↪→ Plazar [PAP+19] 503 58 61 6
↪→↪→ Blasted Real 210 7 30 3
↪→↪→ Feature Models 133 13 5 0
↪→↪→ V15 30 2 5 1
↪→↪→ V3 30 2 5 1
↪→↪→ V7 30 2 5 1
↪→↪→ unsorted 70 32 11 0
↪→ Sundermann [SBK+24] 278 18 3 0

Table 7.2: Experimental results regarding the scalability of Algorithm 2. Column
#Ftotal indicates the total number of formulae in each dataset. The next column
shows the number of formulae compiled only by D4 [LM17] but not by Algorithm
2. Column #¬D4 shows the number of formulae not compiled by D4. The last
column indicates the number of formulae that were only compiled by Algorithm 2,
but not by D4.

many formulae could not be compiled with D4 within our computational budget
(64GB of memory and five hours), while the latter shows how many of these were
successfully compiled by our approach.

Our main result is that out of the 672 formulae that D4 could not initially
compile (within our computational budget and with our current hardware), 114 of
them can be compiled by our DivKC approach (using D4 as a backbone d-DNNF
compiler).
Approximate Model Counting

We measure the coverage (Table 7.3) and precision (Table 7.4) of the intervals
constructed by Algorithm 4 executed with parameters α = 0.01 and N = 10,000.
We constrained the computational budget to 64GB of memory and a maximum

92

Dataset #F Yl ≤ |RF | Yh ≥ |RF | Coverage |RGP
| ≤ |RF | ≤ |RGU

|
Global 3341 0.988 0.869 0.857 1.000
↪→ Lagniez [LM17] 1509 0.993 0.914 0.907 1.000
↪→↪→ Bayesian Network 919 0.992 0.905 0.898 1.000
↪→↪→ BMC 4 1.000 1.000 1.000 1.000
↪→↪→ Circuit 58 1.000 0.862 0.862 1.000
↪→↪→ Configuration 23 1.000 0.696 0.696 1.000
↪→↪→ Handmade 35 1.000 1.000 1.000 1.000
↪→↪→ Planning 363 0.989 0.934 0.923 1.000
↪→↪→ QIF 5 1.000 1.000 1.000 1.000
↪→↪→ Random 102 1.000 0.961 0.961 1.000
↪→↪→ Scheduling 0
↪→ Soos [Soo24] 1191 0.981 0.915 0.896 1.000
↪→ Plazar [PAP+19] 384 0.987 0.815 0.802 1.000
↪→↪→ Blasted Real 173 0.994 0.971 0.965 1.000
↪→↪→ Feature Models 115 1.000 0.478 0.478 1.000
↪→↪→ V15 23 1.000 1.000 1.000 1.000
↪→↪→ V3 23 1.000 1.000 1.000 1.000
↪→↪→ V7 23 1.000 0.957 0.957 1.000
↪→↪→ unsorted 27 0.852 0.815 0.667 1.000
↪→ Sundermann [SBK+24] 257 0.996 0.475 0.471 1.000

Table 7.3: Experimental results for Algorithm 4. Column #F indicates with how
many formulae the following statistics have been computed. Column Yl ≤ |RF |
indicates how often the lower bound returned by Algorithm 4 is correct (i.e., smaller
than the true model count of F). Similarly, column Yh ≥ |RF | indicates how often
the upper bound is correct. The ’Coverage’ column indicates how often |RF | is
within the confidence interval [Yl; Yh] and thus measures the accuracy of our method.
The last column confirms the correctness of the bounds obtained using Lemma 1.

runtime of 1.5 hours per execution of Algorithm 4.
In Table 7.3, the column #F shows for how many formulae we managed to

compute both the exact model count with D4 [LM17] (within the same computational
budget as mentioned above) and our approximate model counter. The following
columns indicate how often the returned lower bound was smaller than the true
model count (Yl ≤ |RF |), and how often the returned upper bound was larger than
the true model count (Yh ≥ |RF |). The ’Coverage’ column indicates how often
|RF | is within the confidence interval [Yl; Yh] and thus measures the accuracy of our
method. The last column serves as a sanity check for the bounds obtained by using
Lemma 1. We observe that the bounds obtained by using Lemma 1 are as expected.

Concerning Algorithm 4, for 98% of all formulae, our approach correctly calcu-
lates a lower bound to the total number of models. However, the upper bound is
only correct in 86% of the cases, showing that our approach tends to underestimate

93

the model count of the formula. Similarly, our approach correctly computes a
lower bound in 100% of the cases for the feature model subset of the Plazar et al.
[PAP+19] dataset and in 99% of the cases for the Sundermann et al. [SBK+24]
dataset. However, the upper bound is only correct in 47% of the cases. The
Sundermann et al. [SBK+24] dataset mostly contains feature models of software
systems. Therefore, we deduce that our approach underestimates the number of
models of a feature model. Over all datasets, both the upper and lower bounds are
correct in 85% of the cases, and the lower bounds have an experimental reliability
of 98%, showing the accuracy of our approximate method.

Table 7.4 relates the upper and lower bounds computed by Algorithm 4 with the
bounds obtained by using Lemma 1. As above, the #F column indicates the number
of formulae on which the following statistics have been computed. The third column
indicates how often the lower bound computed by Algorithm 4 is greater than the
lower bound obtained through Lemma 1 and smaller than the true model count
(Yl ≥ |RGP

| ∧ Yl ≤ |RF |). The fourth column indicates a similar result but for the
upper bound (Yh ≤ |RGU

| ∧ Yh ≥ |RF |). In other words, these two columns show
how often Algorithm 4 gives us better bounds than Lemma 1. The ’Both’ column
indicates how often the bounds returned by Algorithm 4 were both correct and
better than the bounds obtained with Lemma 1. The last two columns indicate the
median and maximum value for the ratio rc = min(Yh,|RGU

|)−max(Yl,|RGP
|)

|RGU
|−|RGP

| , which was
calculated exclusively for the bounds that meet the predicate Yl ≤ |RF | ≤ Yh (the
number obtained by multiplying the #F column in this table with the ’Coverage’
column in Table 7.3). The rc ratio quantifies the difference between the bounds
obtained by using Lemma 1 and the bounds obtained by using Algorithm 4. rc

uses min(Yh, |RGU
|) and max(Yl, |RGP

|) because detecting that the bounds returned
by Algorithm 4 are worse than the bounds obtained with Lemma 1 is easy, and
therefore, a user can easily use the better bounds.

We observe that in general, Algorithm 4 provides tighter bounds than Lemma 1
in 75% of the cases. As previously noted, the results vary depending on the dataset.
As an example, Algorithm 4 performs poorly on the Sundermann et al. [SBK+24]
dataset and on the feature model subset of the Plazar et al. [PAP+19] dataset. On
the other hand, Algorithm 4 performs well on the Bayesian network subset of the
Lagniez and Marquis [LM17] dataset, as we observe a success rate of 86%. Moreover,
we find that the bounds returned by Algorithm 4 are overall much tighter than the
bounds obtained by using Lemma 1 as the global median value for rc = 9.5× 10−9.

To complete our evaluation of Algorithm 4, we compare it against ApproxMC 7
[PMY25]. The results of this comparison are presented in Tables 7.5 and 7.6, which
highlight differences in accuracy and runtime performance.

Table 7.5 presents the accuracy results. Column #F reports the number of
formulae for which the statistics were computed from the results produced by

94

Dataset #F Yl ≥ |RGP
| Yh ≤ |RGU

| Both median(rc) max(rc)
Global 3341 0.834 0.869 0.752 9.58e-9 1.0
↪→ Lagniez [LM17] 1509 0.868 0.913 0.801 7.53e-9 1.0
↪→↪→ Bayesian Network 919 0.958 0.905 0.867 1.62e-6 0.0761
↪→↪→ BMC 4 1.000 1.000 1.000 0.0 6.67e-5
↪→↪→ Circuit 58 0.914 0.862 0.828 1.87e-29 8.88e-8
↪→↪→ Configuration 23 0.522 0.652 0.478 2.58e-6 1.0
↪→↪→ Handmade 35 1.000 1.000 1.000 0.0 0.0
↪→↪→ Planning 363 0.887 0.934 0.851 3.63e-42 0.0103
↪→↪→ QIF 5 0.400 1.000 0.400 2.91e-57 8.9e-6
↪→↪→ Random 102 0.020 0.961 0.020 1.85e-68 2.01e-23
↪→↪→ Scheduling 0
↪→ Soos [Soo24] 1191 0.940 0.915 0.863 2.55e-7 0.085
↪→ Plazar [PAP+19] 384 0.763 0.815 0.656 6.61e-14 0.0137
↪→↪→ Blasted Real 173 0.942 0.971 0.913 1.06e-13 0.0137
↪→↪→ Feature Models 115 0.348 0.478 0.087 1.99e-13 0.00868
↪→↪→ V15 23 1.000 1.000 1.000 1.37e-16 0.00121
↪→↪→ V3 23 0.957 1.000 0.957 6.68e-17 0.000663
↪→↪→ V7 23 1.000 0.957 0.957 2.57e-17 0.00365
↪→↪→ unsorted 27 0.815 0.815 0.630 4.37e-44 8.86e-7
↪→ Sundermann [SBK+24] 257 0.249 0.471 0.089 1.6e-13 0.126

Table 7.4: Experimental results comparing bounds obtained with Algorithm 4
and with Lemma 1. Column #F indicates with how many formulae the following
statistics have been computed. Column Yl ≤ |RGP

| indicates how often the lower
bound returned by Algorithm 4 is correct and larger than the lower bound obtained
by using Lemma 1. Similarly, column Yh ≥ |RGU

| indicates how often the upper
bound returned by Algorithm 4 is correct and better than the upper bound obtained
by using Lemma 1. The ’Both’ column indicates how often both predicates are
true. The final two columns represent the observed median and maximum values
of the ratio rc = min(Yh,|RGU

|)−max(Yl,|RGP
|)

|RGU
|−|RGP

| , which was calculated exclusively if Yl ≤
|RF | ≤ Yh. The number of formulae on which the last two columns are computed
can easily be obtained by multiplying the #F column with the ’Coverage’ column
in Table 7.3.

