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Notions of Regularity



Weierstrass function
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For all t ∈ R,

h(t) = −
log a
log b

.
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Cantor staircase function

d(h) =


log 2
log 3 if h = log 2

log 3 ,

1 if h = ∞,

−∞ otherwise .
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Riemann function

d(h) =


4h− 2 if h ∈ [1/2, 3/4],

0 if h = 3/2,
−∞ otherwise .
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Hölder

∥f−P∥L∞(B(x0,r))≤Crα

Weighted Hölder

∥f−P∥L∞(B(x0,r))≤Cϕ(r)

Calderon-Zygmund
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Let x0 ∈ Rd, p ∈ [1,∞], α > −d/p, a function f ∈ Lploc is in Tpα(x0) if there exist a constant C > 0 and a polynomial P of
degree strictly smaller than α such that

r−d/p∥f − P∥Lp(B(x0,r)) ≤ Crα

for sufficiently small r.

p-exponent

hp(x0) := sup{α > −d/p : f ∈ Tpα(x0)}.

p-spectrum

dp(h) = dimH({x ∈ Rd : hp(x) = h}).
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"Nowhere Regularity"

▶ Nowhere Continuous Functions :

D(x) = χQ(x) =

{
1 if x ∈ Q,

0 if x is irrational.

▶ Nowhere Differentiable Functions :

T(x) =


1 if x = 0,
q−1 if x is rational with x = p/q, gcd(p, q) = 1,
0 if x is irrational.
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Thomae’s-type functions



Thomae’s-type functions
Let θ > 0,

Tθ(x) =


1 if x = 0,
q−θ if x is rational with x = p/q, gcd(p, q) = 1,
0 if x is irrational.

Figure 1: Representation of the function Tθ on (0, 1) for θ = 1/2, 1 and 2.
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Periodicity

Proposition
The Thomae function is periodic with period 1.
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Rational-Irrational Dichotomy

Proposition
The function Tθ is discontinuous at rational points and continuous at irrational points.
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Differentiability

Proposition
Let f be a function on R that is positive on the rationals and 0 on the irrationals. Then, there is an uncountable dense set
of irrationals on which f is not differentiable.

Proposition
Let (aj)j be a sequence of R \ Q. Then there exists a function that is positive on the rationals, zero on the irrationals, and
differentiable at each point aj.
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Rational Approximations

τ(x) = sup
{
u : ∃ an infinity of coprime pairs (p, q) ∈ Z× N :

∣∣∣x − p
q

∣∣∣ < 1
qu

}
.

Dirichlet’s Theorem
Let x be a real number and n a positive integer. Then there is a rational number p/qwith 0 < q ≤ n, satisfying∣∣∣∣x − p

q

∣∣∣∣ ≤ 1
(n+ 1)q

.

Corollary
Given any real number x, there exists a rational number p/q such that∣∣∣∣x − p

q

∣∣∣∣ < 1
q2 .
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Rational Approximations

Theorem
Let x ∈ R\Q, then there are infinitely many rational numbers p/q such that∣∣∣∣x − p

q

∣∣∣∣ < 1
q2 .

Hurwitz’s Theorem
(i) Let x ∈ R\Q, there are infinitely many rational numbers p/q such that∣∣∣∣x − p

q

∣∣∣∣ < 1
√

5 q2
.

(ii) If
√

5 is replaced by C >
√

5, then there are irrational numbers x for which statement (i) does not hold.
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Rational Approximations

Theorem
Let ε > 0. For almost every x ∈ [0, 1], there exist only finitely many rational numbers p/q such that∣∣∣∣x − p

q

∣∣∣∣ < 1
q2+ε

.
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Differentiability

Proposition
For θ ∈ (0, 2], Tθ is not differentiable at any point.
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Differentiability at 0
We put Tθ(0) = 1 in order to have the periodicity. Consider

T̃θ(x) =

{
q−θ if x is rational with x = p/q, gcd(p, q) = 1,
0 if x is irrational or x = 0.

As one might expect, T̃θ becomes continuous at 0 and the dichotomy no longer holds. A more interesting fact is that T̃θ
becomes differentiable at 0 for θ > 1.

