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Abstract

Uniform Random Sampling (URS) and Model Counting (#SAT) are
two intrinsically linked, theoretical problems with relevant practical
applications in software engineering. In particular, in configurable
system engineering, URS and #SAT can support studying config-
urations’ properties unbiasedly. Despite the community efforts
to provide scalable URS and #SAT tools, solving these problems
efficiently remains challenging for a large number of formulae. Con-
trary to the classical SAT problem, whose complexity has been an
object of fundamental studies, little is known about what makes
a formula hard to sample from. For the first time, we investigate
how phase transitions can explain the practical complexity of sam-
pling. Our results, computed on 11,409 synthetic formulae and 4656
real-world formulae, show that phase transitions occur in both
cases, but at a different clause-to-variable ratio than for SAT tasks.
We further reveal that low formula modularity is correlated with a
higher URS/#SAT time. Overall, our work contributes to a principled
understanding of URS and #SAT complexity.
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1 Introduction

Uniform Random Sampling (URS) is the problem of selecting models
from a Boolean formula, such that each model gets the same prob-
ability of being selected. URS has many applications for software
engineering, particularly in analyzing large configurable systems. In
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software product lines (SPLs), feature models (FMs) define all valid
configurations using features and constraints. A product is thus a
set of features that satisfy the constraints. Exhaustively testing all
configurations is often infeasible, making it useful to sample config-
urations uniformly to detect bugs at an affordable cost [38, 40, 41].
Moreover, URS has been shown to be effective when searching for
an optimal configuration [38].

Model counting (#SAT), which counts the number of models
of a Boolean formula, is closely related to URS, sharing similar
principles and heuristics. URS can also be reduced to #SAT [39].
Beyond URS, #SAT has various applications in software engineering,
including variability reduction [48], variability analysis [12, 46],
feature prioritization [48], and bug fix prioritization [28].

URS and #SAT are difficult to solve efficiently, with existing meth-
ods struggling to scale to large real-world formulae like the Linux
kernel [41]. Unlike traditional SAT, the complexity factors behind
URS and #SAT remain underexplored. We argue that understanding
these factors is crucial to determining the computational expense of
analyzing a formula. Following decades of research in SAT [34, 35],
our goal is to identify these factors through systematic analysis,
starting with an investigation into whether their complexity can
be understood through phase transitions.

Phase transitions are abrupt changes in a system’s properties due
to small variations in a parameter. Phase transitions in SAT, #SAT,
and URS are defined as a critical point in a parameter space (e.g.,
clause-to-variable ratio) where solver behavior changes abruptly,
often following an easy-hard-easy pattern—problems are easy to
solve before and after the transition, but hard near the critical
point [20, 23]. For SAT problems, Mitchell et al. [34] observed an
easy-hard-easy pattern in the clause-to-variable ratio. As the ratio
increases, SAT solver runtime remains low until it spikes near 4.25,
then decreases again for higher ratios. This phenomenon, known
as the SAT phase transition, has driven research into algorithms
focused on instances at this critical point [9, 13, 19, 36, 42], high-
lighting its theoretical and practical significance [21]. Gupta et al.
[23] studied phase transitions for knowledge compilation and found
that the phase transition for knowledge compilation occurs at a dif-
ferent clause-to-variable ratio than for SAT solving. However, these
existing works did not study phase transitions for URS. Moreover,
they did not study the effects of community structure on the phase
transition, which is known to occur in real-world formulae [4].
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In this paper, we contribute to a principled understanding of
URS and #SAT complexity by studying whether phase transitions
also occur in these problems. Our investigations require both ex-
perimental analysis (based on controlled experiments and artifacts)
and empirical analysis (uncontrolled observations made on existing
practices). While empirical observations on real-world formulae are
needed to validate conclusions in practice, the low availability and
high heterogeneity of these formulae entail an insufficient coverage
of all possible structural variations to draw general conclusions.
Therefore, we also conduct experiments on synthetic formulae
created through systematic and controlled procedures to identify
trends and limit cases. Doing so allows us to explore the role of
specific characteristics in the complexity of URS and #SAT.

We begin by studying the complexity of model counters and
uniform random samplers using k-CNF formulae, where each clause
has exactly k literals. k-CNF formulae are commonly used in SAT
studies [34], enabling direct comparison with SAT solving and other
knowledge compilation studies [23]. We vary the clause-to-variable
ratio, a key factor in phase transitions for SAT [34], and set k = 3, as
in previous SAT studies. We observe phase transitions in both URS
and #SAT at a lower ratio (2.00 vs. 4.25). This holds regardless of the
formula’s community structure [4], though a weaker community
structure leads to larger increases in computation time.

Next, we investigate the causes of the phase transitions similarly
to [23]. While SAT phase transitions are linked to a sudden change
in satisfiability probability, URS and #SAT, which explore all models
rather than finding just one, require a different explanation. We find
that the complexity of URS and #SAT can be explained by analyzing
the number of models relative to the number of variables, known
as the solution density [6, 23].

Finally, we empirically analyze real-world formulae to verify if
the trends observed in synthetic data hold. Real-world formulae
have a heterogeneous structure [51], mixing clauses of varying
sizes, which complicates general conclusions. Nevertheless, our
observations suggest that phase transitions may not occur in real-
world formulae which coincides with the findings in [32].