ApproxMC 7 and Algorithm 4. Thus, #F indicates the number of formulae on which
we successfully ran ApproxMC 7, Algorithm 4, and D4. Column l ≤ YApproxMC ≤ h
(resp. l ≤ Y ≤ h) reports how often the model count returned by ApproxMC 7 (resp.
Algorithm 4) falls within the specified bounds, with l = |RF |

1.2 and h = 1.2× |RF |.
The bounds we use follow the definition of a probably approximately correct

(PAC) counter from [PMY25], where a probabilistic algorithm, given parameters
δ and ε, returns an estimate Y such that P (l ≤ Y ≤ h) ≥ 1 − δ, with l = |RF |

1+ε

and h = (1 + ε)|RF |. In our experiments, we set ε = 0.2 and δ = 0.1 as input

95

Dataset #F l ≤ YApproxMC ≤ h l ≤ Y ≤ h
Global 2782 0.977 0.881
↪→ Lagniez [LM17] 1386 1.000 0.882
↪→↪→ Bayesian Network 915 1.000 0.854
↪→↪→ BMC 4 1.000 1.000
↪→↪→ Circuit 50 1.000 0.740
↪→↪→ Configuration 6 1.000 0.833
↪→↪→ Handmade 15 1.000 1.000
↪→↪→ Planning 289 1.000 0.952
↪→↪→ QIF 5 1.000 1.000
↪→↪→ Random 102 1.000 0.990
↪→↪→ Scheduling 0 - -
↪→ Soos [Soo24] 1180 0.970 0.873
↪→ Plazar [PAP+19] 203 0.862 0.921
↪→↪→ Blasted Real 172 1.000 0.930
↪→↪→ Feature Models 3 1.000 1.000
↪→↪→ V15 0 - -
↪→↪→ V3 0 - -
↪→↪→ V7 0 - -
↪→↪→ unsorted 28 0.000 0.857
↪→ Sundermann [SBK+24] 13 1.000 0.846

Table 7.5: Experimental results comparing the accuracy of Algorithm 4 with
ApproxMC 7. Column #F indicates with how many formulae the statistics have
been computed. Column l ≤ YApproxMC ≤ h (resp. l ≤ Y ≤ h) indicates how
often the model count returned by ApproxMC 7 (resp. Algorithm 4) is within the
indicated bounds, with l = |RF |

1.2 and h = 1.2× |RF |.

parameters to ApproxMC. The value of ε matches the value used by Pote et al.
[PMY25], while δ = 0.1 is a standard choice in statistical settings. Additionally,
we modified Algorithm 4 to use at most 10,000 samples, and to terminate early if
(Yl ≥ Y

1.1) ∧ (Yh ≤ 1.1Y).
Overall, ApproxMC demonstrates better accuracy, returning estimates within

bounds in approximately 98% of cases, compared to 88% for Algorithm 4. While this
indicates a performance gap, 88% still reflects a reasonably high level of accuracy,
especially considering the added benefit of the reusable data structure produced by
DivKC. This may make DivKC particularly appealing in scenarios where repeated
queries are expected. Therefore, ApproxMC may not always be the most practical
choice despite its higher accuracy.

Table 7.6 compares the runtimes of ApproxMC and Algorithm 4. To compare

96

Dataset #F #DivKC log10(min) mean median log10(max)
Global 2888 2265 -3.2 124.5 4.8 5.3
↪→ Lagniez [LM17] 1436 1179 -2.9 80.5 5.5 4.4
↪→↪→ Bayesian Network 964 782 -2.8 32.8 5.0 4.4
↪→↪→ BMC 4 0 -2.8 - - -
↪→↪→ Circuit 50 34 -2.6 3.5 2.5 1.3
↪→↪→ Configuration 6 6 1.2 515.1 90.6 3.3
↪→↪→ Handmade 15 15 0.0 121.2 9.9 3.1
↪→↪→ Planning 290 237 -2.9 236.4 5.7 4.1
↪→↪→ QIF 5 4 -0.1 7.3 7.4 1.2
↪→↪→ Random 102 101 -0.2 100.4 68.2 2.5
↪→↪→ Scheduling 0 0 -0.2 - - -
↪→ Soos [Soo24] 1235 953 -3.0 29.6 4.5 4.4
↪→ Plazar [PAP+19] 204 122 -3.2 2.7 1.7 1.5
↪→↪→ Blasted Real 173 113 -2.3 2.8 2.6 1.0
↪→↪→ Feature Models 3 3 0.4 13.1 7.6 1.5
↪→↪→ V15 0 0 0.4 - - -
↪→↪→ V3 0 0 0.4 - - -
↪→↪→ V7 0 0 0.4 - - -
↪→↪→ unsorted 28 6 -3.2 0.6 0.5 0.3
↪→ Sundermann [SBK+24] 13 11 -0.6 15904.5 29.6 5.3

Table 7.6: Experimental results comparing the runtime of Algorithm 4 with Ap-
proxMC 7 for 20 runs. To limit the computation time, we run ApproxMC 4 times
on each formula and multiply the sum of execution times by 5. Similarly, we ran
Algorithm 4 4 times (and the compilation process only once) and multiplied the
runtime of Algorithm 4 by 5. Column #F indicates the number of formulae over
which the statistics were computed, and column #DivKC shows how often DivKC
was faster than ApproxMC 7. The remaining columns report how much faster
DivKC was, based on the logarithm of the minimum, the mean, the median, and
the logarithm of the maximum of the ratio: ApproxMC 7 execution time divided
by DivKC execution time.

both algorithms, we simulate 20 runs of both approaches per formula (to limit the
computational budget). For ApproxMC, we performed 4 actual runs per formula
and multiplied the total runtime by 5. For Algorithm 4, we ran the compilation
phase once and then executed the algorithm 4 times per formula; the total runtime
of Algorithm 4 was also multiplied by 5 to simulate 20 runs. The reported execution
time for Algorithm 4 includes one call to DivKC and 20 simulated runs of Algorithm
4. ApproxMC had a computational budget of five hours and 64GB of memory per
run.

Column #F indicates the number of formulae over which the statistics were
computed, and column #DivKC shows how often DivKC was faster than ApproxMC.

97

Thus, #F indicates the number of formulae on which we successfully ran ApproxMC
7 and Algorithm 4. The remaining columns report how much faster DivKC was,
based on the logarithm of the minimum, the mean, the median, and the logarithm of
the maximum of the ratio: ApproxMC execution time divided by DivKC execution
time.

We observe that DivKC was faster than ApproxMC in approximately 78% of
the cases. The speedup was substantial — on average, 124.5 times faster, with
a median speedup of 4.8. In the most extreme case, DivKC was up to 197, 602.8
times faster.

Therefore, while Algorithm 4 may not be as reliable as ApproxMC in terms of
accuracy, it offers significant performance advantages. Moreover, the reusable data
structure generated by DivKC can make it particularly useful in scenarios where
repeated model counting is required.
Approximate Uniform Random Sampling

We used the test suite and dataset proposed in Chapter 6 to test our sampler
presented in Algorithm 5. Algorithm 5 is run with k = 50 and with batch sizes of
N = 1000, similarly to the experimental setup in Chapter 6. We used the same
dataset (which we called the Ω dataset) to facilitate the comparison with our results.
We proposed five tests, of which we used only four, as the last test faces scalability
issues according to our original experiments. The simplest test is the modbit test.
With our sampler, we obtained a Harmonic mean p-value of 0.13 for the modbit
test with q = 8, which indicates that our sampler passed the modbit (q = 8) test.
Our sampler also passed the modbit test with q = 2 and q = 4.

