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Notions of Regularity




Weierstrass function

Forallt € R,
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Cantor staircase function

1 1 i 1 1 1 1 1 1 1
0.2 0.4 0.6 0.8 1.0

log 2 . _ log2
{ log 3 ifh = log3?

d(h)

1 ifh = oo,
—oo  otherwise.
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Riemann function

0 ifh=3/2,
—00 otherwise .

{ 4h—2 ifhe[1/2,3/4],
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Holder

[1f=Pll oo (B(xg,ry) SCr
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Holder Weighted Holder

e onon10

o4 06 03 10

[1f=Pll oo (B(xg,ry) SCr [IF=Pll o0 (B(xg,r)) SCA(r)
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Holder

[1f=Pll oo (B(xg,ry) SCr

Weighted Holder

04 06 03 10

[1f=Pll oo (8(xg 1)) <CA(r)

Calderon-Zygmund

AP =Pl

B(xg.1) =

cre
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p

loc iISin T%,(xo) if there exist a constant C > 0 and a polynomial P of

Letxo € R?,p € [1,00], > —d/p,afunctionf € L
degree strictly smaller than « such that

r= P = Plli(gr,ry < Cr*

for sufficiently smallr.
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Letxo € RY,p € [1,00],a > —d/p, afunction f € L} isin T4 (xo) if there exist a constant C > 0 and a polynomial P of
degree strictly smaller than « such that
r P — Pllio(p(xg ) < Cr™
for sufficiently smallr.
p-exponent

hp(xo) := sup{a > —d/p : f € T8, (x0)}.
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Letxo € RY,p € [1,00],a > —d/p, afunction f € L} isin T4 (xo) if there exist a constant C > 0 and a polynomial P of
degree strictly smaller than « such that
r P — Pllio(p(xg ) < Cr™
for sufficiently smallr.
p-exponent

hp(xo) := sup{a > —d/p : f € T8, (x0)}.

p-spectrum

dp(h) = dimy ({x € R? : hp(x) = h}).
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"Nowhere Regularity"

» Nowhere Continuous Functions:
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1 ifxeQ,
D(x) = =
() = xax) { 0 ifxisirrational.

6/52



"Nowhere Regularity"

» Nowhere Continuous Functions:

1 ifxeQ,
D(x) = =
() = xax) { 0 ifxisirrational.

» Nowhere Differentiable Functions:

6/52



"Nowhere Regularity"

» Nowhere Continuous Functions:

1 ifxeQ,
D(x) = =
() = xax) { 0 ifxisirrational.

» Nowhere Differentiable Functions:

1 ifx =0,
T(x) = g~! ifxisrationalwithx = p/q,gcd(p,q) = 1,
0 if x is irrational.
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Thomae’s-type functions




Thomae’s-type functions

Letd > 0,
1 ifx =0,
To(x) =< q=? ifxisrational withx = p/q,gcd(p,q) = 1,
0 if x is irrational.

Figure 1: Representation of the function Ty on (0,1) ford = 1/2,1and 2.
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Periodicity

Proposition

The Thomae function is periodic with period 1.
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Rational-Irrational Dichotomy

Proposition

The function Ty is discontinuous at rational points and continuous at irrational points.
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Differentiability

Proposition
Let f be a function on R that is positive on the rationals and 0 on the irrationals. Then, there is an uncountable dense set
of irrationals on which f is not differentiable.

Proposition
Let (a;); be a sequence of R \ Q. Then there exists a function that is positive on the rationals, zero on the irrationals, and
differentiable at each point a;.
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Rational Approximations

7(x) = sup {u : Jan infinity of coprime pairs (p,q) € Z x N : ’X — g‘ < q%} .
Dirichlet’s Theorem
Let x be a real number and n a positive integer. Then there is a rational number p/q with 0 < g < n, satisfying

_ 4
(n+1)q°

x—B'g

q

Corollary

Given any real number x, there exists a rational number p/q such that

1
< —

X — — qz.