Indeed, if the derivative at 0 exists, it must be equal to 0. Thus, we must show that if
ε > 0, there exists a δ > 0 such that

x ∈ (−δ, δ) =⇒

∣∣∣∣∣ T̃θ(x)− T̃θ(0)
x − 0

∣∣∣∣∣ =
∣∣∣∣∣ T̃θ(x)x

∣∣∣∣∣ < ε.

If x is irrational, then this difference quotient is equal to 0 < ε. Suppose x is a nonzero rational number. There exists a
positive integer n such that 1

nθ−1 < ε. There exists a δ > 0 such that every nonzero rational number in the interval (−δ, δ)

has denominator q > n. Thus, if x = p
q with gcd(p, q) = 1, then for |x| < δ we have q > n, and hence:∣∣∣∣∣ T̃θ(x)x

∣∣∣∣∣ =
∣∣∣∣q−θ

p/q

∣∣∣∣ = ∣∣∣∣ 1
pqθ−1

∣∣∣∣ < ε.

Therefore, the difference quotient is less than ε for all x ∈ (−δ, δ), and the derivative of T̃θ at 0 exists and equals 0.
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Regularity of Tθ

▶ Tθ is discontinuous at rational points and continuous at irrational points.

▶ For θ ∈ (0, 2], Tθ is not differentiable at any point.
▶ Exact regularity of Tθ at each of its points ?
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Pointwise Regularity of Tθ
Lemma
Let θ, α > 0 and x ∈ (0, 1) \ Q. If Tθ ∈ Λα(x), then the polynomial P of degree less than α appearing in Definition of
Λα(x) must necessarily be the zero polynomial.

Theorem
Let θ > 0, then

hTθ (x) =

{
0 if x ∈ Q,

θ/τ(x) otherwise,

where
τ(x) = sup

{
u : ∃ an infinity of coprime pairs (p, q) ∈ Z× N :

∣∣∣∣x − p
q

∣∣∣∣ < 1
qu

}
.

▶ If θ < 2, Tθ is nowhere differentiable.
▶ T2 is nowhere differentiable and hT2 = 1 almost everywhere !
▶ When θ > 2, Tθ is differentiable at x0 when τ(x0) < θ. For example, T9 is differentiable at algebraic irrationals

numbers, e, π, π2, ln(2).
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Spectrum of Tθ

Jarnik’s Theorem
Let a, b ∈ R with a < b, τ ≥ 2, then

dimH({x ∈ [a, b] : τ(x) = t}) =
2
t

∀t ∈ [2,∞] .

Theorem
The Hölder-spectrum is given by

dTθ (h) =

{
2h
θ

if h ∈ [0, θ/2],
−∞ otherwise.
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Bigger class of Thomae’s type functions

We consider continuous functions ϕ : (0, 1) → (0,∞) such that

0 < ϕ(t) := inf
s<1

ϕ(ts)
ϕ(s)

≤ ϕ(t) := sup
s<1

ϕ(ts)
ϕ(s)

< ∞,

for any t < 1. The lower and upper indices of ϕ are defined by

s(ϕ) = lim
t→0

log ϕ(t)
log t

and s(ϕ) = lim
t→0

log ϕ(t)
log t

.

We define

Tϕ(x) =


1 if x = 0,
ϕ(1/q) if x = p/q,
0 if x is irrational,

where s(ϕ) = s(ϕ) = θ ∈ (0, 2].
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Bigger class of Thomae’s type functions
For example, one can consider

Tlog(x) =


1 if x = 0,
log(q)
q if x = p/q,

0 if x is irrational.

Figure 2: Representation of the function Tlog on (0, 1).
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Bigger class of Thomae’s type functions

▶ What about s(ϕ) < s(ϕ) ?
▶ Negatives indices ?
▶ Interchange the dichotomy ?
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Different indices
For example, define

ϕ(t) =

{
tα if t ∈ (0, s],
tβ if t ∈ (s, 1).

⇝ Only few particular points. A more complex example : consider the increasing sequence (jn)n defined by
j0 = 0,
j1 = 1,
j2n = 2j2n−1 − j2n−2,

j2n+1 = 2j2n .