Altogether, this paper makes the following contributions:

(1) The first systematic study of phase transitions in both
URS and #SAT. Our analysis of 2 samplers, 3 #SAT solvers,
and 11,409 synthetic formulae shows that phase transitions
occur in these problems, but at a different clause-to-variable
ratio than in SAT. Thus, a formula that is easy for a SAT
solver may not be easy for URS or #SAT.

(2) A novel exploration of the reasons behind the complexity
of URS and #SAT. Through our in-depth study of formula
characteristics and the observation of phase transitions, we
bring a fundamental contribution to the understanding of
URS and #SAT complexity.

Open science policy. All our experimentation infrastructure
is available at the following website: https://anonymous.4open.
science/r/urs_phase_transitions-6FBC. The repository contains the
artifacts that were used. The repository also includes the resulting
CSV files of our experiments.

2 Related Work

As noted by Alyahya et al. [3] and Vardi et al. [18], studying the com-
plexity of SAT-based tasks is not new. One of the first approaches
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was to characterize phase transitions linked to abrupt changes in
solving complexity. Monasson et al. offered a structural metric,
namely the clause-to-variable ratio [35]. They demonstrated that
when this ratio increases, finding models for a given synthetic for-
mula is progressively harder up to a critical value of this ratio. When
the ratio exceeds this critical value, the formula becomes easy to
solve again (often by proving it UNSAT). Alyahya’s survey further
covers metrics such as treewidth correlated with solving time [31].

Regarding FM-based formulae specifically, the body of knowl-
edge is more limited. Mendonca et al. [33] studied the experimental
complexity of SAT-solving of FM-based formulae. The authors stud-
ied the clause-to-variable spectrum of formulae similar to feature
models. In their studies, the authors failed to observe a phase tran-
sition and concluded that FM formulae do not suffer from the SAT
phase transition thus explaining the general efficiency of SAT-based
analysis of feature models. Liang et al. [30] further confirmed these
results on larger industrial FMs. The authors found that FMs have
a high number of unrestricted variables due to the high variability
of FMs. The authors also found that SAT-solvers do little back-
tracking during search, thus explaining the high efficiency. The
authors followed by disabling SAT solver heuristics and found that
the solver did not suffer from any performance deterioration while
solving FMs. In addition to this extensive analysis, the authors
ran a set of simplifications to the formulae and found that they
were highly efficient. Some of the instances were solved by the
simplification procedure alone. The remaining formulae were small
in comparison and thus efficiently solved by state-of-the-art SAT-
solvers. Johansen discussed the implications of these findings for
combinatorial interaction testing of software product lines [26].

Regarding #SAT and uniform random sampling specifically, the
body of knowledge is scarce. Sundermann et al. evaluated 21 #SAT
solvers on FM-based formulae and computed the correlation be-
tween execution time and formula metrics [48]. Plazar et al. studied
the scalability of two samplers, namely UniGen [11] and Quicksam-
pler [14], but the scalability study is limited to UniGen as Quick-
sampler is not a uniform sampler [41]. Escamocher et al. studied
the generation of hard instances for #SAT [16]. Huang et al. [25]
observed a phase transition for knowledge compilation, similarly
to [5, 7]. Gupta et al. studied the phase transition in more depth for
knowledge compilation to d-DNNF, SDD, and OBDD [23]. Similarily,
Gao et al. [20] studied phase transitions for knowledge compilation
as well. However, Gao et al. do not study the phase transitions
for URS, the community structure, and its influence on the phase
transition or the solution density proposed by Gupta et al. [23].
Overall, none of these studies explore phase transitions for uniform
random sampling, and none of the studies explore the influence of
community structure on solving times.

To the best of our knowledge, our study is the first to explore
phase transitions for both uniform random sampling and #SAT. In
addition to phase transitions, we study the effects of community
structure and the links with real-world formulae.

3 Background
3.1 Boolean Formulae

A Boolean formula F is defined over a set of Boolean variables
Var(F), which can evaluate to either true or false. A literal is either
a variable x € Var(F) or its negation —x, such that if variable x is
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set to true, then the literal x evaluates to true, and the literal —x
evaluates to false.

An assignment is a set of literals such that VI € a : (=] ¢ a). An
assignment a is complete if Vo € Var(F) : (v € aV - € a). Amodel
m of F, noted m [= F, is a complete assignment of Var(F) such that
F evaluates to true. We define Rf as the complete set of models of
F such that m |= F if and only if m € Rp. Thus, |RF| is the number
of models for F. An assignment a is partial if Var(a) c Var(F). We
denote by |a| the number of assigned variables.

A formula F is in negational normal form (NNF) if the negation
only appears directly in front of variables. A clause is a disjunction
of literals. A formula is in conjunctive normal form (CNF) if it is
written as a conjunction of clauses. In other words, a formula is
in CNF if it is written as F = A¢, Vyec, li with Ve, li a clause
and [; a literal. A formula is a k-CNF if every clause has exactly k
distinct literals. A formula F in conjunctive normal form can be
represented as a set of clauses, and a clause can be represented as a
set of literals. For a CNF formula F, we denote by |F| its number of
clauses and by |Var(F)| the number of variables that occur in it.

We next define three common problems over Boolean formulae,
i.e. SAT solving, model counting, and URS. SAT solving is the prob-
lem of determining whether Rr is non-empty. Model counting
(#SAT) is the problem of computing |Rp|. Finally, Uniform Ran-
dom Sampling (URS) is the problem of sampling a model from
RF such that every m € R has probability ﬁ of being sampled.
3.2 Community Structure of Boolean Formulae

An undirected weighted graph G is defined as a pair G = (V, w),
where V is the set of nodes and w is the edge-weight function
defined as w : V x V — R*. Because G is undirected, we have
w(x,y) = w(y,x).