Our sampler is already an improvement, as none of the heuristic-based samplers
(i.e., samplers with no guarantees of uniformity) tested in Chapter 6 passed a single
test on the dataset. We also used the VF, SFpC, and Birthday tests, which were
successfully performed on 176, 77, and 140 formulae, respectively. For the VF, SFpC,
and Birthday tests, we obtained a harmonic mean p-value of 0. Given that the
harmonic mean p-value is below the usual threshold value (α = 0.01), we conclude
that Algorithm 5 fails the VF, SFpC, and Birthday tests. However, the Birthday
test also indicates the number of observed repetitions, i.e., the number of times the
sampler under test returned the same model. This is interesting information as it
indicates whether a sampler often returns the same model or if it seldom returns
the same model. Frequent repetition may indicate poor exploration of the model
space, which can be problematic. The Birthday test is also the only test proposed
in Chapter 6 which allows for a finer quantitative analysis.

In our experiments, we set the expected number of duplicates for the birthday
test to 10, exactly like in Chapter 6. By doing so, we obtain results that are
comparable with the results in Chapter 6. Table 7.7 shows a reproduction of the
results in Chapter 6. We extended the table with our results for Algorithm 5.

98

Uniformity Observed number of repetitions
Sampler #F p-value min max average median

KUS 142 0.001 0 18 9.01 10
QuickSampler 139 0.000 0 29858 480.01 4

Smarch 78 0.023 3 22 10.71 10
SPUR 145 0.000 4 307 34.48 12
STS 138 0.000 0 27 5.20 4

CMSGen 93 0.000 5 12846 991.37 33
UniGen3 130 0.274 3 18 9.78 10

BDDSampler 92 0.274 3 17 9.96 10
K-Sampler 140 0.005 3 26 10.75 10

Table 7.7: Extended experimental results for the birthday test with the Ω dataset
introduced in Chapter 6 and extended with our results for Algorithm 5. The bold
p-values are all greater than our significance level α = 0.01. #F indicates the
number of formulae on which the test was successfully performed (i.e., without
timeouts or out-of-memory errors).

Discussing the quantitative details of the failed tests, we still observe that our
approach brings improvements over the other heuristic-based URS approaches as it
generates much fewer repeats than QuickSampler [DLB+18] and CMSGen [GSC+21].
Moreover, we find that our results are competitive with other URS approaches
as the average number of observed repeats is only off by 10% when comparing
with UniGen3, a uniform random sampler which offers theoretical guarantees of
uniformity.

Overall, our heuristic-based sampler passes more tests than any other
heuristic-based sampler that we tested in Chapter 6.

7.4 Conclusion
In this chapter, we developed DivKC, a divide-and-conquer method to split a

formula into components that can then be compiled independently to d-DNNF. By
using Theorems 1 and 2, we obtain a d-DNNF that is equivalent to the original
formula. Our experiments demonstrated that DivKC compiles 114 formulae that
were previously out of reach for the state-of-the-art D4 [LM17] compiler. We also
explored two other applications of DivKC. First, we designed an approximate model
counter that comes with statistical guarantees. While this new model counter
accurately estimates 85% of the formulae, it struggles with formulae coming from
feature models. Second, we exploited DivKC to build a heuristic-based uniform
random sampler.

This heuristic-based sampler is the first heuristic-based sampler to validate at

99

least one test of the test suite proposed in Chapter 6. This paves the way to the
design of novel quasi-uniform samplers, which are of interest for many practical
applications, knowing that truly uniform samplers do not scale well [PAP+19]. For
future work, we plan to explore alternative split heuristics to improve the efficiency
and generality of our approach. Another promising direction is to investigate further
how the upper bound used in our method could be exploited.

100

8
Conclusion

This final chapter summarises the main findings of the dissertation and
proposes avenues for future research.

Contents
8.1 Summary of Contributions 102
8.2 Perspectives . 103

101

The main objective of this thesis was to study and enhance the scalability of
uniform random sampling. In addition, we also provide a set of five statistical tests
designed to evaluate the quality of uniform random samplers and to accelerate their
development.

8.1 Summary of Contributions
Empirical studies on the practical complexity of URS. To effectively

improve the scalability of URS in practice, we first needed to understand why URS
performs well on some formulae but poorly on other seemingly similar formulae.
To this end, we conducted two empirical studies exploring the impact of structural
metrics on the practical complexity of URS.

Our findings reveal that metrics such as the MIS size and the number of
equivalence classes are highly correlated with the time and memory usage of uniform
random samplers.

To reduce the noise caused by the heterogeneity in our dataset, we also in-
vestigated phase transitions in synthetic k-CNF formulae. This study uncovered
that both URS and #SAT exhibit a phase transition phenomenon similar to that
observed in SAT solvers. However, unlike SAT solvers, the phase transition for URS
appears to be linked to the solution density

(
log2(|RF |)
|Var(F)|

)
.

Furthermore, we found that the empirical complexity of URS is strongly influ-
enced by the number of variables and the community structure of the formula. This
insight helps explain why current URS techniques are effective on large industrial
formulae, which often exhibit strong community structure.

Statistical tests that can be used to develop and debug uniform
random samplers. In addition to our empirical studies, we proposed a set of
five statistical tests specifically designed to evaluate and debug uniform random
samplers. Applying these tests revealed that several state-of-the-art samplers
produce low-quality samples, likely due to subtle implementation bugs.

We further showed how the birthday test can be used to gain insight into heuristic-
based samplers, even when they fail traditional statistical tests. By analysing the
number of repeated models, we can determine whether the sampler is adequately
exploring the model space or if its heuristics require adjustment.

Finally, we demonstrated, using synthetic formulae, that the choice of input
formula can introduce bias into evaluation results. Therefore, it is essential to
validate uniform random samplers on a diverse set of formulae from different sources
to ensure the reliability and generalisability of conclusions.

DivKC: a divide-and-conquer approach to KC which can be used as
a basis for a state-of-the-art heuristic-based uniform random sampler.
Building on the insights from our empirical studies, we developed DivKC, a divide-
and-conquer approach to knowledge compilation (KC). The core idea behind DivKC

102

is to decompose a complex input formula into smaller sub-formulae, which can then
be compiled individually. This modular approach improves both the efficiency and
tractability of the compilation process.

Using DivKC, we successfully compiled 114 benchmark formulae to d-DNNF
that were previously out of reach for the state-of-the-art compiler D4, highlighting
its practical advantage in handling large or structurally challenging instances. This
result demonstrates that structural decomposition is not only feasible but also an
effective strategy for overcoming some of the limitations of state-of-the-art compilers.

On top of DivKC, we implemented an approximate model counter and a heuristic-
based uniform random sampler. We evaluated the model counter on a diverse set of
benchmarks and observed strong performance.

Finally, we assessed the uniform random sampler using the statistical test suite
introduced in Chapter 6. The results show that our sampler consistently outperforms
existing heuristic-based approaches, passing a greater number of statistical tests
and producing higher-quality samples. These findings suggest that DivKC provides
a robust foundation for building scalable and statistically reliable uniform random
samplers.

8.2 Perspectives
As demonstrated by DivKC, partial compilation is a promising approach to

overcoming some of the scalability limitations of exact knowledge compilation. We
have shown that DivKC not only improves scalability but also provides a solid
foundation for developing more effective heuristic-based samplers.

Building on these results, a natural next step is to further explore partial
compilation techniques. One particularly promising direction is to investigate
approaches that avoid relying on projected formulae, as is currently done in DivKC.
Our experiments suggest that the projection step often represents a significant
bottleneck. Eliminating this dependency, for example, by working directly with
upper bounds on the model space, could simplify the architecture of the sampler
and make the approach applicable to a wider range of formulae.

As part of future work, we plan to study the factors that influence the scalability
and quality of upper bounds, and to investigate strategies for constructing them in
ways that balance computational efficiency with memory usage.

103

104

i

ii

List of Publications and Tools

Papers Included in the Dissertation
• Olivier Zeyen et al. Preprocessing is What You Need: Understanding and

Predicting the Complexity of SAT-based Uniform Random Sampling. In
Proceedings of the 2024 IEEE/ACM 12th International Conference on Formal
Methods in Software Engineering (FormaliSE), pages 23–32, 2024

• Olivier Zeyen et al. Exploring the Computational Complexity of Uniform
Random Sampling and SAT Counting with Phase Transitions. In Proceedings
of the 29th ACM International Systems and Software Product Line Conference,
2025

Tools Included in the Dissertation
• URS testing framework:

Olivier Zeyen. Testing Uniform Random Samplers: Methods, Datasets and
Protocols. https://github.com/serval-uni-lu/urs_test, 2025

• DivKC:
Olivier Zeyen. DivKC: A Divide-and-Conquer Approach to Knowledge Com-
pilation. https://github.com/serval-uni-lu/divkc, 2025

iii

https://github.com/serval-uni-lu/urs_test
https://github.com/serval-uni-lu/divkc

iv

List of Figures

5.1 RQ1: Phase transitions occur in URS for 3-CNF formulae. A higher
formula modularity decreases the height of the peak. 40

5.2 RQ1: Modularity of the 3-CNF formulae (y-axis) w.r.t. their clause-
to-variable ratio (x-axis). 41

5.3 RQ1: Kendall’s τ coefficients computed between Q̃ and the execution
time in a sliding window across the clause-to-variable ratio spectrum. 42