Then, define

σj :=

{
2j2n if j2n ≤ j ≤ j2n+1,
2j2n4j−j2n+1 if j2n+1 ≤ j < j2n+2.

The sequence σ oscillates between (j)j and (2j)j. By setting

ϕ(t) =
1/σj − 1/σj+1

2j
(t − 2−j−1) + 1/σj+1 if t ∈ (2−j−1, 2−j],

we have s(ϕ) = 0 and s(ϕ) = 1.⇝ Partial Results : hTϕ (x) ∈ [s(ϕ)/τ(x), s(ϕ)/τ(x)] if x ∈ R\Q.
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θ < 0

0.0 0.2 0.4 0.6 0.8 1.0

50

100

150

200

Figure 3: Representation of the function T−1 on (0, 1).

▶ Easy construction of a nowhere locally bounded function.

▶
∫
R Tθ(x)dx =

∫
R\Q Tθ(x)dx = 0.⇝ Notion of p-exponents not adapted.
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Interchange the dichotomy?

Is there a function that is continuous on the rational numbers and discontinuous on the irrational numbers ?

⇝ No, since the set of discontinuities of a function R → R is always a Fσ-set.
Starting from a Fσ subset of R, A :=

⋃
n Fn, we define

TA(x) =


1/n if x rational and n is minimal s.t. x ∈ Fn,
−1/n if x irrational and n is minimal s.t. x ∈ Fn,
0 if x /∈ A.

The set of discontinuities of TA is given by A.
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Brjuno functions



Brjuno number

Let x ∈ R\Q and let (pn/qn)n≥0 be the sequence of the convergents of its continued fraction expansion. A Brjuno number
is an irrational number x such that ∑

n≥0

log qn+1

qn
< ∞.

The importance of Brjuno numbers comes from the study of one–dimensional analytic small divisors problems. In the case
of germs of holomorphic diffeomorphisms of one complex variable with an indifferent fixed point, extending a previous
result of Siegel, Brjuno proved that all germs with linear part e2πix are linearizable if x is a Brjuno number.
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Gauss map

A : (0, 1) → [0, 1] x 7→ |
1
x
− ⌊

1
x
⌋|.
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Brjuno function

0.2 0.4 0.6 0.8 1.0

1.5

2.0
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4.0

B : R \ Q → R x 7→ −
∞∑
n=0

x0x1...xn−1 log xn,

where x0 = |x − ⌊x⌋| and xn+1 = A(xn).
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Regularity of B

S. Jaffard, B. Martin
Let p ∈ [1,∞); the p-exponents of B are given by

h(B)p (x) =

{
0 if x ∈ Q,

1/τ(x) otherwise.

Moreover, the p-spectrum is given by

dp(h) =

{
2h si h ∈ [0, 1/2],
−∞ sinon.
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Modified Gauss map associated to the NCFE

A1/2 : (0, 1/2) → [0, 1/2] x 7→ |
1
x
− [

1
x
]1/2|,

where [y]1/2 = ⌊y + 1/2⌋.

A1/2 and A.
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Brjuno function B1/2

B : R \ Q → R x 7→ −
∞∑
n=0

x0x1...xn−1 log xn,

where x0 = |x − [x]1/2| and xn+1 = A1/2(xn).
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Difference B− B1/2
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NCFE

Set x0 = |x − [x]1/2| and a0 = [x]1/2. Consequently, x0 = a0 + ε0x0, where

ε0 =

{
1 if x ≥ a0,

−1 otherwise.

This initialization defines xn+1 = A1/2(xn) and

an+1 = [
1
xn

]1/2 ≥ 1,

for n ∈ N0 if it is meaningful. Subsequently, x−1
n = an+1 + εn+1xn+1, where

εn+1 =

{
1 if x−1

n ≥ an+1,

−1 otherwise.
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NCFE

The n-th α-convergent of x is given by

pn
qn

= [(a0, ε0), . . . , (an−1, εn−1), an] = a0 +
ε0

a1 +
ε1

. . . + an−1 +
εn−1

an

Set τ (1/2)
n (x) as

|x −
pn
qn

| =
1

qτ
(1/2)
n (x)
n

,

we introduce the 1/2-irrationality exponent of x as

τ (1/2)(x) = lim sup
n→∞

τ
(1/2)
n (x).
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Results

L., B. Martin, S. Nicolay

τ (1/2)(x) = τ(x)

for all x ∈ R \ Q.