The Variable Incidence Graph (VIG) [22] of a CNF formula F
is the undirected weighted graph whose nodes are the variables
of F. There exists an edge between two variables if they both ap-
pear in a clause c. To give the same relevance to all clauses, we
define the weight of an edge between nodes x and y as w(x,y) =
ZceFxecnyec ﬁ with |c| the number of literals in the clause.

2

A formula has a community structure if we can split the variables
into at least two groups such that we have a higher number of
clauses that connect variables within a group than clauses that
connect multiple groups together. This is an interesting property
for model counting and sampling because if we have a formula
that does not have any connection between the groups (i.e. no
clauses connecting groups), then we can compute the model count
(or sample) of each group separately and compute the product to
obtain the final result. Thus, if we have a high community structure,
we expect that the algorithm will finish faster.

To measure the community structure of a formula F we will use
the notion of modularity Q as defined in [4, 22, 37] computed on
the VIG G of the formula F.

The modularity of a graph G is defined for a given partition C
as follows:

_ Zx,yEC,- w(x, y) ZxECi deg(x) 2
Q(G,C) = C;C T yev w(x.y) ( ey deg(x) )

The modularity of a graph is Q(G) = max{Q(G, C)|C} for any
partition C. Computing the modularity of a graph is NP-hard [8],
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thus most methods usually approximate a lower-bound of Q. The
modularity of a graph will be in the range [0, 1] [4] with one mean-
ing a very strong community structure, and zero meaning that the
graph is fully connected.

4 Objectives and Methodology

We detail below our research methods, the protocol to prepare the
dataset (Boolean formulae), the samplers and model counters we
used, and our computing infrastructure.

4.1 Research Questions and Methods

To achieve a principled understanding of URS and #SAT prob-
lem complexity, we explore the phenomenon of phase transitions
[34] similarly to SAT problems and knowledge compilation [23].
Mitchell et al. showed in [34] that the solving difficulty of random
k-CNF formulae changes drastically across the clause-to-variable
spectrum. Indeed, they found that formulae are much harder to
solve for a part of this spectrum. Around a clause-to-variable ra-
tio of 4.25 (for k = 3), the formulae are exponentially harder to
solve. This discovery has a major importance as it shows that some
of the synthetic formulae drawn from the same distribution are
much harder to solve than others. This motivated the development
of algorithms that perform better near the phase transition. Simi-
larly, Gupta et al. [23] investigated phase transitions in knowledge
compilation and identified a phase transition, though at a differ-
ent clause-to-variable ratio compared to SAT solving. Even though
phase transitions have been studied for #SAT and knowledge com-
pilation [7, 20, 23, 25], they remain a mainly observed phenomenon;
as such, no formal definition is available. Because available real-
world formulae are too scarce and heterogeneous to draw general
conclusions (regarding structural properties such as the number of
variables/clauses), our study combines experimental analysis (us-
ing synthetic artifacts under experimental control) with empirical
analysis (based on real-world artifacts collected in the literature).
These are necessary to draw theoretical (general) conclusions and
validate them in practice.
Our study globally aims to answer three research questions:

e RQ1: Do phase transitions generally occur in synthetic URS
and #SAT problems?

e RQ2: What are the reasons for the phase transitions in syn-
thetic formulae?

e RQ3: Are phase transitions also observed on real-world
formulae?

To draw general conclusions for RQ1 and RQ2, we rely on con-
trolled experiments. To complement our findings with empirical
observations, we answer RQ3 using real-world data.

4.2 Data Preparation

4.2.1 Synthetic Formulae. For our experimental analysis, we con-
duct controlled experiments with 11,409 formulae that we syn-
thesize by varying multiple structural characteristics (number of
variables, number of clauses, clause size, modularity, etc.). Thus,
we can observe finely complex phenomena like phase transitions.

To generate our datasets, we use the classical k-CNF generation
[34] and the community attachment model from [22]. The classical
model enables us to control various parameters: number of vari-
ables v, number of clauses n, and clause size k. It then generates a
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clause by selecting k unique variables and negating them with a
% probability and add the clause to the set of clauses. We use this
model to generate a dataset containing 2,162 synthetic formulae,
which will be used to answer RQ2.

The community attachment model from [22] gives additional
control over the desired modularity Q of the formula. Controlling
Q enables us to experiment on how it affects URS and #SAT time.
The community attachment model requires specifying an initial
number of communities ¢ (groups of variables that are mostly de-
pendent on each other but may have some dependencies with other
communities). The generation then starts by splitting the variables
into (roughly) equally-sized communities. It iteratively chooses to
generate a clause with variables of a given community with proba-
bility P = Q + %; otherwise, all of the variables of the clause to be
generated will be part of distinct communities. We use this model
to generate a dataset containing 9,247 formulae, which will be used
to answer RQ1.

4.2.2  Real-World Formulae. We collected multiple datasets from
Lagniez et al. [29], Soos [44], Sundermann et al. [47], and Plazar
et al. [41] to study whether our observations made on synthetic
formulae also transfer to the real world.

