

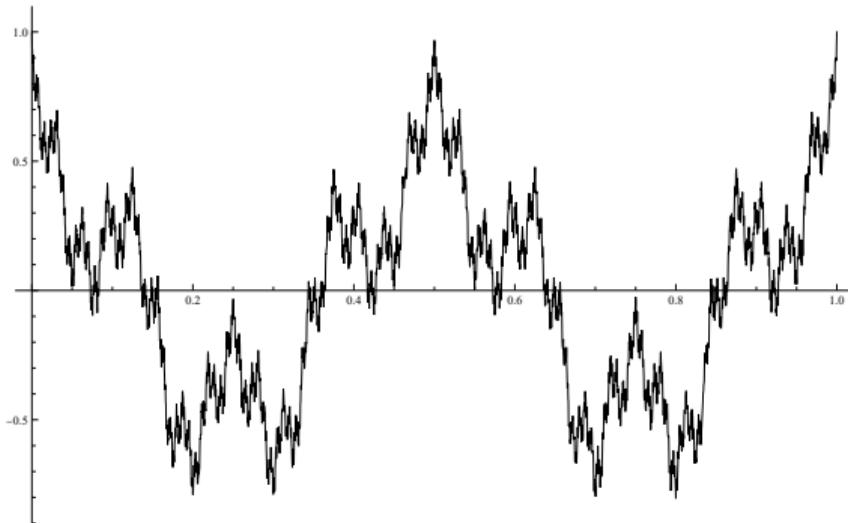
Number Theory Meets Multifractal Analysis

Number Theory and Arithmetic Geometry
Work in Progress Seminar

Thomas Lamby
October 23, 2025

Notions of Regularity

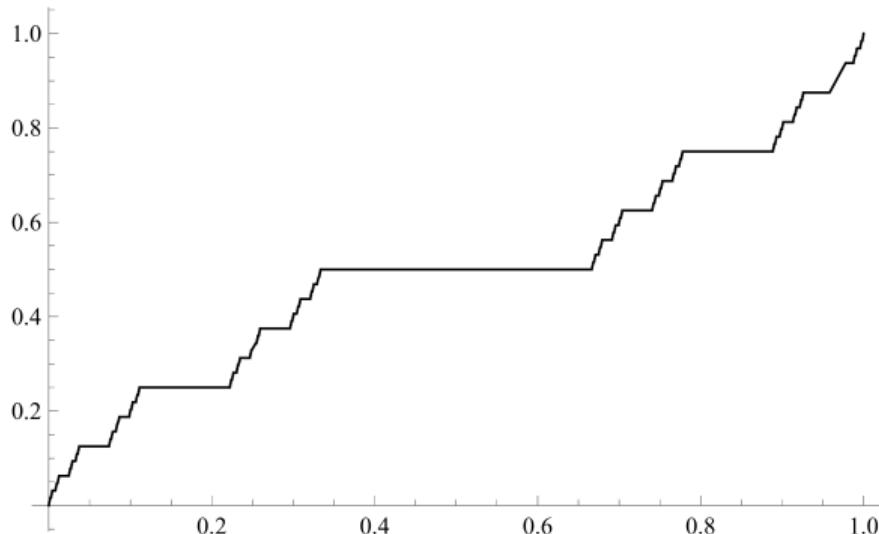
Weierstrass function



For all $t \in \mathbb{R}$,

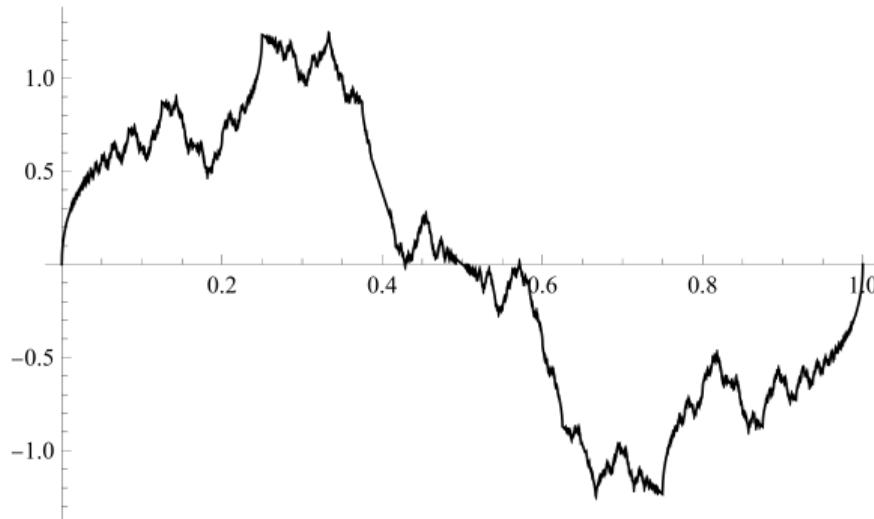
$$h(t) = -\frac{\log a}{\log b}.$$

Cantor staircase function



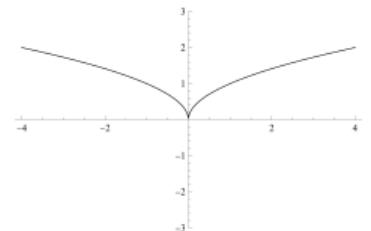
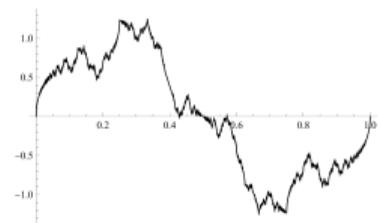
$$d(h) = \begin{cases} \frac{\log 2}{\log 3} & \text{if } h = \frac{\log 2}{\log 3}, \\ 1 & \text{if } h = \infty, \\ -\infty & \text{otherwise.} \end{cases}$$

Riemann function



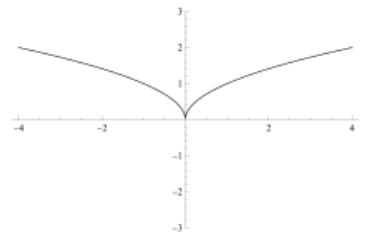
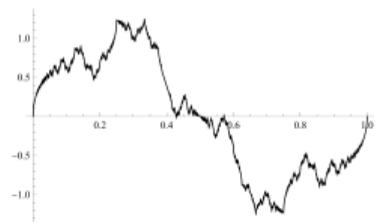
$$d(h) = \begin{cases} 4h - 2 & \text{if } h \in [1/2, 3/4], \\ 0 & \text{if } h = 3/2, \\ -\infty & \text{otherwise.} \end{cases}$$

Hölder



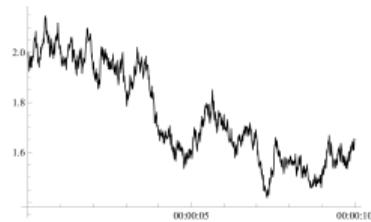
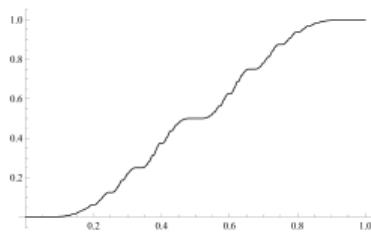
$$\|f - P\|_{L^\infty(B(x_0, r))} \leq Cr^\alpha$$

Hölder



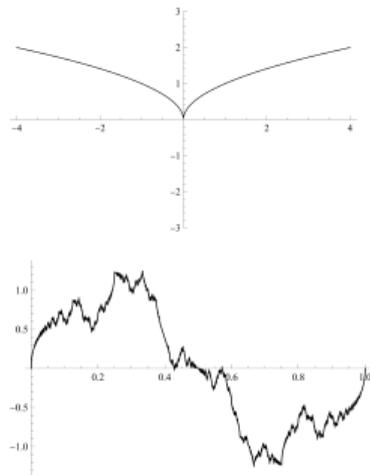
$$\|f - P\|_{L^\infty(B(x_0, r))} \leq C r^\alpha$$

Weighted Hölder



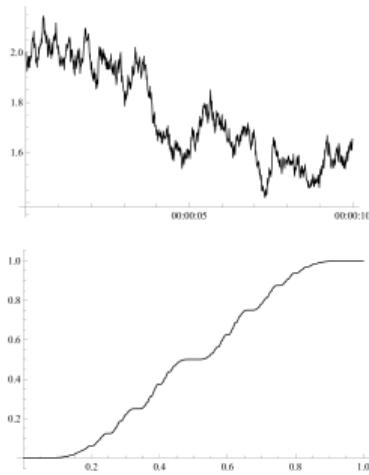
$$\|f - P\|_{L^\infty(B(x_0, r))} \leq C \phi(r)$$