5.4 RQ2: Phase transitions w.r.t. the clause-to-variable ratio, on 3-CNF
and 4-CNF formulae. 45

5.5 RQ2: Distribution of log2(|RF |)/|V ar(F)| with respect to k. 46
5.6 RQ2: Phase transitions w.r.t. r = log2(|RF |)/|V ar(F)| on 3-CNF

and 4-CNF formulae. 47
5.7 RQ2: Modularity w.r.t. r = log2(|RF |)/|V ar(F)|. 48
5.8 Results on real-world formulae. 51
5.9 CDF of real-world formulae wrt. |F |/|V ar(F)|. 52

6.1 Statistical test ordering for uniform random sampling. The dashed
lines indicate optional transitions. A user may thus adapt the ex-
ecuted tests depending on their needs and computational budget.
. 74

7.1 The d-DNNF that we obtain by using Algorithm 2 to compile F =
(a ∨ b) ∧ (c ∨ d) ∧ (a ∨ c) with P = {a, c}. 86

v

vi

List of Tables

4.1 Kendall rank correlation coefficients of the used metrics with SPUR
(416 data points), SPUR (+Arjun) (441 data points), UniGen3 (241
data points) and UniGen3 (+Arjun) (309 data points). All of the
p-values are lower than 0.001. 25

4.2 Feature importances in a random forest containing 1000 instances . 26
4.3 F1-scores with different features of a random forest containing 100

instances estimated using LOO . 27
4.4 ROC AUCs with different features of a random forest containing 100

instances estimated using LOO . 28
4.5 F1-scores with different models trained on |Var(F)|, δ′ and |EF |

estimated using LOO . 28
4.6 Kendall rank correlation coefficients of the used metrics with Z3 and

MiniSAT (488 data points), as well as BSAT using Z3 (488 data
points), D4 (437 data points) and sharpSAT (416 data points). . . . 29

5.1 RQ2: Maximum execution time (in seconds). 43
5.2 RQ2: Mean absolute errors of the datasets with the k = 4 dataset as

reference. 48

6.1 Experimental results for the Ω dataset. For each test (and for each
formula), each sampler was called multiple times to generate samples
of size 1000. The bold p-values are all greater than our significance
level α = 0.01. #F indicates the number of formulae on which the test
was successfully performed (i.e., without timeouts or out-of-memory
errors). 70

6.2 Experimental results for modbit test on the Ω dataset. For each test
(and for each formula), each sampler was called multiple times to
generate samples of size 1000. The bold p-values are all greater than
our significance level α = 0.01. #F indicates the number of formulae
on which the test was successfully performed (i.e., without timeouts
or out-of-memory errors). 70

vii

6.3 Extended experimental results for the birthday test with the Ω
dataset. For each formula, each sampler was called multiple times to
generate samples of size 1000. The bold p-values are all greater than
our significance level α = 0.01. #F indicates the number of formulae
on which the test was successfully performed (i.e., without timeouts
or out-of-memory errors). 71

6.4 Scalability results for the Ω dataset. For each test (and for each
formula), each sampler was called multiple times to generate samples
of size 1000. The indicated time (in hours) is the accumulated time
across all the formulae for which the test was performed success-
fully. #F indicates the number of formulae on which the test was
successfully performed (i.e., without timeouts or out-of-memory errors). 72

6.5 Scalability results for the modbit test on the Ω dataset. For each
test (and for each formula), each sampler was called multiple times
to generate samples of size 1000. The indicated time (in hours) is
the accumulated time across all the formulae for which the test was
performed successfully. #F indicates the number of formulae on
which the test was successfully performed (i.e., without timeouts or
out-of-memory errors). 73

6.6 Experimental results for the r30c90 dataset. For each test (and for
each formula), each sampler was called multiple times to generate
samples of size 1000. The bold p-values are all greater than our
significance level α = 0.01. #F indicates the number of formulae on
which the test was successfully performed (i.e., without timeouts or
out-of-memory errors). 75

6.7 Experimental results for the r30c114 dataset. For each test (and for
each formula), each sampler was called multiple times to generate
samples of size 1000. The bold p-values are all greater than our
significance level α = 0.01. #F indicates the number of formulae on
which the test was successfully performed (i.e., without timeouts or
out-of-memory errors). 76

6.8 Experimental results for the r30c150b1000 dataset. For each test
(and for each formula), each sampler was called multiple times to
generate samples of size 1000. The bold p-values are all greater than
our significance level α = 0.01. #F indicates the number of formulae
on which the test was successfully performed (i.e., without timeouts
or out-of-memory errors). 76

viii

6.9 Scalability results for the r30c90 dataset. For each test (and for each
formula), each sampler was called multiple times to generate samples
of size 1000. The indicated time (in hours) is the accumulated time
across all the formulae for which the test was performed success-
fully. #F indicates the number of formulae on which the test was
successfully performed (i.e., without timeouts or out-of-memory errors). 77

7.1 Dataset summary. The first column indicates the dataset, and the
#F column indicates how many formulae the dataset contains. The
following columns indicate the minimum and maximum number of
variables (resp. clauses) in the dataset. 91

7.2 Experimental results regarding the scalability of Algorithm 2. Col-
umn #Ftotal indicates the total number of formulae in each dataset.
The next column shows the number of formulae compiled only by D4
[LM17] but not by Algorithm 2. Column #¬D4 shows the number of
formulae not compiled by D4. The last column indicates the number
of formulae that were only compiled by Algorithm 2, but not by D4. 92

7.3 Experimental results for Algorithm 4. Column #F indicates with
how many formulae the following statistics have been computed.
Column Yl ≤ |RF | indicates how often the lower bound returned by
Algorithm 4 is correct (i.e., smaller than the true model count of F).
Similarly, column Yh ≥ |RF | indicates how often the upper bound is
correct. The ’Coverage’ column indicates how often |RF | is within
the confidence interval [Yl; Yh] and thus measures the accuracy of
our method. The last column confirms the correctness of the bounds
obtained using Lemma 1. 93

7.4 Experimental results comparing bounds obtained with Algorithm 4
and with Lemma 1. Column #F indicates with how many formulae
the following statistics have been computed. Column Yl ≤ |RGP

|
indicates how often the lower bound returned by Algorithm 4 is
correct and larger than the lower bound obtained by using Lemma
1. Similarly, column Yh ≥ |RGU

| indicates how often the upper
bound returned by Algorithm 4 is correct and better than the up-
per bound obtained by using Lemma 1. The ’Both’ column indi-
cates how often both predicates are true. The final two columns
represent the observed median and maximum values of the ratio
rc = min(Yh,|RGU

|)−max(Yl,|RGP
|)

|RGU
|−|RGP

| , which was calculated exclusively if
Yl ≤ |RF | ≤ Yh. The number of formulae on which the last two
columns are computed can easily be obtained by multiplying the #F
column with the ’Coverage’ column in Table 7.3. 95

ix

7.5 Experimental results comparing the accuracy of Algorithm 4 with
ApproxMC 7. Column #F indicates with how many formulae the
statistics have been computed. Column l ≤ YApproxMC ≤ h (resp. l ≤
Y ≤ h) indicates how often the model count returned by ApproxMC
7 (resp. Algorithm 4) is within the indicated bounds, with l = |RF |

1.2
and h = 1.2× |RF |. 96

7.6 Experimental results comparing the runtime of Algorithm 4 with
ApproxMC 7 for 20 runs. To limit the computation time, we run Ap-
proxMC 4 times on each formula and multiply the sum of execution
times by 5. Similarly, we ran Algorithm 4 4 times (and the compi-
lation process only once) and multiplied the runtime of Algorithm
4 by 5. Column #F indicates the number of formulae over which
the statistics were computed, and column #DivKC shows how often
DivKC was faster than ApproxMC 7. The remaining columns report
how much faster DivKC was, based on the logarithm of the minimum,
the mean, the median, and the logarithm of the maximum of the
ratio: ApproxMC 7 execution time divided by DivKC execution time. 97

7.7 Extended experimental results for the birthday test with the Ω
dataset introduced in Chapter 6 and extended with our results for
Algorithm 5. The bold p-values are all greater than our significance
level α = 0.01. #F indicates the number of formulae on which the test
was successfully performed (i.e., without timeouts or out-of-memory
errors). 99

x

AI Assistance Disclosure

I hereby acknowledge that parts of the text in this thesis were refined with the
assistance of ChatGPT (OpenAI, https://chat.openai.com), an AI language model.
The tool was used solely for language polishing and rewriting purposes; all ideas,
analysis, and conclusions are my own.

xi

xii

Bibliography

[AGL12] Carlos Ansótegui, Jesús Giráldez-Cru, and Jordi Levy. The community
structure of sat formulas. In International Conference on Theory and
Applications of Satisfiability Testing, 2012 (cited on pages 10, 34, 39,
41, 49, 84).

[AHT18] D. Achlioptas, Zayd Hammoudeh, and P. Theodoropoulos. Fast sam-
pling of perfectly uniform satisfying assignments. In SAT, 2018 (cited
on pages 4, 12, 13, 15, 18, 37, 56).

