ContractTrace: Retracing Smart Contract Versions
for Security Analyses

Fatou Ndiaye Mbodji', Boladji Vinny Adjibi?, Moustapha Awwalou Diouf’,
Gervais Mendy?, Kui Liu*, Jacques Klein!, Tegawendé F. Bissyandé'
'SnT — University of Luxembourg, >Georgia Institute of Technology, *Université Cheikh Anta Diop, *“Huawei

Abstract—Due to the inherent immutability of blockchain
technology, smart contract updates require their deployment
at new addresses rather than modifying existing ones, thus
fragmenting version histories and creating critical blind spots for
analyses. Indeed, for example, this fragmentation severely hinders
security researchers’ ability to track wvulnerability lifecycles
across contract versions. While platforms like Etherscan provide
detailed information about Ethereum smart contracts, they lack
crucial functionality to trace predecessor-successor relationships
within smart contract lineages, preventing systematic analysis of
how vulnerabilities emerge, propagate, and potentially remain
unresolved across versions.

To address the challenge of tracing smart contract lineages, we
adopt a Design Science Research (DSR) approach and introduce
ContractTrace, an automated infrastructure that accurately
identifies and links versions of smart contracts into coherent
lineages. This tool enables the construction of lineageSet, an
up-to-date, open-source dataset specifically designed to support
security research on vulnerability, defect or any other property’s
evolution patterns in smart contracts.

Through a security-focused case study we demonstrate how
ContractTrace reveals previously obscured vulnerability life-
cycles within smart contract lineages, tracking whether critical
security flaws persist or get resolved across versions. This ca-
pability is essential for understanding vulnerability propagation
patterns and evaluating the effectiveness of security patches in
blockchain environments. In the evaluation phase of our DSR
approach, we validated our lineage detection methodology against
an alternative approach using Locality-Sensitive Hashing (LSH)
to cluster contract versions, confirming the security relevance
and accuracy of our technique.

Index Terms—Smart contracts, versions, Ethereum

I. INTRODUCTION

Smart contracts, self-executing programs deployed on
blockchains, have gained traction across industries like fi-
nance, healthcare, and real estate, where trust, security, and
reliability are paramount. However, the inherent immutability
of blockchain technology presents considerable challenges
when tracking the evolution of these contracts. Therefore, up-
dates to smart contracts require deployment to new addresses,
effectively severing the links between different versions. This
complicates the tracing of contract lineages as a sequence
of versions of the same smart contract. In the literature,
authors leveraging lineages for smart contract analyses claim
to build on similarity metrics for building such lineages [1],
[2]. We postulate that, due to the heavy reuse of code across
smart contracts [3], illustrated by the high rates of code
duplication within the Ethereum ecosystem, as well as the
overall similarity of smart contract behaviors, similarity-based

approaches will lead to unreliable lineages. Unfortunately,
datasets described in the literature are not shared with the
community for assessment or even reuse, hindering broad
research on smart contract evolution.

To address the literature gap on smart contract lineages, we
propose to build a large-scale, extensible, and open dataset
of smart contracts where lineages are tracked. To that end,
we rely on a conservative approach based on the concept of
proxy in smart contract deployment. Proxy contracts, which
act as intermediaries and redirect users to the latest contract
version, offer a solution to the immutability problem in terms
of interaction with the smart contract new versions. Unfortu-
nately, even with proxies, establishing lineage across different
contract addresses remains difficult. Existing platforms of
smart contracts corpora, like Etherscan and smart-corpus [4]
provide detailed information about deployed contracts but do
not explicitly trace predecessor-successor relationships.

In this paper, we introduce ContractTrace, an in-
frastructure designed to identify and collect smart contract
lineages systematically. ContractTrace leverages proxy
contracts to trace contract updates accurately and produces
lineageSet, a comprehensive and open-source dataset of smart
contract lineages. This dataset facilitates large-scale research
on contract evolution and provides new insights into how smart
contracts are maintained and updated over time. Currently,
lineageSet contains 1055 smart contracts distributed across
347 lineages. It is openly available on Github:

https://anonymous.4open.science/r/sclineages-A9A2

Community Benefits. Our infrastructure serves as a valuable
resource for software engineering and security research, offer-
ing a comprehensive dataset of linked smart contract versions
that can be leveraged for various analytical purposes. This
enables researchers to explore contract evolution, vulnerability
management, and the reliability of existing lineage construc-
tion techniques.

o Case study #: Identifying vulnerability life-cycle for
smart contracts. Vulnerability fixes in software are often
silent. Since lineageSet includes lineages of production
smart contracts, we apply vulnerability detection tools on
the different versions of the lineages to retrieve the code
changes that have led to vulnerability warning apparitions
and disappearances.

« Evaluation: Revisiting the reliability of similarity-based
construction of smart contracts. Given the conservative

https://anonymous.4open.science/r/sclineages-A9A2

way lineageSet was built, we can consider it as ground
truth for validating approaches for lineage construction.
we assess the reliability of similarity computation as
proposed in prior literature. We consider the Locality-
Sensitive Hashing (LSH) method implemented in the
Etherscan search engine as a similarity computation
model. This evaluation is for validating the relevance of
our methodology.

