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The widespread adoption of deep neural networks (DNNs) has brought remarkable advances in machine learning. However,
the computational and memory demands of complex DNNs hinder their deployment in resource-constrained environments.
To address this challenge, compressed DNN models have emerged, offering a compromise between efficiency and accuracy.
Nonetheless, assessing the performance of these compressed models can demand extensive testing, typically requiring high
manual labeling costs, rendering the process resource-intensive and time-consuming. To mitigate these challenges, test input
prioritization has emerged as a promising technique aimed at reducing labeling costs by prioritizing inputs that are more
likely to be misclassified. This enables the early identification of bug-revealing tests with reduced time and manual labeling
effort. In this paper, we propose PriCod, a novel test prioritization approach designed for compressed DNNs. PriCod leverages
the behavior disparities caused by model compression, along with the embeddings of test inputs, to effectively prioritize
potentially misclassified tests. It operates on the premises that significant behavior disparities between the models indicate
potential misclassifications and that inputs near decision boundaries are more likely to be misclassified. To this end, PriCod
generates two types of features for each test input (i.e., deviation features and embedding features) to capture the prediction
deviation caused by model compression and the proximity to decision boundaries, respectively. By combining these features,
PriCod predicts the probability of misclassification for each test, ranking tests accordingly. We conduct an extensive study
to evaluate the effectiveness of PriCod, comparing it with multiple test prioritization approaches. The experimental results
demonstrate the effectiveness of PriCod, with average improvements of 7.43%~55.89% on natural test inputs, 7.92%~52.91% on
noisy test inputs, and 7.03%~51.59% on adversarial test inputs, compared with existing test prioritization approaches.

CCS Concepts: » Software and its engineering — Software testing and debugging; - Computer systems organization
— Neural networks.

Additional Key Words and Phrases: Test Input Prioritization, Deep Neural Network, Learning to Rank, Labeling

1 INTRODUCTION

The widespread use of deep neural networks (DNNs) has brought significant advancements to machine learning
in areas like computer vision [11, 95], autonomous vehicles [41, 109], and recommendation systems [4]. However,
the increasingly complex DNNs require substantial computational resources and memory, limiting their practical
deployment in resource-constrained environments, such as edge devices. To tackle these challenges, the research
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community has focused on the development of compressed DNN models that strike a balance between computa-
tional efficiency and model accuracy. Compressed DNN models, essentially scaled-down neural networks, are
designed to sustain predictive accuracy while keeping computational requirements to a minimum. A multitude
of compression techniques, including quantization [82], have emerged as valuable tools for reducing the size
and computational load of DNNs while safeguarding their predictive prowess. Consequently, the evaluation and
validation of compressed DNNs have become increasingly crucial to ensure their performance.

Existing studies [64-66] mentioned that, when evaluating compressed DNN models, labeling new test cases is
necessary. However, labelling test inputs for compressed DNN models faces a central challenge: the high labelling
cost issue. This challenge arises for two main reasons. Firstly, the scale of the test set can be extensive. Secondly,
manual labeling is still the mainstream approach, requiring the participation of multiple annotators to guarantee
the accuracy of the labeling process for each test input. A highly appealing solution to this challenge is test input
prioritization. This technique prioritizes test inputs that are more likely to be misclassified when resources and
time are limited for manual labeling. By prioritizing such potentially misclassified test inputs, testers can allocate
labeling resources more effectively and thus enhance debugging efficiency.

In the literature [29, 97, 99], several test prioritization methods have been proposed for traditional DNNG,
which can be broadly classified into three categories: coverage-based [60, 79], confidence-based [29, 62, 99], and
mutation-based methods [97]. Coverage-based approaches prioritize test inputs based on the extent of neuron
coverage within DNNs. Conversely, confidence-based methods aim to identify potential misclassifications by
quantifying the classifier’s output confidence for each test case. Notably, the DeepGini approach by Feng et
al. [29] utilizes the Gini score as a confidence metric for effective test prioritization. More recently, Weiss et
al. [99] conducted a comprehensive study, which included an evaluation of several confidence-based metrics,
such as Vanilla Softmax, Prediction-Confidence Score (PCS); and Entropy. Mutation-based techniques propose
various mutation operations and employ the modified results to prioritize test cases.

Despite the goal for both compressed and traditional DNN models’ test prioritization methods being to select
potentially misclassified test inputs, test prioritization for compressed models has its unique specialness and
challenges compared to that for traditional DNN models, which we present as follows:

e Challenge of Obtaining Internal Information Compared to the test prioritization of traditional DNN
models, when performing test prioritization on compressed DNN models, it is challenging to obtain model
internal information, such as gradient information. This is because compression techniques can alter the
internal structure of the model, making internal information, which is easily accessible in uncompressed
models, difficult to extract in compressed models.

¢ Diverse Operating Environments Additionally, the primary applications of compressed models are usually
for deployment on mobile devices, where the images input into the model are typically photos taken by
mobile cameras. These inputs can contain noises, such as raindrops, unusual exposure levels, and various
shooting angles. Therefore, the test prioritization methods for compressed models need to consider these
diverse operating environments to ensure effectiveness under various conditions.

Moreover, for the specific existing test prioritization methods mentioned above, when they are applied to
compressed models, they have the following limitations: Firstly, previous research [29] has demonstrated that
coverage-based methods are less effective and more time-consuming when compared to confidence-based ap-
proaches. Secondly, the mutation-based test prioritization approach, PRIMA [97], cannot be applied to compressed
DNN models because the model mutation operators of PRIMA are not applicable to them. This limitation arises
from the fact that the architectures and gradients of compressed models are typically unavailable [93]. Fur-
thermore, when employing confidence-based test prioritization approaches for compressed DNN models, these
methods treat the compressed DNN models as black boxes and ignore the information regarding deviations
before and after model compression when conducting test prioritization.
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In this paper, we propose PriCod (Prioritizing test inputs for Compressed DNN models), a test prioritization
approach specifically tailored for compressed DNN models. PriCod leverages the deviation between the original
model and compressed DNN models, along with the embedding information of test inputs, to perform test
prioritization. The fundamental principle underlying PriCod is twofold:

e Premise 1: For a given test, if the prediction behavior between the compressed DNN model and the original
model shows a large deviation, it suggests that, for this input, the compressed model is more likely to make
a prediction different from that of the original model. This test is considered more likely to reveal bugs in
the compressed model. We validated premise 1 through a targeted preliminary study. Details can be found in
Section 3.1.

e Premise 2: Test inputs that are located closer to the decision boundary of the model are more likely to be
misclassified. This premise has been previously established in prior research [61].

Building upon the aforementioned premises, PriCod generates two distinct types of features: deviation features
and embedding features. To ensure a comprehensive representation of deviation information, PriCod employs
a set of 17 strategies for generating deviation features. For each test input, PriCod combines these two feature
types to predict the probability of the test being misclassified by compressed DNN models. Below, we provide
an overview of the two types of features and elaborate on how PriCod utilizes them to achieve effective test
prioritization.

e Deviation Features Deviation features are specifically designed to capture the impact of model compression
on test inputs. They quantify the disparities in predictions between the original DNN model and the compressed
DNN model for each test input. We generated 17 types of deviation features, such as Cosine Similarity [71]
and Manhattan Distance [14], with the aim of providing a more comprehensive quantification of the disparity.

e Embedding Features Embedding Features encapsulate the representative information within each test input.
Through the process of mapping a test input to a vector in space, PriCod aims to indirectly unveil the proximity
between the test input and the decision boundary:.

For each test instance, PriCod integrates the aforementioned two types of features to derive the ultimate
feature vector. Using this vector, PriCod learns the misclassification probability of this test. Ultimately, PriCod
ranks all tests within a test set based on their misclassification probabilities.

PriCod demonstrates novelty compared to existing test prioritization methods. Specifically, PriCod first
leverages the behavior disparities caused by model compression for test prioritization. These behavior disparities
are a unique characteristic of compressed DNN models. Although existing studies proposed some mutation-based
test prioritization methods, notably PRIMA [97] and GraphPrior [17], PriCod differs from PRIMA and GraphPrior
in several aspects:

e Not using mutation testing for test prioritization The core of test prioritization for PRIMA and GraphPrior
is based on mutation testing, which focuses on proposing new mutation operators and generating mutation
features for test prioritization. In contrast, PriCod does not use mutation testing for test prioritization. Specifi-
cally, PriCod does not involve any mutation testing operations and does not use any mutation operators for
test prioritization. Importantly, PriCod leverages the behavior disparities caused by model compression for test
prioritization. These behavior disparities are a unique characteristic of compressed models. We are the first to
introduce this characteristic for test prioritization.

o Applicability to compressed DNN models PRIMA and GraphPrior cannot be applied to compressed DNN
models. In contrast, PriCod is specifically designed for compressed DNN models. The reasons why PRIMA
and GraphPrior cannot be applied to compressed models are as follows: 1) PRIMA requires access to internal
model information of DNNS, such as gradient information. However, currently, to the best of our knowledge,
accessing internal information of compressed models is not feasible. This leads to PRIMA not being suitable
for compressed DNN models. 2) GraphPrior is designed for GNNs. Specifically, its mutation operators are
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specifically designed for GNN models and datasets with graph structures. Hence, GraphPrior is not applicable
to compressed DNN models.

o Utilizing different feature fusion techniques In PriCod, we conducted an analysis of feature fusion
techniques, which GraphPrior and PRIMA do not include. Specifically, we utilized a total of four feature fusion
techniques (cf. Section 5.4) and compared the effectiveness of PriCod when utilizing different feature fusion
techniques.

PriCod demonstrates its wide applicability across various contexts of compressed DNNs. For instance, in
the context of medical image diagnosis, hospitals utilize DNN models to diagnose lung diseases in X-ray chest
images. To overcome storage and computational limitations, they opt for compressed DNN models. However,
this compression process carries the risk of accuracy loss, which can lead to treatment delays, missed early
interventions, and patient health deterioration. PriCod can be used to effectively identify images at higher risk of
misclassification by the compressed DNN model. By prioritizing these samples for screening, it can reduce the
risk of misdiagnosis and enhance the reliability of the diagnostic model.

We conducted an extensive study to assess PriCod’s performance, utilizing a dataset comprising 182 subjects
(paired datasets and compressed DNN models). The evaluation covered a diverse range of test inputs, including
natural data, noisy data, and adversarial data. Additionally, we meticulously selected a set of test prioritization
approaches for comparison, which have previously proven effective in existing studies [29, 99]. Furthermore,
we included random selection as the baseline approach. Our experimental results highlight PriCod’s superior
performance compared to existing methods. When applied to natural test inputs, PriCod demonstrates an
average improvement ranging from 7.43% to 55.89%. For noisy and adversarial test inputs, it exhibits an average
improvement ranging from 7.92% to 52.91% and from 7.03% to 51.59%, respectively. We publish our dataset, results,
and tools to the community on Github®.

Our work has the following major contributions:

e Approach We propose PriCod, a novel test prioritization approach designed specifically for compressed DNN
models. Our approach leverages the discrepancies in predictions before and after model compression, as well
as the embedding features of tests, to guide test prioritization.

e Study To evaluate PriCod, we conduct an extensive study involving 182 subjects, encompassing natural, noisy,
and adversarial datasets. Within this study, we systematically evaluate PriCod in comparison to multiple test
prioritization approaches. Our experimental results demonstrate the effectiveness of PriCod.

e Performance Analysis We assess the contributions of various feature types to the performance of PriCod.
Additionally, we analyze the impact of feature fusion techniques on PriCod’s effectiveness. Furthermore, we
investigate the relationship between the misclassification probability and the deviated behaviors.

2 BACKGROUND
2.1 DNNs and DNN testing

Classification deep neural networks (DNNs) [34] serve as the core of numerous deep learning (DL) systems.
Classification refers to the task of categorizing input data into different classes [111], such as identifying objects
in images or categorizing emails as spam or non-spam. DNNs can perform the classification task by learning
mappings from input data to specific categories. They adjust the weights and parameters within the network
through training data, enabling the network to automatically capture patterns and features in the data, thereby
achieving accurate classification.

A DNN consists of multiple layers: an input layer, an output layer, and one or more hidden layers. Each layer
is composed of a series of neurons. The input layer is the first layer of the network, responsible for receiving raw

Uhttps://github.com/yinghuali/PriCod
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data. The output layer is the final layer of the network, generating the final prediction results. Hidden layers
lie between the input and output layers. They transmit information and perform feature extraction within the
network. Each hidden layer comprises multiple neurons that combine and transmit information through weights
and activation functions. In the context of DNNs, neurons are the fundamental computational units. Neurons in
hidden and output layers are interconnected with all neurons in the preceding layer through weighted edges. The
weights of these edges are automatically learned during a training process using a large dataset with labeled
training examples. Following training, a DNN can autonomously classify input samples, such as images, into
their respective categories. For example, within the framework of a DNN model designed for animal classification
tasks, it can differentiate between various types of animals in images, precisely labeling whether it is a cat, dog,
or bird.

Ensuring the quality and reliability of DNN models is of paramount importance. DNN testing has emerged as a
widely adopted approach to achieve this goal [1, 17, 42, 43]. Similar to traditional software systems [36, 76, 77, 107],
DNN testing relies on the use of inputs and oracles. In the context of DNN testing, test inputs represent the data
that the model is expected to classify. These inputs can take various forms depending on the specific task of
the DNN under examination, such as images, natural language, or speech. Test oracles in DNN testing involve
manual labeling, wherein human annotators manually assign ground truth labels to each input. By comparing
these labeled ground truth labels with the predicted output of the DNN model, it becomes possible to evaluate
the model’s accuracy in generating the correct output for a given input.

2.2 DNN Model Compression

Model compression has emerged as a promising avenue of research to facilitate the deployment of DNN models [15,
87, 104]. The primary objective of DNN model compression is to minimize the computational and memory
requirements of models while maintaining their performance, thus enabling effective deployment in resource-
constrained contexts. A variety of techniques have been proposed for compressing DNN models. Among these
techniques, Quantization plays a crucial role, which operates by compressing a DNN model through the adjustment
of bit numbers allocated to weight representation [113]. In the conventional landscape of DNN models, weights find
their common expression in the form of 32-bit floating-point numbers. The primary goal of quantization is to reduce
the bit precision of parameters in neural network models, thereby decreasing storage and computational overhead
while maintaining optimal model performance. This involves the utilization of reduced bit representations like
8-bit, which in turn substantially curtails the storage requirements of the model. In our study, we primarily
employed quantization as the method for model compression.

The currently trending model compression techniques primarily encompass two options: TensorFlow Lite
(TFLite) [18] and CoreML [91]. These two compression methodologies have gained extensive traction within
the mobile device domain [53]: TFLite, developed by Google, is a deep learning inference framework explicitly
designed for mobile and embedded devices. Its standout feature is its highly optimized computational performance,
which ensures the efficient execution of trained neural network models on the Android platform [28]. On the
other hand, CoreML is Apple’s solution for deep learning inference on mobile devices, tailored exclusively for
the i0S ecosystem. CoreML leverages the inherent hardware advantages of Apple devices and achieves rapid
inference for neural network models through strategic hardware acceleration implementation. In our research,
we employed the aforementioned techniques (TFLite and CoreML) to compress the original DNN models into
compressed DNN models, aiming to offer a more comprehensive evaluation.

2.3 Confidence-based Test Prioritization for DNNs

Confidence-based methods identify inputs that can potentially expose bugs (i.e., possibly misclassified test inputs)
by analyzing the output probabilities of a DNN classifier. One classic confidence-based test prioritization technique
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is DeepGini, which prioritizes test inputs by calculating Gini scores for each input. These scores measure the
model’s confidence in classifying each input, thus facilitating test prioritization. More specifically, if a DNN
produces similar probabilities for all classes towards a test input, it indicates lower confidence in the classification.
As a result, this input will be prioritized higher. DeepGini has demonstrated effectiveness across various prevalent
DNN datasets, such as CIFAR10 (color images) [20] and Fashion (fashion product images) [102]. Recently, Weiss
et al. [99] extensively explored diverse techniques for prioritizing DNN test inputs, encompassing a series of
confidence-based approaches, such as Vanilla Softmax, Prediction-Confidence Score (PCS), and Entropy. These
metrics have been proven effective in DNN test prioritization. Compared with coverage-based test prioritization
methods (e.g., CTM and CAM), which prioritize inputs based on neuron coverage, confidence-based methods
offer several distinct advantages.

e Efficiency Confidence-based methods require minimal time and computational resources, as they solely rely
on statistical computations of confidence levels in the predicted probability vectors from the output softmax
layer.

o Effectiveness Confidence-based methods have demonstrated higher effectiveness compared to various
coverage-based test prioritization techniques.

e Minimal Need for Intermediate Information Unlike coverage-based methods, confidence-based approaches
do not necessitate the collection of extensive intermediate information to compute coverage rates. Additionally,
they enhance security by not requiring an in-depth inspection of the DNN; thereby safeguarding sensitive
information embedded within the network.