Hölder



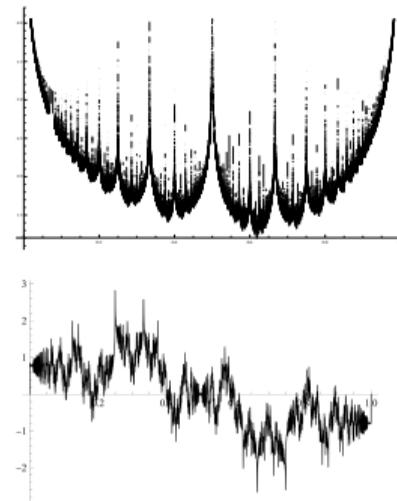
$$\|f - P\|_{L^\infty(B(x_0, r))} \leq C r^\alpha$$

Weighted Hölder



$$\|f - P\|_{L^\infty(B(x_0, r))} \leq C \phi(r)$$

Calderon-Zygmund



$$r^{-d/p} \|f - P\|_{L^p(B(x_0, r))} \leq C r^\alpha$$

Let $x_0 \in \mathbb{R}^d$, $p \in [1, \infty]$, $\alpha > -d/p$, a function $f \in L_{\text{loc}}^p$ is in $T_\alpha^p(x_0)$ if there exist a constant $C > 0$ and a polynomial P of degree strictly smaller than α such that

$$r^{-d/p} \|f - P\|_{L^p(B(x_0, r))} \leq Cr^\alpha$$

for sufficiently small r .

Let $x_0 \in \mathbb{R}^d$, $p \in [1, \infty]$, $\alpha > -d/p$, a function $f \in L_{\text{loc}}^p$ is in $T_\alpha^p(x_0)$ if there exist a constant $C > 0$ and a polynomial P of degree strictly smaller than α such that

$$r^{-d/p} \|f - P\|_{L^p(B(x_0, r))} \leq Cr^\alpha$$

for sufficiently small r .

p -exponent

$$h_p(x_0) := \sup\{\alpha > -d/p : f \in T_\alpha^p(x_0)\}.$$

Let $x_0 \in \mathbb{R}^d$, $p \in [1, \infty]$, $\alpha > -d/p$, a function $f \in L_{\text{loc}}^p$ is in $T_\alpha^p(x_0)$ if there exist a constant $C > 0$ and a polynomial P of degree strictly smaller than α such that

$$r^{-d/p} \|f - P\|_{L^p(B(x_0, r))} \leq Cr^\alpha$$

for sufficiently small r .

p -exponent

$$h_p(x_0) := \sup\{\alpha > -d/p : f \in T_\alpha^p(x_0)\}.$$

p -spectrum

$$d_p(h) = \dim_{\mathcal{H}}(\{x \in \mathbb{R}^d : h_p(x) = h\}).$$

"Nowhere Regularity"

- ▶ Nowhere Continuous Functions :

"Nowhere Regularity"

- Nowhere Continuous Functions :

$$D(x) = \chi_{\mathbb{Q}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

"Nowhere Regularity"

- ▶ Nowhere Continuous Functions :

$$D(x) = \chi_{\mathbb{Q}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

- ▶ Nowhere Differentiable Functions :

"Nowhere Regularity"

- ▶ Nowhere Continuous Functions :

$$D(x) = \chi_{\mathbb{Q}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

- ▶ Nowhere Differentiable Functions :

$$T(x) = \begin{cases} 1 & \text{if } x = 0, \\ q^{-1} & \text{if } x \text{ is rational with } x = p/q, \gcd(p, q) = 1, \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

Thomae's-type functions

Thomae's-type functions

Let $\theta > 0$,

$$T_\theta(x) = \begin{cases} 1 & \text{if } x = 0, \\ q^{-\theta} & \text{if } x \text{ is rational with } x = p/q, \gcd(p, q) = 1, \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

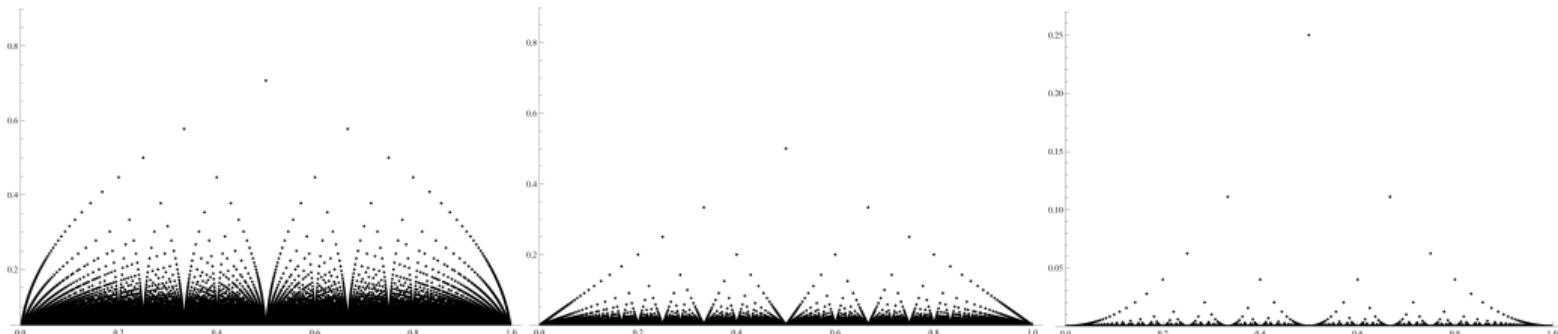


Figure 1: Representation of the function T_θ on $(0, 1)$ for $\theta = 1/2, 1$ and 2 .

Periodicity

Proposition

The Thomae function is periodic with period 1.

Rational-Irrational Dichotomy

Proposition

The function T_θ is discontinuous at rational points and continuous at irrational points.

Differentiability

Proposition

Let f be a function on \mathbb{R} that is positive on the rationals and 0 on the irrationals. Then, there is an uncountable dense set of irrationals on which f is not differentiable.

Proposition

Let $(a_j)_j$ be a sequence of $\mathbb{R} \setminus \mathbb{Q}$. Then there exists a function that is positive on the rationals, zero on the irrationals, and differentiable at each point a_j .

Rational Approximations

$$\tau(x) = \sup \left\{ u : \exists \text{ an infinity of coprime pairs } (p, q) \in \mathbb{Z} \times \mathbb{N} : \left| x - \frac{p}{q} \right| < \frac{1}{q^u} \right\}.$$

Dirichlet's Theorem

Let x be a real number and n a positive integer. Then there is a rational number p/q with $0 < q \leq n$, satisfying

$$\left| x - \frac{p}{q} \right| \leq \frac{1}{(n+1)q}.$$

Corollary

Given any real number x , there exists a rational number p/q such that

$$\left| x - \frac{p}{q} \right| < \frac{1}{q^2}.$$

Rational Approximations

Theorem

Let $x \in \mathbb{R} \setminus \mathbb{Q}$, then there are infinitely many rational numbers p/q such that

$$\left| x - \frac{p}{q} \right| < \frac{1}{q^2}.$$

Hurwitz's Theorem

(i) Let $x \in \mathbb{R} \setminus \mathbb{Q}$, there are infinitely many rational numbers p/q such that

$$\left| x - \frac{p}{q} \right| < \frac{1}{\sqrt{5} q^2}.$$

(ii) If $\sqrt{5}$ is replaced by $C > \sqrt{5}$, then there are irrational numbers x for which statement (i) does not hold.

Rational Approximations

Theorem

Let $\varepsilon > 0$. For almost every $x \in [0, 1]$, there exist only finitely many rational numbers p/q such that

$$\left| x - \frac{p}{q} \right| < \frac{1}{q^{2+\varepsilon}}.$$

Differentiability

Proposition

For $\theta \in (0, 2]$, T_θ is not differentiable at any point.

Differentiability at 0

We put $T_\theta(0) = 1$ in order to have the periodicity. Consider

$$\tilde{T}_\theta(x) = \begin{cases} q^{-\theta} & \text{if } x \text{ is rational with } x = p/q, \gcd(p, q) = 1, \\ 0 & \text{if } x \text{ is irrational or } x = 0. \end{cases}$$

As one might expect, \tilde{T}_θ becomes continuous at 0 and the dichotomy no longer holds. A more interesting fact is that \tilde{T}_θ becomes differentiable at 0 for $\theta > 1$.