The Lagniez et al. [29] dataset is a diverse dataset containing
1979 formulae. The dataset contains diverse problems ranging
from Bayesian networks to digital circuits and configuration. This
dataset also contains handmade and random formulae. The Soos
[44] dataset contains 1896 formulae from various sources, includ-
ing the Model Counting Competitions. The Sundermann et al. [47]
dataset consists of 278 formulae, most of which come from the con-
figurable software domain. The dataset contains multiple versions
and variants of each formula. To avoid having too many similar
formulae, we restricted our experiments to the most recent version
and variant of each formula. The Plazar et al. [41] is a dataset of 503
formulae consisting of a feature model benchmark (133 formulae)
as well as other formulae collected from [14].

Overall, the dataset includes formulae featuring between five
and 1,370,369 variables, and between ten and 5,798,978 clauses. The
clause-to-variable ratio of the formulae ranges from 0.46 to 290.93
with an average value of 3.41 and a median value of 2.5.

4.3 URS and #SAT Tools

We selected diverse counters and samplers to explore phase transi-
tions for different URS and #SAT algorithms.

UniGen3 [45]: a hashing-based algorithm that generates sam-
ples in a nearly uniform manner with strong theoretical guarantees:
it either produces samples satisfying a nearly uniform distribution
or produces no sample at all. These guarantees come at a cost: the
hashing-based approach requires adding large clauses to formulae
so they can be sampled.

SPUR [2]: SPUR is a uniform sampler built on top of sharpSAT
[49]. SPUR exploits how sharpSAT walks through all the models
of a formula to produce uniform samples. SPUR is one of the few
samplers guaranteeing uniformity theoretically.

sharpSAT [49]: a state-of-the-art model counter based on an
exhaustive DPLL algorithm with advanced component caching.

D4 [29]: a state-of-the-art compiler that compiles a CNF formula
into a decision-DNNF, which is an NNF. The new NNF allows for
fast model counting and model enumeration.
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McTW [17]: is a model counter based on dynamic programming
on treewidth decompositions of a primal graph constructed for a
given CNF formula [43].

We chose SPUR [2] and UniGen3 [45] as samplers as they both
offer theoretical guarantees regarding their uniformity. Other sam-
pling tools exist, e.g., [14]. These alternatives offer no uniformity
guarantee or rely on other tools such as sharpSAT [49] or D4 [29].
We chose sharpSAT [49] as a model counter because it is the fastest
model counter to date [48]. We also chose D4 [29] as it is a model
counter based on knowledge compilation and decision-DNNF which
is slightly different from sharpSAT. Moreover, D4 [29] will serve as
a sanity check for our experimental setup because it has already
been studied by Gupta et al. [23] We would like to highlight that
a d-DNNF can be extracted from the execution trace of a model
counter based on exhaustive DPLL. Therefore, we do not expect the
results between D4 and sharpSAT to deviate significantly. Similarly,
the results for SPUR and sharpSAT should be very close given their
similarities. Finally, to have better diversity, we tested McTW [17]
because it is an algebraic-based model counter [48].

4.4 Infrastructure

We used a computing facility containing 354 nodes, each of which
has 256 GB of RAM and 2 AMD Epyc ROME 7H12 CPUs running
at 2.6 GHz. To measure the memory usage of the samplers, we de-
veloped a wrapper program which reads the appropriate file in the
/proc folder, which contains information about the virtual memory
usage of the program. We set a timeout of five hours and a limit of
64GB of virtual memory for counting and sampling experiments.
Additionally, we requested 1000 models for each sampler.

5 RQ1: Phase Transitions

To observe phase transition occurrences in URS and #SAT problems,
we analyse the execution time of different sampling and counting
tools on formulae systematically synthesized. Inspired by the work
of Mitchell et al. on phase transitions in SAT problems [34], we
aim to observe phase transitions on the clause-to-variable ratio (i.e.
|F|/|Var(F)|) spectrum. Due to space restrictions, we only show
the results for SPUR and UniGen3. All of our results are available
on our companion GitHub [50].

5.1 Setup

We generate 3-CNF formulae defined over a set of 75 variables,
with community structure. We set k = 3 because this clause size is
typically used to analyze SAT problems as it is the smallest non-
trivial value for k. Indeed, k = 1 and k = 2 are not enough to
create non-trivial dependencies between variables, whereas setting
a value higher than 3 drastically increases sampling/solving time —
as we also illustrate in RQ2. We set the number of variables to 75
because we experimentally determined this was a good trade-off
for sampling/counting time (more variables reduce the impact of
runtime noise in our results, but more than 75 was computationally
prohibitive on our infrastructure).

Because we use 3-CNF formulae, we can compare our findings on
URS and #SAT with the clause-to-variable ratio at the phase transi-
tion peak of SAT solving in [34]. In the SAT experiments of Mitchell
et al. [34], solvers’ execution time peaks at |F|/|Var(F)| = 4.25 and
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it corresponds to the ratio at which half of the 3-CNF formulae
with this ratio are unsatisfiable. For lower ratio values (respectively
higher) most of the formulae were satisfiable (respectively unsat-
isfiable). Since URS and #SAT on unsatisfiable formulae (or, more
generally, on formulae with few models) can be efficiently reduced
to one (or few) call(s) to a SAT solver, we limit the clause-to-variable
ratio to 10 (i.e. about twice the ratio at which SAT complexity is
maximal). We also removed accidentally generated unsatisfiable for-
mulae (i.e., with |Rg| = 0). Thus, we set the number of clauses from
1 to 750 by a step of 1 (to get a clause-to-variable ratio from 1/75
to 10) and we generate five formulae per number of clause value
(to account for random factors in the way clauses are generated).