q

g
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Rational Approximations

Theorem
Letx € R\Q, then there are infinitely many rational numbers p/q such that

Hurwitz’s Theorem

(i) Letx € R\Q, there are infinitely many rational numbers p/q such that

1
V5q2

x-2|<
q

(i) Ifv/5isreplaced by C > /5, then there are irrational numbers x for which statement (i) does not hold.
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Rational Approximations

Theorem

Lete > 0. For almost every x € [0, 1], there exist only finitely many rational numbers p/g such that

p 1
’ = q2+s .
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Differentiability

Proposition
For 6 € (0,2], Ty is not differentiable at any point.
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Differentiability at 0

We put Ty (0) = 1in order to have the periodicity. Consider

?g(x) _ g% ifxisrationalwithx = p/q, gcd(p,q) = 1,
0 if x isirrational orx = 0.

As one might expect, Ty becomes continuous at 0 and the dichotomy no longer holds. A more interesting fact is that To
becomes differentiable at 0 for 6 > 1.
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Differentiability at 0

We put Ty (0) = 1in order to have the periodicity. Consider

?H(X) _ g% ifxisrationalwithx = p/q, gcd(p,q) = 1,
0 if x isirrational orx = 0.

As one might expect, Ty becomes continuous at 0 and the dichotomy no longer holds. A more interesting fact is that To
becomes differentiable at 0 for > 1. Indeed, if the derivative at 0 exists, it must be equal to 0. Thus, we must show that if
e > 0, there existsa d > 0such that

To(x)
X

To(x) — To(0)

x € (—6,0) = 0
X —

<e.

If x is irrational, then this difference quotient is equalto 0 < e. Suppose x is a nonzero rational number. There exists a

positive integer n such that ,,9171 < e. There exists a § > 0 such that every nonzero rational number in the interval (—4, §)

has denominator g > n. Thus, ifx = g with ged(p, g) = 1, then for |x| < § we have g > n, and hence:

To(x)
X

<e€
p/q

B

1
"~ pg??

Therefore, the difference quotient is less than ¢ for allx € (=4, &), and the derivative of?@ at 0 exists and equals 0.
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Regularity of T

» Ty isdiscontinuous at rational points and continuous at irrational points.
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Regularity of T

» Ty isdiscontinuous at rational points and continuous at irrational points.
> For6 € (0,2], Ty is not differentiable at any point.

> Exact regularity of Ty at each of its points ?
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Pointwise Regularity of T

Lemma

Letf,a > 0andx € (0,1) \ Q. If Ty € A*(x), then the polynomial P of degree less than « appearing in Definition of
A% (x) must necessarily be the zero polynomial.

Theorem
Let 6 > 0, then

0/7(x) otherwise,

hr, (x) = { 0 ifx € Q,

where

1
X—B'<—}.
al ¢

7(x) = sup {u : 3 an infinity of coprime pairs (p,q) € Z x N :

> If < 2, Ty is nowhere differentiable.
» T, is nowhere differentiable and hr, = 1 almost everywhere !
> When 6 > 2, Ty is differentiable at xo when 7(xo) < 6. For example, Ty is differentiable at algebraic irrationals

numbers, e, m, 72, In(2).
17/52



Spectrum of Ty

Jarnik’s Theorem
Leta,b € Rwitha < b, 7 > 2, then

dimas({x € [, ] : 7(x) = £}) = % Vit € [2,00].
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Spectrum of Ty

Jarnik’s Theorem
Leta,b € Rwitha < b, 7 > 2, then

dimas({x € [, ] : 7(x) = £}) = % Vit € [2,00].