However, applying confidence-based methods to compressed DNN models comes with a limitation. These methods
solely depend on the predictive confidence information of the compressed DNN model without considering the
differences between the compressed model and the original model. Our proposed approach, PriCod, incorporates
this deviation information in the test prioritization process. We compared PriCod with a set of confidence-based
test prioritization techniques and demonstrated that Pricod outperforms all the comparative methods, as evidenced
by Section 5.

3 APPROACH
3.1 Preliminary Study

The core idea of premise 1 is that, given a test input, if there is a large deviation in the prediction behavior
between the compressed DNN model and the original model, it indicates that this test have a high probability
to be misclassified by the compressed DNN model. In this section, to validate the rationality of Premise 1, we
conducted the following preliminary study:

Objectives: We investigate the relationship between the prediction deviation resulting from model compression
and the probability of the test being misclassified by the compressed DNN model.

Experimental design: We utilized a variety of distance measurement metrics, such as Euclidean Distance
and Manhattan Distance, to investigate the correlation between prediction deviations and misclassification
probabilities. For each distance metric, we evaluated the prediction deviations between the original DNN model and
the compressed model for each sample in the test dataset, accordingly assigning a deviation score. Subsequently,
we ranked all the test samples in descending order based on their deviation scores. We then divided the samples
into ten equally sized groups, with deviations progressively decreasing across these ten segments. Within each
segment, we identify the number of misclassified tests to observe whether there was a relationship between
prediction deviation magnitude and the likelihood of misclassification.

Results: The experimental results of the preliminary study are presented in Table 1 and Figure 1. Table 1 displays
the number of misclassified tests in different deviation levels of test groups based on various distance metrics.
The “Deviated Behavior Metrics” in the table represent the metrics used to measure deviation. Furthermore,
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for each metric, we sorted all tests in the test set according to the magnitude of their deviation behavior. The
range of 0%-10% indicates the top 10% of samples with the highest deviations. Similarly, 10% to 20% represents
samples with deviation magnitudes falling within the top 10% to 20% interval. In each test group (i.e., 10%~20%
and 20%~30%), the total number of samples is the same.

Table 1. Correlation between prediction deviation in the original model and the compressed model and misclassification of
tests

Deviated Behavior Percentage of tests selected

Metrics 0%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80% 80%-90% 90%-100%
Euclidean 877 815 769 705 635 499 347 200 81 28
Manhattan 918 851 794 712 618 475 309 174 77 26
Chebyshev 868 811 755 690 628 504 356 230 86 27
SSD 877 815 769 705 635 499 347 200 81 28
Wasserstein 859 826 789 725 633 498 338 183 78 27

To provide a more precise illustration of the data in the table, we provide a concrete example: the number
in the first row and first column of the table indicates that, when using the Euclidean method as the deviation
metric, among the top 10% of tests with the highest deviation between the original model and the compressed
model, there were 877 tests misclassified by the compressed model. It is important to note that the experiments
for this research question were conducted using natural datasets, and the number of misclassified tests represents
the mean across all 20 subjects.

We see that, as the deviation level decreases, regardless of the distance metric used to measure the deviation,
the number of misclassified tests in each group decreases. For instance, with the Manhattan metric, in the top
10% of tests with the highest deviation, there were 918 misclassified tests. In the 10% to 20% deviation range, there
were 851 misclassified tests, and this number decreased to 794 in the 20% to 30% range and further to 712 in the
30% to 40% range. Only 26 tests were misclassified in the 90% to 100% range. To visually represent this decreasing
trend, we provide Figure 1, where each curve represents the relationship between deviation and misclassification
for different distance metrics. In Figure 1, we see that as the deviation level decreases, the number of misclassified
tests in the test groups gradually decreases. The above experimental results indicate that for a given test, if the
original DNN model and the compressed model exhibit higher deviation in their predictions, the test is more
likely to be misclassified by the compressed model.

Finding Tests with higher prediction disparities between the original DNN model and the com-
pressed model are more likely to be misclassified by the compressed model.
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3.2 Overview of PriCod

In this paper, we introduce PriCod, a novel test prioritization approach specifically designed for compressed
Deep Neural Network (DNN) models. The overview of PriCod is depicted in Figure 2. Overall, the workflow of
PriCod consists of four steps: Deviation Feature Generation, Embedding Feature Generation, Feature Fusion, and
Feature-based Ranking. We provide a brief overview of these four steps below. For detailed explanations, please
refer to Section 3.3 to Section 3.6.

O Deviation Feature Generation PriCod initially generates deviation features for each test input. These features
capture the behavioral differences between the compressed DNN model and its original DNN model when
predicting a given test input ¢. The utilization of deviation features for test prioritization is grounded in the
premise that, for a given test, if the prediction behavior between the compressed DNN model and the original
model exhibits a large deviation, this test is considered more likely to be misclassified by the compressed DNN
model. (The preliminary study conducted in Section 3.1 further validates this premise).

® Embedding Feature Generation For each test case, PriCod also generates embedding features to reflect
the key characteristics of the test (image/text). This step is based on the premise that test inputs closer to the
model’s decision boundary are more likely to be misclassified. By mapping each test input to a vector in space,
the embedding features can indirectly indicate the proximity of the test to the decision boundary.

® Feature Fusion PriCod integrates deviation features and embedding features, generating a more comprehensive
feature representation for each test input.

@ Feature-based Ranking Utilizing the generated fused feature vector, PriCod employs the LightGBM model
to calculate misclassification scores for each test input. A high score for a test implies that it is more likely to
be misclassified by the compressed model. Therefore, PriCod ranks all tests in descending order based on the
misclassification scores.

Below, we explain the rationale for the design.

e Deviation feature generation - prioritizing tests based on behavioral deviation: A key insight of PriCod
is that if there is a high prediction deviation between the compressed model and the original model for a
given test, it is highly likely that the compressed model has potential issues arising from the compression
when handling this test. Therefore, PriCod utilizes the deviation information to perform test prioritization. The
feasibility of this approach is demonstrated by the preliminary study conducted in Section 3.1.

e Embedding feature generation - prioritizing tests based on proximity to the decision boundary:
An existing study [61] has pointed out that test inputs close to the decision boundary are more likely to be
misclassified. PriCod generates embedding features to indirectly reflect the proximity of each test input to the
decision boundary, thus performing test prioritization.

e Feature fusion - enhancing the predictive power of the ranking model: According to the existing
study [68], feature fusion'can enhance the predictive capabilities of models. Through feature fusion, we aim
to enhance the ability of PriCod’s ranking model to predict misclassification scores for each test, thereby
improving the effectiveness of test prioritization.

e Feature-based ranking - predicting the misclassification probability based on features: Given a test
input, PriCod utilizes the LightGBM model to estimate the probability of it being misclassified based on the
fused features. LightGBM has been proven to be a powerful algorithm capable of predicting the probability
values for different categories [44]. Within the framework of PriCod, LightGBM categorizes tests into two
groups: those “misclassified by the compressed model” and those “not misclassified by the compressed model”.
We utilize LightGBM to predict the probability of each sample being misclassified by the compressed model,
referred to as the misclassification score. A high misclassification score implies that the test is more likely to
be misclassified by the compressed model. Therefore, PriCod ranks all tests in descending order based on the
misclassification scores.

ACM Trans. Softw. Eng. Methodol.
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Fig. 2. Overview of PriCod
3.3 Deviation Features Generation

During the process of model compression, which aims at reducing storage and computational costs, the model can
lose some details and complexity, resulting in a relatively simplified compressed model. Deviations in prediction
behavior can arise between the original DNN model and the compressed DNN model. Our core premise for
prioritizing testing based on these behavioral discrepancies is as follows: When there is a significant deviated
behavior between the compressed DNN model and the original model for a given test, it suggests that the
compressed model is more likely to produce a prediction different from that of the original model for this input.
This test is deemed more likely to expose bugs in the compressed model. We validated premise 1 through a
specially designed preliminary study. Further details can be found in Section 3.1.

In order to quantify the magnitude of differences in predictions between the original model and the compressed
DNN model, we propose 17 strategies for generating deviation features, with the aim of effectively encapsulating
variations in predictions between the original model and the compressed DNN model. Our objective is to provide
a comprehensive suite of measures to capture different aspects of deviation before and after model compression
for each test input.

e Classification Deviation Features (CLA) [93]: These features capture the disparities in predicted classes
between the original DNN model and the compressed DNN model for a given test input. To derive these
features, we compare the specific category predictions for each test case obtained from the original DNN model
and the compressed DNN model. When the predictions differ, it signifies that the compressed model displays
classification behavior contrary to that of the original model, providing a direct reflection of the variations in
predictive behavior.

¢ Confidence Deviation (CFD) [29]: CFD reflects the absolute difference between the probability of the
predicted category by the original model and the probability of the same category by the compressed DNN
model. It reflects the degree of variation in the models’ confidence levels.

e Euclidean Distance Features (EUCL) [56]: These features measure the Euclidean distance between the
probability vectors of predictions made by the original model and the compressed model for a given test input.
This distance metric reflects the overall magnitude of differences between the models’ prediction probabilities,
providing a comprehensive view of their predictive disparities.

e Manhattan Distance Features (MHD) [67]: MHD represents the Manhattan Distance between the probability
vectors of predictions made by the original model and the compressed model for a given test input. It quantifies
the sum of absolute differences between corresponding probabilities, indicating the overall shift in predictions
and the directions of these shifts.
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e Chebyshev Distance Features (CHD) [47]: CHD reflects the Chebyshev Distance between the probability
vectors of predictions made by the original model and the compressed model for a specific test input. This
metric highlights the maximum absolute difference between corresponding probabilities, showcasing the most
significant deviations in the models’ predictions.

e Pearson Correlation Coefficient Features (PCC) [16]: PCC measures the Pearson Correlation Coefficient
between the probability vectors of predictions made by the original model and the compressed model for a
given test input. It indicates the strength and direction of a linear relationship between the predictions, offering
insights into the consistency of their deviations. A higher PCC value indicates smaller disparities in predictive
behavior between the original model and the compressed model, while a lower PCC value indicates relatively
larger disparities.

e Sum of Squared Differences Features (SSD) [81]: SSD reflects the Sum of Squared Differences between the
probability vectors of predictions made by the original model and the compressed model for a specific test
input. It emphasizes larger deviations while downplaying smaller ones, providing a measure of the overall
prediction divergence.

o Hellinger Distance Features (HED) [31]: HED reflects the Hellinger Distance between the probability
vectors of predictions made by the original model and the compressed model for a given testinput. It measures
the similarity between the square root of the prediction probabilities, offering insights into their predictive
differences.

e Wasserstein Distance Features (WAS) [75]: WAS reflects the Wasserstein Distance between the probability
vectors of predictions made by the original model and the compressed model for a specific test input. It
measures the minimum “cost” of transforming one distribution into another, highlighting their divergence.

e Coordinate Deviation Features (CDF): CDF is obtained by subtracting the origin coordinates from the
prediction vector of the compressed model. This vector directly reflects the deviation in predictions of the
compressed DNN models from the origin coordinates.

o Relative Entropy Features (REL) [8]: REL reflects the Relative Entropy between the probability vectors
of predictions made by the original model and the compressed model for a given test input. It measures the
information lost between the compressed model and the original model.

¢ Difference Vector Features (DIF): DIF refers to the vector obtained by subtracting the prediction vector of
the original model from the prediction vector of the compressed model for a specific test input. This vector
directly reflects the direction and magnitude of deviation in predictions.

The aforementioned deviation features.exhibit the following differences:

1) Classification Deviation Features (CLA) vs. Confidence Deviation (CFD) CLA focuses on the difference
in classification results, i.e., whether the compressed model produces the same output classification for a given
test as its original model. CFD measures the deviation in confidence, indicating the differences in prediction
uncertainty between a compressed model and its original model for a given test.

2) Euclidean Distance (EUCL) vs. Manhattan Distance (MHD) EUCL measures the straight-line distance
between the prediction vectors of the compressed DNN model and its original DNN model, making it suitable for
quantifying overall deviations in predictions in a multi-dimensional space. On the other hand, MHD calculates
the sum of absolute differences in each dimension based on the prediction vectors.

3) Chebyshev Distance (CHD) vs. Sum of Squared Differences (SSD) CHD emphasizes the difference in the
maximum single dimension of the prediction vectors, particularly highlighting extreme values. SSD represents
the sum of squared differences across dimensions, offering a quantitative measure of overall deviation.

4) Hellinger Distance (HED) vs. Wasserstein Distance (WAS) HED measures the disparities in the shape of
distributions between the prediction vectors generated by the compressed model and those of its original model
for a specific test. In contrast, WAS focuses on the “effort” required to transform one distribution into another.
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5) Relative Entropy (REL) vs. Pearson Correlation Coefficient (PCC) REL specifically focuses on information
loss or gain to quantify the disparity in prediction distributions between the compressed model and its original
model. On the other hand, PCC measures the degree of linear correlation among the prediction vectors.

6) Coordinate Deviation Features (CDF) vs. Difference Vector Features (DIF) Given a test input, CDF
reflects the absolute prediction bias between predictions made by the compressed model and those by the original
model. On the other hand, DIF emphasizes changes in both direction and magnitude relative to the predictions of
the original model and the compressed model.

The aforementioned deviation features have proven to be useful in the context of PriCod for test prioritization, as
evidenced by the preliminary study conducted in Section 3.1 and RQ5 (Feature contribution analysis). Specifically,
the rationale behind these features is derived from PriCod’s premise 1, which states that for a given test, if the
prediction behavior between the compressed DNN model and the original model exhibits a large deviation, it
suggests that this test is more likely to be misclassified by the compressed DNN model. The aforementioned
features are all designed to measure the prediction differences. Therefore, these features can be utilized for test
prioritization. The validation of premise 1’s reasonability is established in the preliminary study (cf. Section 3.1),
and the effectiveness of deviation features is further demonstrated in RQ5 (cf. Section 5.5), which leverage ablation
studies to confirm the contributions of the deviation features.

3.4 Embedding Features Generation

Embedding Features (EF) capture the intrinsic information of each test input ¢ € T. In our experiments, PriCod
was evaluated under two scenarios: image-type tests and text-type tests. In the following sections, we present
the generation process of embedding features under each of the scenarios. In the context of image-type tests, to
obtain these Embedding Features (EFs), we utilize a pre-trained ResNet model [34] to transform each test into a
vector representation. In the case of text-type tests, we employ the BERT [21] model to map each input into a
corresponding vector representation.

The process by which ResNet transforms an image into an embedding feature vector is as follows: First, the
pre-trained ResNet network is employed to load the image. Through successive layers of convolution and pooling,
the image undergoes a gradual transformation into higher-level abstract features. The output of the final global
average pooling layer is extracted and treated as the image’s embedding. This embedding encapsulates the
semantic information of the image.

The principle behind prioritizing testing using the Embedding Features of test cases is that: test inputs closer
to the decision boundary of the model are more likely to be misclassified, as outlined in existing literature [61].
By mapping images to vectors in space, PriCod can automatically learn the distance between a test and the
decision boundary to perform effective test prioritization. The benefits of utilizing the ResNet model to generate
embedding features are outlined below:

e Automatic Identification of Vital Features The ResNet model can automatically extract crucial features
from raw data. By generating embedded features, key characteristics can be focused.

o Effective Feature Generation ResNet boasts powerful feature generation capabilities. Its architecture inte-
grates multiple convolutional and pooling layers, allowing the model to effectively capture a wide range of
features and patterns within images. This capability can be highly advantageous for test prioritization.

The process by which BERT converts textual data into an embedding feature vector can be described in the
following steps:

¢ Tokenization The input text, whether a sentence or a paragraph, is broken down into smaller units called
tokens. These tokens are typically words or subwords, and each is assigned a unique identifier.

e Embedding Each token identifier is transformed into a corresponding word vector. These vectors are rich in
semantic information, representing not just the token but also aspects of its meaning.
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e Contextual Analysis with Transformer Encoders BERT utilizes multiple layers of Transformer encoders
to process these word vectors. These encoders are adept at capturing contextual information, allowing the
model to understand the nuances and varied meanings of words based on their context in the sentence or
paragraph.

e Generation of Embedding Vectors The final hidden states outputted by the Transformer encoders serve as
the embedding vectors. These vectors represent the entire input text (sentence or paragraph) and encapsulate
both the semantic and contextual information of the original text.