Differentiability at 0

We put $T_\theta(0) = 1$ in order to have the periodicity. Consider

$$\tilde{T}_\theta(x) = \begin{cases} q^{-\theta} & \text{if } x \text{ is rational with } x = p/q, \gcd(p, q) = 1, \\ 0 & \text{if } x \text{ is irrational or } x = 0. \end{cases}$$

As one might expect, \tilde{T}_θ becomes continuous at 0 and the dichotomy no longer holds. A more interesting fact is that \tilde{T}_θ becomes differentiable at 0 for $\theta > 1$. Indeed, if the derivative at 0 exists, it must be equal to 0. Thus, we must show that if $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$x \in (-\delta, \delta) \implies \left| \frac{\tilde{T}_\theta(x) - \tilde{T}_\theta(0)}{x - 0} \right| = \left| \frac{\tilde{T}_\theta(x)}{x} \right| < \varepsilon.$$

If x is irrational, then this difference quotient is equal to 0 $< \varepsilon$. Suppose x is a nonzero rational number. There exists a positive integer n such that $\frac{1}{n^{\theta-1}} < \varepsilon$. There exists a $\delta > 0$ such that every nonzero rational number in the interval $(-\delta, \delta)$ has denominator $q > n$. Thus, if $x = \frac{p}{q}$ with $\gcd(p, q) = 1$, then for $|x| < \delta$ we have $q > n$, and hence:

$$\left| \frac{\tilde{T}_\theta(x)}{x} \right| = \left| \frac{q^{-\theta}}{p/q} \right| = \left| \frac{1}{pq^{\theta-1}} \right| < \varepsilon.$$

Therefore, the difference quotient is less than ε for all $x \in (-\delta, \delta)$, and the derivative of \tilde{T}_θ at 0 exists and equals 0.

Regularity of T_θ

- ▶ T_θ is discontinuous at rational points and continuous at irrational points.

Regularity of T_θ

- ▶ T_θ is discontinuous at rational points and continuous at irrational points.
- ▶ For $\theta \in (0, 2]$, T_θ is not differentiable at any point.

Regularity of T_θ

- ▶ T_θ is discontinuous at rational points and continuous at irrational points.
- ▶ For $\theta \in (0, 2]$, T_θ is not differentiable at any point.
- ▶ Exact regularity of T_θ at each of its points ?

Pointwise Regularity of T_θ

Lemma

Let $\theta, \alpha > 0$ and $x \in (0, 1) \setminus \mathbb{Q}$. If $T_\theta \in \Lambda^\alpha(x)$, then the polynomial P of degree less than α appearing in Definition of $\Lambda^\alpha(x)$ must necessarily be the zero polynomial.

Theorem

Let $\theta > 0$, then

$$h_{T_\theta}(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q}, \\ \theta/\tau(x) & \text{otherwise,} \end{cases}$$

where

$$\tau(x) = \sup \left\{ u : \exists \text{ an infinity of coprime pairs } (p, q) \in \mathbb{Z} \times \mathbb{N} : \left| x - \frac{p}{q} \right| < \frac{1}{q^u} \right\}.$$

- If $\theta < 2$, T_θ is nowhere differentiable.
- T_2 is nowhere differentiable and $h_{T_2} = 1$ almost everywhere !
- When $\theta > 2$, T_θ is differentiable at x_0 when $\tau(x_0) < \theta$. For example, T_9 is differentiable at algebraic irrationals numbers, $e, \pi, \pi^2, \ln(2)$.

Spectrum of T_θ

Jarnik's Theorem

Let $a, b \in \mathbb{R}$ with $a < b, \tau \geq 2$, then

$$\dim_{\mathcal{H}}(\{x \in [a, b] : \tau(x) = t\}) = \frac{2}{t} \quad \forall t \in [2, \infty].$$

Spectrum of T_θ

Jarnik's Theorem

Let $a, b \in \mathbb{R}$ with $a < b, \tau \geq 2$, then

$$\dim_{\mathcal{H}}(\{x \in [a, b] : \tau(x) = t\}) = \frac{2}{t} \quad \forall t \in [2, \infty].$$

Theorem

The Hölder-spectrum is given by

$$d_{T_\theta}(h) = \begin{cases} \frac{2h}{\theta} & \text{if } h \in [0, \theta/2], \\ -\infty & \text{otherwise.} \end{cases}$$

Bigger class of Thomae's type functions

We consider continuous functions $\phi : (0, 1) \rightarrow (0, \infty)$ such that

$$0 < \underline{\phi}(t) := \inf_{s < 1} \frac{\phi(ts)}{\phi(s)} \leq \bar{\phi}(t) := \sup_{s < 1} \frac{\phi(ts)}{\phi(s)} < \infty,$$

for any $t < 1$. The *lower* and *upper indices* of ϕ are defined by

$$\underline{s}(\phi) = \lim_{t \rightarrow 0} \frac{\log \underline{\phi}(t)}{\log t} \quad \text{and} \quad \bar{s}(\phi) = \lim_{t \rightarrow 0} \frac{\log \bar{\phi}(t)}{\log t}.$$

Bigger class of Thomae's type functions

We consider continuous functions $\phi : (0, 1) \rightarrow (0, \infty)$ such that

$$0 < \underline{\phi}(t) := \inf_{s < 1} \frac{\phi(ts)}{\phi(s)} \leq \bar{\phi}(t) := \sup_{s < 1} \frac{\phi(ts)}{\phi(s)} < \infty,$$

for any $t < 1$. The *lower* and *upper indices* of ϕ are defined by

$$\underline{s}(\phi) = \lim_{t \rightarrow 0} \frac{\log \underline{\phi}(t)}{\log t} \quad \text{and} \quad \bar{s}(\phi) = \lim_{t \rightarrow 0} \frac{\log \bar{\phi}(t)}{\log t}.$$

We define

$$T_\phi(x) = \begin{cases} 1 & \text{if } x = 0, \\ \phi(1/q) & \text{if } x = p/q, \\ 0 & \text{if } x \text{ is irrational,} \end{cases}$$

where $\underline{s}(\phi) = \bar{s}(\phi) = \theta \in (0, 2]$.

Bigger class of Thomae's type functions

For example, one can consider

$$T_{\log}(x) = \begin{cases} 1 & \text{if } x = 0, \\ \frac{\log(q)}{q} & \text{if } x = p/q, \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

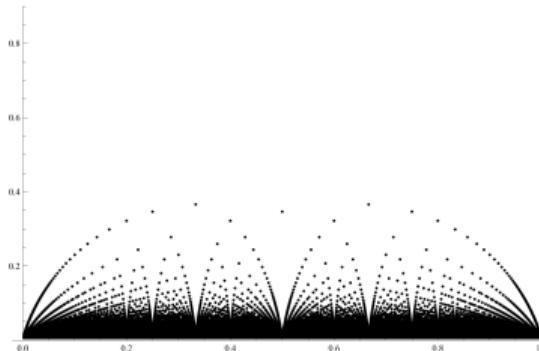


Figure 2: Representation of the function T_{\log} on $(0, 1)$.

Bigger class of Thomae's type functions

- ▶ What about $\underline{s}(\phi) < \bar{s}(\phi)$?
- ▶ Negatives indices ?
- ▶ Interchange the dichotomy ?

Different indices

For example, define

$$\phi(t) = \begin{cases} t^\alpha & \text{if } t \in (0, s], \\ t^\beta & \text{if } t \in (s, 1). \end{cases}$$

Only few particular points. A more complex example : consider the increasing sequence $(j_n)_n$ defined by

$$\begin{cases} j_0 = 0, \\ j_1 = 1, \\ j_{2n} = 2j_{2n-1} - j_{2n-2}, \\ j_{2n+1} = 2^{j_{2n}}. \end{cases}$$

Then, define

$$\sigma_j := \begin{cases} 2^{j_{2n}} & \text{if } j_{2n} \leq j \leq j_{2n+1}, \\ 2^{j_{2n}} 4^{j-j_{2n+1}} & \text{if } j_{2n+1} \leq j < j_{2n+2}. \end{cases}$$

The sequence σ oscillates between $(j)_j$ and $(2^j)_j$. By setting

$$\phi(t) = \frac{1/\sigma_j - 1/\sigma_{j+1}}{2^j} (t - 2^{-j-1}) + 1/\sigma_{j+1} \quad \text{if } t \in (2^{-j-1}, 2^{-j}],$$

we have $\underline{s}(\phi) = 0$ and $\bar{s}(\phi) = 1$. \rightsquigarrow Partial Results : $h_{T_\phi}(x) \in [\underline{s}(\phi)/\tau(x), \bar{s}(\phi)/\tau(x)]$ if $x \in \mathbb{R} \setminus \mathbb{Q}$.

$$\theta < 0$$

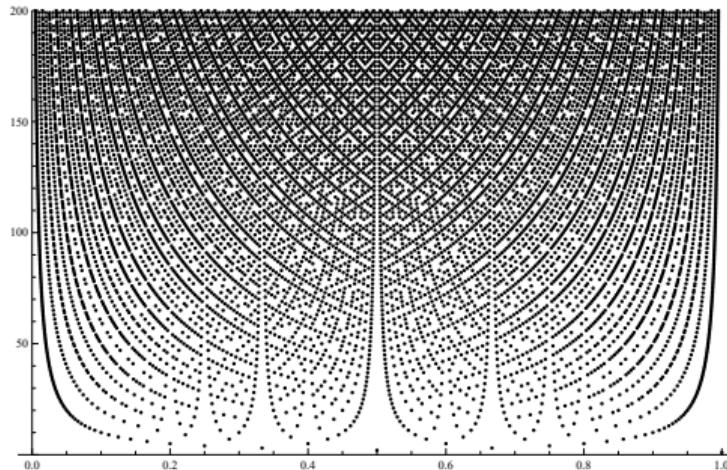


Figure 3: Representation of the function T_{-1} on $(0, 1)$.