[AMM22] Tasniem Nasser Alyahya, Mohamed El Bachir Menai, and Hassan
Mathkour. On the structure of the boolean satisfiability problem: a
survey. ACM Comput. Surv., 55(3), March 2022. issn: 0360-0300. doi:
10.1145/3491210. url: https://doi.org/10.1145/3491210 (cited
on pages 14, 18, 30).

[APC21] Mathieu Acher, Gilles Perrouin, and Maxime Cordy. BURST: a bench-
marking platform for uniform random sampling techniques. In Mo-
hammad Reza Mousavi and Pierre-Yves Schobbens, editors, SPLC
’21: 25th ACM International Systems and Software Product Line Con-
ference, Leicester, United Kindom, September 6-11, 2021, Volume
B, pages 36–40. ACM, 2021. doi: 10.1145/3461002.3473070. url:
https://doi.org/10.1145/3461002.3473070 (cited on pages 31,
53, 79).

[BCM+21] Teodora Baluta, Zheng Leong Chua, Kuldeep S. Meel, and Prateek
Saxena. Scalable quantitative verification for deep neural networks. In
43rd IEEE/ACM International Conference on Software Engineering,
ICSE 2021, Madrid, Spain, 22-30 May 2021, pages 312–323. IEEE,
2021. doi: 10.1109/ICSE43902.2021.00039. url: https://doi.
org/10.1109/ICSE43902.2021.00039 (cited on page 2).

[BDG+08] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Mar-
tin Hoefer, Zoran Nikoloski, and Dorothea Wagner. On modularity

xiii

https://doi.org/10.1145/3491210
https://doi.org/10.1145/3491210
https://doi.org/10.1145/3461002.3473070
https://doi.org/10.1145/3461002.3473070
https://doi.org/10.1109/ICSE43902.2021.00039
https://doi.org/10.1109/ICSE43902.2021.00039
https://doi.org/10.1109/ICSE43902.2021.00039

clustering. IEEE Transactions on Knowledge and Data Engineering,
20:172–188, 2008 (cited on page 10).

[BEB18] Robert G Brown, Dirk Eddelbuettel, and David Bauer. Dieharder.
Duke University Physics Department Durham, NC :27708–0305, 2018
(cited on pages 15, 56).

[BH19] Joseph K. Blitzstein and Jessica Hwang. Introduction to Probability,
Second Edition. Chapman and Hall/CRC, Boca Raton, 2nd edition edi-
tion, February 2019. isbn: 978-1-138-36991-7 (cited on page 64).

[BL99] Elazar Birnbaum and Eliezer L Lozinskii. The good old davis-putnam
procedure helps counting models. Journal of Artificial Intelligence
Research, 10:457–477, 1999 (cited on pages 14, 36, 39).

[BMC05] David Benavides, Pablo Trinidad Martín-Arroyo, and Antonio Ruiz
Cortés. Automated reasoning on feature models. In Proceedings of
CAiSE’05, pages 491–503, 2005 (cited on page 35).

[BP00] Roberto J Bayardo Jr and Joseph Daniel Pehoushek. Counting models
using connected components. In AAAI/IAAI, pages 157–162, 2000
(cited on pages 14, 39).

[BV21] David Blackman and Sebastiano Vigna. Scrambled linear pseudoran-
dom number generators. ACM Trans. Math. Softw., 47(4), September
2021. issn: 0098-3500. doi: 10.1145/3460772. url: https://doi.
org/10.1145/3460772 (cited on page 15).

[ÇA11] Ümit V Çatalyürek and Cevdet Aykanat. Patoh (partitioning tool for
hypergraphs). 2011 (cited on page 84).

[CFM+15] Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit
A. Seshia, and Moshe Y. Vardi. On parallel scalable uniform SAT
witness generation. In Tools and Algorithms for the Construction and
Analysis of Systems TACAS’15 2015, London, UK, April 11-18, 2015.
Proceedings, pages 304–319, 2015 (cited on pages 30, 53, 79).

[CFM13] Michael Codish, Yoav Fekete, and Amit Metodi. Backbones for equality.
In Haifa Verification Conference, 2013 (cited on pages 18, 20, 21).

[CLS14] Shaowei Cai, Chuan Luo, and Kaile Su. Scoring functions based on sec-
ond level score for k-SAT with long clauses. J. Artif. Intell. Res., 51:413–
441, 2014. url: https://api.semanticscholar.org/CorpusID:
16385185 (cited on page 34).

xiv

https://doi.org/10.1145/3460772
https://doi.org/10.1145/3460772
https://doi.org/10.1145/3460772
https://api.semanticscholar.org/CorpusID:16385185
https://api.semanticscholar.org/CorpusID:16385185

[CM19] Sourav Chakraborty and Kuldeep S. Meel. On testing of uniform
samplers. In AAAI Conference on Artificial Intelligence, 2019. url:
https://api.semanticscholar.org/CorpusID:106401023 (cited
on pages 4, 13).

[CMV14] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Balanc-
ing scalability and uniformity in sat witness generator. In Proceedings
of the 51st Annual Design Automation Conference, DAC ’14, 60:1–60:6,
San Francisco, CA, USA. ACM, 2014. isbn: 978-1-4503-2730-5. doi:
10.1145/2593069.2593097. url: http://doi.acm.org/10.1145/
2593069.2593097 (cited on pages 8, 14, 30, 53, 79).

[Dar+04] Adnan Darwiche et al. New advances in compiling cnf to decomposable
negation normal form. In Proc. of ECAI, pages 328–332. Citeseer, 2004
(cited on page 12).

[Dar00] Adnan Darwiche. On the tractable counting of theory models and its
application to belief revision and truth maintenance. arXiv preprint
cs/0003044, 2000 (cited on page 82).

[DB08] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In
International conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340. Springer, 2008 (cited on
pages 18, 23).

[DD06] Gilles Dequen and Olivier Dubois. An efficient approach to solving
random k-SAT problems. Journal of Automated Reasoning, 37:261–
276, 2006. url: https://api.semanticscholar.org/CorpusID:
25414864 (cited on page 34).

[DLB+18] Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen.
Efficient sampling of SAT solutions for testing. In Proceedings of the
40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, pages 549–559, 2018.
doi: 10.1145/3180155.3180248. url: http://doi.acm.org/10.
1145/3180155.3180248 (cited on pages 13, 14, 24, 30, 37, 53, 66, 79,
90, 99).

[DM02] Adnan Darwiche and Pierre Marquis. A knowledge compilation map.
J. Artif. Intell. Res., 17:229–264, 2002 (cited on pages 82, 84).

[Dot] Chris Doty-Humphrey. Practically random. https://sourceforge.
net/projects/pracrand/. Accessed: 2024-10-14 (cited on pages 15,
56).

xv

https://api.semanticscholar.org/CorpusID:106401023
https://doi.org/10.1145/2593069.2593097
http://doi.acm.org/10.1145/2593069.2593097
http://doi.acm.org/10.1145/2593069.2593097
https://api.semanticscholar.org/CorpusID:25414864
https://api.semanticscholar.org/CorpusID:25414864
https://doi.org/10.1145/3180155.3180248
http://doi.acm.org/10.1145/3180155.3180248
http://doi.acm.org/10.1145/3180155.3180248
https://sourceforge.net/projects/pracrand/
https://sourceforge.net/projects/pracrand/

[dPDD15] Axel de Perthuis de Laillevault, Benjamin Doerr, and Carola Doerr.
Money for nothing: speeding up evolutionary algorithms through better
initialization. In Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, GECCO ’15, pages 815–822, Madrid,
Spain. ACM, 2015. isbn: 978-1-4503-3472-3. doi: 10.1145/2739480.
2754760. url: http://doi.acm.org/10.1145/2739480.2754760
(cited on page 2).

[EGS12] Stefano Ermon, Carla Gomes, and Bart Selman. Uniform solution
sampling using a constraint solver as an oracle. In Proceedings of the
Twenty-Eighth Conference on Uncertainty in Artificial Intelligence,
UAI’12, pages 255–264, Catalina Island, CA. AUAI Press, 2012. isbn:
9780974903989 (cited on pages 3, 13, 15, 56).

[EO22] Guillaume Escamocher and Barry O’Sullivan. Generation and predic-
tion of difficult model counting instances. ArXiv, abs/2212.02893, 2022
(cited on pages 14, 67).

[ES03] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In SAT’03,
pages 502–518. Springer, 2003 (cited on pages 18, 23, 43).

[FHH20] Johannes Klaus Fichte, Markus Hecher, and Florim Hamiti. The model
counting competition 2020. Journal of Experimental Algorithmics
(JEA), 26:1–26, 2020 (cited on pages 12, 37).

[GBC+02] Ivo Grosse, Pedro Bernaola-Galván, Pedro Carpena, Ramón Román-
Roldán, Jose Oliver, and H Eugene Stanley. Analysis of symbolic
sequences using the jensen-shannon divergence. Physical Review E,
65(4):041905, 2002 (cited on page 63).