Finally, using the community attachment model from [22], we
repeat the generation with different target modularity values Q
(ranging from 0.3 to 0.8 with a 0.1 increment as these values have
been shown to be common in [4] and in our experiments) to observe
the impact of variable dependencies. This yields a total of 9,247
formulae. The community attachment model requires setting the
desired number of communities. We choose to use 5 communities,
as 15 variables per community should keep the probability of hav-
ing an unsatisfiable community sufficiently low (considering that a
community requires at least 2X clauses on k variables to be unsatis-
fiable because a k-CNF formula expressed on k variables requires
at least 2K clauses to be unsatisfiable). For the sake of generality,
our companion GitHub [50] page includes result plots for other
numbers of communities.

5.2 Results

Figure 1 shows the execution time for SPUR and UniGen3. The
graphs for each URS and #SAT tool for all generated formulae are
available on our companion GitHub [50]. The x-axis is the clause-to-
variable ratio, while the y-axis is the execution time. Each data point
represents a generated formula, and each color corresponds to a
different modularity value targeted by the generation algorithm. We
only plot the values that have a clause-to-variable ratio in the range
[0; 5] because the formulae outside this range were unsatisfiable
and therefore removed from the dataset.

We observe that phase transitions indeed occur for all tools
(these are the “peaks” we observe in each plot). Contrary to the SAT
problem [34], the hard instances are at a wildly different clause-to-
variable ratio, i.e., around 2. URS and #SAT share the same clause-
to-variable ratio for the hard instances, with the exception of the
McTW model counter, whose performance is generally worse than
other #SAT tools. The phase transitions that we observe align with
the phase transitions observed in [20, 23, 25]. However, the phase
transitions observed in [5, 7] are shifted toward smaller clause-to-
variable ratios, which may be due to better optimizations of the
algorithms. A more surprising result is that the phase transition
observed for UniGen3 is located at a similar clause-to-variable ratio
than the phase transitions observed in our study and in [23] even
though UniGen3 has a different algorithm and a different purpose.

We also observe that lower target modularity coincides with a
taller peak in execution time during the phase transition, indicating
that tools exploiting modularity may better resist the complexity of
URS and #SAT during the phase transition. A particular observation
of UniGen3 - which fundamentally exploits modularity less than
other tools because the constraints added by the algorithm to the
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Figure 1: RQ1: Phase transitions occur in URS for 3-CNF
formulae. A higher formula modularity decreases the height
of the peak.

formula break the community structure — corroborates this finding:
its execution time peaks higher for high modularity values than the
other tools. Similar results have been shown for SAT solving [22]
where SAT solvers specialized in industrial formulae performed
better on instances with a high modularity.
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Figure 2: RQ1: Modularity of the 3-CNF formulae (y-axis)
w.r.t. their clause-to-variable ratio (x-axis).

To complete these observations, we show in Figure 2 lower
bounds to the actual modularity of the generated formulae across
the clause-to-variable ratio spectrum. The colors indicate the target
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Figure 3: RQ1: Kendall’s r coefficients computed between O
and the execution time in a sliding window accros the clause-
to-variable ratio spectrum.

modularity parameter given to the community attachment model
in [22], which may differ from the actual modularity given the
heuristic-based nature of the model. The actual modularity values
were computed by using the label propagation algorithm [4] and
is denoted by Q. This algorithm computes a lower bound for the
actual modularity and, being based on label propagation, has sto-
chastic components. Thus, to mitigate stochastic effects and obtain
a bound close to the real modularity value, we repeat the modular-
ity computation 100,000 times and take the highest value returned
across all those runs.

Figure 2 shows that formulae with a low clause-to-variable ratio
tend to have a high actual modularity (in particular, higher than
the desired modularity specified in the generation algorithm) as is
also shown in [22]. This is also one of the reasons why the phase
transition does not occur at these lower clause-to-variable ratios.

Finally, to further confirm our results, we compute the Kendall
rank correlation [27] coefficients between the computed modularity
0 and the execution time of the different tools. We use the Kendall
rank correlation [27] because the relationship is unknown. There-
fore, a rank correlation is better suited. Because of the observed
phase transition, we find that computing Kendall’s 7 gives poor re-
sults. We thus decide to compute Kendall’s 7 over a sliding window.
In other words, we compute Kendall’s 7 at a clause-to-variable ratio
of x with the formulae that have a clause-to-variable ratio in the
range x * ¢. In our case, we set ¢ = 0.3. The results are shown in
Figure 3, where we plot the Kendall rank correlation coefficients
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across the different clause-to-variable ratios. The values shown in
orange have a p-value higher than or equal to 0.01 and the val-
ues shown in green have a p-value higher than or equal to 0.05.
We observe strong negative correlations across most of the clause-
to-variable ratio spectrum with low p-values. This means that an
increase in modularity is correlated with a decrease in computation
time, as previously observed. Moreover, almost all of the samplers
and model counters have strong correlations. The only sampler
with lower correlation coefficients is UniGen3, which still shows a
moderate correlation of -0.40, close to the observed phase transition.
sharpSAT also exhibits a more surprising behaviour with positive
correlations after a clause-to-variable ratio of 4. However, these
correlations have high p-values. We thus conclude that community
structure has a positive impact on the computation time of uniform
random samplers and model counters.

RQ1 - Conclusions: Our results confirm the existence
of phase transitions for URS and #SAT on 3-CNF formulae,
which occur at different clause-to-variable ratios (starts at =~ 1
and peaks at ~ 2) than for classical SAT (peaks at 4.25). A
higher formula modularity decreases the height of the peak.
Formulae with a low clause-to-variable ratio (< 1) have a higher
modularity, which might explain why URS and #SAT are easier
for those formulae.