- ▶ Easy construction of a nowhere locally bounded function.

$$\theta < 0$$

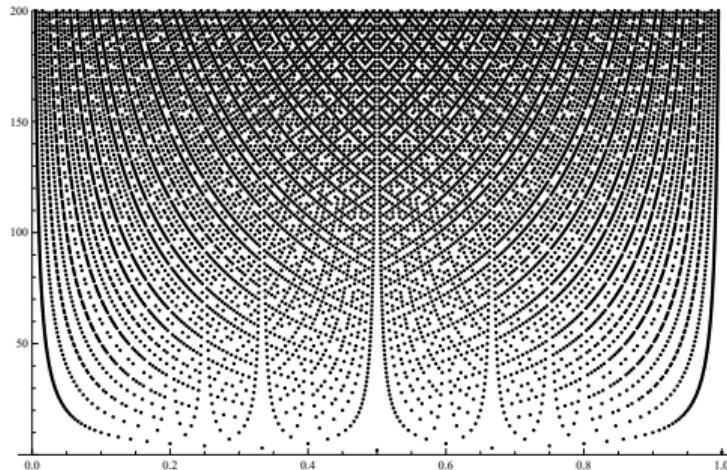


Figure 3: Representation of the function T_{-1} on $(0, 1)$.

- ▶ Easy construction of a nowhere locally bounded function.
- ▶ $\int_{\mathbb{R}} T_{\theta}(x) dx = \int_{\mathbb{R} \setminus \mathbb{Q}} T_{\theta}(x) dx = 0$.

$$\theta < 0$$

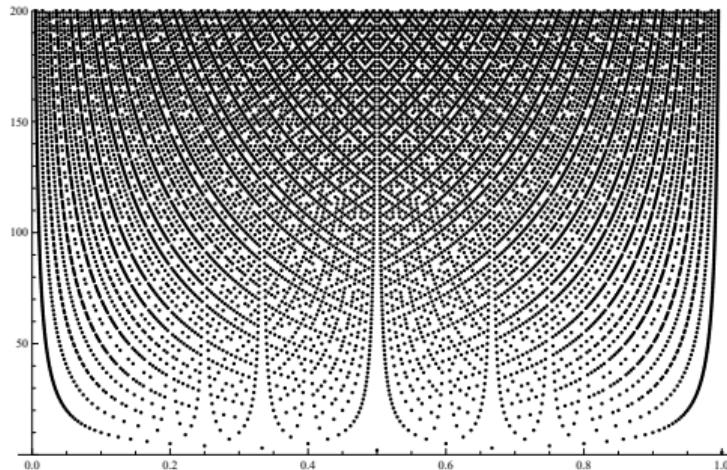


Figure 3: Representation of the function T_{-1} on $(0, 1)$.

- ▶ Easy construction of a nowhere locally bounded function.
- ▶ $\int_{\mathbb{R}} T_{\theta}(x) dx = \int_{\mathbb{R} \setminus \mathbb{Q}} T_{\theta}(x) dx = 0.$ \rightsquigarrow Notion of p -exponents not adapted.

Interchange the dichotomy?

Is there a function that is continuous on the rational numbers and discontinuous on the irrational numbers ?

Interchange the dichotomy?

Is there a function that is continuous on the rational numbers and discontinuous on the irrational numbers ?

~~ No, since the set of discontinuities of a function $\mathbb{R} \rightarrow \mathbb{R}$ is always a F_σ -set.

Interchange the dichotomy?

Is there a function that is continuous on the rational numbers and discontinuous on the irrational numbers ?

~~ No, since the set of discontinuities of a function $\mathbb{R} \rightarrow \mathbb{R}$ is always a F_σ -set.

Starting from a F_σ subset of \mathbb{R} , $A := \bigcup_n F_n$, we define

$$T_A(x) = \begin{cases} 1/n & \text{if } x \text{ rational and } n \text{ is minimal s.t. } x \in F_n, \\ -1/n & \text{if } x \text{ irrational and } n \text{ is minimal s.t. } x \in F_n, \\ 0 & \text{if } x \notin A. \end{cases}$$

The set of discontinuities of T_A is given by A .

Brjuno functions

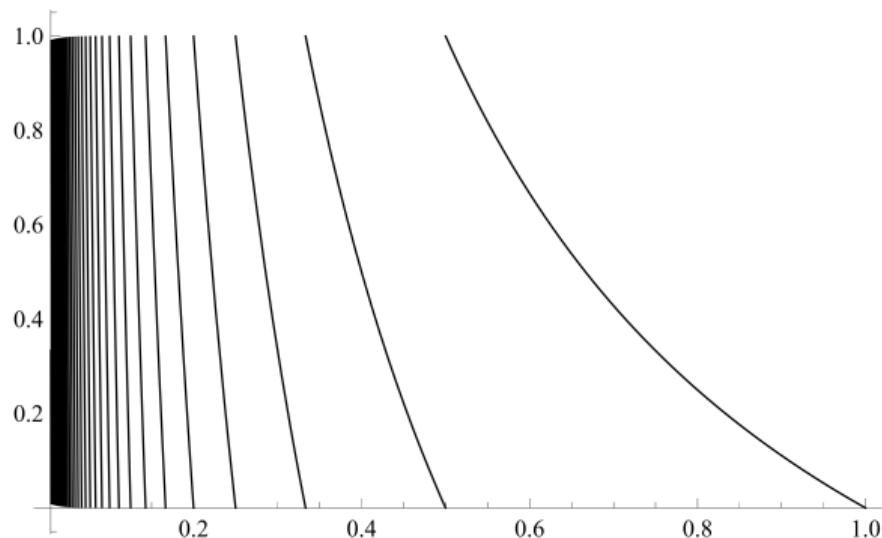
Brjuno number

Let $x \in \mathbb{R} \setminus \mathbb{Q}$ and let $(p_n/q_n)_{n \geq 0}$ be the sequence of the convergents of its continued fraction expansion. A Brjuno number is an irrational number x such that

$$\sum_{n \geq 0} \frac{\log q_{n+1}}{q_n} < \infty.$$

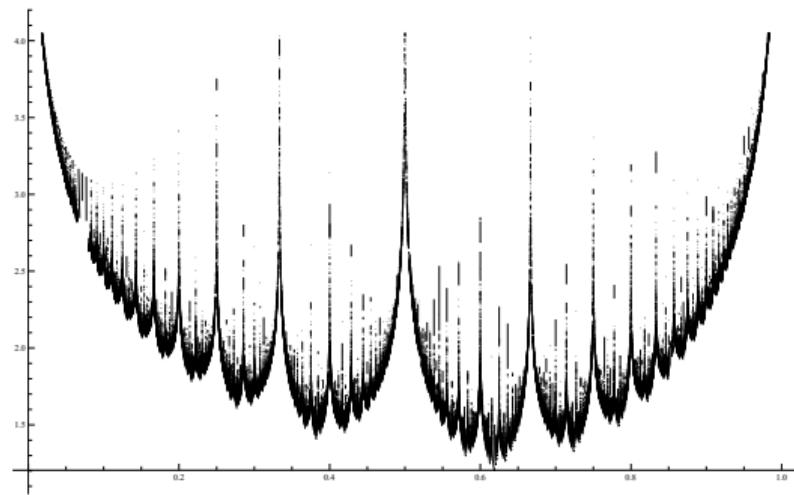
The importance of Brjuno numbers comes from the study of one-dimensional analytic small divisors problems. In the case of germs of holomorphic diffeomorphisms of one complex variable with an indifferent fixed point, extending a previous result of Siegel, Brjuno proved that all germs with linear part $e^{2\pi i x}$ are linearizable if x is a Brjuno number.