Theorem

The Holder-spectrum is given by

dTe(h):{ 2 ith e [0,6/2],

—oo  otherwise.
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Bigger class of Thomae’s type functions

We consider continuous functions ¢ : (0,1) — (0, co) such that

o P(ts) _ - (ts)
0 < ¢(t) := inf —= < ¢(t) :=su < 00,
20:=10 50 =0T e
forany t < 1. The lower and upper indices of ¢ are defined by
log ¢(t &
s(¢) = lim e2t) g 5(6) = lim 1280
t—0 logt t—0 logt
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Bigger class of Thomae’s type functions

We consider continuous functions ¢ : (0,1) — (0, co) such that

#(ts) 9(ts)

0 < ¢(t) := inf =2 < ¢(t) :=su < 00,
20:=10 50 =0T e
forany t < 1. The lower and upper indices of ¢ are defined by
lo t Ky
s(¢) = lim X O 5(6) = lim 12890
t—0 logt t—0 logt

We define

1 ifx =0,
To(x) =19 ¢(1/q9) ifx=p/q,

0 if x is irrational,

where s(¢) = 5(¢) = 6 € (0, 2].
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Bigger class of Thomae’s type functions

For example, one can consider

1 ifx =0,
Tog) =4 42 ifx = p/q,
0 if x is irrational.

Figure 2: Representation of the function T,z on (0, 1).
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Bigger class of Thomae’s type functions

> Whatabouts(¢) < 5(¢)?
> Negatives indices ?

> Interchange the dichotomy ?
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Different indices

For example, define

|t ifte (o),
‘W){ P ift e (s,1).

~ Only few particular points. A more complex example : consider the increasing sequence (j, ), defined by
jO = 07
jl =1,
Jan = 2jan—1 — jan—2,

Jang1 = 2,

Then, define

- 220 if jon <j < Jjant1,
/ Qwngi=kner if o <j < jonya.

The sequence o oscillates between (j); and (2/);. By setting
1/oj —1/0; ; j j
o) = YUYy e te 2t
2’ "

we have s(¢) = 0ands(¢) = 1. ~ Partial Results: hr (x) € [s(¢)/7(x),5(¢)/7(x)] if x € R\Q.
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0 <0

00

—10n(0,1).

Representation of the function T

3

Figure

> Easy construction of a nowhere locally bounded function.
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0 <0

00 02 04 06 08 10

Figure 3: Representation of the function T_; on (0, 1).

> Easy construction of a nowhere locally bounded function.
> [o To(x)dx = fR\@ To(x)dx = 0.
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0 <0

P A A U S S SR S A AR
00 02 04 06 08 10

Figure 3: Representation of the function T_; on (0, 1).

> Easy construction of a nowhere locally bounded function.

> [o To(x)dx = fR\@ To(x)dx = 0. ~» Notion of p-exponents not adapted.
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Interchange the dichotomy?

Is there a function that is continuous on the rational numbers and discontinuous on the irrational numbers ?
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Interchange the dichotomy?

Is there a function that is continuous on the rational numbers and discontinuous on the irrational numbers ?
~~ No, since the set of discontinuities of a function R — R is always a F,-set.
Starting from a F, subset of R, A := | J,, Fn, we define

1/n if x rational and nis minimal s.t. x € Fp,
Ta(x) = —1/n ifxirrational and nis minimals.t. x € Fy,
0 ifx ¢ A

The set of discontinuities of Ty is given by A.
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Brjuno functions




Brjuno number

Letx € R\Qand let (pn/qgn)n>0 be the sequence of the convergents of its continued fraction expansion. A Brjuno number

is an irrational number x such that
Z log gnt1
— < 0

n>0 9n

The importance of Brjuno numbers comes from the study of one-dimensional analytic small divisors problems. In the case
of germs of holomorphic diffeomorphisms of one complex variable with an indifferent fixed point, extending a previous
result of Siegel, Brjuno proved that all germs with linear part e2™ are linearizable if x is a Brjuno number.
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Gauss map

0.8

0.6

0.4

0.2

0.2 0.4

A:(0,1) = [0,1] XH\%—L%“.