The advantages of the BERT model include: BERT takes into account contextual information when processing
text, and the vectors it generates can better represent the semantic meaning of the text. As a result, when text
information is mapped into space, BERT can place semantically similar texts closer together in this space, with
texts of the same category being nearer to each other and different texts being farther apart. These vectors in
space can indirectly reflect the distance from the decision boundary.

3.5 Feature Fusion

Building upon the above procedures, PriCod produces two distinct categories of feature vectors for each test
sample in T: deviation feature vector and embedding feature vector. Following this, for each test sample t € T,
PriCod combines the two feature vectors and input to the LightGBM classifier, facilitating the prediction of the
misclassification score for the test case. The process of feature fusion serves to enhance the effectiveness of
subsequent test prioritization. Each type of feature (deviation features, embedding features) captures distinct
aspects of the data, which hold informative value for the final prioritization. Through the amalgamation of these
features into a singular feature vector, multiple sources of information are effectively integrated.

3.6 Feature-based Ranking

After obtaining the feature vector for each test t inset T, PriCod employs the LightGBM classifier [44] as the
ranking model to predict the misclassification probability for each ¢ based on its corresponding feature vector.
LightGBM is a gradient-boosting framework that employs decision trees as base learners. LightGBM is designed
for efficient parallel computation. In the subsequent section, we elaborate on the procedures of constructing
the classifier and elucidate the adaptations carried out on the classifier to generate the misclassification scores
instead of producing categories.

e Construction of the LightGBM Classifier Given the compressed DL model M and the evaluated dataset,
to build the classifier, we first partitioned the dataset into two sets: a training set labeled as R and a test set
labeled as T, with a partition ratio of 7:3 [72]. The test set T remains untouched for evaluating PriCod. The
LightGBM ranking model is trained using the dataset R’, which is derived from the original training set R
of the evaluated compressed model. The process of constructing the training set for the ranking model R’ is
described below. Initially, we generate deviation features and embedding features for each instance r € R.
These features serve as the training features for the new dataset R’. Subsequently, we construct the labels
for R’. To this end, we employ the compressed DNN model M to predict the classification of each instance
r € R. We compare the model’s predictions with the corresponding ground truth of r to determine whether r
is misclassified. Instances that are misclassified are labeled as 1, while correctly classified instances are labeled
as 0. Consequently, we obtain the labels for the training set of the ranking model. By utilizing the constructed
training set, we train the ranking model LightGBM.

e Adapting the LightGBM Classifier Once the training is complete, LightGBM can be used to predict whether a
test input will be misclassified by the compressed DNN model. To enable the model to produce misclassification
scores as outputs instead of labels, we introduced specific modifications to the original LightGBM classifier.
More precisely, we extract the intermediate value from the model’s output, which initially served to determine
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whether a test would be misclassified by the model. In the model’s decision-making process, if this intermediate
value exceeds a certain threshold, the input is classified as “misclassified”; otherwise, it is classified as “not
misclassified” Within the adjusted LightGBM classifier, this intermediate value refers to the misclassification
score. A higher value signifies that a test instance is more likely to be misclassified.

e Test Prioritization Ultimately, PriCod ranks all the tests within the test set T in a descending order based
on their respective misclassification probability scores. This sorting procedure yields the prioritized test set
denoted as T”.

In the above steps of constructing the LightGBM classifier, we utilized deviation features and embedding features
as training features to train the LightGBM model. We selected these specific features due to their ability to reflect
the probability of a test being misclassified by a compressed DNN model. The rationale behind selecting these
features is grounded in the core premises of PriCod (cf. Section 3.3 and Section 3.4):

o Premise 1 (for deviation features) For a given test, if the prediction behavior between the compressed
DNN model and the original model exhibits a large deviation, it suggests that this test is more likely to be
misclassified by the compressed DNN model. This premise indicates that deviation features can reflect the
probability of a test being misclassified. The preliminary study conducted inSection 3:1 further validates this
premise.

o Premise 2 (for embedding features) Test inputs that are located closer to the decision boundary of the
model are more likely to be misclassified [61]. This premise elucidates that embedding features can reflect
the probability of a test being misclassified. Specifically, by mapping each test input to a vector in space, the
embedding features can indirectly indicate the proximity of the test to the decision boundary.

In the training set, each training sample is labeled as 0 or 1. Specifically, 0 means the sample was not misclassified
by the compressed DNN model under evaluation, while 1 indicates the sample was misclassified. PriCod first
generates deviation features and embedding features from each training sample. Using the LightGBM model, it
learns the relationship between these features and “being misclassified”. Following the completion of training,
given a new test input, PriCod can quantify the probability of this test being misclassified based on its deviation
features and embedding features.

3.7 Variants of PriCod

To comprehensively investigate how different feature fusion methods affect the overall performance of PriCod,
we propose three distinct PriCod variants. These variants were meticulously designed to incorporate different ap-
proaches for combining embedding features and deviation features, shedding light on the impact of feature fusion
techniques on PriCod’s effectiveness. These three variants are denoted as PriCod?, PriCod™, and PriCod®, each
adopting a unique strategy for feature fusion: addition, multiplication, and cross-multiplication [59], respectively.

e PriCod” The variant PriCod” utilizes an addition-based fusion method for test prioritization. In this variant, the
feature fusion strategy relies on addition, combining the embedding features and deviation features by adding
them. Addition-based fusion is straightforward and results in a merged feature vector where the corresponding
elements of the two input feature vectors are summed together.

e PriCod™ The variant PriCod™ employs a multiplication-based fusion method for test prioritization. This
approach involves multiplying each element of the embedding features by the corresponding element of the
deviation features. Multiplication-based fusion is more intricate compared to addition-based fusion and has
the potential to emphasize interactions and relationships between the two feature sets.

e PriCod® PriCod® employs a cross-multiplication feature fusion strategy. This approach performs cross-
multiplication on elements of the embedding features and deviation features. Cross-multiplication is a more
complex fusion method compared to both addition and multiplication. It allows the model to capture intricate
interdependencies between features by considering all possible pairwise interactions.
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To enhance the clarity of each feature fusion strategy, we incorporate an illustrative example. Given a test t, we
first follow the steps outlined in Section 3.3 and Section 3.4 to obtain its embedding feature vector and deviation
feature vector. Assuming these two vectors are {el, e2, e3} (embedding features) and {d1,d2,d3} (deviation
features), we present the final vectors obtained after addition-based fusion, multiplication-based fusion, and cross-
multiplication-based fusion below. Addition-based fusion: {e1 + d1, e2 + d2, e3 + d3}. Multiplication-based
fusion: {el X d1, e2 X d2, e3 X d3}. Cross-multiplication-based fusion: {e1 X d1,el1 X d2,el X d3,e2 X d1, e2 X
d2,e2 x d3,e3 X d1,e3 X d2,e3 X e3}. In the following, we explain the rationale behind the studied feature fusion
strategies.

e Feature fusion based on addition (PriCod? ) The rationale behind this fusion approach mainly consists of
three points. 1) This approach is intuitive, simply adding the information of two feature sets together, making
it easy to understand and implement. 2) by simple addition, this method preserves the complete information of
each feature set. 3) This approach is widely used in the context of DNNs and has been proven to be effective [34].

e Feature fusion based on multiplication (PriCod™) The rationale behind the multiplication-based fusion
approach mainly consists of three points. 1) Multiplication-based fusion emphasizes the interdependence
between features. 2) Multiplying certain input elements by smaller weights can contribute to ignoring irrelevant
information.

e Feature fusion based on cross-multiplication (PriCod°) 1) The cross-multiplication fusion allows the
model to capture more complex interdependencies and interactions between features by considering possible
pairwise interactions. 2) This approach creates a high-dimensional feature space capable of revealing more
hidden patterns and relationships. 3) Existing research [59] has proven the effectiveness of this method.

While we have introduced diversity in the feature fusion aspect, we intentionally maintained all other aspects of
the PriCod variants identical to the original PriCod, aiming to ensure that any observed performance differences
can be attributed primarily to the selected fusion method.

4 STUDY DESIGN

In this section, we present a comprehensive elucidation of the specific details concerning our study design. To
begin, Section 4.1 elucidates the research questions that guided our investigation. Subsequently, Section 4.2
provides intricate insights into the compressed models and datasets adopted in our study. Section 4.3 showcases
the noisy generation techniques utilized in RQ2, while Section 4.4 exhibits the adversarial attacks employed in
the context of RQ3. Moreover, Section 4.5 demonstrates the test prioritization methods subjected to comparison.
In addition, Section 4.6 outlines the measurement metrics we employed to assess the effectiveness of PriCod,
its variants, and the compared approaches. Finally, Section 4.7 provides a comprehensive overview of the
implementation and configuration setup utilized throughout our study.

4.1 Research Questions
Our experimental evaluation answers the research questions below.

e RQ1: How does PriCod perform in prioritizing test inputs for compressed DNN models?
When utilizing confidence-based test prioritization techniques for compressed DNN models, these methods
typically treat the compressed DNN models as black boxes, neglecting valuable information about deviations
before and after model compression in the prioritization process. In our research, we introduce PriCod, a
tailored test prioritization approach explicitly designed for compressed DNNs. PriCod harnesses prediction
disparities induced by model compression, in combination with test input embeddings, to efficiently prioritize
tests that may reveal misclassifications. In this study, we assess the effectiveness of PriCod by comparing it to
a set of existing test prioritization methods.

e RQ2: How does PriCod perform on noisy test inputs?
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Table 2. Compressed DNN models and datasets

ID | Dataset # Size Model Compression Tool Supported Mobile Platforms
1 CIFAR10 60,000 AlexNet-coreml Core ML i0S, watchOS

2 CIFAR10 60,000 AlexNet-tflite TensorFlow Lite Android, Linux-based Systems
3 CIFAR10 60,000 VGG16-coreml Core ML i0S, watchOS

4 CIFAR10 60,000 VGG16-tflite TensorFlow Lite Android, Linux-based Systems
5 Fashion 70,000 LeNetl-coreml Core ML i0S, watchOS

6 Fashion 70,000 LeNet1-tflite TensorFlow Lite Android, Linux-based Systems
7 Fashion 70,000 LeNet5-coreml Core ML i0S, watchOS

8 Fashion 70,000 LeNet5-tflite TensorFlow Lite Android, Linux-based Systems
9 Plant 52,803 NIN-coreml Core ML i0S, watchOS

10 | Plant 52,803 NIN-tflite TensorFlow Lite Android, Linux-based Systems
11 | Plant 52,803 VGG19-coreml Core ML i0S, watchOS

12 | Plant 52,803 VGG19-tflite TensorFlow Lite Android, Linux-based Systems
13 | CIFAR100 60,000 ReseNet152-coreml Core ML i0S, watchOS

14 | CIFAR100 60,000 ReseNet152-tflite TensorFlow Lite Android, Linux-based Systems
15 | CIFAR100 60,000 DenseNet201-coreml Core ML i0S, watchOS

16 | CIFAR100 60,000 DenseNet201-tflite TensorFlow Lite Android, Linux-based Systems
17 | News 21,107 LSTM-coreml Core ML i0S, watchOS

18 | News 21,107 LSTM-tflite TensorFlow Lite Android, Linux-based Systems
19 | News 21,107 GRU-coreml Core ML i0S, watchOS

20 | News 21,107 GRU-tflite TensorFlow Lite Android, Linux-based Systems

When implemented on mobile devices, compressed DNN models can encounter noisy data due to a range of
factors, such as capturing photos from various angles, as well as the presence of raindrops. In this research
inquiry, we employ a set of noise generation techniques [69, 80, 85, 89] to construct noisy datasets for evaluating
the performance of PriCod.

RQ3: How does PriCod perform on adversarial inputs?

The previous research questions have assessed PriCod’s effectiveness with natural and noisy test inputs. In
this research question, we evaluate PriCod’s performance with adversarial test inputs.

RQ4: How does the feature combination strategies impact the effectiveness of PriCod?

In this research question, we aim to gain a deeper understanding of the impact of different feature combination
strategies on the effectiveness of PriCod. By analyzing this critical factor, we can determine which feature
fusion technique is better suited for PriCod.

RQ5: To what extent does each type of features contribute to the effectiveness of PriCod?

In this research question, we investigate the impact of various feature types on the performance of PriCod. This
investigation enables us to identify the features that have a more significant influence on PriCod. Additionally,
conducting a thorough analysis of feature contributions can enhance our comprehension of the underlying
mechanisms and operational principles of PriCod.

RQ6: To what extent can uncertainty-based metrics contribute to improving the effectiveness of
PriCod?

In the test prioritization process within PriCod, we generate embedding features for each test to indirectly
reveal the proximity between the test and the decision boundary. A prior study [99] indicated that uncertainty-
based metrics can also reflect the proximity. Therefore, in this research question, we investigate whether
incorporating uncertainty-based metrics can enhance the effectiveness of PriCod. To be more specific, we
employ several uncertainty metrics (such as DeepGini [29] and Margin [96]) to produce uncertainty features
for each test and integrate them into the original PriCod for test prioritization.
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4.2 Models and Datasets

In our study, we have utilized a total of 182 subjects to assess the performance of PriCod and the compared
approaches [29, 39]. Table 2 provides essential particulars regarding these subjects, encompassing the dataset-
model associations, dataset sizes, tools used for DNN compression, and supported mobile platforms. Among the
182 subjects under investigation in this study, 20 subjects are constructed based on natural datasets, 126 subjects
are built on noisy datasets, and 36 subjects are established on adversarial datasets.

4.2.1 Datasets.

In our study, we evaluate the performance of PriCod using five distinct datasets: CIFAR10 [48], Fashion [102],
Plant [70], CIFAR100 [84], and News [110]. The selection of these specific datasets is grounded in their widespread
adoption within the domain of DNN testing. Notably, CIFAR10 and Fashion are two of the most widely employed
datasets for DNN evaluation. The Plant dataset stands out as a renowned dataset for Al applications focused on
detecting plant diseases. Moreover, compressed models tailored to this context have already been implemented.
Therefore, investigating this dataset becomes particularly valuable for the study of compressed models.

e CIFAR10 [48] The CIFAR10 dataset serves as a frequently utilized collection of images for training and
assessing DNN models. Comprising a total of 60,000 images, each measuring 32x32 pixels and in color, the
dataset is categorized into ten distinct classes, containing 6,000 images per class. These categories include
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

e Fashion [102] The Fashion dataset comprises fashion product images from 10 categories, such as T-shirts,
trousers, dresses, etc. Each category consists of 7000 images, making a total of 70,000 images. All images in the
dataset are grayscale with dimensions of 28x28 pixels.

e Plant [70] The Plant dataset covers a diverse range of crops and various disease types, including images
depicting healthy plant leaves. Specifically, the Plant dataset comprises 52,803 plant leaf images organized into
38 distinct category labels. Each label corresponds to a combination of a specific crop and a disease. Examples
of these classes encompass Healthy Corn Leaf, Potato Late Blight, and Rose Black Spot.

e CIFAR100 [84] The CIFAR100 dataset is a widely used benchmark in computer vision, consisting of 60,000
32x32 color images categorized into 100 distinct classes (such as clouds, cups, and forests). CIFAR100 is a
valuable resource for training and evaluating DNN models, particularly designed for image classification tasks.

e News [110] The News dataset is an English-language dataset that comprises an annotated corpus of finance-
related tweets. This dataset is utilized for the classification of finance-related tweets based on their topics.
It consists of 21,107 samples categorized into 20 classes. Examples of these categories include financials,
currencies, and opinion.

4.2.2 Compressed DNN models.

Our study encompasses a set of 20 compressed deep neural network (DNN) models. Our approach for model
compression primarily focuses on model quantization, a prevalent method in the field of model compression. The
reason for selecting quantization as our compression method is that, in the industry, quantization is considered
one of the most commonly adopted techniques for deploying models to mobile devices [38, 53]. In the process of
generating compressed models, we primarily employed two quantization techniques to compress DNN models.
Below, we provide details regarding the two techniques used to compress DNN models:

e Tensorflow Lite [19] We utilized TensorFlow Lite (TFLite) as one of the compression techniques to compress
DNN models. TFLite, a component of the TensorFlow deep learning framework developed and maintained
by Google, offers interfaces for converting TensorFlow models into lightweight counterparts. This facilitates
deployment on various low-computing devices, including Android mobile phones. In our experiments, we
chose 8-bit quantization for model compression. This involves quantizing the weights and activation values
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in the model to 8-bit numbers, thereby reducing the model’s size and enhancing deployment efficiency on
resource-constrained devices.