Gauss map



$$f : (0, 1) \rightarrow [0, 1] \quad x \mapsto \left\lfloor \frac{1}{x} \right\rfloor - \left\lfloor \frac{1}{x} \right\rfloor.$$

Brjuno function



$$B : \mathbb{R} \setminus \mathbb{Q} \rightarrow \overline{\mathbb{R}} \quad x \mapsto - \sum_{n=0}^{\infty} x_0 x_1 \dots x_{n-1} \log x_n,$$

where $x_0 = |x - \lfloor x \rfloor|$ and $x_{n+1} = A(x_n)$.

Regularity of B

S. Jaffard, B. Martin

Let $p \in [1, \infty)$; the p -exponents of B are given by

$$h_p^{(B)}(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q}, \\ 1/\tau(x) & \text{otherwise.} \end{cases}$$

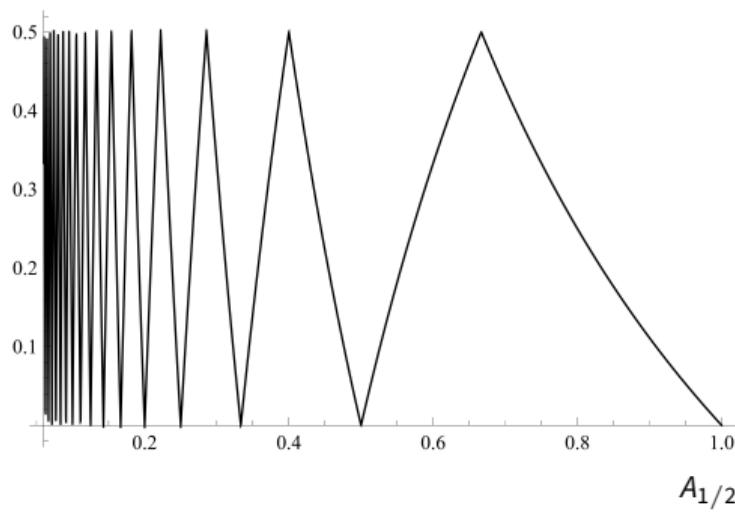
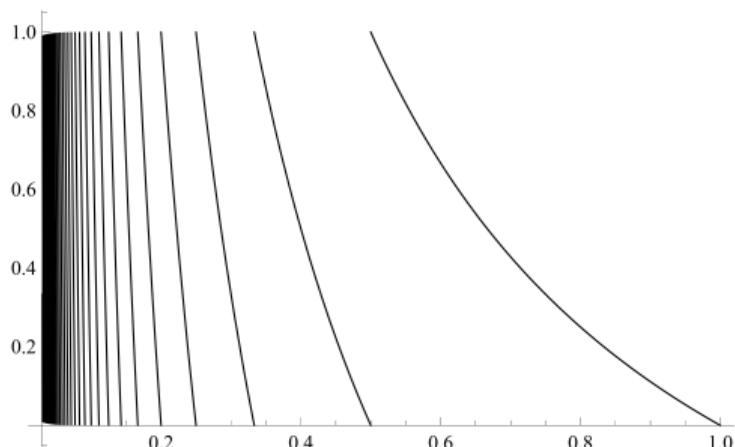
Moreover, the p -spectrum is given by

$$d_p(h) = \begin{cases} 2h & \text{si } h \in [0, 1/2], \\ -\infty & \text{sinon.} \end{cases}$$

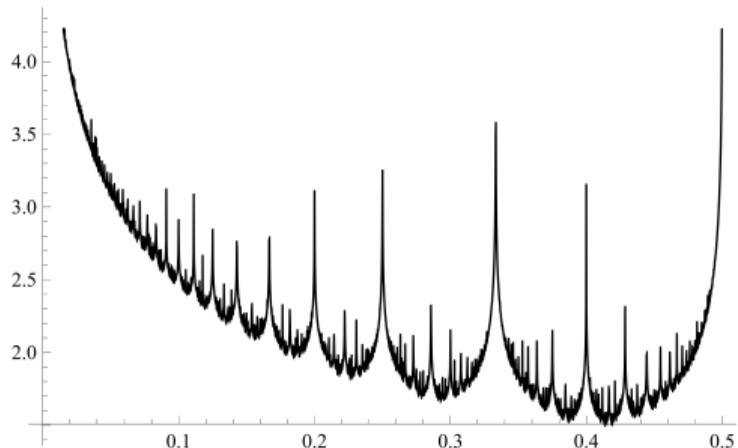
Modified Gauss map associated to the NCFE

$$A_{1/2} : (0, 1/2) \rightarrow [0, 1/2] \quad x \mapsto \left| \frac{1}{x} - \left[\frac{1}{x} \right]_{1/2} \right|,$$

where $[y]_{1/2} = \lfloor y + 1/2 \rfloor$.



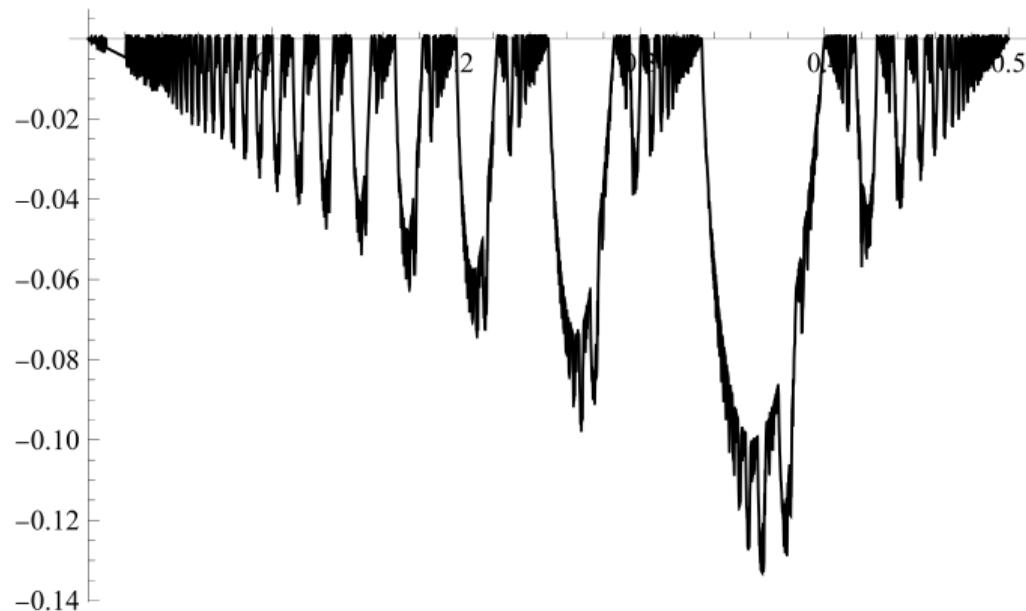
Brjuno function $B_{1/2}$



$$\mathfrak{B} : \mathbb{R} \setminus \mathbb{Q} \rightarrow \overline{\mathbb{R}} \quad x \mapsto - \sum_{n=0}^{\infty} x_0 x_1 \dots x_{n-1} \log x_n,$$

where $x_0 = |x - [x]_{1/2}|$ and $x_{n+1} = A_{1/2}(x_n)$.

Difference $B - B_{1/2}$



NCFE

Set $x_0 = |x - [x]_{1/2}|$ and $a_0 = [x]_{1/2}$. Consequently, $x_0 = a_0 + \varepsilon_0 x_0$, where

$$\varepsilon_0 = \begin{cases} 1 & \text{if } x \geq a_0, \\ -1 & \text{otherwise.} \end{cases}$$

This initialization defines $x_{n+1} = A_{1/2}(x_n)$ and

$$a_{n+1} = \left[\frac{1}{x_n} \right]_{1/2} \geq 1,$$

for $n \in \mathbb{N}_0$ if it is meaningful. Subsequently, $x_n^{-1} = a_{n+1} + \varepsilon_{n+1} x_{n+1}$, where

$$\varepsilon_{n+1} = \begin{cases} 1 & \text{if } x_n^{-1} \geq a_{n+1}, \\ -1 & \text{otherwise.} \end{cases}$$

NCFE

The n -th α -convergent of x is given by

$$\frac{p_n}{q_n} = [(a_0, \varepsilon_0), \dots, (a_{n-1}, \varepsilon_{n-1}), a_n] = a_0 + \cfrac{\varepsilon_0}{a_1 + \cfrac{\varepsilon_1}{\ddots + a_{n-1} + \cfrac{\varepsilon_{n-1}}{a_n}}}$$

Set $\tau_n^{(1/2)}(x)$ as

$$|x - \frac{p_n}{q_n}| = \frac{1}{q_n^{\tau_n^{(1/2)}(x)}},$$

we introduce the 1/2-irrationality exponent of x as

$$\tau^{(1/2)}(x) = \limsup_{n \rightarrow \infty} \tau_n^{(1/2)}(x).$$

Results

L., B. Martin, S. Nicolay

$$\tau^{(1/2)}(x) = \tau(x)$$

for all $x \in \mathbb{R} \setminus \mathbb{Q}$.