[GHS+07] Carla P Gomes, Jörg Hoffmann, Ashish Sabharwal, and Bart Selman.
From sampling to model counting. In IJCAI, volume 2007, pages 2293–
2299, 2007 (cited on page 12).

[GL15] Jesús Giráldez-Cru and Jordi Levy. A modularity-based random sat
instances generator. In International Joint Conference on Artificial
Intelligence, 2015 (cited on pages 9, 10, 36, 39–41).

[GLY17] Jian Gao, Ruizhi Li, and Minghao Yin. A randomized diversifica-
tion strategy for solving satisfiability problem with long clauses. Sci-
ence China Information Sciences, 60:1–11, 2017. url: https://api.
semanticscholar.org/CorpusID:13219850 (cited on page 34).

[Goo58] I. J. Good. Significance tests in parallel and in series. Journal of the
American Statistical Association, 53:799–813, 1958. url: https://api.
semanticscholar.org/CorpusID:121267100 (cited on page 59).

xvi

https://doi.org/10.1145/2739480.2754760
https://doi.org/10.1145/2739480.2754760
http://doi.acm.org/10.1145/2739480.2754760
https://api.semanticscholar.org/CorpusID:13219850
https://api.semanticscholar.org/CorpusID:13219850
https://api.semanticscholar.org/CorpusID:121267100
https://api.semanticscholar.org/CorpusID:121267100

[GRM20] Rahul Gupta, Subhajit Roy, and Kuldeep S. Meel. Phase transi-
tion behavior in knowledge compilation. In International Conference
on Principles and Practice of Constraint Programming, 2020. url:
https://api.semanticscholar.org/CorpusID:220665810 (cited
on pages 14, 15, 34–37, 39, 43, 44, 46).

[GSC+21] Priyanka Golia, M. Soos, Sourav Chakraborty, and Kuldeep S. Meel.
Designing samplers is easy: the boon of testers. 2021 Formal Methods
in Computer Aided Design (FMCAD):222–230, 2021 (cited on pages 3,
4, 13, 16, 18, 99).

[GV21] Vijay Ganesh and Moshe Y. Vardi. On the unreasonable effectiveness
of sat solvers. In Tim Roughgarden, editor, Beyond the worst-case
analysis of algorithms, pages 547–563. Cambridge University Press,
2021 (cited on pages 14, 30, 53).

[GW94] Ian P. Gent and Toby Walsh. The SAT phase transition. In Euro-
pean Conference on Artificial Intelligence, volume 94, pages 105–109.
PITMAN, 1994 (cited on page 34).

[GYX11] Jian Gao, Minghao Yin, and Ke Xu. Phase transitions in knowl-
edge compilation: an experimental study. In International Conference
on Theory and Applications of Satisfiability Testing, pages 364–366.
Springer, 2011 (cited on pages 14, 34, 36, 39).

[HD04] Jinbo Huang and Adnan Darwiche. Using dpll for efficient obdd con-
struction. In International Conference on Theory and Applications of
Satisfiability Testing, pages 157–172. Springer, 2004 (cited on pages 14,
36, 39).

[HFG+20] Ruben Heradio, David Fernández-Amorós, José A. Galindo, and David
Benavides. Uniform and scalable sat-sampling for configurable systems.
In Roberto Erick Lopez-Herrejon, editor, SPLC ’20: 24th ACM In-
ternational Systems and Software Product Line Conference, Montreal,
Quebec, Canada, October 19-23, 2020, Volume A, 17:1–17:11. ACM,
2020. doi: 10.1145/3382025.3414951. url: https://doi.org/10.
1145/3382025.3414951 (cited on pages 62, 63).

[HFG+22] Ruben Heradio, David Fernandez-Amoros, José A. Galindo, David
Benavides, and Don Batory. Uniform and scalable sampling of highly
configurable systems. Empirical Softw. Engg., 27(2), March 2022. issn:
1382-3256. doi: 10.1007/s10664-021-10102-5. url: https://doi.
org/10.1007/s10664-021-10102-5 (cited on pages 3, 4, 13, 16, 69).

xvii

https://api.semanticscholar.org/CorpusID:220665810
https://doi.org/10.1145/3382025.3414951
https://doi.org/10.1145/3382025.3414951
https://doi.org/10.1145/3382025.3414951
https://doi.org/10.1007/s10664-021-10102-5
https://doi.org/10.1007/s10664-021-10102-5
https://doi.org/10.1007/s10664-021-10102-5

[HFM+19] Ruben Heradio, David Fernández-Amorós, Christoph Mayr-Dorn, and
Alexander Egyed. Supporting the statistical analysis of variability
models. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 843–853. IEEE, 2019 (cited on page 68).

[HNA+18] Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey,
Gilles Perrouin, and Benoit Baudry. Test them all, is it worth it?
assessing configuration sampling on the jhipster web development
stack. Empirical Software Engineering, July 2018. issn: 1573-7616.
doi: 10.1007/s10664-018-9635-4. url: https://doi.org/10.
1007/s10664-018-9635-4 (cited on pages 2, 24, 31, 53, 66, 79).

[HS15] Michael Hamann and Ben Strasser. Graph bisection with pareto opti-
mization. Journal of Experimental Algorithmics (JEA), 23:1–34, 2015.
url: https://api.semanticscholar.org/CorpusID:3395784 (cited
on page 24).

[IMM+16] Alexander Ivrii, Sharad Malik, Kuldeep S Meel, and Moshe Y Vardi. On
computing minimal independent support and its applications to sam-
pling and counting. Constraints, 21(1):41–58, 2016 (cited on pages 8,
20, 25).

[JHF11] Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. Prop-
erties of Realistic Feature Models Make Combinatorial Testing of Prod-
uct Lines Feasible. In Jon Whittle, Tony Clark, and Thomas Kühne,
editors, Model Driven Engineering Languages and Systems: 14th Inter-
national Conference, MODELS ’11, number Section 3, pages 638–652.
Springer, 2011. isbn: 978-3-642-24485-8 (cited on page 14).

[Ken38] Maurice G Kendall. A new measure of rank correlation. Biometrika,
30(1-2):81–93, 1938 (cited on page 41).

[KPN09] Aaron A. Klammer, Christopher Y. Park, and William Stafford No-
ble. Statistical calibration of the sequest xcorr function. Journal of
Proteome Research, 8(4):2106–2113, 2009. doi: 10.1021/pr8011107.
eprint: https://doi.org/10.1021/pr8011107. url: https://doi.
org/10.1021/pr8011107. PMID: 19275164 (cited on page 78).

[KTM+17] Alexander Knüppel, Thomas Thüm, Stephan Mennicke, Jens Meinicke,
and Ina Schaefer. Is there a mismatch between real-world feature
models and product-line research? In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, pages 291–302, 2017.
doi: 10.1145/3106237.3106252. url: http://doi.acm.org/10.
1145/3106237.3106252 (cited on pages 24, 66).

xviii

https://doi.org/10.1007/s10664-018-9635-4
https://doi.org/10.1007/s10664-018-9635-4
https://doi.org/10.1007/s10664-018-9635-4
https://api.semanticscholar.org/CorpusID:3395784
https://doi.org/10.1021/pr8011107
https://doi.org/10.1021/pr8011107
https://doi.org/10.1021/pr8011107
https://doi.org/10.1021/pr8011107
https://doi.org/10.1145/3106237.3106252
http://doi.acm.org/10.1145/3106237.3106252
http://doi.acm.org/10.1145/3106237.3106252

[KTS+18] Sebastian Krieter, Thomas Thüm, Sandro Schulze, Reimar Schröter,
and Gunter Saake. Propagating configuration decisions with modal
implication graphs. In Proceedings of the 40th International Conference
on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 -
June 03, 2018, pages 898–909, 2018. doi: 10.1145/3180155.3180159.
url: http://doi.acm.org/10.1145/3180155.3180159 (cited on
pages 24, 66).

[LGC+15] Jia Hui Liang, Vijay Ganesh, Krzysztof Czarnecki, and Venkatesh
Raman. Sat-based analysis of large real-world feature models is easy. In
Proceedings of the 19th International Conference on Software Product
Line, SPLC ’15, pages 91–100, Nashville, Tennessee. ACM, 2015. isbn:
978-1-4503-3613-0. doi: 10 . 1145 / 2791060 . 2791070. url: http :
//doi.acm.org/10.1145/2791060.2791070 (cited on pages 14, 24,
49, 66).

[Lin91] J. Lin. Divergence measures based on the shannon entropy. IEEE
Transactions on Information Theory, 37(1):145–151, 1991. doi: 10.
1109/18.61115 (cited on page 63).

[LL24] Jean-Marie Lagniez and Emmanuel Lonca. Leveraging decision-dnnf
compilation for enumerating disjoint partial models. In 21st Inter-
national Conference on Principles of Knowledge Representation and
Reasoning (KR 2024), 2024 (cited on page 86).