CoreML [90] In our experiments, we utilized another pivotal technique for model compression, namely
CoreML. Developed by Apple, CoreML is a framework designed to transform models into the Mlmodel format,
customized for iOS platforms. Similar to parameter selection in TFLite, we implemented 8-bit quantization.
This process involves quantizing the model’s weights and activation values into 8-bit numbers.

In the following, we present detailed information on all the compressed DNN models employed to evaluate

PriCod.

AlexNet-coreml and AlexNet-tflite AlexNet [49] is a deep convolutional neural network designed for image
classification tasks. It comprises multiple convolutional layers, pooling layers, and fully connected layers, all
using the Rectified Linear Unit (ReLU) activation function. AlexNet-coreml is a compressed version of the
AlexNet model converted into the CoreML format, suitable for inference and applications on Apple devices.
AlexNet-tflite is a compressed version of the AlexNet model converted into the TensorFlow Lite (TFLite)
format, designed for inference and applications on Android and embedded devices.

VGG16-coreml and VGG16-tflite VGG16 [86] is a deep convolutional neural network with 16 convolutional
and fully connected layers, primarily used for image classification. Its notable features include fixed 3x3
convolutional kernel size and a large number of layers, making it suitable for training on large-scale image
datasets. VGG16-coreml is a compressed version of the VGG16 model converted into the CoreML format
intended for image processing tasks on Apple devices. VGG16-tflite is a compressed version of the VGG16
model converted into the TFLite format, designed for image processing tasks on Android and embedded
devices.

LeNet1l-coreml and LeNet1-tflite LeNet-1 [51] is an early convolutional neural network. It consists of
convolutional layers, pooling layers, and fully connected layers, suitable for small-scale image classification
tasks. LeNet1-coreml is a compressed version of the LeNet-1 model converted into the CoreML format intended
for image processing and recognition tasks on Apple devices. LeNet1-tflite is a compressed version of the
LeNet-1 model converted into the TFLite format.

LeNet5-coreml and LeNet5-tflite LeNet-5 [51] is another early convolutional neural network. It includes
convolutional layers, pooling layers, and fully connected layers and has more layers and parameters compared
to LeNet-1. LeNet5-coreml is a compressed version of the LeNet-5 model converted into the CoreML format.
LeNet5-tflite is a compressed version of the LeNet-5 model converted into the TFLite format.

NIN-coreml and NIN-tflite NIN [57] is an innovative convolutional neural network architecture that
introduces the concept of “network in network” to enhance model expressiveness. It uses 1x1 convolutional
layers to extract local features. NIN-coreml is a compressed version of the NIN model converted into the
CoreML format, suitable for image processing tasks on Apple devices. NIN-tflite is a compressed version of
the NIN model converted into the TFLite format.

VGG19-coreml and VGG19-tflite VGG19 [86] is an extended version of VGG16 with more convolutional
and fully connected layers, suitable for complex image classification tasks. VGG19-coreml is a compressed
version of the VGG19 model converted into the CoreML format. VGG19-tflite is a compressed version of the
VGG19 model converted into the TFLite format.

ReseNet152-coreml and ReseNet152-tflite ResNet152 [34] is a deep convolutional neural network (CNN)
employing the Residual Network architecture, with 152 layers and 60.4 million parameters. ResNet152-coreml
represents a compressed version of the ResNet152 model, converted into the CoreML format. Similarly,
ResNet152-tflite is a compressed variant of the ResNet152 model, converted into the TFLite format.
DenseNet201-coreml and DenseNet201-tflite DenseNet201 [40] is a convolutional neural network consist-
ing of 201 layers and a total of 20.2 million parameters. DenseNet201-coreml denotes a compressed version
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of the DenseNet201 model, converted into the CoreML format. DenseNet201-tflite is another compressed
version of the DenseNet201 model, converted into the TFLite format.

LSTM-coreml and LSTM-tflite [108] LSTM (Long Short-Term Memory) is a type of recurrent neural network
known for its ability to capture long-term dependencies in sequential data. LSTM-coreml refers to a compressed
version of the LSTM model, converted into the CoreML format. LSTM-tflite is another compressed version of
the LSTM model, converted into the TFLite format.

GRU-coreml and GRU-tflite [22] GRU (Gated Recurrent Unit) is a recurrent neural network architecture
widely employed for processing sequential data. Compared to LSTM, GRU is characterized by fewer gates and
parameters, making it faster. GRU-coreml denotes the compressed version of the GRU model, converted into
the CoreML format. GRU-tflite is another compressed version of the GRU model, converted into the TFLite
format.

4.3 Noise Generation Techniques

In our experiments for Research Question 2 (RQ2), we utilized 13 noise techniques sourced from top-level
conferences [69, 80, 85, 89]. These diverse selections of noise generation techniques were aimed at evaluating
the effectiveness of PriCod in a broader range of noisy scenarios. We provide a detailed explanation of each
noise-generation technique below.

Channel Shift Range (CSR) The CSR technique engenders a transformative alteration in the image’s overall
color palette by perturbing the values of its color channels.

Feature-wise Std Normalization (FSN) FSN operates by normalizing each input sample with respect to its
standard deviation. The underlying motivation is to decentralize the dataset.

Height Shift (HS) HS effectuates vertical displacements of an image, essentially shifting it upwards or
downwards within the image canvas. This spatial modificationintroduces variations in the vertical positioning
of objects.

Horizontal Flip (HF) The HF technique orchestrates horizontal mirroring of the input image. By introducing
random horizontal flips during augmentation, diverse perspectives of objects are captured.

Vertical Flip (VF) VF introduces a vertical inversion of the image, essentially flipping it along the horizontal
axis.

Rotation (RO) RO introduces controlled rotations to the input samples, adhering to a designated angle range.
Shear Range (SR) SR engenders a shear transformation, preserving one coordinate while linearly displacing
the other.

Width Shift (WS) WS pertains specifically to horizontal translations, thereby repositioning the image hori-
zontally within the canvas:

Zca Whitening (ZCA) ZCA performs dimensionality reduction on the input images, effectively reducing
redundancy while retaining essential features.

Zoom (Z00) ZOO introduces alterations in the image scale by magnifying or contracting it along its length
or width.

Contrast (CON) CON quantifies the disparity between the brightest and darkest regions of an image. This
augmentation manipulates image contrast, diversifying the dataset concerning luminance and accentuating
differences between light and dark areas.

Noise Gasuss (GAS) GAS simulates signal noise by following a Gaussian distribution. By adding this form of
noise to the input images, the dataset’s resilience to stochastic variations is bolstered.

Salt & Pepper (SP) SP augments the dataset by introducing either white or black pixels to the image, imitating
the effects of salt and pepper noise. This introduces localized distortions.
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4.4 Adversarial Techniques

In the context of RQ3 in our study, we employed four distinct adversarial techniques to generate adversarial
samples for assessing the effectiveness of PriCod. These techniques include the Fast Gradient Method, Adversarial
Patch, Basic Iterative Method and Projected Gradient Descent. We elaborate on the operational principles of each
adversarial technique in the following explanations.

e Fast Gradient Method (FGM) [32] FGM is an extension of the Fast Gradient Sign Method (FGSM), which
was the pioneering gradient-based white-box attack algorithm utilizing deep neural network gradients to craft
adversarial examples. FGM enhances the original FGSM attack by incorporating other norms for perturbation
generation.

o Adversarial Patch (Patch) [5] AP generates adversarial examples by creating attack patches designed to
replace specific portions of the original images. Importantly, this technique does not necessitate attackers to
possess knowledge about the original dataset.

e Basic Iterative Method (BIM) [50] BIM is an advancement of FGSM involving multiple iterations of small
perturbations. After each iteration, the pixel values of the obtained result are clipped to ensure that the outcome
remains within the vicinity of the original image.

¢ Projected Gradient Descent (PGD) [63] PGD attack is an iterative technique. In contrast to FGSM, which
involves a single iteration and a significant perturbation, PGD incorporates multiple iterations with small
perturbations. During each iteration, the perturbation is constrained within predefined boundaries.

4.5 Compared Approaches

To demonstrate the effectiveness of PriCod, we employed seven test prioritization approaches along with a
baseline method. These seven methods are DeepGini, Prediction-Confidence Score (PCS), Vanilla Softmax, Entropy,
Margin, Least Confidence (LC) and ATS. We chose these methods for the following reasons: 1) These approaches
can be tailored to prioritize tests for compressed Deep Neural Networks; 2) These approaches have previously
shown effectiveness for DNNs; 3) These approaches offer open-source implementations. It is crucial to emphasize
that all the test prioritization methods used for comparison were initially designed for non-compressed models in
their respective research papers. However, despite being designed for uncompressed models, these methods can
be directly applied to compressed DNN models. This is a crucial factor why we selected them to compare with
PriCod.

e DeepGini [29] DeepGini performs test prioritization by calculating the model confidence towards each test
case. The metric used to-measure the confidence score is the Gini coefficient, which is calculated using the
Formula 1 provided below. A higher Gini coefficient for a test indicates that the test is more likely to be
misclassified. Therefore, it should be prioritized towards the front of the test set.

N
Gini(t) =1- > (pi(t))? (1)
i=1
where Gini(t) represents the Gini score of the test t. p;(¢) denotes the probability that the test input ¢ is
predicted to belong to label i. N represents the total number of classes to which the input can be classified.
¢ Prediction-Confidence Score (PCS) [99] For each test input in the specified test set, PCS calculates the
difference between the probability of the model’s most confident prediction for that test and the probability
of the second most confident prediction. A smaller difference indicates that the model is less confident in its
prediction for that particular test input, and this input will be prioritized higher. The formula for this calculation
is provided in Formula 2.

PCS(t) = p'(1) - p*(1) )
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where p!(t) denotes the probability of the model’s most confident prediction for that test, and p?(t) represents
the probability of the model’s second most confident prediction for the same test.

e Vanilla Softmax [99] Vanilla Softmax prioritizes tests by calculating the difference between the maximum
activation probability in the output softmax layer and the ideal value of 1 for each test input. Test inputs
exhibiting larger disparities are perceived as more likely to be misclassified by the model. The computation of
Vanilla Softmax is demonstrated in Formula 3.

V(t) = 1 - maxpi(1) )

where maxY, p;(t) represents the maximum activation probability in the output softmax layer for the test
input t. Here, N denotes the total number of prediction classes. p;(t) signifies the probability that the model
classify the test t into class i.

e Entropy [99] Entropy prioritizes tests by computing the entropy of the softmax likelihood for each test
instance. Higher entropy values imply higher uncertainty in the model’s predictions for those inputs. Therefore,
test inputs with greater entropy are interpreted as more prone to being misclassified by the model and will be
assigned higher priority.

e Margin [96] Margin prioritizes tests by evaluating the difference between the model’s most confident prediction
and the second most confident prediction for each test. For a given test, if its margin score is large, the test is
considered more likely to be misclassified. The margin score is calculated by Formula 4.

M(t) = pi(t) = p;(t) 4)

where M(x) denotes the margin score. p (t) represents the model’s most confident prediction probability for
the test instance t. p;(t) represents the second most confident prediction probability.

e Least Confidence (LC) [96] Least Confidence regards test inputs for which the model exhibits the least
confidence as more likely to be misclassified. The least confidence score is calculated using Formula 5. For a
given test, a higher least confidence score indicates that the model is less confident about the prediction for
that particular test. Therefore, this test'is considered more likely to be predicted incorrectly.

L(t)=1- ng?_xp,-(t) 5)

where L(t) represents the least confidence score. p;(t) denotes the probability that the test input ¢ is predicted

to be label i via a model M. max;=1., p;(t) corresponds to the model’s most confident prediction probability for

the test instance t.

e ATS [30] ATS (Adaptive Test Selection) is an adaptive method for test selection that utilizes variations in model
outputs to assess the behavioral diversity of DNN test data. Its objective is to select a diverse subset of tests
from a massive unlabeled dataset. In empirical evaluations [30], ATS has demonstrated superior performance
compared to all the evaluated coverage-based test selection methods, showing significant improvements in
both fault detection and model improvement capabilities.

¢ Random selection [25] Random selection serves as the baseline in our study. This approach involves randomly
determining the order in which test inputs are executed. This implies that the arrangement of test inputs is
established entirely at random, without any predefined patterns or logical sequences.

In addition to the aforementioned test prioritization methods, there are several classic approaches in the
literature for prioritizing tests for DNNs, including PRIMA [97] and coverage-based test prioritization methods [79].
However, due to the characteristics of compressed models, these methods are challenging to directly apply. We
explain the specific reasons below:

e PRIMA PRIMA is not suitable for compressed DNN models primarily because some of its model mutation
rules cannot be adapted to the structure of the compressed DNN model. For example, one of PRIMA’s model
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mutation operations is Neuron Activation Inverse, which reverses the activation state of a neuron by changing
the sign of the neuron output before passing it to the activation function. However, previous research [93] has
pointed out that the structure of compressed models does not support such model mutation operations.

e Coverage-based metrics Coverage-based test prioritization methods, such as DeepXplore, cannot be applied
to compressed DNN models primarily due to the fact that coverage-based approaches typically prioritize
test inputs based on their neuron coverage. However, existing study [93] pointed out that, due to the unique
structure of compressed models, obtaining neuron coverage is not feasible. Therefore, coverage-based test
prioritization methods cannot be adapted to compressed DNN models.

4.6 Measurements

Consistent with previous studies [29], we utilized two metrics to evaluate the effectiveness of PriCod: Average
Percentage of Fault Detection (APFD) [106] and Percentage of Faults Detected (PFD) [29].

4.6.1 Average Percentage of Fault Detection (APFD).
APFD is a widely accepted metric for evaluating test prioritization effectiveness. A higher APFD value signifies
greater effectiveness. APFD values are calculated using Formula 6.

k
i—1 0i 1
APFD=1—Q+— (6)
kN 2N
e N represents the total number of test inputs in the test set.
o k signifies the number of misclassified test inputs.

e 0; refers to the index of the i;, misclassified test within the prioritized test set.

Below, we explain from a mathematical perspective why a larger APFD indicates better effectiveness of a
test prioritization method: Given that N is a constant, a higher APFD value corresponds to a smaller Zle 0;
(the index sum of misclassified tests in the prioritized list). A smaller Zle o0; suggests that misclassified tests
are positioned closer to the beginning of the prioritized test set, indicating that the test prioritization approach
prioritized misclassified tests higher. Such an approach is considered to exhibit a high level of effectiveness.

Consistent with prior research [29], we normalize APFD values to the range [0, 1]. A prioritization approach is
considered more effective if its APFD value approaches 1.

4.6.2 Percentage of Fault Detected (PFD).

PFD quantifies the ratio of correctly identified misclassified test inputs to the total count of misclassified tests.
A higher PFD value indicates greater effectiveness of a test prioritization approach. PFD is calculated as shown in
Formula 7.

Fe
PFD = — 7
. )

e F, represents the number of detected misclassified test inputs

e F, is the total number of misclassified test inputs
In our investigation, we evaluated the PFD values of PriCod across different ratios of prioritized tests. We use
PFD-n to denote the first n% prioritized test inputs.

4.7 Im plementation and Configuration

We implemented PriCod using Python and the PyTorch 2.0.0 framework [78] and TensorFlow 2.3.1 framework.
To facilitate comparisons with other approaches, we integrated existing implementations of the compared
methods [29, 99] into our experimental pipeline. The compression of DNN models to the CoreML format was
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performed on macOS Ventura 13.4.1, as CoreML models can only be executed on i0S systems. For the classifier
used in the ranking process, we employed LightGBM 3.3.5 with specific parameter settings: the learning rate
of 0.1, n_estimators of 100, and min_child_sample of 20. Furthermore, we leveraged the packages SciPy 1.4.1
and scikit-learn 1.1.3 for data processing. Below, we present the test accuracy and training accuracy of the
ranking model LightGBM on each dataset: 1) CIFAR10 Training Accuracy: 96.82%~97.84%; Test Accuracy:
77.42%~82.24% 2) CIDAR100 Training Accuracy: 96.28%~97.13%; Test Accuracy: 82.15%~85.58% 3) Fashion
Training Accuracy: 97.53%~97.96%; Test Accuracy: 86.31%~86.75% 4) Plant Training Accuracy: 97.59%~98.12%;
Test Accuracy: 85.51%~89.15% 5) News Training Accuracy: 94.26%~96.13%; Test Accuracy: 77.79%~80.25%. In our
experiments, the accuracy of the compressed DNN models used to evaluate PriCod ranged from 70.03% to 77.43%.
The accuracy range of their original DNN model was between 70.23% and 78.74%. Other fundamental information
about the models can be found in Table 2. Our experimental setup involved conducting experiments on NVIDIA
Tesla V100 32GB GPUs. We used a MacBook Pro laptop running macOS Ventura 13.4.1 for data analysis, equipped
with an Intel Core 19 CPU and 64 GB of RAM. In total, our study encompassed experiments involving 182 subjects,
with 20 subjects based on natural inputs, 126 subjects based on noisy inputs, and 36 subjects based on adversarial
inputs.