26/52



Brjuno function

o0
B:R\Q—=R x— =) xoxi..x,-1logxn,

n=0
where xo = |[x — [x|| and Xp+1 = A(Xn).
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Regularity of B

S. Jaffard, B. Martin
Letp € [1, 00); the p-exponents of B are given by

h(B)(X) _ { 0 ifx € Q,

1/7(x) otherwise.
Moreover, the p-spectrum is given by

—oo  sinon.

do(h) = { 2h  sihe[0,1/2],
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Modified Gauss map associated to the NCFE

Arja s (0,1/2) = 0,1/ x> |- = [ Lujal,

where [y];, = [y +1/2].

1.0
0.4 0.8
0.3 0.6
0.2 0.4
0.1 0.2
02 04 06 08 10 02 04 06 08 1.0
Apjp andA.
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Brjuno function B, /,

4.0
35
3.0
25

20/

0.1 0.2 0.3 0.4 0.5

oo
B:R\Q—-R x— 7Zxox1...xn,1 log Xn,

n=0

where xo = |x — [x]1 /5] and Xp11 = Ay /5 (Xn).
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Difference B — B s,

-oozi l
-oo4i
~0.06 -
-0.08
-0.10 -

-0.12 -

-0.14
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NCFE

Setxo = |x — [x]1 /2] and ao = [x];/,. Consequently, xo = ap + oXo, where

1 if x Z do,
g0 = .
—1  otherwise.

This initialization defines xp 1 = Ay /> (xn) and

1
tnpr=[—l12 21,
Xn

forn € Ny if it is meaningful. Subsequently, x,,_1 = Opt1 + Ent1Xn+1, Where

S 1 ifx ' > any,
LT 1 otherwise.
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NCFE

The n-th a-convergent of x is given by

=0
P2 — [(ao,20),- -+, (@n—1,€n-1),an] = a0 +
an €1
a; +
., €n—1
- +ap—1+
an
Set T,gl/z)(x) as
Pn 1
X——|= )
" q g

we introduce the 1/2-irrationality exponent of x as

7.(1/2)()() = limsup 7’,(,1/2)()‘)-
n—oo
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Results

L., B. Martin, S. Nicolay
/2 (x) = 7(x)

forallx e R\ Q.

L., B. Martin, S. Nicolay
Letp € [1, 00); the p-exponents of 9B are given by

hp(x) = { 0 ifx € Q,

1/7(x) otherwise.
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General o

\

Figure4: A, : (0,a) — [0, ] withresp.a = 1,a = 1/2and o = 3/4

Admissible o :

Lol o{i- b aju {FEEER L)

ae{l 2,
/ 2
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Minkowski question mark function




Construction of M

SetM(0) = 0and M(1) = 1. Then, for the mediant 5 = 3+, set

1, 0+1.  MO)+M1) 1
M =M =T T
Similarly,
imilarly M(%):M(ii;):M(O)—:M(l/Z) :%
and

In general, if two consecutive fractions p/q and p/q are defined, we et

p+by _ Mp/q)+M(p/q)
q+4§ 2 '

m(
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Construction of M

Ifx = [ao, a1, a2, ...] isirrational, then we define

s k+1
(-1)
M) =a0+23 oo
k=1

Ifx = [ao, a1, a2, ..., am] is rational, then we define

m (_l)k+l
M) =ao+23 oo
k=1

Example: )
_1yk—1

uai/e) =milo, 1,1, =3 X =2

k>1
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Graph of M
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Comparaison with the Cantor staircase function

1.0 1.0
0.8 0.8
0.6 0.6
0.4 04
0. 0.
0. 04 0.6 0.8 1.0 0. 04 0.6 0.8 1.0
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Graph of M—id

-0.05 |

~0.10

-0.15
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Regularity of M

Global regularity
log 2
M belongs to the space ATes (R). Therefore, for allx € R,

h(x) > 182

log 2
2log

This lower bound cannot be improved since h(1/¢) =

= 2logyp’
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Regularity of M

Pointwise regularity
Letx € (0,1)\Q, if

for sufficiently large n, then

for sufficiently large n, then

where k; ~ 4.401.

nlog?2
2log ¢

a1(x) + ... + an(x) <
mneGE$¢y

a1(x) + ... + an(x) > K2n

h(x) > 1,
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Cantor functions




Definitions and graphs of C

Let/ = (0,1)\Q.