L., B. Martin, S. Nicolay

Let $p \in [1, \infty)$; the p -exponents of \mathfrak{B} are given by

$$h_p(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q}, \\ 1/\tau(x) & \text{otherwise.} \end{cases}$$

General α

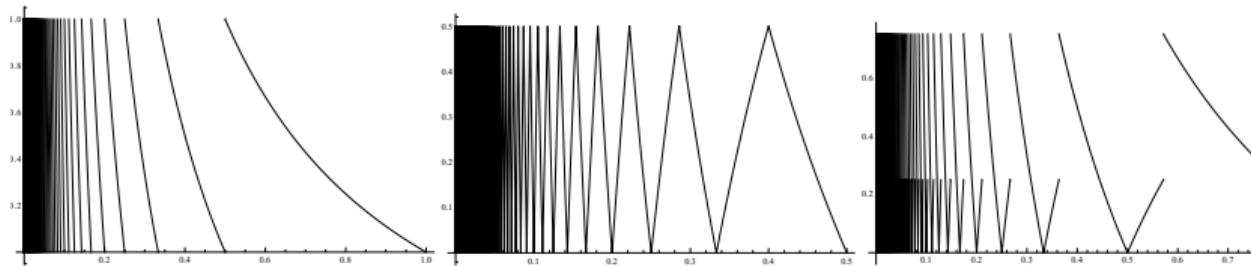


Figure 4: $A_\alpha : (0, \alpha] \rightarrow [0, \alpha]$ with resp. $\alpha = 1$, $\alpha = 1/2$ and $\alpha = 3/4$.

Admissible α :

$$\alpha \in \left\{ \frac{1}{2}, \frac{\sqrt{5}-1}{2}, 1 \right\} \cup \left\{ 1 - \frac{1}{k}, k \geq 3 \right\} \cup \left\{ \frac{-k + \sqrt{k^2 + 4k}}{2}, k \geq 2 \right\}.$$

Minkowski question mark function

Construction of M

Set $M(0) = 0$ and $M(1) = 1$. Then, for the mediant $\frac{1}{2} = \frac{0+1}{1+1}$, set

$$M\left(\frac{1}{2}\right) = M\left(\frac{0+1}{1+1}\right) = \frac{M(0) + M(1)}{2} = \frac{1}{2}.$$

Similarly,

$$M\left(\frac{1}{3}\right) = M\left(\frac{0+1}{1+2}\right) = \frac{M(0) + M(1/2)}{2} = \frac{1}{4}$$

and

$$M\left(\frac{2}{3}\right) = M\left(\frac{1+1}{2+1}\right) = \frac{M(1/2) + M(1)}{2} = \frac{3}{4}.$$

In general, if two consecutive fractions p/q and \tilde{p}/\tilde{q} are defined, we et

$$M\left(\frac{p+\tilde{p}}{q+\tilde{q}}\right) = \frac{M(p/q) + M(\tilde{p}/\tilde{q})}{2}.$$

Construction of M

If $x = [a_0, a_1, a_2, \dots]$ is irrational, then we define

$$M(x) = a_0 + 2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2^{a_1+\dots+a_k}}.$$

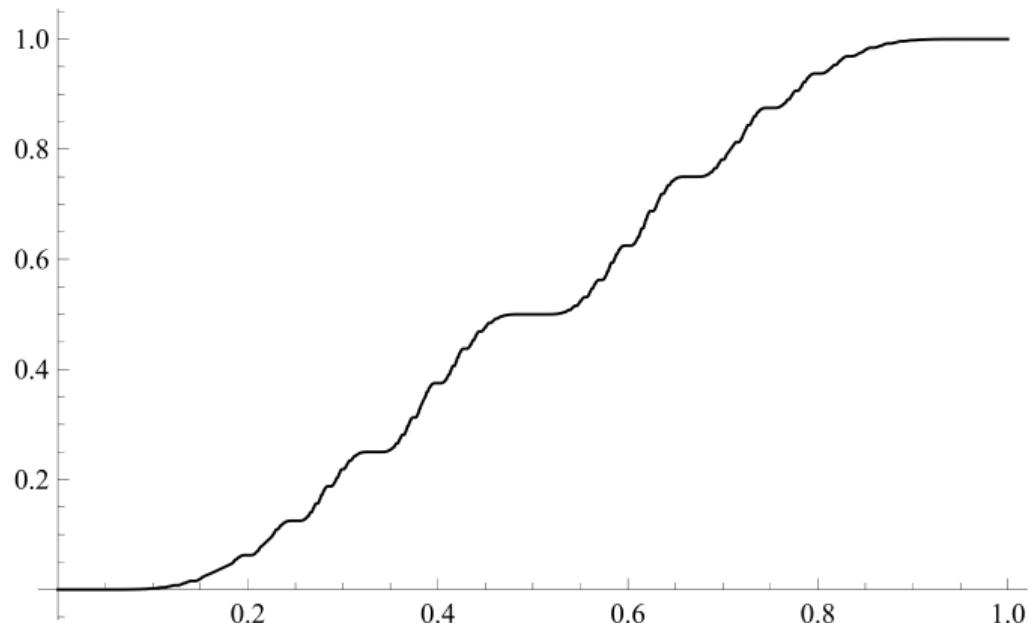
If $x = [a_0, a_1, a_2, \dots, a_m]$ is rational, then we define

$$M(x) = a_0 + 2 \sum_{k=1}^m \frac{(-1)^{k+1}}{2^{a_1+\dots+a_k}}.$$

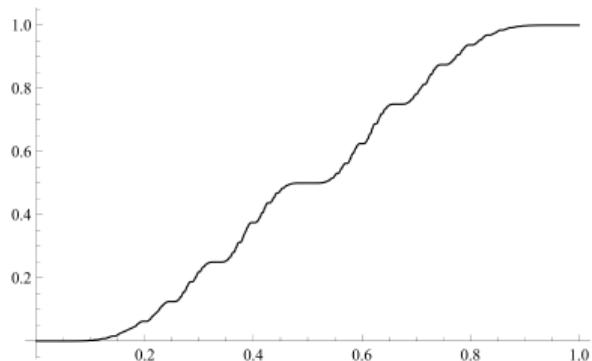
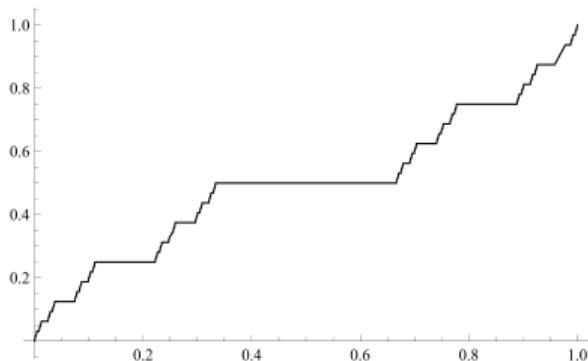
Example :

$$M(1/\varphi) = M([0, 1, 1, \dots]) = \sum_{k \geq 1} \frac{(-1)^{k-1}}{2^{k+1}} = \frac{2}{3}.$$