5 RESULTS AND ANALYSIS
5.1 RQ1: Performance of PriCod on Natural Test Inputs

Objectives: We evaluate the effectiveness of PriCod on natural test inputs with 20 compressed DNN models.
We compare PriCod with a set of existing test prioritization approaches and a baseline method (i.e., random
selection). Moreover, we evaluate PriCod on compressed DNN models with different accuracy levels, aiming to
better assess the effectiveness of PriCod. Specifically, the experiments-are conducted based on the following two
sub-questions:

e RQ-1.1 How does PriCod perform in terms of effectiveness and efficiency when applied to natural test inputs?
e RQ-1.2 How does PriCod perform on compressed DNN 'models with different accuracy levels?

Experimental design: We conducted the following experiments to answer the aforementioned sub-questions,
respectively.

[Experiment for RQ-1.1] We assessed the effectiveness and efficiency of PriCod on natural test inputs through
the following experimental steps.

e Subject Construction We constructed 20 subjects consisting of compressed DNN models and their corre-
sponding datasets. Specifically, we utilized 20 compressed DNN models along with three datasets. For specific
details regarding the models and datasets, please refer to Section 4.2. The matching relationships are illustrated
in Table 2.

o Selection of Comparative Approaches Subsequently, we meticulously selected five comparative approaches
(i.e., DeepGini, Vanilla SM, PCS, entropy, and random selection) from the existing literature [29, 99]. These
approaches can be adapted for prioritizing test inputs for compressed DNN models, with random selection as
the baseline.

e Evaluation of Effectiveness Within our constructed 20 subjects, we evaluated the effectiveness of PriCod
and all comparative methods using two widely adopted metrics: Average Percentage of Fault-Detection (APFD)
and Percentage of Fault Detected (PFD) [29]. Detailed explanations of these metrics can be found in Section 4.6.

e Comparison of Efficiency Moreover, we compared the efficiency of PriCod and other test prioritization
methods by analyzing their time costs.

o Statistical Analysis Recognizing the inherent variability within the model training process, we undertook a
statistical analysis by executing each experiment ten times. We showcase the average outcomes of these trials.
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More specifically, we employed the paired two-sample t-test [46], a widely utilized statistical method for
comparing differences between two related datasets. The fundamental steps involve: 1) selecting two sets of
related data, 2) calculating the difference for each corresponding pair of data points, and 3) analyzing these
differences to assess whether there is a statistically significant disparity between the two datasets. In the
context of the paired two-sample t-test, the significance of the results is determined by the p-value. Typically,
a p-value less than 10~% indicates a statistically significant difference between the two datasets [62].

[Experiment for RQ-1.2] We evaluated PriCod on compressed DNN models with varying accuracy levels using
the following experimental steps. Initially, we trained a group of compressed DNN models at various accuracy
levels, specifically 50%, 60%, 70%, 80%, and 90%. We evaluated the effectiveness of PriCod separately for each
accuracy level using the APFD metric. Subsequently, we presented and compared PriCod’s effectiveness across
different accuracy levels through tabular representation.

Table 3. Effectiveness comparison among PriCod, DeepGini, VanillaSM, PCS, Entropy, Margin, LC, ATS and random
selection in terms of the APFD values on natural test inputs

Approach
Data Model Random DeepGini VanillaSM PCS Entropy Margin LC  ATS PriCod
AlexNet-coreml 0.501 0.668 0.666 0.658 0.669 0.658 0.666 0.599 0.721
CIFAR10 AlexNet-tflite 0.502 0.670 0.668 0.660 0.671 0.660 0.668 0.601 0.720
VGG16-coreml 0.497 0.748 0.747 0.744 0.747 0.744 0.747 0.708 0.781
VGG16-tilite 0.501 0.750 0.749 0.747 0.748 0.747  0.749 0.707 0.781
DenseNet201-coreml 0.502 0.737 0.737 0.734 0.735 0.734  0.737 0.712 0.788
CIFAR100 DenseNet201-tflite 0.501 0.753 0.755 0.753 0.747 0.753 0.755 0.703 0.796
ResNet152-coreml 0.498 0.710 0.711 0.707 0.703 0.707 0.711 0.688 0.765
ResNet152-tflite 0.496 0.749 0.751 0.746 0.741 0.746 0.751 0.691 0.786
LeNet1-coreml 0.502 0.743 0.744 0.742 0.737 0.742  0.744 0.616 0.815
Fashion LeNet1-tflite 0.504 0.743 0.744 0.741 0.737 0.741 0.744 0.615 0.815
LeNet5-coreml 0.508 0.763 0.763 0.757 0.760 0.757  0.763 0.623 0.826
LeNet5-tflite 0.496 0.763 0.763 0.757 0.760 0.757 0.763 0.626 0.824
NIN-coreml 0.501 0.740 0.743 0.743 0.736 0.743 0.743 0.711 0.795
Plant NIN-tflite 0.501 0.742 0.744 0.744 0.737 0.744 0.744 0.714 0.794
VGG19-coreml 0.497 0.687 0.685 0.683 0.687 0.683  0.685 0.643 0.779
VGG19-tflite 0.502 0.688 0.687 0.684 0.689 0.684  0.687 0.645 0.781
GRU-coreml 0.491 0.713 0.715 0.713 0.707 0.713 0.715 0.684 0.756
News GRU-tflite 0.505 0.713 0.715 0.712 0.707 0.712 0.715 0.685 0.757
LSTM-coreml 0.503 0.729 0.731 0.732 0.723 0.732 0.731 0.691 0.771
LSTM-tflite 0.511 0.729 0.732 0.733 0.723 0.733  0.732  0.692 0.770

Table 4. Average improvement of PriCod over the compared approaches in terms of the APFD values on natural test inputs

Approach # Best cases Average APFD Improvement(%)

Random 0 0.501 55.89
DeepGini 0 0.726 7.58
VanillaSM 0 0.727 7.43
PCS 0 0.724 7.87
Entropy 0 0.723 8.02
Margin 0 0.724 7.87
LC 0 0.727 7.43
ATS 0 0.668 16.92
PriCod 20 0.781 -

Results: The experimental results for RQ-1.1 are depicted in Table 3, Table 4, Table 5, Table 6, and Table 7. Among
these, the first two tables compare PriCod and other test prioritization methods based on the APFD metric using
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Table 5. Average comparison results among PriCod and the compared approaches in terms of PFD on natural test inputs
Data Approach ‘ PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70

Random 0.105 0.201 0.302 0.402 0.498 0.599 0.699
DeepGini 0.230 0.418 0.577 0.713 0.819 0.896 0.945
VanillaSM 0.230 0.414 0.575 0.710 0.818 0.895 0.945

PCS 0.213 0.403 0.568 0.705 0.814 0.893 0.943
CIFAR10  Entropy 0.226 0.415 0.575 0.714 0.821 0.898 0.947
Margin 0.213 0.403 0.568 0.705 0.814 0.893 0.943
LC 0.230 0.414 0.575 0.710 0.818 0.895 0.945
ATS 0.206 0.367 0.503 0.612 0.711 0.807 0.901
PriCod 0.273 0.489 0.661 0.786 0.875 0.935 0.971
Random 0.102 0.199 0.299 0.402 0.501 0.601 0.699

DeepGini 0.249 0.459 0.632 0.769 0.869 0.935 0.972
VanillaSM 0.253 0.462 0.635 0.771 0.870 0.935 0.972

PCS 0.241 0.452 0.630 0.769 0.869 0.934 0.972
CIFAR100 Entropy 0.245 0.449 0.619 0.756 0.859 0.929 0.971
Margin 0.241 0.452 0.630 0.769 0.869 0.934 0.972
LC 0.253 0.462 0.635 0.771 0.870 0.935 0.972
ATS 0.221 0.416 0.581 0.702 0.784 0.854 0.913
PriCod 0.283 0.521 0.711 0.847 0.931 0.973 0.991
Random 0.102 0.197 0.299 0.397 0.501 0.599 0.699

DeepGini 0.258 0.479 0.665 0.805 0.893 0.944 0.974
VanillaSM 0.259 0.483 0.666 0.804 0.893 0.944 0.973

PCS 0.248 0.468 0.659 0.801 0.891 0.942 0.974
Fashion Entropy 0.253 0.472 0.654 0.791 0.890 0.942 0.974
Margin 0.248 0.468 0.659 0.801 0.891 0.942 0.974
LC 0.259 0.483 0.666 0.804 0.893 0.944 0.973
ATS 0.219 0.344 0.425 0.521 0.612 0.713 0.864
PriCod 0.356 0.626 0.812 0.919 0.968 0.988 0.996
Random 0.101 0.199 0.298 0.399 0.502 0.603 0.703

DeepGini 0.219 0.412 0.575 0.718 0.834 0.911 0.963
VanillaSM 0.221 0.409 0.578 0.721 0.834 0.912 0.963

PCS 0.214 0.406 0.577 0.722 0.834 0.913 0.964
Plant Entropy 0.217 0.410 0.576 0.713 0.828 0.909 0.961
Margin 0.214 0.406 0.577 0.722 0.834 0.913 0.964
LC 0.221 0.409 0.578 0.721 0.834 0.912 0.963
ATS 0.201 0.362 0.523 0.657 0.763 0.851 0.912
PriCod 0.281 0.531 0.735 0.876 0.949 0.983 0.994
Random 0.095 0.194 0.291 0.393 0.493 0.595 0.695

DeepGini 0.239 0.446 0.618 0.740 0.833 0.898 0.946
VanillaSM 0.249 0.451 0.623 0.739 0.833 0.897 0.946

PCS 0.243 0.453 0.623 0.738 0.834 0.897 0.945
News Entropy 0.233 0.429 0.598 0.732 0.830 0.895 0.947
Margin 0.243 0.453 0.623 0.738 0.834 0.897 0.945
LC 0.249 0.451 0.623 0.739 0.833 0.897 0.946
ATS 0.212 0.415 0.531 0.672 0.725 0.801 0.887
PriCod 0.281 0.501 0.666 0.791 0.864 0.926 0.965

natural test inputs. Table 5 presents a comparison using the PFD metric. Table 6 presents detailed results from
the statistical analysis in terms of PFD. Table 7 illustrates the comparison in terms of efficiency.
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Table 6. Statistical analysis on natural test inputs (in terms of p-value on PFD)

Approach
Random DeepGini  VanillaSM PCS Entropy Margin LC ATS

Pricod 3.88x 107" 3.22x107° 1.21x1077 6.69x107° 512x107° 6.69x 107 1.21x1077 253x107°

Table 7. Time cost of PriCod and the compared test prioritization approaches

Time cost Approach
PriCod Random DeepGini VanillaSM PCS Entropy Margin LC ATS
Feature generation 9 min - - - - - - - -
Ranking model training 18s - - - - - - - -
Prediction <1ls <1ls <1s <1ls <1s <1ls <1s <1s >10 min

PriCod consistently outperforms all the compared approaches (i.e., DeepGini, Vanilla SM, PCS,
Entropy, and Random) in terms of effectiveness. Table 3 showcases the effectiveness comparison of PriCod
and all comparative methods across different subjects, measured using the APFD metric. Notably, we highlighted
the approach with the highest effectiveness in gray for each case. From Table 3, we see that PriCod performs
better than all the comparative methods across all subjects. The range of PriCod’s APFD values spans from 0.720
to 0.826, while the APFD values for the comparative methods fall within the range of 0.491 to 0.763. Table 4 delves
deeper into the effectiveness comparison between PriCod and other test prioritization methods. This comparison
is approached from three perspectives: the number of cases in which each approach performs the best, the average
APFD of each method, and the average improvement in APFD of PriCod over the compared test prioritization
methods. Notably, the average APFD value achieved by PriCod is 0:781, with an average improvement ranging
from 7.43% to 55.89% over the compared test prioritization approaches. Table 5 displays the comparative results
between PriCod and existing test prioritization methods utilizing the metric PFD. We see that PriCod showcases
a higher level of effectiveness across different prioritized test ratios, surpassing all the compared techniques. The
aforementioned observations strongly demonstrate that PriCod outperforms all the compared approaches in
terms of both APFD and PFD.

As mentioned in the experimental design, we conducted a statistical analysis to evaluate the stability of our
findings. This involved repeating all experiments ten times. All results presented are the average values obtained
from these ten repetitions. Furthermore, we identified that the p-value is less than 107%, underscoring the
consistent superiority of PriCod over the compared methods in test prioritization.

Moreover, Table 6 presents detailed results from the statistical analysis in terms of PFD. We see that all the
p-values between PriCod and the compared approaches consistently fall below 107, indicating that PriCod
statistically outperforms all the compared methods in terms of PFD. For example, the p-value for the difference
in experimental results between PriCod and DeepGini is 3.22 x 107%. The p-value between PriCod and PCS is
6.69 X 107%.

The efficiency of PriCod falls within an acceptable range. Table 7 presents a comparison of the efficiency
between PriCod and the compared methods. We observe that PriCod’s total execution time is less than 9 min
20s, which can be divided into three main components: Feature generation, training, and prediction. Among
these, feature generation takes 9 minutes, training requires 18 seconds, and prediction is completed in less than 1
second. The final prediction time for the compared methods is less than 1 second. While PriCod is not as efficient
as the confidence-based test prioritization approaches, its efficiency falls within an acceptable range.

Answer to RQ1.1: PriCod consistently outperforms all the compared approaches (i.e., DeepGini, Vanilla SM,
PCS, Entropy, and Random), with an average improvement of 8.28% to 56.69% in terms of APFD. Moreover, the
efficiency of PriCod falls within an acceptable range.
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The experimental results for RQ-1.2 are displayed in Table 8. In each case, we highlighted the approach with
the highest effectiveness in gray. In Table 8, we see that, across compressed DNN models at different accuracy
levels, PriCod consistently exhibits the highest effectiveness, as measured by APFD. Specifically, PriCod achieves
an average APFD of 0.793 across all accuracy levels, while the average APFD for the comparison methods ranges
from 0.498 to 0.732. These experimental findings indicate that, across models with different accuracy levels,
PriCod’s effectiveness surpasses all compared testing prioritization methods.

The methods used for comparison, including DeepGini, VanillaSM, PCS, Entropy, Margin, LC, and ATS, are
influenced by the accuracy of the compressed models. For instance, DeepGini exhibits an APFD of 0.862 in
compressed models with 90% accuracy, while it decreases to 0.604 in compressed models with 50% accuracy.
Similarly, PCS has an APFD of 0.861 in compressed models with 90% accuracy, and it decreases to 0.595 in
compressed models with 50% accuracy. In contrast, PriCod’s performance is relatively less affected by the
accuracy of the compressed models compared to these methods. For instance, in compressed models with 90%
accuracy, PriCod has an APFD of 0.864. In compressed models with 50% accuracy, its APFD is 0.713.

Answer to RQ1.2: Across compressed DNN models with varying accuracy levels, PriCod consistently performs
better than all the compared test prioritization methods.

Table 8. Average Effectiveness comparison among PriCod, DeepGini, VanillaSM, PCS, Entropy, Margin, LC, ATS, and
random selection in terms of the APFD values on different accuracy compressed models

Accurac
Approach 50%  60%  70% Y 2 X Average APFD
Random 0.501 0.499 0.497 0.501 0.493 0.498
DeepGini  0.604 0.658 0.739 0.784  0.862 0.729
VanillaSM  0.604 . 0.664 0.742 0.786 0.863 0.732
PCS 0.595 0.656 0.736.0.782 0.861 0.726
Entropy 0.603 ' 0.648 0.732 0.780 0.859 0.724
Margin 0.595 0.656 0.736 0.782 0.861 0.726
LC 0.604 0.664 0.742 0.786 0.863 0.732
ATS 0.586 0.623 0.661 0.735 0.806 0.682
PriCod 0.713 0.751 0.801 0.839 0.864 0.793

5.2 RQ2: Effectiveness on Noisy Test Inputs

Objectives: When deployed on mobile devices, compressed DNN models can encounter noisy data due to various
factors. These factors encompass user behaviors, such as capturing photos from various angles. All these elements
have the potential to introduce noise into the images. As a result, it becomes crucial to evaluate the effectiveness
of PriCod using noisy datasets. To accomplish this, we utilize 13 noise generation techniques [69, 80, 85, 89] to
construct datasets with inherent noise for the purpose of assessment.