L., B. Martin, S. Nicolay
Let p ∈ [1,∞); the p-exponents of B are given by

hp(x) =

{
0 if x ∈ Q,

1/τ(x) otherwise.
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General α
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Figure 4: Aα : (0, α) → [0, α] with resp. α = 1, α = 1/2 and α = 3/4.

Admissible α :

α ∈
{

1/2,
√

5 − 1
2

, 1
}
∪
{

1 −
1
k
, k ≥ 3

}
∪
{−k +

√
k2 + 4k

2
, k ≥ 2

}
.
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Minkowski question mark function



Construction ofM

SetM(0) = 0 andM(1) = 1. Then, for the mediant 1
2 = 0+1

1+1 , set

M(
1
2
) = M(

0 + 1
1 + 1

) =
M(0) + M(1)

2
=

1
2
.

Similarly,

M(
1
3
) = M(

0 + 1
1 + 2

) =
M(0) + M(1/2)

2
=

1
4

and
M(

2
3
) = M(

1 + 1
2 + 1

) =
M(1/2) + M(1)

2
=

3
4
.

In general, if two consecutive fractions p/q and p̃/q̃ are defined, we et

M(
p+ p̃
q+ q̃

) =
M(p/q) + M(p̃/q̃)

2
.
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Construction ofM

If x = [a0, a1, a2, ...] is irrational, then we define

M(x) = a0 + 2
∞∑
k=1

(−1)k+1

2a1+...+ak
.

If x = [a0, a1, a2, ..., am] is rational, then we define

M(x) = a0 + 2
m∑
k=1

(−1)k+1

2a1+...+ak
.

Example :

M(1/φ) = M([0, 1, 1, ...]) =
∑
k≥1

(−1)k−1

2k+1 =
2
3
.
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Graph ofM
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Comparaison with the Cantor staircase function
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Graph ofM−id
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Regularity ofM

Global regularity

M belongs to the space Λ
log 2

2 log φ (R). Therefore, for all x ∈ R,

h(x) ≥
log 2

2 logφ
.

This lower bound cannot be improved since h(1/φ) = log 2
2 logφ

.
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Regularity ofM

Pointwise regularity
Let x ∈ (0, 1)\Q, if

a1(x) + ...+ an(x) <
n log 2
2 logφ

for sufficiently large n, then

h(x) ∈ [
log 2

2 logφ
, 1].

If
a1(x) + ...+ an(x) > κ2n

for sufficiently large n, then
h(x) ≥ 1,

where κ2 ≃ 4.401.
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Cantor functions



Definitions and graphs of C

Let I = (0, 1)\Q.
C : I 7→ I2 : x = [a0, a1, a2, a3, ...] 7→ (C1(x), C2(x)),

where C1(x) = [a1, a3, ...] and C2(x) = [a2, a4, ...].

C1 and C2.
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Regularity of C

Pointwise Regularity
For almost all x ∈ I,

h(C1)(x), h(C2)(x) ∈ [
log κ0

2 log κ1
,
log κ1

2 log κ0
].

Let x1, x2, x3 defined by

aj(x1) =

{
2j j even,
1 j odd,

aj(x2) = 2j, aj(x3) =

{
1 j even,
2j j odd,

then,
h(C1)(x1) = 0, h(C1)

∞ (x2) = 1/2, h(C1)(x3) = 1.
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Minkowski and Cantor using NCFE
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Perspectives

Pointwise regularity of

▶ Investigations of modified versions of Thomae’s type functions
▶ Brjuno functions
▶ Minkowski function
▶ Cantor function
▶ General functions of the form

f(x) =
∑
n≥0

f1(x, n) f2(x, n),

where f1 is linked to an iteration of a transformation that involves the position of real numbers relative to nearby
integers, and f2 plays the role of a singularity.
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Perspectives
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Thank you for your attention !
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