6 RQ2: Reasons for Phase Transitions

We investigate the reasons behind the occurrences of phase tran-
sitions in URS and #SAT problems. In the case of SAT, the phase
transition peaks at a 4.25 clause-to-variable ratio [34], which corre-
sponds to the ratio at which half of the 3-CNF formulae with this
ratio are unsatisfiable. SAT solvers typically work by exploring a
search tree where branches represent variable assignments [15].
Formulae with a low number of clauses per variable necessitate few
assignments to be solved (it is easy to find a model), whereas for-
mulae with a large number of clauses quickly lead to unsatisfiable
branches (it is easy to conclude on the absence of models). At the
ratio of 4.25, the SAT solver has to explore many deep branches to
conclude the (un)satisfiability of the formula [34].

By contrast, #SAT (and by extension URS, which relies on the
same algorithmic principles), requires exploring all branches of
the search tree to complete the counting, an exploration known
as “exhaustive DPLL”. Fortunately, the model counter can prune a
part of a branch that has become trivial to solve. This can happen,
e.g., if all of the constraints are satisfied by the current assignment
a, in which case the current model count is olVar(F)|-lal Thus,
the complexity of URS and #SAT is intrinsically linked with the
minimal number of variables necessary to have at least as many
models as the initial formula. In the above example, the minimal
number of variables necessary to express the models in the branch
is (|Var(F)| - |al)/|Var (F)|.

Gupta et al. [23] generalize this idea and hypothesize that what
matters in knowledge compilation complexity is the solution density.
In other words, the ratio of the minimal number of variables nec-
essary to have at least as many models divided by the number of
variables of the initial formula. We extend the hypothesis to URS
and explore the ratio r = logz(|RF|)/|Var(F)|. The logarithm of
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Table 1: RQ2: Maximum execution time (in seconds).

Tool |k=3 k=4
D4 8.6 3239.97
sharpSAT | 0.42  230.49
McTW 207.5 18000.0
SPUR 1.13 542.22
UniGen3 | 12.07 500.23

|RF| expresses the minimal number of variables needed to encode
|RF| models. Dividing this by the total number of variables allows
us to have a normalized ratio.

We note that r is a semantic metric as it necessitates computing
|Rp|, which may not always be feasible. However, our objective
here is not to provide a metric to predict occurrences of phase
transitions (the clause-to-variable ratio, which is always easy to
compute, would be a more appropriate metric for that). Instead,
we aim to study the phenomena behind phase transitions and our
findings (which corroborate Gupta et al’s earlier investigations
[23]) indicate that r is a more effective metric for this purpose. Note
that, since we exclude formulae with no model in our experiments,
r takes a value between 0 and 1; moreover, we have logz(|Rp|) <
[Var(F)| since |Rp| < 2Var(F)I,

6.1 Setup

If our hypothesis is true, repeating our RQ1 experiments while
setting k = 4 (instead of 3) should yield a shift in the observed
phase transition. This is because for the same ratio |F|/|Var(F)],
increasing the number of literals in each clause yields a higher
model count, as a larger clause is more likely to be satisfied by a
random assignment. Thus, a higher clause-to-variable ratio should
be necessary to observe the phase transition for k = 4 than for k = 3.
To verify this, in addition to 3-CNF formulae, we also generate 4-
CNF formulae. Because raising k from 3 to 4 significantly increases
the URS and #SAT’s tools execution times, we limit formulae to
50 variables. We obtain 663 satisfiable formulae for k = 3 and
1499 formulae for k = 4 by using the k-CNF generation algorithm
proposed by [34]. We have more formulae for k = 4 because a
higher clause-to-variable ratio is required to observe unsatisfiable
formulae. To illustrate this increasing complexity, Table 1 reports
the maximum execution time (in s.) of all tools across all formulae
with k = 3 and k = 4; we observe that McTW has reached the
timeout of five hours.

In Figure 4, we study the execution time of SPUR and UniGen3
(the remaining graphs are available on our companion GitHub [50])
on all formulae with respect to their clause-to-variable ratio (x-axis).
On the y-axis, we normalize execution time based on the maximum
time taken by each tool for k = 3 and k = 4 separately, based on the
values reported in Table 1. This normalization helps us compare
the trends for k = 3, 4, which would not be feasible otherwise due
to large differences in execution time when increasing k.

In this figure, we observe that for k = 4 the phase transition
indeed peaks at larger ratios for SPUR (3.5), sharpSAT (3.5), and
UniGen3 (5), whereas for k = 3, the execution time peaks at a ratio
of 2. There is also a large difference for McTW (3 vs 4.5). For D4,
the two clause-to-variable ratios are closer to each other, though
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Figure 4: RQ2: Phase transitions w.r.t. the clause-to-variable
ratio, on 3-CNF and 4-CNF formulae.

k = 4 observably yields a peak at a higher ratio. This observed shift
is the first indication that our hypothesis indeed holds.
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Figure 5: RQ2: Distribution of log, (|RF|)/|Var(F)| with respect
to k.