Experimental design: We introduce noise to the original datasets using 13 noise generation techniques collected
from existing literature. Specifically, given an original test set, we extract 30% of the tests and transform them
into noisy data using a noise technique, while the remaining 70% are left unchanged. The comparative methods
we employed in this research question, along with the evaluation metrics, remained consistent with RQ1. The
comparative methods were DeepGini, Vanilla SM, PCS, entropy, and random selection. Moreover, we utilized the
APFD and PFD metrics (cf. Section 4.6) to evaluate the effectiveness of PriCod.
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Table 9. Average Effectiveness comparison among PriCod, DeepGini, VanillaSM, PCS, Entropy, Margin, LC, ATS, and
random selection in terms of the APFD values on noisy test inputs

Noisy Techniques Approach
Random DeepGini VanillaSM PCS Entropy Margin LC  ATS PriCod
CSR 0.501 0.724 0.724 0.720  0.721 0.720  0.724 0.645  0.775
FSN 0.499 0.729 0.729 0.724  0.726 0.724  0.729 0.650 = 0.779
HS 0.499 0.708 0.708 0.703  0.706 0.703  0.708 0.641 = 0.767
HF 0.499 0.693 0.692 0.687 0.692 0.687 0.692 0.637  0.762
VF 0.500 0.675 0.673 0.667 0.675 0.667  0.673 0.609  0.737
RO 0.499 0.689 0.688 0.681 0.690 0.681  0.688 0.626 = 0.753
SR 0.499 0.729 0.729 0.724  0.726 0.724 0729 0.649 = 0.779
WS 0.497 0.711 0.710 0.704  0.710 0.704  0.710 0.634  0.771
ZCA 0.500 0.729 0.729 0.724  0.726 0.724 0729 0.651 = 0.778
Z00 0.501 0.684 0.681 0.674 0.686 0.674 0.681 0.608  0.748
CON 0.500 0.704 0.703 0.698 0.703 0.698 0703 0.672 = 0.746
GAS 0.499 0.699 0.696 0.689 0.700 0.689  0.696 0.614 0.759
SP 0.500 0.711 0.711 0.706  0.709 0.706  0.711 /0.638 | 0.771

Table 10. Average improvement of PriCod over the compared approaches in terms of the APFD values on noisy test inputs

Approach # Best cases Average APFD Improvement(%)

Random 0 0.499 52.91
DeepGini 0 0.707 7.92

VanillaSM 0 0.706 8.07

PCS 0 0.701 8.84

Entropy 0 0.705 8.23

Margin 0 0.701 8.84

LC 0 0.706 8.07

ATS 0 0.636 19.97
PriCod 126 0.763 -

Results: The experimental results for RQ2 are presented in Table 9, Table 10, Table 11, and Table 12. When
applied to noisy test inputs, PriCod consistently exhibits superior performance compared to all the test prioriti-
zation approaches under different noise generation techniques. Specifically, Table 9 and Table 10 illustrate the
effectiveness of PriCod and the compared test prioritization methods based on the APFD metric. We see that
PriCod’s APFD values range between 0.737 and 0.779, while the compared test prioritization methods range from
0.497 and 0.729. Furthermore, Table 10 offers a more comprehensive analysis, showcasing the best cases achieved
by each approach, the average APFD value of each method, and PriCod’s effectiveness improvement relative to
each comparative method. Notably, PriCod demonstrates the highest effectiveness across all cases. The average
APFD value achieved by PriCod is 0.763, while that of the compared approaches falls between 0.499 and 0.707.
The improvement achieved by PriCod over the comparative methods varies from 7.92% to 52.91%.

Table 11 and Table 12 present a comprehensive comparative analysis of PriCod and the compared approaches
regarding the PFD metric. In Table 11, we exhibit experimental results under seven noises, while the results for
other noise scenarios can be found on our GitHub?. In Table 11, we see that, across different noisy techniques,
PriCod consistently outperforms the compared approaches in terms of PFD. Moreover, Table 12 exhibits that
PriCod performs the best across varying proportions of prioritized tests. Notably, when prioritizing 50% of the
tests, PriCod can identify 90.3% of misclassified tests, while the competing methods can only identify 50.1%
to 81.9% misclassified tests. These experimental results demonstrate that PriCod performs better than all the
compared test prioritization methods when applied to noisy test inputs.

Zhttps://github.com/yinghuali/PriCod/tree/main/tables
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Table 11. Effectiveness comparison results among PriCod and the compared approaches in terms of PFD on noisy test
inputs

Noisy Techniques Approach ‘ PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70

Random 0.100 0.199 0.301 0.403 0.502 0.601 0.702
DeepGini 0.236 0.436 0.604 0.743 0.846 0.915 0.958
Entropy 0.232 0.428 0.599 0.736 0.843 0.914 0.959
PCS 0.226 0.426 0.597 0.737 0.843 0.913 0.957
CSR VanillaSM 0.238 0.437 0.604 0.742 0.845 0.915 0.958
Margin 0.226 0.426 0.597 0.737 0.843 0.913 0.957
LC 0.238 0.437 0.604 0.742 0.845 0.915 0.958
ATS 0.207 0.352 0.458 0.559 0.654 0.755 0.845
PriCod 0.299 0.539 0.721 0.845 0.918 0.961 0.983
Random 0.101 0.200 0.299 0.400 0.501 0.603 0.702
DeepGini 0.242 0.445 0.616 0.754 0.853 0.918 0.960
Entropy 0.238 0.439 0.609 0.748 0.851 0.917 0.960
PCS 0.229 0.433 0.609 0.748 0.850 0.917 0.959
FSN VanillaSM 0.243 0.445 0.616 0.753 0.852 0.918 0.960
Margin 0.229 0.433 0.609 0.748 0.850 0.917 0.959
LC 0.243 0.445 0.616 0.753 0.852 0.918 0.960
ATS 0.212 0.355 0.464 0.566 0.661 0.759 0.850
PriCod 0.306 0.547 0.730 0.850 0.923 0.963 0.985
Random 0.099 0.199 0.300 0.399 0.498 0.601 0.701
DeepGini 0.220 0.407 0.571 0.711 0.823 0.902 0.953
Entropy 0.217 0.401 0.564 0.706 0.818 0.901 0.952
PCS 0.205 0.394 0.562 0.704 0.817 0.899 0.951
HS VanillaSM 0.218 0.407 0.571 0.709 0.822 0.901 0.953
Margin 0.205 0.394 0.562 0.704 0.817 0.899 0.951
LC 0.218 0.407 0.571 0.709 0.822 0.901 0.953
ATS 0.196 0.347 0.458 0.556 0.647 0.744 0.837
PriCod 0.278 0.503 0.687 0.818 0.904 0.953 0.980
Random 0.099 0.200 0.300 0.401 0.499 0.599 0.699
DeepGini 0.218 0.403 0.562 0.697 0.799 0.870 0.921
Entropy 0.216 0.399 0.559 0.694 0.799 0.871 0.923
PCS 0.204 0.391 0.555 0.689 0.793 0.867 0.918
HF VanillaSM 0.217 0.402 0.562 0.695 0.798 0.869 0.921
Margin 0.204 0.391 0.555 0.689 0.793 0.867 0.918
LC 0.217 0.402 0.562 0.695 0.798 0.869 0.921
ATS 0.196 0.344 0.459 0.560 0.652 0.745 0.830
PriCod 0.287 0.517 0.698 0.829 0.910 0.957 0.982
Random 0.100 0.200 0.299 0.399 0.498 0.597 0.697
DeepGini 0.204 0.382 0.541 0.679 0.792 0.876 0.934
Entropy 0.202 0.382 0.543 0.681 0.793 0.877 0.936
PCS 0.189 0.365 0.525 0.666 0.784 0.872 0.932
RO VanillaSM 0.202 0.378 0.536 0.675 0.790 0.875 0.934
Margin 0.189 0.365 0.525 0.666 0.784 0.872 0.932
LC 0.202 0.378 0.536 0.675 0.790 0.875 0.934
ATS 0.180 0.326 0.440 0.534 0.626 0.726 0.826
PriCod 0.258 0.474 0.655 0.794 0.888 0.946 0.977
Random 0.099 0.201 0.301 0.400 0.501 0.600 0.700
DeepGini 0.241 0.445 0.615 0.755 0.853 0.918 0.960
Entropy 0.237 0.439 0.609 0.747 0.851 0.917 0.960
PCS 0.228 0.433 0.608 0.748 0.849 0.917 0.958
SR VanillaSM 0.242 0.445 0.615 0.753 0.852 0.918 0.960
Margin 0.228 0.433 0.608 0.748 0.849 0.917 0.958
LC 0.242 0.445 0.615 0.753 0.852 0.918 0.960
ATS 0.211 0.355 0.464 0.565 0.660 0.758 0.849
PriCod 0.305 0.547 0.730 0.850 0.922 0.963 0.985
Random 0.099 0.200 0.300 0.401 0.500 0.601 0.701
DeepGini 0.188 0.358 0.512 0.652 0.771 0.863 0.927
Entropy 0.186 0.358 0.513 0.654 0.772 0.865 0.929
PCSs 0.175 0.339 0.496 0.639 0.761 0.857 0.924
VF VanillaSM 0.187 0.354 0.508 0.648 0.769 0.862 0.927
Margin 0.175 0.339 0.496 0.639 0.761 0.857 0.924
LC 0.187 0.354 0.508 0.648 0.769 0.862 0.927
ATS 0.167 0.306 0.416 0.510 0.604 0.705 0.807
PriCod 0.233 0.442 0.619 0.764 0.868 0.935 0.972
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Table 12. Average effectiveness comparison results among PriCod and the compared approaches in terms of PFD on noisy
data

Approach ‘ PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70

Random 0.101 0.199 0.301 0.398 0.501 0.602 0.701
DeepGini 0.220 0.410 0.573 0.711 0.819 0.895 0.946
VanillaSM 0.220 0.408 0.571 0.709 0.818 0.895 0.946
Entropy 0.217 0.406 0.570 0.709 0.818 0.896 0.947
PCS 0.207 0.395 0.562 0.702 0.812 0.892 0.944
Margin 0.207 0.395 0.562 0.702 0.812 0.892 0.944
LC 0.220 0.408 0.571 0.709 0.818 0.895 0.946
ATS 0.193 0.338 0.449 0.550 0.644 0.743 0.837
PriCod 0.277 0.506 0.687 0.818 0.903 0.953 0.981

Answer to RQ2: When applied to noisy test inputs, PriCod continues to outperform all the compared approaches
in terms of both APFD (Average Percentage of Fault Detection) and PFD (Percentage of Fault Detection). The
improvement achieved by PriCod over the comparative methods varies from 8.46% to 53:80% in terms of APFD.

5.3 RQa3: Effectiveness on Adversarial Test Inputs

Objectives: Besides evaluating the effectiveness of PriCod on natural ‘and noisy test inputs, following the
evaluation methodology of previous test prioritization research [97], we also assess its effectiveness on adversarial
test inputs.

Experimental design: To generate adversarial test samples, we utilized four distinct adversarial attack techniques:
the Fast Gradient Method (FGM) [32], Adversarial Patch (Patch) [5], Basic Iterative Method (BIM) [50], and
Projected Gradient Descent (PGD) [63]. This yielded a set of 32 subjects for evaluation. Consistent with our prior
research questions, we conducted a comparative analysis between PriCod and four alternative test prioritization
approaches, along with a baseline method (random selection). The effectiveness of these methods was measured
using the metrics APFD and PFD.

Table 13. Average Effectiveness comparison among PriCod, DeepGini, VanillaSM, PCS, Entropy, Margin, LC, ATS and
random selection in terms of the APFD values on adversarial test inputs

. . Approach
Adversarial Attack Techniques | o 4.\ DeepGini VanillaSM  PCS  Entropy Margin  LC  ATS PriCod
BIM 0.499 0.727 0727 0722 0725 0722 0727 0.654 | 0.773
FGM 0:501 0.729 0731 0724 0727 0724 0731 0658 0776
Patch 0.499 0.661 0.660 0.656 0.659 0.656 0.660 0.617 0.721
PGD 0.501 0.725 0.725 0.721 0.722 0.721 0.725 0.652 0.771

Table 14. Average improvement of PriCod over the compared approaches in terms of the APFD values on adversarial test
inputs

Approach ‘ # Best cases Average APFD Improvement(%)

Random 0 0.501 51.59
DeepGini 0 0.710 7.18
VanillaSM 0 0.711 7.03
PCS 0 0.705 7.94
Entropy 0 0.708 7.49
Margin 0 0.705 7.94
LC 0 0.711 7.03
ATS 0 0.645 17.98
PriCod 36 0.761 -
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Table 15. Average effectiveness comparison results among PriCod and the compared approaches on adversarial test inputs
in terms of PFD

Approach ‘ PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70

Random 0.099 0.199 0.298 0.399 0.501 0.599 0.701
DeepGini 0.224 0.417 0.582 0.719 0.822 0.895 0.944
Entropy 0.220 0.412 0.576 0.713 0.819 0.894 0.944
PCS 0.213 0.406 0.575 0.713 0.818 0.893 0.943
VanillaSM 0.225 0.416 0.582 0.718 0.821 0.894 0.944
Margin 0.213 0.406 0.575 0.713 0.818 0.893 0.943
LC 0.225 0.416 0.582 0.718 0.821 0.894 0.944
ATS 0.201 0.346 0.459 0.561 0.655 0.754 0.846
PriCod 0.282 0.511 0.690 0.816 0.896 0.946 0.975

Results: The experimental results for RQ3 are presented in Table 13, Table 14, and Table 15. Among these,
Table 13 and Table 14 illustrate the comparative results between PriCod and the compared test prioritization
approaches based on the APFD metric on the adversarial test inputs. Table 15 showcases the comparative results
based on the PFD metric. From Table 13, we see that across different attack techniques, PriCod consistently
exhibits the highest effectiveness, with the range of its average APFD scores lying between 0.721 and 0.776. In
contrast, the average scores of the compared methods range from 0.499 and 0.731. Within Table 14, we see that
PriCod outperforms all other test prioritization approaches across all 32 cases. PriCod’s average APFD score
across all subjects is 0.761, while that of the compared methods ranges from 0.501 and 0.711. Furthermore, PriCod
achieves an improvement of 7.03% to 51.59% over all the compared methods.

Table 15 illustrates the comparison of effectiveness between PriCod and other test prioritization methods
based on the PFD metric. Notably, PriCod consistently demonstrates superior effectiveness across varying test
prioritization ratios. Notably, when 50% of the tests are prioritized, PriCod can identify 89.6% of misclassified
tests. In contrast, the compared methods only managed to identify 50.1% to 82.2% of misclassified tests under the
same conditions. Additionally, with a prioritization of 40% of the tests, PriCod can identify 81.6% of misclassified
tests, whereas the compared methods only achieve a range of 39.9% to 71.9% for the same metric. These results
collectively demonstrate that in terms of the APFD and PFD metrics, PriCod’s effectiveness surpasses that of all
compared test prioritization methods.

Answer to RQ3: When applied to adversarial test inputs, PriCod continues to outperform all the compared test
prioritization approaches in terms of both APFD and PFD. PriCod achieves an improvement of 8.24%~55.31% over
all the compared approaches.

5.4 RQ4: Impact of fusion strategies

Objectives: We conducted an in-depth study of the impact of different feature fusion methods on the effectiveness
of PriCod.

Experimental design: To investigate the impact of different feature fusion methods on the effectiveness of
PriCod, we designed three variants of PriCod. Each variant employs a distinct feature fusion approach to combine
the embedding features and deviation features. These three variants are denoted as PriCod®, PriCod™, and
PriCod®, which respectively utilize addition, multiplication, and cross-multiplication techniques for feature fusion.
Apart from the method of feature fusion, the rest of these variants remain consistent with the original PriCod.
Subsequently, we evaluated their effectiveness along with the original PriCod on natural datasets. This comparison
enabled us to assess the influence of various fusion methods on the effectiveness of PriCod.