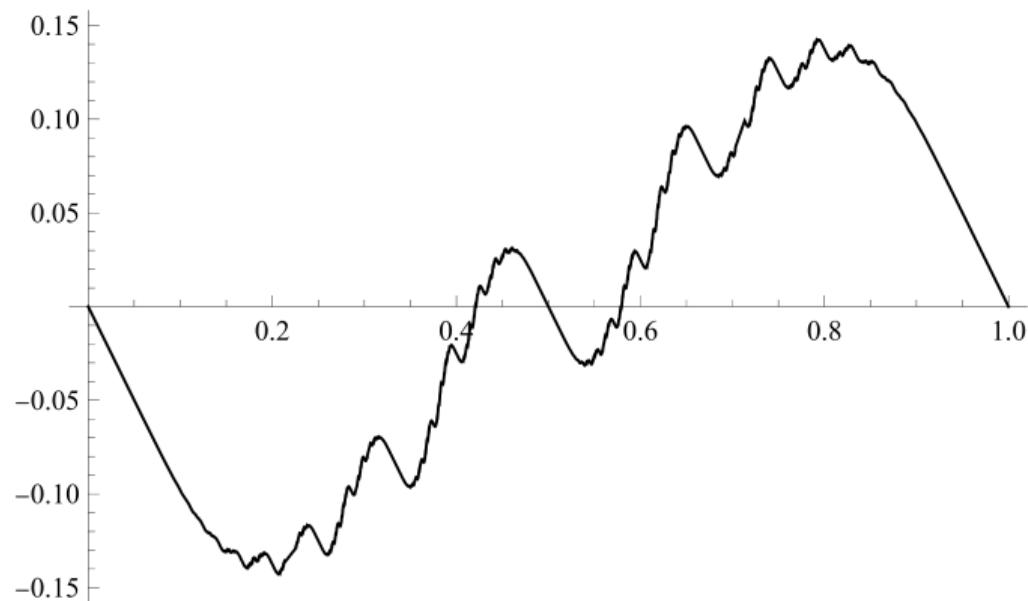
Graph of M



Comparaison with the Cantor staircase function



Graph of M –id



Regularity of M

Global regularity

M belongs to the space $\Lambda^{\frac{\log 2}{2 \log \varphi}}(\mathbb{R})$. Therefore, for all $x \in \mathbb{R}$,

$$h(x) \geq \frac{\log 2}{2 \log \varphi}.$$

This lower bound cannot be improved since $h(1/\varphi) = \frac{\log 2}{2 \log \varphi}$.

Regularity of M

Pointwise regularity

Let $x \in (0, 1) \setminus \mathbb{Q}$, if

$$a_1(x) + \dots + a_n(x) < \frac{n \log 2}{2 \log \varphi}$$

for sufficiently large n , then

$$h(x) \in \left[\frac{\log 2}{2 \log \varphi}, 1 \right].$$

If

$$a_1(x) + \dots + a_n(x) > \kappa_2 n$$

for sufficiently large n , then

$$h(x) \geq 1,$$

where $\kappa_2 \simeq 4.401$.

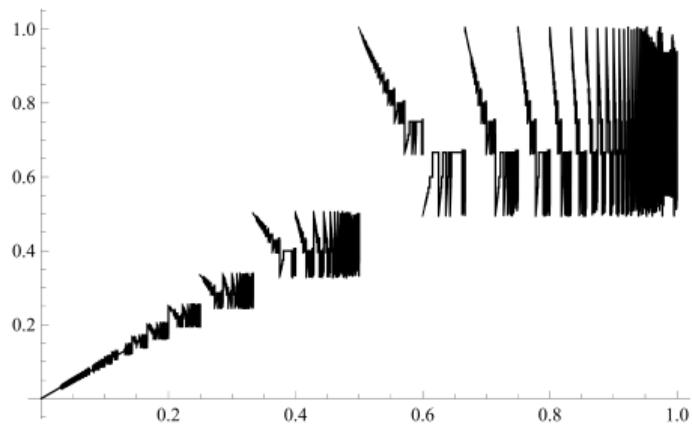
Cantor functions

Definitions and graphs of \mathcal{C}

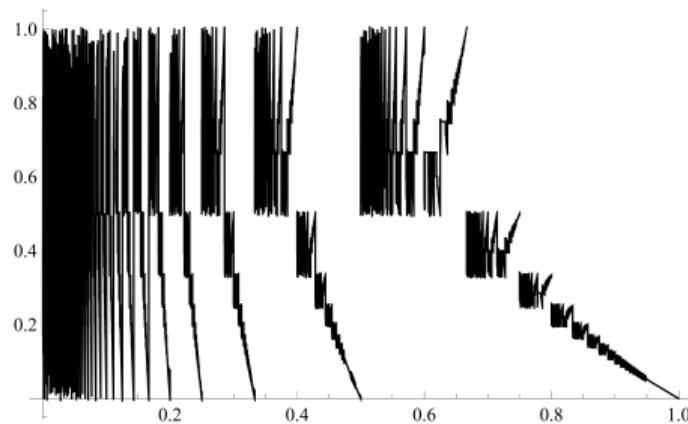
Let $I = (0, 1) \setminus \mathbb{Q}$.

$$\mathcal{C} : I \mapsto I^2 : x = [a_0, a_1, a_2, a_3, \dots] \mapsto (\mathcal{C}_1(x), \mathcal{C}_2(x)),$$

where $\mathcal{C}_1(x) = [a_1, a_3, \dots]$ and $\mathcal{C}_2(x) = [a_2, a_4, \dots]$.



\mathcal{C}_1 and \mathcal{C}_2 .



Regularity of \mathcal{C}

Pointwise Regularity

For almost all $x \in I$,

$$h^{(\mathcal{C}_1)}(x), h^{(\mathcal{C}_2)}(x) \in \left[\frac{\log \kappa_0}{2 \log \kappa_1}, \frac{\log \kappa_1}{2 \log \kappa_0} \right].$$

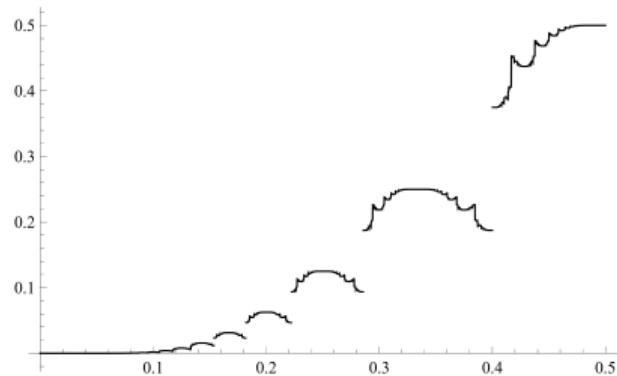
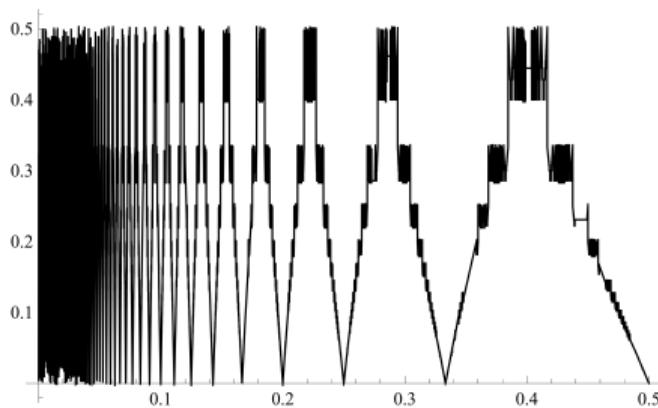
Let x_1, x_2, x_3 defined by

$$a_j(x_1) = \begin{cases} 2^j & j \text{ even,} \\ 1 & j \text{ odd,} \end{cases} \quad a_j(x_2) = 2^j, \quad a_j(x_3) = \begin{cases} 1 & j \text{ even,} \\ 2^j & j \text{ odd,} \end{cases}$$

then,

$$h^{(\mathcal{C}_1)}(x_1) = 0, \quad h_{\infty}^{(\mathcal{C}_1)}(x_2) = 1/2, \quad h^{(\mathcal{C}_1)}(x_3) = 1.$$

Minkowski and Cantor using NCFE



Perspectives

Pointwise regularity of

- ▶ Investigations of modified versions of Thomae's type functions
- ▶ Brjuno functions
- ▶ Minkowski function
- ▶ Cantor function
- ▶ General functions of the form

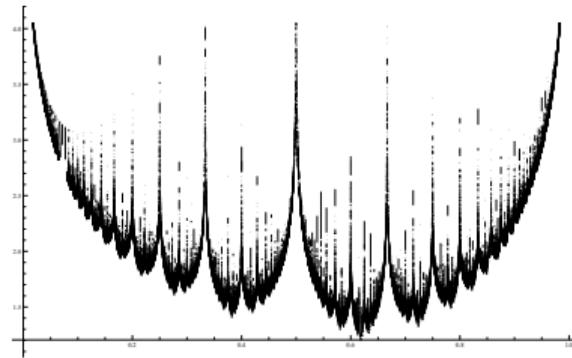
$$f(x) = \sum_{n \geq 0} f_1(x, n) f_2(x, n),$$

where f_1 is linked to an iteration of a transformation that involves the position of real numbers relative to nearby integers, and f_2 plays the role of a singularity.