To confirm our hypothesis, we study the relationship between
log2 (IRFD v,
Var(B)[ - "€
compute |Rp| with D4 [29] for every formula. Because our formula
synthesis algorithm is not driven by r or |[Ry|, we first check that our
population of formulae is sufficient to conduct analyses based on r
(i-e., the formulae are sufficiently uniform with respect r). Figure 5
shows the distribution of r for the generated 3-CNF and 4-CNF. We

URS and #SAT execution time and the new ratio r =
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observe that the distribution is balanced, except for a small deficit
when approaching r = 0. This can be explained by the fact that at
such r values, a synthesized formula has a higher probability of
being unsatisfiable. Fortunately, this bias in the population does
not affect the phase transition, which should occur far from r = 0
(as later confirmed in our results).
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Figure 6: RQ2: Phase transitions w.r.t. r = loga (|Rg|)/|Var(F)|
on 3-CNF and 4-CNF formulae.

6.2 Results

Figure 6 plots the tools’ normalized execution time (y-axis) (all the
graphs are available on our companion GitHub [50]) with respect
to r (x-axis). We observe that the hard instances for SPUR and
sharpSAT occur at a ratio r = logz2(|Rp|)/|Var(F)| close to 0.65 for
both 3-CNF and 4-CNF formulae, whereas the value r for UniGen3
is between 0.55 and 0.6. As for D4 and McTW, we also observe a
phase transition, though the peaks deviate slightly between k = 3
and k = 4 (from 0.68 to 0.74 for D4 similarly to [23], from 0.40 to
0.55 for McTW).

To evaluate whether r provides a better characterization of the
phase transition than the clause-to-variable ratio, we compute the
mean absolute error (MAE) in each case. As a reference, we
define a function f(x), computed on the dataset corresponding
to k = 4, where each value x is associated with the mean of all
data points within the interval x + ¢. Specifically, we use ¢ = 0.3
when analyzing the clause-to-variable ratio, and ¢ = 0.028 when
analyzing r. These values of ¢ were chosen to reduce noise-induced
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fluctuations while preserving the overall trend of the data. In both
cases, the size of the sliding window was adjusted to include, on
average, the same number of data points—approximately 86 =+ 1.

The function f(x) is then normalized to lie within the interval
[0, 1]. Finally, we compute the MAE between the normalized refer-
ence function f(x) and the corresponding dataset to compare the
performance of r and the clause-to-variable ratio in describing the
phase transition.

Table 2: RQ2: Mean absolute errors of the datasets with the
k = 4 dataset as reference.

clause-to-variable ratio r
Tool k=3 k=4 k=3 k=4
D4 0.368 0.109 0.175 0.109
SharpSAT 0.353 0.113 0.158 0.110
McTW 0.185 0.054 0.299 0.057
SPUR 0.377 0.116 0.138 0.117
UniGen3 | 0.314 0.119 0.184 0.119

Table 2 reports the computed MAEs for both the clause-to-
variable ratio and the parameter r, for k = 3 and k = 4. The left half
of the table corresponds to the results shown in Figure 4, while the
right half relates to Figure 6.

The MAE values for k = 4 serve as a sanity check, as the reference
function f(x) is constructed from the k = 4 dataset. We observe
that for k = 3, the MAE consistently decreases when switching
from the clause-to-variable ratio to r, suggesting that the apparent
shift between the curves for k = 3 and k = 4 is reduced when using
r. This supports the conclusion that r more accurately aligns the
phase transitions across different values of k.

The only exception is observed in the case of McTW, where
the MAE increases when switching from the clause-to-variable
ratio to r. We attribute this deviation to the large number of time-
outs encountered by McTW, which may affect the accuracy of the
underlying data.

Overall, the results indicate that r provides a better description
of the phase transition than the clause-to-variable ratio.

081 3
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logs(|Rp|)/|Var(F)]
Figure 7: RQ2: Modularity w.r.t. r = loga2(|Rp|)/|Var(F)|.

Discussion. Our observations seem to indicate that the hard in-
stances of URS and #SAT need model spaces Rr that are large but
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with sufficient differences between each model (in terms of assign-
ments). In other words, instances with a high r (equivalently, a
low clause-to-variable ratio) are easy to solve because they are
underconstrained and quickly generate unconstrained (free) vari-
ables during the DPLL exploration, making parts of some search
branches trivial to count. By contrast, instances with a low r (or
high clause-to-variable ratio) are overconstrained, and their model
count is low, which is, therefore, easy to enumerate and count. The
instances in between do not allow for an effective processing be-
cause the models are too different from each other while the large
|RF| prohibits model enumeration.

A complementary explanation relates r to modularity. Figure
7 shows the actual modularity of the 3-CNF and 4-CNF formulae
across the r spectrum. As before, we compute modularity with the la-
bel propagation algorithm in [4] repeated 100,000 times and took the
maximum modularity value (maximum lower bound). We observe
that a high ratio r coincides with a high modularity. This indicates
that we have a strong community structure in the formulae and that
the solvers would need to satisfy fewer clauses before having en-
tirely disjoint communities. These disjoint communities can then be
processed independently, which is D4s strategy [29]. Lower values
of r have a low modularity as these formulae are overconstrained.

RQ2 - Conclusions: Phase transitions in URS and #SAT
are better described by the ratio of variables required to en-
code the space of models. Formulae with a high ratio are easy
to solve because they are underconstrained, enabling URS and
#SAT to take shortcuts and consider unconstrained variables
separately. Conversely, those with a low ratio r have few mod-
els that are fast to enumerate. The phase transition is due to
intermediary situations wherein the number and diversity of
models impede both model counting and effective solving.