[LLM16] Jean-Marie Lagniez, Emmanuel Lonca, and Pierre Marquis. Improving
model counting by leveraging definability. In International Joint Con-
ference on Artificial Intelligence, 2016. url: https://api.semanticscholar.
org/CorpusID:6303269 (cited on pages 8, 83).

[LM17] Jean-Marie Lagniez and Pierre Marquis. An improved decision-dnnf
compiler. In IJCAI, 2017 (cited on pages 4, 12, 18, 20, 23, 37, 45, 49,
53, 82, 88, 90–97, 99).

[LMS18] Jean-Marie Lagniez, Pierre Marquis, and Nicolas Szczepanski. Dmc:
a distributed model counter. In 27th International Joint Conference
on Artificial Intelligence (IJCAI’18), pages 1331–1338, 2018 (cited on
page 12).

[LS07] Pierre L’Ecuyer and Richard Simard. Testu01: a c library for empirical
testing of random number generators. ACM Transactions on Math-
ematical Software (TOMS), 33(4):1–40, 2007 (cited on pages 15, 56,
69).

[Mat11] R. Mateescu. Treewidth in industrial sat benchmarks. In 2011 (cited
on page 14).

xix

https://doi.org/10.1145/3180155.3180159
http://doi.acm.org/10.1145/3180155.3180159
https://doi.org/10.1145/2791060.2791070
http://doi.acm.org/10.1145/2791060.2791070
http://doi.acm.org/10.1145/2791060.2791070
https://doi.org/10.1109/18.61115
https://doi.org/10.1109/18.61115
https://api.semanticscholar.org/CorpusID:6303269
https://api.semanticscholar.org/CorpusID:6303269

[MH15] Zongxu Mu and Holger H. Hoos. On the empirical time complexity
of random 3-SAT at the phase transition. In International Joint Confer-
ence on Artificial Intelligence, 2015. url: https://api.semanticscholar.
org/CorpusID:17251755 (cited on page 34).

[MMB+12] Christian Muise, Sheila A McIlraith, J Christopher Beck, and Eric I
Hsu. D sharp: fast d-dnnf compilation with sharpsat. In Advances in
Artificial Intelligence: 25th Canadian Conference on Artificial Intelli-
gence, Canadian AI 2012, Toronto, ON, Canada, May 28-30, 2012.
Proceedings 25, pages 356–361. Springer, 2012 (cited on page 12).

[MPC20] Kuldeep S. Meel, Yash Pote, and Sourav Chakraborty. On test-
ing of samplers. In Advances in Neural Information Processing Sys-
tems(NeurIPS), December 2020 (cited on page 68).

[MSL92] David G. Mitchell, Bart Selman, and Hector J. Levesque. Hard and
easy distributions of sat problems. In AAAI Conference on Artificial
Intelligence, 1992 (cited on pages 34–36, 38, 39, 43, 44, 67).

[MWC09] Marcilio Mendonca, Andrzej Wasowski, and Krzysztof Czarnecki. SAT-
based analysis of feature models is easy. In Proceedings of the 13th
International Software Product Line Conference, SPLC ’09, pages 231–
240, San Francisco, California, USA. Carnegie Mellon University, 2009.
url: http://dl.acm.org/citation.cfm?id=1753235.1753267
(cited on pages 14, 35, 50).

[MZK+99] Rémi Monasson, Riccardo Zecchina, Scott Kirkpatrick, Bart Selman,
and Lidror Troyansky. Determining computational complexity from
characteristic ‘phase transitions’. Nature, 400(6740):133–137, 1999
(cited on page 14).

[NG03] Mark E. J. Newman and Michelle Girvan. Finding and evaluating com-
munity structure in networks. Physical review. E, Statistical, nonlinear,
and soft matter physics, 69 2 Pt 2:026113, 2003 (cited on page 10).

[OBM+17] Jeho Oh, Don S. Batory, Margaret Myers, and Norbert Siegmund.
Finding near-optimal configurations in product lines by random sam-
pling. In Eric Bodden, Wilhelm Schäfer, Arie van Deursen, and Andrea
Zisman, editors, Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
September 4-8, 2017, pages 61–71. ACM, 2017. doi: 10.1145/3106237.
3106273. url: https://doi.org/10.1145/3106237.3106273 (cited
on page 2).

[OD14] Umut Oztok and Adnan Darwiche. On compiling cnf into decision-dnnf.
In CP, 2014 (cited on page 20).

xx

https://api.semanticscholar.org/CorpusID:17251755
https://api.semanticscholar.org/CorpusID:17251755
http://dl.acm.org/citation.cfm?id=1753235.1753267
https://doi.org/10.1145/3106237.3106273
https://doi.org/10.1145/3106237.3106273
https://doi.org/10.1145/3106237.3106273

[OGB+20] Jeho Oh, Paul Gazzillo, Don Batory, Marijn Heule, and Margaret
Myers. Scalable Uniform Sampling for Real-World Software Product
Lines. Technical report TR-20-01, 2020 (cited on pages 3, 12, 16).

[OGB19] Jeho Oh, Paul Gazzillo, and Don S. Batory. t-wise coverage by uniform
sampling. In Thorsten Berger, Philippe Collet, Laurence Duchien,
Thomas Fogdal, Patrick Heymans, Timo Kehrer, Jabier Martinez,
Raúl Mazo, Leticia Montalvillo, Camille Salinesi, Xhevahire Tërnava,
Thomas Thüm, and Tewfik Ziadi, editors, Proceedings of the 23rd
International Systems and Software Product Line Conference, SPLC
2019, Volume A, Paris, France, September 9-13, 2019, 15:1–15:4. ACM,
2019. isbn: 978-1-4503-7138-4 (cited on page 2).

[ONe18] Melissa E. O’Neill. A birthday test: quickly failing some popular prngs.
https://www.pcg-random.org/posts/birthday-test.html, 2018.
Accessed: 2024-10-14 (cited on page 64).

[PAP+19] Quentin Plazar, Mathieu Acher, Gilles Perrouin, Xavier Devroey, and
Maxime Cordy. Uniform sampling of SAT solutions for configurable
systems: are we there yet? In 12th IEEE Conference on Software
Testing, Validation and Verification, ICST 2019, Xi’an, China, April
22-27, 2019, pages 240–251, 2019 (cited on pages 2, 3, 13–15, 18, 24,
31, 37, 53, 60, 61, 66, 79, 90–97, 100).

[Pea00] Karl Pearson. On the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that
it can be reasonably supposed to have arisen from random sampling.
Philosophical Magazine Series 1, 50:11–28, 1900. url: https://api.
semanticscholar.org/CorpusID:123466489 (cited on page 60).

[PJM19] Yash Pote, Saurabh Joshi, and Kuldeep S. Meel. Phase transition behav-
ior of cardinality and XOR constraints. ArXiv, abs/1910.09755, 2019.
url: https://api.semanticscholar.org/CorpusID:199465708
(cited on page 34).

[PMY25] Yash Pote, Kuldeep S Meel, and Jiong Yang. Towards real-time approx-
imate counting. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39 of number 11, pages 11318–11326, 2025 (cited
on pages 12, 82, 94–96).

[PS19] Daniël Paulusma and Stefan Szeider. On the parameterized complexity
of (k, s)-sat. Inf. Process. Lett., 143:34–36, 2019 (cited on page 20).

xxi

https://www.pcg-random.org/posts/birthday-test.html
https://api.semanticscholar.org/CorpusID:123466489
https://api.semanticscholar.org/CorpusID:123466489
https://api.semanticscholar.org/CorpusID:199465708

[PTR+19] Tobias Pett, Thomas Thüm, Tobias Runge, Sebastian Krieter, Malte
Lochau, and Ina Schaefer. Product sampling for product lines: the
scalability challenge. Proceedings of the 23rd International Systems and
Software Product Line Conference - Volume A, 2019. url: https://
api.semanticscholar.org/CorpusID:85462202 (cited on page 20).

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011 (cited on page 24).

[Rai15] Matt Raible. The JHipster mini-book. C4Media, 2015 (cited on pages 24,
66).

[RSN+01] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine
Barker, Stefan Leigh, Mark Levenson, Mark Vangel, David Banks,
Alan Heckert, et al. A statistical test suite for random and pseudo-
random number generators for cryptographic applications, volume 22.
US Department of Commerce, Technology Administration, National
Institute of . . ., 2001 (cited on pages 15, 56, 78).

[SBK+24] Chico Sundermann, Vincenzo Francesco Brancaccio, Elias Kuiter, Se-
bastian Krieter, Tobias Heß, and Thomas Thüm. Collecting Feature
Models from the Literature: A Comprehensive Dataset for Bench-
marking. In Proceedings of the 28th ACM International Systems and
Software Product Line Conference, pages 54–65, New York, NY, USA.
ACM, September 2024 (cited on pages 37, 53, 90–97).

[SGC+22] Mate Soos, Priyanka Golia, Sourav Chakraborty, and Kuldeep S.
Meel. On quantitative testing of uniform samplers. In Proceedings of
International Conference on Constraint Programming (CP), August
2022 (cited on pages 15, 57).