Below, we explain why the studied feature fusion strategies are meaningful.
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e Addition-based feature fusion strategy The addition-based fusion strategy is meaningful due to several
reasons: 1) The addition-based fusion strategy preserves the original information of each feature; 2) the addition-
based fusion strategy is simple and efficient to implement; 3) the addition-based fusion strategy is suitable
for cases where two sets of features are relatively independent, with each contributing independently to the
prediction results.

e Multiplication-based feature fusion strategy The multiplication-based fusion strategy is meaningful for
various reasons: 1) The utilization of the multiplication operation introduces non-linear transformations,
enhancing the capability of the ranking model to grasp more feature relationships. 2) Incorporating the
multiplication operation aids in mitigating the influence of irrelevant features. When the value of a feature is
small, the multiplication diminishes its overall contribution, thereby reducing its impact.

e Cross-multiplication-based feature fusion strategy The cross-multiplication-based fusion strategy is
meaningful for various reasons: 1) Cross-multiplication-based operations can introduce stronger information
interaction between features. This can help the model better understand the relationships between features,
thereby enhancing its representational capacity. 2) By considering all possible pairwise interactions, the model
operates in a higher-dimensional feature space, capable of revealing more hidden patterns and relationships.

Table 16. Effectiveness comparison among PriCod and PriCod Variants in terms of the APED values on natural test inputs

Approach
Data Model PriCod® PriCod™ PriCod’ PriCod
AlexNet-coreml 0.572 0.689 0.717 0.721
AlexNet-tflite 0.573 0.686 0.717 0.720
CIFAR10 VGG16-coreml 0.611 0.756 0.780 0.781
VGG16-tflite 0.610 0.756 0.778 0.781
DenseNet201-coreml 0.654 0.762 0.785 0.788
DenseNet201-tflite 0.651 0.752 0.782 0.796
CIFAR100 ResNet152-coreml 0.658 0.749 0.764 0.765
ResNet152-tflite 0.662 0.751 0.776 0.786
LeNet1-coreml 0.755 0.783 0.808 0.815
Fashion LeNet1-tflite 0.754 0.771 0.807 0.815
LeNet5-coreml 0.760 0.794 0.820 0.826
LeNet5-tflite 0.759 0.783 0.817 0.824
NIN-coreml 0.671 0.760 0.793 0.795
Plant NIN-tflite 0.670 0.757 0.792 0.794
VGG19-coreml 0.652 0.752 0.776 0.779
VGG19-tflite 0.652 0.753 0.780 0.781
GRU-coreml 0.730 0.719 0.736 0.756
News GRU-tflite 0.726 0.717 0.737 0.757
LSTM-coreml 0.744 0.734 0.754 0.771
LSTM-tflite 0.744 0.731 0.754 0.770
Average ‘ 0.681 0.748 0.774 0.781

Results: The experimental results for RQ4 are presented in Table 16. We have shaded the approach with the
highest effectiveness in gray for each case. From the table, we see that the effectiveness of PriCod remains
consistently highest across different subjects. Its APFD values range from 0.720 to 0.826. The variant PriCod®
exhibits an APFD range of 0.572 to 0.760. The variant PriCod™ demonstrates an APFD range of 0.686 to 0.794.
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The variant PriCod® shows an APFD range of 0.717 to 0.820. We see that the effectiveness of the PriCod® variant
is second only to the original PriCod. In our experiments, PriCod employs a concatenation approach for feature
fusion. This indicates that, compared to addition, multiplication, and cross-multiplication, the concatenation
method is more suitable for fusing the deviation features and embedding features of compressed DNN models for
test prioritization.

Answer to RQ4: The effectiveness of PriCod surpasses all variants, indicating that among all feature fusion
methods, concatenation is more effective in combining the deviation features and embedding features of compressed
DNN models for test prioritization.

5.5 RQ5: Feature contribution analysis

Objectives: We delve into understanding the impact of different feature types on the effectiveness of PriCod in
test prioritization. Our exploration centers around two key sub-questions presented below:

e RQ-5.1 To what extent does each type of features contribute to the effectiveness of PriCod?
e RQ-5.2 How are the feature types distributed among the top-N most influential features towards the effective-
ness of PriCod?

Experimental design: We conducted two experiments to address the aforementioned sub-questions.
[Experiments for RQ-5.1] Within the initial PriCod framework, we generated two distinct categories of
features: deviation features and embedding features. In order to-assess the individual impact of each feature
type on the effectiveness of PriCod, we conducted a carefully designed ablation study, following established
methodologies as outlined in previous work [24]. Specifically, we excluded one feature type at a time while
retaining the other. To elaborate, for the assessment of the contribution made by deviation features, we executed
PriCod without incorporating deviation features while keeping the embedding features present. Conversely,
to gauge the contribution of embedding features, we ran PriCod without embedding features but retained the
deviation features. This meticulous ablation study facilitated a quantitative analysis of the influence exerted by
each feature type on the overall effectiveness of PriCod.

[Experiments for RQ-5.2] To investigate the distribution of different feature types within the top N contributing
features, we leveraged the cover metric of the XGBoost algorithm [12]. The specific experimental procedures are
detailed below:

O Feature Importance Calculation Initially, we employed the cover metric to calculate the importance scores
of each feature utilized by PriCod in the context of test prioritization.

® Top-N Feature Selection Subsequently, we identified the N most important features based on the computed
scores.

® Categorization Analysis Through an analysis of the categorization of these selected features, we delved into
the extent to which different feature types contribute to the effectiveness of PriCod.

We provide an outline of how XGBoost measures the importance of features as follows. Within the XGBoost
algorithm, the cover metric serves as a fundamental tool for quantifying feature importance. This metric functions
by assessing the average coverage of individual instances across the leaf nodes in decision trees. Essentially, the
cover metric evaluates how frequently a specific feature is employed to partition data across all trees within the
ensemble. The coverage values assigned to each feature across the entirety of trees are then combined, resulting
in a cumulative coverage value. To determine the average coverage of each instance by the leaf nodes, the
cumulative coverage value is normalized relative to the total number of instances. Consequently, the coverage
value attributed to a particular feature plays a decisive role in establishing its significance within the context of the
XGBoost model. Notably, features that exhibit higher coverage values are granted increased importance, shaping
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the XGBoost algorithm’s decision-making process. This systematic approach empowers XGBoost to effectively
assess the impact of individual features, contributing to accurate predictions and well-informed decisions.

Furthermore, we conducted a more detailed comparison to assess the contributions of different deviation
features on the effectiveness of PriCod. Specifically, we performed comparative experiments through the following
process.

©® Under each subject, we calculate the importance value of each type of deviation feature, which reflects its
impact on the effectiveness of PriCod within that specific subject.

® For each type of deviation feature, we calculated the sum of its importance values across all subjects. For
example, in the case of the CLA feature, we summed up all its importance values across all subjects to obtain
the final value.

® We normalized the final importance values of all deviation features to compare their contributions. We
represented the results in the form of a pie chart. In the pie chart, if the proportion of a deviation feature is
higher compared to others, it implies that this feature contributes more to the effectiveness of PriCod.

Table 17. Ablation study on different features of PriCod: Embedding Features(EB), Deviation Features (DF). ‘w/o’ means

‘without’
Datasets
Approach |\ 1oip10 CIFAR100 Fashion Plant News | 2Verage
PriCod w/o EB | 0.745 0.766 0791 0762 0.743 | 0.761
PriCod w/o DF |  0.598 0.615 0778~ 0.648 0.618 | 0.652
PriCod 0.751 0.784 0.8200 0787. 0763 | 0.781

Results: The experimental results for RQ5.1 are presented in Table 17. In this table, ‘w/o’ stands for ‘without’
For instance, ‘PriCod w/o EB’ indicates the execution of PriCod without generating the embedding features. We
highlighted the approach with the highest effectiveness in gray for each case.

Each type of features (i.e., deviation features and embedding features) contribute to the effectiveness
of PriCod. As indicated by the results in Table 17, the unaltered PriCod model achieves the highest average
effectiveness. Notably, the removal of any feature type leads to a reduction in PriCod’s effectiveness, highlighting
that each type of features plays a role in PriCod’s effectiveness. For example, on the CIFAR10 dataset, the original
PriCod attains an average APFD value of 0.751. Removing embedding features leads to a decrease in PriCod’s
average APFD to 0.745, while the absence of deviation features results in a more significant decline to 0.598.

Deviation features make the highest average contributions. Moreover, as indicated in Table 17, deviation
features demonstrate the most substantial average contributions to the effectiveness of PriCod. Across all datasets,
the impact of removing deviation features on PriCod’s effectiveness is the most pronounced. On average, across
all cases, the exclusion of deviation features leads to a decrease in APFD of 0.129, while the removal of embedding
features only results in a decrease of 0.020. To provide specific examples, consider the CIFAR10 dataset: removing
deviation features causes a noteworthy reduction in APFD by 0.153, compared to a minor decrease of 0.006 from
removing embedding features. On the CIFAR100 dataset, the removal of deviation features results in a decrease
in APFD by 0.169, in contrast to a marginal decrease of 0.018 observed when removing embedding features.
Likewise, on the Fashion dataset, the absence of deviation features leads to a drop in APFD by 0.042, whereas
removing embedding features leads to a decrease of 0.029. Similarly, on the Plant dataset, removing deviation
features causes an APFD decrease of 0.139, whereas removing embedding features results in a decrease of 0.025.

Answer to RQ5.1: Each type of features (i.e., deviation features and embedding features) contribute to the
effectiveness of PriCod. Notably, deviation features make the highest average contributions.
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Table 18. Top-10 most contributing features on the effectiveness of PriCod: Embedding Features(EB), Deviation Features

Yinghua Li, Xueqi Dang, Jacques Klein, Yves Le Traon, and Tegawendé F. Bissyandé

(DF)
Data Rank AlexNet-coreml AlexNet-tflite VGG16-coreml VGG16-tflite
Feature Value ‘ Feature Value ‘ Feature Value ‘ Feature  Value
1 DF-0 3022 DF-0 4486 DF-0 2923 DF-4 2876
2 DF-4 2614 DF-9 4135 DF-4 2768 DF-0 1686
3 DF-27 2192 DF-4 2896 DF-20 1885 DF-20 1651
4 DF-13 1655 DF-28 2354 DF-26 1489 DF-26 1294
CIFAR10 5 DF-9 1620 DF-27 2018 DF-5 1459 DF-25 1204
6 DF-28 1522 EB-170 1822 EB-206 1321 DF-24 1194
7 EB-121 1460 DF-20 1621 DF-24 1267 DF-22 1164
8 EB-63 1435 EB-124 1604 EB-175 1252 EB-274 1156
9 EB-205 1398 DF-23 1557 EB-167 1220 EB-208 1132
10 DF-25 1387 EB-307 1490 EB-321 1205 EB-59 1127
Data Rank DenseNet201-coreml DenseNet201-tflite ResNet152-coreml ResNet152-tflite
Feature Value Feature Value Feature Value Feature  Value
1 DF-86 4563 DF-181 3285 DF-202 2975 DF-91 4874
2 DF-199 3141 DF-4 3133 DF-163 2974 DF-126 3802
3 DF-138 3046 DF-184 2825 DF-0 2904 EB-227 3313
4 DF-159 3012 DF-162 2748 DF-194 2773 DF-4 3107
CIFAR100 5 DF-91 2985 DF-80 2745 DF-122 2678 DF-72 3065
6 DF-162 2972 DF-141 2734 EB-235 2551 EB-235 3047
7 DF-4 2849 EB-251 2651 DF-179 2411 EB-233 2905
8 EB-213 2812 EB-221 2634 DF-4 2351 EB-212 2839
9 EB-232 2760 DF-125 2597 EB-257 2319 DF-61 2742
10 DF-0 2749 EB-256 2577 EB-226 2150 DF-5 2633
Data Rank LeNet1-coreml LeNet1-tflite LeNet5-coreml LeNet5-tflite
Feature Value ‘ Feature Value ‘ Feature Value ‘ Feature  Value
1 DF-4 4083 DF-1 4760 DF-4 3685 DF-4 3526
2 DF-0 3634 DF-4 4110 DF-8 2412 DF-28 1449
3 DF-25 1943 DF-3 2202 EB-267 1843 EB-275 1417
4 DF-28 1800 EB-32 1593 EB-258 1705 EB-138 1350
Fashion 5 EB-68 1785 EB-204 1585 DE-28 1650 EB-288 1326
6 DF-5 1779 EB-283 1584 DF-5 1529 EB-55 1324
7 EB-147 1593 DF-25 1518 EB-240 1326 DF-5 1308
8 EB-297 1537 EB-262 1432 EB-174 1322 DF-23 1265
9 EB-206 1531 EB-132 1427 EB-205 1304 EB-319 1262
10 EB-132 1515 DF-22 1424 EB-133 1277 EB-311 1249
Data Rank NIN-coreml NIN-tflite VGG19-coreml VGG19-tflite
Feature Value ‘ Feature Value ‘ Feature Value ‘ Feature  Value
1 DF-0 3335 DF-0 3826 DF-27 1736 DF-4 2834
2 DF-4 3114 DF-4 2688 DF-4 1729 DF-52 2361
3 DF-49 1994 DF-53 2632 EB-92 1676 EB-225 1974
4 DF-76 1947 EB-97 2273 DF-52 1613 EB-256 1867
Plant 5 DF-61 1804 DF-52 2142 DF-50 1582 DF-72 1733
6 DF-5 1754 EB-88 2112 DF-74 1488 DF-57 1636
7 EB-87 1748 EB-94 1975 DF-39 1433 DF-9 1587
8 EB-94 1685 DF-49 1888 EB-247 1428 EB-323 1562
9 DF-53 1679 DF-55 1784 EB-89 1350 DF-78 1438
10 EB-148 1670 DF-50 1766 DF-20 1344 EB-264 1421
GRU-coreml GRU-tflite LSTM-coreml LSTM-tflite
Data Rank
Feature Value Feature Value Feature Value Feature  Value
1 DF-4 713 DF-4 791 DF-4 818 DF-4 673
2 DF-24 377 DF-0 502 DF-11 458 DF-5 491
3 DF-5 339 EB-87 329 DF-5 406 DF-16 349
4 EB-72 315 EB-76 303 DF-16 383 DF-36 346
News 5 DF-37 288 DF-5 298 EB-109 372 EB-83 327
6 DF-46 272 DF-32 290 DF-43 371 EB-92 317
7 DF-47 264 EB-120 282 EB-89 354 DF-12 309
8 EB-60 246 DF-12 277 EB-92 294 EB-99 300
9 DF-21 243 EB-98 266 DF-33 265 DF-11 295
10 EB-148 239 DF-41 263 EB-85 251 DF-45 291
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Fig. 3. Top five contributing features among all deviation features

The results of RQ5.2 are displayed in Table 18, where the scores signify the importance levels of individual
features. For each pairing of model and dataset, we present the leading N features that contribute significantly. The
abbreviations DF and EB denote deviation features and embedding features, respectively. The numerical values
appended to the feature abbreviations indicate the corresponding feature indices. For instance, DF-12 signifies
the 12th deviation feature. From Table 18, we see that both DF and EB features consistently emerge among
the foremost N contributors across diverse subjects. Overall, DF features exhibit a higher overall importance,
constituting more than half of an equal share across each subject. Within the CIFAR10 dataset, in the top 10
features with the highest contributions, the proportion of DF features varies from 60% to 70%. In the context of
the CIFAR100 dataset, DF features account for 60% to 80% within the top 10 contributing features. Within the
News dataset, DF features cover a span of 60% to 70%.

The CDF features have the highest contributions to the effectiveness of PriCod compared to other
deviation features. Figure 3 illustrates the specific contributions of each deviation feature to the effectiveness
of PriCod. In particular, it represents the normalized results of the final importance values for each deviation
feature. The detailed calculation process can be found in the experimental design of RQ 5.2. In the pie chart, if the
proportion of a deviation feature is higher compared to others, it implies that this feature contributes more to the
effectiveness of PriCod. Notably, CDF features have the highest total importance value, accounting for 42.4%.
This suggests that CDF features, namely Coordinate Deviation Features, contribute the most to the effectiveness
of PriCod. The second-highest proportion is attributed to DIF features, accounting for 23.3%.

Answer to RQ5.2: Both deviation features and embedding features consistently demonstrate their presence
among the top-N most influential attributes across a range of subjects. Notably, deviation features exhibit a greater
overall importance. Among all the deviation features, the CDF features have the highest contributions to the
effectiveness of PriCod compared to other deviation features.

5.6 RQ6: Exploring whether uncertainty-based metrics can enhance the effectiveness of PriCod

Objectives: In the original PriCod, we generate embedding features for each test to indirectly reveal its proximity
to the decision boundary. A prior study [99] suggests that uncertainty-based metrics can also reflect this proximity.
Therefore, in this research question, we investigate whether integrating these metrics can enhance PriCod’s
effectiveness.