Perspectives

$$f(x) = \sum_{n \geq 0} f_1(x, n) f_2(x, n),$$

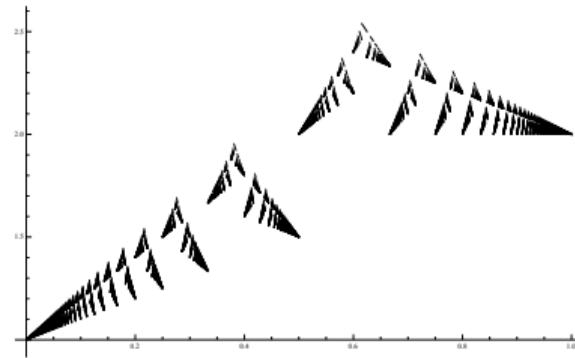
$f_1(x, n)$	$f_2(x, n)$	Pointwise reg of f at x
$A_1 \cdots A_1^{n-1}$	$\log(1/A_1^n)$	$1/\tau(x)$
$A_1 \cdots A_1^{n-1}$	1	$1/\tau(x)$
$(A_1 \cdots A_1^{n-1})^\theta$	$\log(1/A_1^n)$	$\theta/\tau(x)$
$A_\alpha \cdots A_\alpha^{n-1}$	$\log(1/A_\alpha^n)$	$1/\tau(x)$
$(-1)^n A_1 \cdots A_1^{n-1}$	$\log(1/A_1^n)$	$1/\tau(x)$
$S \cdots S^{n-1}$	$\log(1/S^n)$?



Perspectives

$$f(x) = \sum_{n \geq 0} f_1(x, n) f_2(x, n),$$

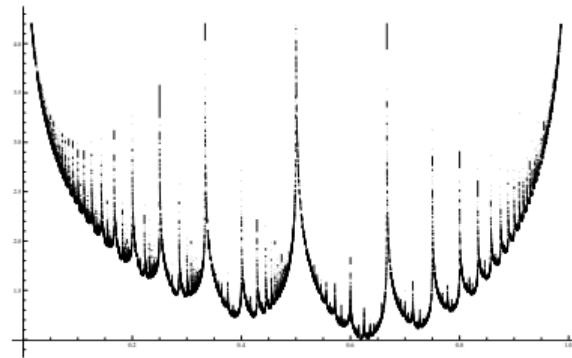
$f_1(x, n)$	$f_2(x, n)$	Pointwise reg of f at x
$A_1 \cdots A_1^{n-1}$	$\log(1/A_1^n)$	$1/\tau(x)$
$A_1 \cdots A_1^{n-1}$	1	$1/\tau(x)$
$(A_1 \cdots A_1^{n-1})^\theta$	$\log(1/A_1^n)$	$\theta/\tau(x)$
$A_\alpha \cdots A_\alpha^{n-1}$	$\log(1/A_\alpha^n)$	$1/\tau(x)$
$(-1)^n A_1 \cdots A_1^{n-1}$	$\log(1/A_1^n)$	$1/\tau(x)$
$S \cdots S^{n-1}$	$\log(1/S^n)$?



Perspectives

$$f(x) = \sum_{n \geq 0} f_1(x, n) f_2(x, n),$$

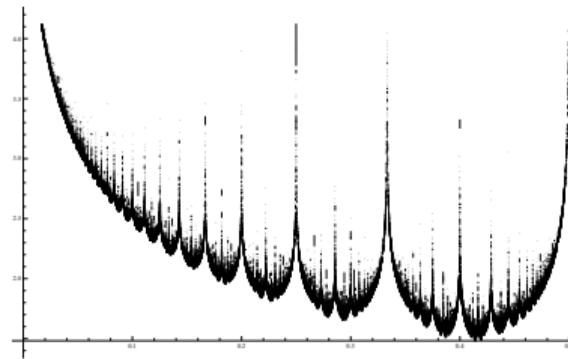
$f_1(x, n)$	$f_2(x, n)$	Pointwise reg of f at x
$A_1 \cdots A_1^{n-1}$	$\log(1/A_1^n)$	$1/\tau(x)$
$A_1 \cdots A_1^{n-1}$	1	$1/\tau(x)$
$(A_1 \cdots A_1^{n-1})^\theta$	$\log(1/A_1^n)$	$\theta/\tau(x)$
$A_\alpha \cdots A_\alpha^{n-1}$	$\log(1/A_\alpha^n)$	$1/\tau(x)$
$(-1)^n A_1 \cdots A_1^{n-1}$	$\log(1/A_1^n)$	$1/\tau(x)$
$S \cdots S^{n-1}$	$\log(1/S^n)$?



Perspectives

$$f(x) = \sum_{n \geq 0} f_1(x, n) f_2(x, n),$$

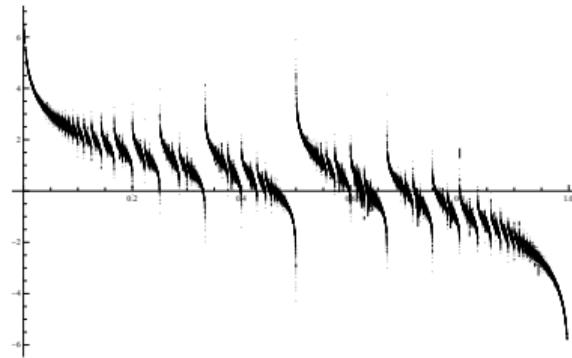
$f_1(x, n)$	$f_2(x, n)$	Pointwise reg of f at x
$A_1 \cdots A_1^{n-1}$	$\log(1/A_1^n)$	$1/\tau(x)$
$A_1 \cdots A_1^{n-1}$	1	$1/\tau(x)$
$(A_1 \cdots A_1^{n-1})^\theta$	$\log(1/A_1^n)$	$\theta/\tau(x)$
$A_\alpha \cdots A_\alpha^{n-1}$	$\log(1/A_\alpha^n)$	$1/\tau(x)$
$(-1)^n A_1 \cdots A_1^{n-1}$	$\log(1/A_1^n)$	$1/\tau(x)$
$S \cdots S^{n-1}$	$\log(1/S^n)$?



Perspectives

$$f(x) = \sum_{n \geq 0} f_1(x, n) f_2(x, n),$$

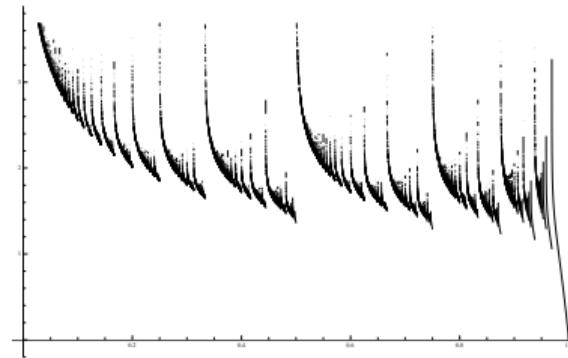
$f_1(x, n)$	$f_2(x, n)$	Pointwise reg of f at x
$A_1 \cdots A_1^{n-1}$	$\log(1/A_1^n)$	$1/\tau(x)$
$A_1 \cdots A_1^{n-1}$	1	$1/\tau(x)$
$(A_1 \cdots A_1^{n-1})^\theta$	$\log(1/A_1^n)$	$\theta/\tau(x)$
$A_\alpha \cdots A_\alpha^{n-1}$	$\log(1/A_\alpha^n)$	$1/\tau(x)$
$(-1)^n A_1 \cdots A_1^{n-1}$	$\log(1/A_1^n)$	$1/\tau(x)$
$S \cdots S^{n-1}$	$\log(1/S^n)$?



Perspectives

$$f(x) = \sum_{n \geq 0} f_1(x, n) f_2(x, n),$$

$f_1(x, n)$	$f_2(x, n)$	Pointwise reg of f at x
$A_1 \cdots A_1^{n-1}$	$\log(1/A_1^n)$	$1/\tau(x)$
$A_1 \cdots A_1^{n-1}$	1	$1/\tau(x)$
$(A_1 \cdots A_1^{n-1})^\theta$	$\log(1/A_1^n)$	$\theta/\tau(x)$
$A_\alpha \cdots A_\alpha^{n-1}$	$\log(1/A_\alpha^n)$	$1/\tau(x)$
$(-1)^n A_1 \cdots A_1^{n-1}$	$\log(1/A_1^n)$	$1/\tau(x)$
$S \cdots S^{n-1}$	$\log(1/S^n)$?



Thank you for your attention !