[SGM20] Mate Soos, Stephan Gocht, and Kuldeep S. Meel. Tinted, detached,
and lazy cnf-xor solving and its applications to counting and sam-
pling. In Proceedings of International Conference on Computer-Aided
Verification (CAV), July 2020 (cited on pages 3, 13, 15, 18, 37, 56).

[SGR+18] Shubham Sharma, Rahul Gupta, Subhajit Roy, and Kuldeep S. Meel.
Knowledge compilation meets uniform sampling. In Proceedings of
International Conference on Logic for Programming Artificial Intelli-
gence and Reasoning (LPAR), November 2018 (cited on pages 3, 4, 13,
15, 23, 82).

xxii

https://api.semanticscholar.org/CorpusID:85462202
https://api.semanticscholar.org/CorpusID:85462202

[SHN+23] Chico Sundermann, Tobias Heß, Michael Nieke, Paul Maximilian Bit-
tner, Jeffrey M. Young, Thomas Thüm, and Ina Schaefer. Evaluating
state-of-the-art # sat solvers on industrial configuration spaces. Em-
pirical Software Engineering, 28, 2023 (cited on pages 12, 14, 37, 82).

[SM21] Mate Soos and Kuldeep S Meel. Arjun: an efficient independent support
computation technique and its applications to counting and sampling.
arXiv preprint arXiv:2110.09026, 2021 (cited on pages 20, 23, 25, 26,
31, 83).

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT
solvers to cryptographic problems. In Oliver Kullmann, editor, Theory
and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceed-
ings, volume 5584 of Lecture Notes in Computer Science, pages 244–
257. Springer, 2009. doi: 10.1007/978-3-642-02777-2_24. url:
https://doi.org/10.1007/978-3-642-02777-2%5C_24 (cited on
page 13).

[Soo24] Mate Soos. Benchmarks used for approximate model counting. Zenodo,
January 2024. doi: 10.5281/zenodo.10449477. url: https://doi.
org/10.5281/zenodo.10449477 (cited on pages 37, 90–93, 95–97).

[SRH+24] Chico Sundermann, Heiko Raab, Tobias Heß, Thomas Thüm, and Ina
Schaefer. Reusing d-dnnfs for efficient feature-model counting. ACM
Transactions on Software Engineering and Methodology, 33(8):1–32,
2024 (cited on pages 12, 82).

[SRS+19] Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S Meel.
Ganak: a scalable probabilistic exact model counter. In IJCAI, vol-
ume 19 of number 2019, pages 1169–1176, 2019 (cited on page 12).

[Thu06] Marc Thurley. Sharpsat – counting models with advanced component
caching and implicit bcp. In Armin Biere and Carla P. Gomes, editors,
Theory and Applications of Satisfiability Testing - SAT 2006, pages 424–
429, Berlin, Heidelberg. Springer Berlin Heidelberg, 2006. isbn: 978-3-
540-37207-3 (cited on pages 4, 12, 13, 20, 23, 37).

[Val79] Leslie G Valiant. The complexity of enumeration and reliability prob-
lems. siam Journal on Computing, 8(3):410–421, 1979 (cited on pages 4,
12, 15).

[Vit85] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transac-
tions on Mathematical Software (TOMS), 11(1):37–57, 1985 (cited on
page 13).

xxiii

https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-642-02777-2%5C_24
https://doi.org/10.5281/zenodo.10449477
https://doi.org/10.5281/zenodo.10449477
https://doi.org/10.5281/zenodo.10449477

[Wan15] Yisong Wang. On forgetting in tractable propositional fragments.
ArXiv, abs/1502.02799, 2015. url: https://api.semanticscholar.
org/CorpusID:6588613 (cited on page 8).

[Wil19] Daniel J. Wilson. The harmonic mean p-value for combining depen-
dent tests. Proceedings of the National Academy of Sciences of the
United States of America, 116:1195–1200, 2019. url: https://api.
semanticscholar.org/CorpusID:58589423 (cited on page 59).

[WS05] Wei Wei and Bart Selman. A new approach to model counting. In
Theory and Applications of Satisfiability Testing: 8th International
Conference, SAT 2005, St Andrews, UK, June 19-23, 2005. Proceedings
8, pages 324–339. Springer, 2005 (cited on page 12).

[Yat34] F. Yates. Contingency tables involving small numbers and the χ2
test. In 1934. url: https://api.semanticscholar.org/CorpusID:
126200663 (cited on pages 60, 61, 68).

[YM23] Jiong Yang and Kuldeep S Meel. Rounding meets approximate model
counting. In International Conference on Computer Aided Verification,
pages 132–162. Springer, 2023 (cited on page 12).

[ZCP+24] Olivier Zeyen, Maxime Cordy, Gilles Perrouin, and Mathieu Acher.
Preprocessing is What You Need: Understanding and Predicting the
Complexity of SAT-based Uniform Random Sampling. In Proceedings
of the 2024 IEEE/ACM 12th International Conference on Formal
Methods in Software Engineering (FormaliSE), pages 23–32, 2024
(cited on page iii).

[ZCP+25] Olivier Zeyen, Maxime Cordy, Gilles Perrouin, and Mathieu Acher. Ex-
ploring the Computational Complexity of Uniform Random Sampling
and SAT Counting with Phase Transitions. In Proceedings of the 29th
ACM International Systems and Software Product Line Conference,
2025 (cited on page iii).

[Zey23] Olivier Zeyen. Preprocessing is What You Need: Understanding and
Predicting the Complexity of SAT-based Uniform Random Sampling.
https://github.com/serval-uni-lu/urs_scal, 2023 (cited on
page 25).

[Zey25a] Olivier Zeyen. DivKC: A Divide-and-Conquer Approach to Knowledge
Compilation. https://github.com/serval-uni-lu/divkc, 2025
(cited on pages 83, iii).

xxiv

https://api.semanticscholar.org/CorpusID:6588613
https://api.semanticscholar.org/CorpusID:6588613
https://api.semanticscholar.org/CorpusID:58589423
https://api.semanticscholar.org/CorpusID:58589423
https://api.semanticscholar.org/CorpusID:126200663
https://api.semanticscholar.org/CorpusID:126200663
https://github.com/serval-uni-lu/urs_scal
https://github.com/serval-uni-lu/divkc

[Zey25b] Olivier Zeyen. Exploring the Computational Complexity of SAT Count-
ing and Uniform Sampling with Phase Transitions. https://github.
com / serval - uni - lu / urs _ phase _ transitions, 2025 (cited on
pages 38, 39, 50, 53).

[Zey25c] Olivier Zeyen. Testing Uniform Random Samplers: Methods, Datasets
and Protocols. https://github.com/serval-uni-lu/urs_test,
2025 (cited on pages 67, 69, 80, iii).

xxv

https://github.com/serval-uni-lu/urs_phase_transitions
https://github.com/serval-uni-lu/urs_phase_transitions
https://github.com/serval-uni-lu/urs_test

	Introduction
	Context
	Challenges
	Overview of Contributions

	Background
	Boolean Formulae
	Community Structure of Boolean Formulae

	Related Work
	Model Counting
	Uniform Random Sampling
	Empirical Sudies on Complexity
	Uniformity Testing

	Preprocessing is What You Need: Understanding and Predicting the Complexity of SAT-based Uniform Random Sampling
	Introduction
	Objectives and Methods
	Research Questions
	Complexity Metrics
	EQV: A Parallel Algorithm to Compute the Number of Equivalence Classes

	Experimental Setup
	Samplers
	#SAT Preprocessing
	Dataset
	Infrastructure

	Results
	RQ1: Complexity Factors
	RQ2: Complexity Prediction
	RQ3: URS
	Perspectives

	Threats to Validity
	Conclusion

	Exploring the Computational Complexity of Uniform Random Sampling and SAT Counting with Phase Transitions
	Introduction
	Objectives and Methodology
	Research Questions and Methods
	Data Preparation
	URS and #SAT Tools
	Infrastructure

	Results
	RQ1: Phase Transitions
	RQ2: Reasons for Phase Transitions
	RQ3: Real-World Formulae

	Threats to Validity
	Conclusion

	Testing Uniform Random Samplers: Methods, Datasets and Protocols
	Introduction
	Statistical Test Methodology
	Combining Results from Multiple Formulae
	Statistical Tests for Uniform Random Sampling

	Experimental Study
	Research Questions
	Datasets
	Infrastructure
	Computation Budget
	Hyperparameters

	Results
	RQ1: Uniformity of Samplers
	RQ2: Scalability
	RQ3: On the Influence of Formula Choice
	Discussion on Uniformity and Statistical Test Results

	Threats to Validity
	Conclusion

	DivKC: A Divide-and-Conquer Approach to Knowledge Compilation
	Introduction
	DivKC
	Overview of the Decomposition Algorithm
	Choosing the Projection Set P
	Application to Model Counting
	Application to Uniform Random Sampling

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Conclusion

	Conclusion
	Summary of Contributions
	Perspectives

	List of Publications and Tools
	List of Figures
	List of Tables
	Bibliography