7 RQ3: Real-World Formulae

7.1 Setup

Our last RQ analyses real-world formulae. Unlike synthetic k-CNF
formulae, real-world formulae are likely to include constants and
variables that do not appear in clauses (this typically happens, e.g.,
to formulae derived from feature models because some features may
be mandatory and other features may not have any constraints)
[30]. To avoid noise in our computed ratios, we first pre-process the
formulae to eliminate these constants and unconstrained variables
(without altering the formulae semantics). This modification does
not affect our analysis of the tools’ execution time since the un-
derlying algorithms also remove them during their pre-processing.
Furthermore, we also remove redundant clauses, i.e., clauses that
are subsumed by another. Assume we have c;,cj € F with i # j
and ¢; = cj. Then we only need to consider c¢; and can safely
ignore c; because c; ensures that c; is satisfied. We thus compute
the size of the formula |F| as the number of clauses minus the num-
ber of redundant clauses. |Var(F)| is computed as the total number
of variables minus the number of variables that do not appear in
any (non-redundant) clause. Both the URS and #SAT tools were
executed on the original formulae.
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Our statistics on the capacity of the URS and #SAT tools to
analyze real-world formulae indicate that URS and #SAT tools have
approximately the same success rate with respect to timeouts and
out-of-memory exceptions. UniGen3 performed significantly worse,
with only 2510 formulae that were successfully processed. The other
tools processed with success between 3034 and 3996 formulae, with
McTW processing successfully 3034 formulae and D4 processing
successfully 3996 formulae.

7.2 Results

Figure 8 shows the execution times of the different model counters
and samplers on our real-world formula dataset. The x-axis denotes
the clause-to-variable ratio. The reason we use this ratio and not
r is because model counting (which is required to compute r) is
intractable for a significant number of formulae in our dataset;
discarding these formulae would leave us with a smaller number of
formulae to conduct our analysis. Additional Figures using r are
available on our companion GitHub [50].

The double y-axis reports two measures: the number of real-
world formulae (left-hand side scale) and the execution time (right-
hand side scale). Thus, the grey histogram shows the frequency
of each clause-to-variable ratio among the set of formulae, while
the colored dots represent the execution time of each formula on
the considered tool. The colors distinguish the formulae that were
processed with success (blue), the formulae for which the model
counter or sampler ran out of memory (orange), and the formulae
for which the model counter or sampler reached the 5-hour timeout
(green).

In Figure 8, we see that while there are some clusters, overall, pat-
terns for phase transitions are difficult to observe. To complement
this view, we show in Figure 9 the cumulative distribution of the
total number of formulae, the number of formulae processed with
success and the number of formulae that could not be processed
with respect to their clause-to-variable ratio. While there do seem
to be spikes in the line representing failure (the green line), these
seem to align with the total number of formulae as shown in the
histogram in Figure 8. Generally, the absence of clearly observable
phase transitions, coupled with the significant numbers of formulae
intractable for URS, indicates that there are additional factors in
feature-model formulae that explain their hardness. This means
that specific applications of URS to feature models necessitate ded-
icated complexity studies, as results valid for synthetic formulae
are not enough to explain this complexity. Furthermore, the lack
of a phase transition for URS and #SAT in real-world formulae is
consistent with the findings of Mendonca et al. [32], who did not
observe a phase transition for SAT in feature models.

RQ3 - Conclusions: In the case of feature models, the
observation of phase transitions is blurred by additional com-
plexity factors that do not occur in synthetic formulae. This
calls for novel complexity studies specific to feature models
and dedicated methods to decompose this complexity in a
form that makes it tractable for URS.
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8 Threats to Validity

Internal Validity. This threat concerns the implementation and the
choice of specific parameters during our experiments. We chose
to execute our experiments on random formulae with 50 and 75
variables, which is less than most real-world formulae. This was
necessary to execute this large synthetic benchmark on multiple
solvers and avoid long executions and timeouts. Yet, our experi-
ments showed that synthetic formulae are much more difficult to
count or sample from than some real-world formulae with more
variables. Regarding the community attachment model, we set the
number of communities to 5. This may introduce a bias towards
formulae with specific modularity. Thus, we reran the experiments
with different numbers of communities and provided the results on
our companion GitHub [50].

External Validity. There is no guarantee that our results general-
ize precisely to any formula and any model counter or sampler in
each category. The reason behind this is the lack of general un-
derstanding of the complexity of SAT-based tasks [18], which we
aim to address. To mitigate this threat, we selected a range of SAT
formulae from multiple sources. They come from SAT Benchmarks
used for the evaluation of uniform samplers [10, 11, 14] and various
other sources such as feature models representing configurable
systems of various types and sizes [1, 41, 47]. The datasets that
we use include formulae that encode diverse types of models: elec-
tronic circuits [29], algorithmic problems, Linux kernels [41, 47],
Unix command line tools, or configuration tools [24]. Thus, we are
confident that our general conclusions are valid for a large class of
real-world formulae.

9 Conclusion

In this paper, we analysed the experimental complexity of counting
and uniform random sampling for Boolean formulae, under the
prism of phase transitions and community structure. Our investi-
gation initially focused on synthetic formulae, allowing us to finely
explore phase transitions and the role of community structure in
a controlled way. Hence, we demonstrated that phase transitions
indeed occur in URS and #SAT, while the community structure
impacts the amplitude of the peak. We also showed that phase tran-
sitions are harder to observe in real-world formulae, although many
of these formulae remain intractable. We therefore believe that
additional complexity factors are at play and need feature-model-
specific studies to be explained. Overall, our work contributes to
a principled understanding of URS and #SAT complexity, and we
hope it can inspire future research in designing effective methods
to approach these problems.
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