Experimental design: To assess whether the integration of uncertainty-based metrics can enhance the effective-
ness of PriCod, we incorporate several uncertainty-based metrics into the original PriCod for the purpose of test
prioritization. Specifically, we utilize six widely adopted uncertainty-based metrics [29, 96, 99], namely DeepGini,
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Vanilla SM, PCS, Entropy, Margin, and Least Confidence. The selection of these metrics is based on their wide-
spread use in quantifying uncertainty in the context of DNN testing and their demonstrated effectiveness [39, 99].
The process of constructing the uncertainty feature vector for each test input t € T is outlined as follows:

e Calculation of Confidence Scores: Given a test input ¢, we compute its uncertainty scores using the
aforementioned six uncertainty-based metrics.

¢ Generation of Uncertainty Features: For ¢, its uncertainty feature vector is generated by concatenating the
uncertainty scores obtained from the six metrics. Consequently, for ¢, PriCod generated a final uncertainty
feature vector, denoted as [S1, Sz, S3, S4, S5, S¢], where each element S; represents the uncertainty score calculated
by the i;; uncertainty-based metric.

Finally, for the test ¢, we integrate its uncertainty features obtained above with embedding features and deviation

features (the generation processes for these two types of features can be referred to in Section 3.2) to calculate
the misclassification probability of this test. We represent this new PriCod method as PriCod,,. We compare the
effectiveness of PriCod, and the original PriCod to determine whether integrating the uncertainty-based metrics
can enhance PriCod’s effectiveness.
Results: The experimental results for RQ6 are presented in Table 19. Here, PriCod,, represents the variant of
PriCod where uncertainty-based features are incorporated for test prioritization. Notably, for each case, we
highlighted the approach with the highest effectiveness in gray. In Table 19, we see that the average effectiveness
(measured by APFD) of the original PriCod slightly exceeds that of PriCod,,. Specifically, the average APFD for
PriCod is 0.7810, while for PriCod,,, it is 0.7805, with a difference of only 0.0005. PriCod,, demonstrates better
effectiveness in a higher proportion of cases, accounting for 70% of all cases. However, in each individual case,
the improvement of PriCod, relative to the original PriCodis slight. For instance, in the case of CIFAR10 with
the AlexNet-coreml model, the APFD for PriCod is 0.721, while for PriCod,, it is 0.722. The above experimental
results indicate that uncertainty features do not enhance the performance of PriCod in terms of average results.
In certain specific subjects, the inclusion of uncertainty features can lead to improvements, but the improvements
are minor.

Answer to RQ6: From the perspective of the average values, uncertainty features do not enhance the performance
of PriCod. Although uncertainty features can lead to improvement in some specific subjects, the enhancement is
minor.

6 DISCUSSION
6.1 Limitations of PriCod

While PriCod has demonstrated its potential to improve test prioritization for compressed DNN models, it is
crucial to recognize its limitations:

[Model Compression Tools] PriCod has currently undergone primary testing using two prevalent compression
tools, TFLite and CoreML, which are widely utilized in the field. While our method has demonstrated its efficacy
with models compressed using these tools, our future endeavors will involve assessing PriCod’s performance
across a broader spectrum of compression tools.

[Model Compression Techniques] Our approach primarily focuses on model compression through quantization,
a prevalent method in the field of model compression. However, model compression encompasses a wide range
of techniques beyond quantization. In the future, we intend to evaluate PriCod’s effectiveness across a broader
spectrum of compression methods. This broader assessment will be crucial in ensuring that PriCod remains
versatile and capable of addressing various types of compressed DNN models.
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Table 19. Effectiveness comparison among PriCod and PriCod,, in terms of the APFD values on natural test inputs

‘ Approach
Data Model | PriCod  PriCod,
AlexNet-coreml 0.721 0.722
AlexNet-tflite 0.720 0.721
CIFAR10 VGG16-coreml 0.781 0.783
VGG1e6-tflite 0.781 0.782
DenseNet201-coreml | 0.788 0.790
DenseNet201-tflite 0.796 0.789
CIFAR100 ResNet152-coreml 0.765 0.766
ResNet152-tflite 0.786 0.778
LeNet1-coreml 0.815 0.822
Fashion LeNet1-tflite 0.815 0.821
LeNet5-coreml 0.826 0.832
LeNet5-tflite 0.824 0.829
NIN-coreml 0.795 0.798
Plant NIN-tflite 0.794 0.798
VGG19-coreml 0.779 0.783
VGG19-tflite 0.781 0.782
GRU-coreml 0.756 0.745
News GRU-tflite 0.757 0.744
LSTM-coreml 0.771 0.763
LSTM-tflite 0.770 0.762
Average ‘ 0:7810  0.7805

[Model Domains] PriCod is primarily tailored for test prioritization in image-related domains. While image
analysis is a typical application, the applicability of PriCod in other domains remains an area for exploration. In
the future, we intend to evaluate PriCod’s effectiveness in diverse domains beyond images.

6.2 Threats to Validity

THREATS TO INTERNAL VALIDITY. Internal validity threats primarily arise from the execution of PriCod and its
variations, along with the test prioritization approaches being compared. To address this concern, we implement
PriCod using the widely recognized TensorFlow library and the LightGBM framework. Regarding the implemen-
tation of the compared approaches, we utilize their original codebases as provided in their respective publications,
aiming to minimize potential biases stemming from implementation. Another internal threat emerges from the
inherent randomness associated with model training. To mitigate this concern and ensure the reliability of our
experimental results, we conducted a statistical analysis by replicating the training procedure ten times. We
presented the average experimental outcomes and calculated the statistical significance of the results.

THREATS TO EXTERNAL VALIDITY. The primary external validity threats originate from the datasets and compressed
DNN models employed in our study. To tackle these issues, we encompassed a diverse range of subjects, spanning
natural, noisy, and adversarial data. As for the compressed DNN models, we utilized two widely adopted
frameworks for model compression: TFLite and CoreML. Our objective is to perform a thorough evaluation of
PriCod’s effectiveness across various scenarios and to enhance the applicability of our conclusions.
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7 RELATED WORK
7.1 Test prioritization for Deep Neural Networks

In the literature, a variety of techniques have been proposed to prioritize test inputs for Deep Neural Networks
(DNNSs)[29, 97, 99]. Feng et al. [29] introduced DeepGini [29], which identifies potentially misclassified tests
by evaluating the model’s confidence. This approach is built on the assumption that if a DNN assigns similar
probabilities to each class for a test, it is more likely to be incorrectly predicted. Byun et al. [6] examined several
metrics for prioritizing inputs that reveal software bugs, using white-box measurements of DNN sentiment.
These metrics include softmax confidence (i.e., predicted probability for output categories in DNNs using softmax
output layers), Bayesian uncertainty (i.e., uncertainty in prediction probability distributions for Bayesian Neural
Networks), and input surprise (i.e., the disparity in neuron activation patterns between a test input and training
data). Weiss et al. [99] investigated the effectiveness of different DNN test input prioritization methods, including
notable confidence-based metrics like Vanilla Softmax, Prediction-Confidence Score (PCS), and Entropy. Wang
et al.[97] introduced PRIMA, a technique for prioritizing test inputs for DNNs through-intelligent mutation
analysis. PRIMA enhances DNN test prioritization in two significant ways. Firstly, it can be applied not only to
classification models but also to regression models. Secondly, PRIMA addresses scenarios where test inputs are
generated using adversarial input generation methods[7], which could artificially increase the probability of an
incorrect class assignment. However, PRIMA can not be adapted to compressed DNN models since the model
mutation rules employed by PRIMA cannot be directly applied to compressed DNN models.

Zheng et al. [112] proposed CertPri, a DNN test input prioritization technique that focuses on measuring
movement difficulty in the feature space. This method assesses the cost of moving test inputs closer to or farther
from the class centers, providing a novel perspective on prioritization strategies. Al-Qadasi et al. [2] introduced a
new metric, WFDR, for evaluating the effectiveness of prioritizing Dtestin the context of DNNs. The WFDR metric
considers fault detection ratio and rate, incorporating adaptive weights to account for prioritization difficulty. This
approach offers a comprehensive assessment framework for prioritization algorithms. Wei et al. [98] proposed
EffIMAP, an efficient test case prioritization technique utilizing predictive mutation analysis. Without requiring a
full mutation analysis, EffiMAP predicts the capability of test cases to expose model prediction failures based on
information extracted from the test case execution trace. This pioneering work demonstrates the feasibility of
predictive mutation analysis in ranking test cases for deep neural network testing. Tao et al. [88] introduced TPFL,
a DNN test prioritization technique that employs dynamic spectrum analysis on each neuron. TPFL identifies
suspicious neurons causing incorrect decisions in the DNN and prioritizes test inputs based on their ability to
activate these neurons. This approach leverages key insights into the relationship between neuron activation and
bug-revealing inputs.

Despite all the aforementioned methods being aimed at testing prioritization for DNNs, they primarily focus
on traditional DNNs rather than compressed DNN models. Our proposed method, PriCod, is specifically designed
for compressed DNN models. PriCod leverages the behavior disparities caused by model compression for test
prioritization. These behavior disparities are a unique characteristic of compressed models. PriCod is the first to
introduce this characteristic for test prioritization.

7.2 Test Prioritization for Traditional Software

In the realm of traditional software testing [3], the concept of test prioritization is a pivotal approach aimed
at determining the most efficient sequence for executing test cases, enabling the swift identification of system
defects [9, 23, 74, 83, 94, 106]. Rothermel et al. [83] pioneered introducing and comparing three distinct test
case prioritization methods for regression testing, all rooted in test execution data. Their findings unequivocally
showcased that each of the scrutinized prioritization methods substantially heightened the fault detection rate
within the test suite. In the pursuit of evaluating the efficacy of diverse test case prioritization techniques in bug
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detection, Di Nardo et al. [23] conducted an empirical case study centered around coverage-based prioritization
strategies applied to real-world regression faults. Similarly, Henard et al. [36] embarked on an extensive survey,
undertaking a meticulous comparison of existing test prioritization approaches. Intriguingly, their investigation
revealed marginal disparities between white-box [26, 27, 54, 106] and black-box strategies [35, 37, 52]. Another
noteworthy advancement came from Chen et al. [9], who introduced the LET method, a pioneering approach to
prioritizing test programs in the domain of compiler testing with the primary goal of enhancing efficiency. Chen
et al. demonstrated the method’s efficacy through two interconnected processes. The initial process involves
learning, wherein the system identifies distinctive features of test programs and predicts the probability of a new
test program uncovering bugs. Subsequently, the scheduling process comes into play, prioritizing test programs
based on these predicted probabilities of bug discovery. This innovative dual-process framework proposed by
Chen et al. constitutes a notable contribution to optimizing compiler testing strategies.

7.3 Deep Neural Network Testing

DeepXplore [79] is the first technique targeted at testing DNN models. It proposed neuron coverage, which
measures the activation state of neurons, to guide the generation of test inputs. DeepXplore is based on differential
testing, and it uses multiple models of a task to detect potential defects. To alleviate the need for multiple models
under test, DeepTest [92] leverages metamorphic relations [13] that are expected to hold by a model as its test
oracles. Both DeepXplore and DeepTest perturb their test inputs based on the gradient of deep learning models.

The preceding section has discussed test prioritization, which aims to reduce labeling costs and improve DNN
testing efficiency. In addition to test prioritization, several test selectionapproaches have also been proposed
to lower labeling costs. Test selection focuses on accurately estimating the accuracy of the entire dataset by
labeling only a selected subset of test inputs. This approach effectively decreases the labeling costs associated
with DNN testing. Li et al. [55] introduced CES (Cross Entropy-based Sampling), which performs test selection by
minimizing the cross-entropy between the selected subset and the complete test set, ensuring that the distribution
of the chosen test inputs resembles that of the original test set. Chen et al. [10] proposed PACE to guide DNN test
selection. Initially, PACE clusters all test inputs into groups based on their testing characteristics. Then, PACE
employs the MMD-critic algorithm [45] to select prototypes from each group. For test inputs not falling into any
group, PACE utilizes adaptive random testing to select appropriate tests from them.

Wu et al. [101] introduced Stratified random Sampling with Optimum Allocation (SSOA), a framework that
integrates sampling theory into the task of deep learning test input selection. SSOA leverages stratified random
sampling and optimum allocation to provide an unbiased approach for selecting test inputs. This methodology
contributes to mitigating biases in the test input selection process, enhancing the representativeness of the
chosen inputs. Hao et al. [33] proposed Multiple-Objective Optimization-Based Test Input Selection (MOTS) as
a method for selecting a more effective test subset to retrain DNN models. In contrast to existing approaches,
MOTS considers both the uncertainty of test inputs and the diversity of the test subset. Employing the NSGA-II
multiple-objective optimization algorithm, MOTS ensures that the selected test subset exhibits diverse features,
providing enhanced support for DNN model retraining.

Wu et al. [100] introduced RNNtcs, a method for selecting test cases for Recurrent Neural Networks (RNNs)
that combines clustering and uncertainty. RNNtcs aims to identify test cases that can effectively reveal RNN
bugs by considering both the clustering structure and uncertainty. This approach is designed to reduce the cost
of labeling by focusing on test cases with a higher likelihood of exposing model vulnerabilities. Liu et al. [58]
proposed DeepState, a test suite selection tool tailored to the specific neural network structures of Recurrent
Neural Network (RNN) models. DeepState reduces data labeling and computation costs by selecting data based
on a stateful perspective of RNN. This perspective involves identifying potentially misclassified tests by capturing
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the state changes of neurons in RNN models. DeepState addresses the unique challenges posed by RNN structures
in the context of test input selection.

7.4 Test Generation approaches for Compressed DNN models

In the literature, several test generation approaches have been proposed for compressed DNN models. Odena
and Goodfellow introduced TensorFuzz [73], a pioneering method that utilized coverage-guided fuzzing as a test
generation approach. TensorFuzz aimed to reveal difference-inducing inputs between a well-trained DNN and its
quantized counterpart. By employing a coverage-guided strategy, TensorFuzz efficiently explored the input space,
exposing discrepancies in the behavior of compressed DNN models.

Yahmed et al. [105] proposed DiverGet, a search-based testing framework designed specifically for quantization
assessment in compressed DNN models. DiverGet introduces a structured space of metamorphic relations that
simulate natural distortions on input data. These metamorphic relations are then systematically explored to
optimize the revelation of disagreements among DNNs subjected to different arithmetic precision. By defining
and strategically navigating this metamorphic space, DiverGet provides a comprehensive approach to evaluating
the impact of quantization on DNN models.

Xie et al. [103] proposed DiffChaser, a novel automated black-box disagreement detection technique tailored
for multiple variants of a DNN. The core premise behind DiffChaser is the identification of similarities in decision
boundaries between a DNN and its quantization-aware training (QC) version variants. The rationale is that the
decision boundaries tend to exhibit resemblance, particularly in proximity to the boundary itself. Consequently,
inputs near these decision boundaries are more likely to capture the discrepancies in decision boundaries,
representing the disagreement among the DNN models. DiffChaser leverages prediction uncertainty as a guiding
metric and automatically generates inputs that lie in the vicinity of decision boundaries to unveil the distinctions
between DNN variants.

8 CONCLUSION

To address the challenge of labeling-cost reduction in the context of testing compressed DNN models, we proposed
PriCod, a novel test prioritization approach designed to identify and prioritize potentially misclassified tests.
PriCod is rooted in two fundamental premises: firstly, that significant prediction deviations between compressed
and original DNN models signify a greater likelihood of test input misclassification, and secondly, that test inputs
situated near decision boundaries are more susceptible to misclassification. Building upon these premises, PriCod
generates two distinct feature types for each test input for the purpose of test prioritization: deviation features,
quantifying the prediction deviation caused by model compression, and embedding features, which indirectly
reflect proximity to decision boundaries by leveraging intrinsic information about test inputs. These features are
combined to calculate the misclassification probability of each test input. Subsequently, PriCod ranks all tests
in descending order based on their misclassification probability. We conducted a comprehensive assessment of
PriCod’s performance, using different types of test inputs and various test prioritization techniques. Our findings
consistently showcased PriCod’s superior performance, revealing an average improvement from 7.43% to 55.89%
for natural test inputs, 7.92% to 52.91% for noisy inputs, and 7.03% to 51.59% for adversarial inputs compared to
existing methods.

Availability. All artifacts are available in the following public repository:
https://github.com/yinghuali/PriCod
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