C:lw P :x=[ao,a1,a2,03,..] = (C1(x),C2(x)),

where C1(x) = [01, 03, ...] and C2(x) = [a2, aa, ...].

SN
. il A

il

0.2 0.4 0.6
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Regularity of C

Pointwise Regularity

For almostallx € /,

logrkg logki
h(€1)(x). p(C2) .
(0, (0 € [2 log k1’ 2log no]

Let x1, X2, x3 defined by

_J 2 jeven, N o )1 jeven,
aj(x1) = { 1 jodd, aj(x2) =2, aj(x3) = { 7 jodd,
then,

K () =0, WD) =1/2, A (x)=1.
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Minkowski and Cantor using NCFE

}rf

J

04 0.5

04

03

0.1

0.2

03

0.4
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Perspectives

Pointwise regularity of

Investigations of modified versions of Thomae’s type functions
Brjuno functions
Minkowski function

Cantor function

vV vy VvVvVyewy

General functions of the form

f(x) = Z fi(x,n) f,(x,n),

n>0

where fi is linked to an iteration of a transformation that involves the position of real numbers relative to nearby
integers, and f, plays the role of a singularity.
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Perspectives

f(x) = Z fi(x,n) f,(x,n),

n>0
fi(x,n) f,(x,n) Pointwise reg of f at x
Ap-- AT 1 1/7(x)
(A AT | log(1/A7) 0/7(x)
Ag - ARTT log(1/A7) 1/7(x)
(=1)"Ar---AT71 | log(1/A7) 1/7(x)
S5l log(1/S") ?

47/52



Perspectives

f(x) = filx,n) fa(x,n),

n>0

fi(x,n) f,(x,n) Pointwise reg of f at x ’\/‘\/‘;» .
Ao AT log(1/A7) 1/7(x) AN A M
; : AP P e
L
(A A1) T log(1/A7) 6/7(x) Fa
n—1 n A MI‘
Ao AL log(1/A") 1/7(x) A2 LN
(O AT | log(1/A7) 1/7(x) MAA,\ A
S5 1 log(1/S") ? il
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Perspectives

f) =>_ fx,n) h(xn),

n>0
fi(x,n) f,(x,n) Pointwise reg of f at x
Ay AT log(1/A7) 1/7(x)
Ao AT 1 1/7(x)
Ag -+ -A’;‘! log(1/A%,) 1/7(x)
(—1)"A1- AT | log(1/A7) 1/7(x)
S...5"1 log(1/S") ?
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Perspectives

f(x) = Z fi(x,n) f,(x,n),

n>0

fi(x,n) f,(x,n) Pointwise reg of f at x
Ay AT log(1/A7) 1/7(x)
Ay AT 1 1/7(x)
(A A7)0 | log(1/A7) 0/7(x)
(=1)"A1--- A" | log(1/A7) 1/7(x)
S5l log(1/S") ?
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Perspectives

f(x) = Z fi(x,n) f,(x,n),

n>0

.

fi(x,n) f,(x,n) Pointwise reg of f at x
A AT | log(1/A]) 1/7(x)
Ay AT 1 1/7(x)
A AL D7 | log(1/AD) 0/7(x)
Ao AL log(1/A7,) 1/7(x)

S...sn—1

log(1/5")

?

NN
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Perspectives

f(x) = Z fi(x,n) f,(x, n),

n>0
fi(x,n) f,(x,n) Pointwise reg of f at x o | ‘\
Ay AT log(1/A7) 1/7(x) | Mki}i Ct SN
Alu.Angg 1 1/7(x) \vaﬁms\w& \WNQQmKw NU
(A7 | log(1/A7) 6/7(x) | W WO ‘
Ao AT Toa(1/A}) 1/7(0) NN M
(—=1)"Ar---AT7T | log(1/A7) 1/7(x)
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Thank you for your attention !
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