Overall, the main contributions of our work are as follows:

1y

2)

ContractTrace: we propose a straightforward but
novel approach for building lineages, leveraging proxy
contracts to ensure accurate lineage tracking, and over-
coming the challenges associated with blockchain im-
mutability.

lineageSet: we present lineageSet, a comprehensive and
open-source dataset of smart contract lineages. This rich
dataset stands out in the literature due to its:

a) Extensive Scope: Encompassing 1,055 smart con-
tracts lineageSet provides a vast landscape for
research exploration.

b) Open Accessibility: In contrast with prior work that
has built lineages, lineageSet is freely available on
GitHub and will foster reproduction studies and
collaboration to advance research on smart contract
analysis.

¢) Ground-Truth Foundation: Due to its conservative
construction method, lineageSet serves as a reliable
benchmark for validating future lineage construc-
tion approaches.

d) Security analysis: lineageSet serves to examine the
vulnerability life-cycle in smart contracts, allow-
ing for a detailed analysis of how vulnerabilities
emerge and are resolved across contract versions.

In the following section, we define and present key
concepts used throughout the paper. We also describe
our research method, Design Science Research (DSR),
which is applied in the subsequent sections, followed by
the discussion, related works, and finally, the conclusion.

II. BACKGROUND AND FOUNDATION
A. Ethereum Smart Contract

In 1997, Szabo envisioned smart contracts as self-
executing programs that automate agreements between
parties, eliminating the need for a trusted third party [5].
The emergence of blockchain technology in 2008, as
documented in the white paper of Nakamoto [6], pro-
vided a robust platform for the implementation of smart
contracts. Blockchain technology facilitates disinterme-
diation by eliminating the need for third-party intermedi-
aries in transactions, fostering trust among participants
in a decentralized network. At its core, a blockchain
is a chronologically ordered sequence of data blocks,
referred to as a distributed ledger. This ledger is man-
aged collaboratively by a peer-to-peer (P2P) network,
ensuring decentralization and eliminating the need for

Contract A: f()

Proxy Contract implementation

(Holds Data)

Contract B: g()
implementation

Fig. 1. An Example of the Upgradable Contract from Chen et al. [8].

participants to trust each other. The integrity of the
data within the blockchain is cryptographically secured,
with each block linked to the preceding one using
a cryptographic hash, thus ensuring immutability and
tamper-proof data storage.

With the advent of blockchain technology, a smart
contract, as formally described by Nick Szabo [5], has
been effectively and fully implemented. Smart contracts
are defined as software programs that, once deployed
on a blockchain platform, automate the execution of
agreement terms between parties, thereby eliminating
the need for a third party.

Blockchain technology is currently implemented in
various platforms, our study specifically focuses on
Ethereum [7], the most prominent platform known for
its extensive use of publicly-operated smart contracts.
Ethereum offers a virtual machine capable of executing
smart contracts utilizing blockchain technology.

B. Proxy pattern: A Nuance Between Immutability and
Upgradable Smart Contracts

Smart contracts inherit the key characteristics of
blockchains, such as decentralization and immutability.
Once a smart contract is built and deployed at a specific
address, it cannot be modified. Any new version of a
contract must be redeployed at a new address.

To provide an interface for accessing updated code
without the need for the new address, a proxy pattern
can be implemented. When this pattern is applied,
users interact with the proxy contract, which cannot
be modified. However, the proxy is able to point to a
configurable address, allowing it to call another contract
known as the callee contract. Thus, the parts of the
code that are subject to change are located in the callee
contract. When an upgrade is needed, the developer
redeploys a new version of the callee contract with a new
address, and the proxy contract reconfigures its callee
contract address accordingly. Typically, an admin user
has the privilege to perform this address configuration.
Therefore, users interact with the same proxy contract
even when upgrades occur.

Fig. 1 illustrates this method, which is facilitated by
constructs proposed by smart contract programming lan-
guages. For instance, in Solidity, the delegatecall
allows a contract caller (or proxy) to use the code of a
callee contract while remaining in the global context of
the caller.

Our work builds upon this proxy concept to track smart
contract updates.

C. Smart contracts versions

Predecessor/Successor Relationships in Smart Con-
tracts: We adopt the notion of predecessor/successor
from prior work [1], where a predecessor is defined as
the most recent version preceding the successor.

Smart Contract Lineage: In this study, lineage refers
to a set of smart contracts where each contract can be
paired with another based on a predecessor/successor
relationship.

D. Computing Smart Contract Similarity:

Several reasons contribute to code cloning in deployed
smart contracts, such as deploying new versions, the
open source characteristic of many smart contracts, the
simplicity of copying code fragments instead of writing
them from scratch, etc. [3]. The literature contains
numerous studies on Ethereum smart contract code clone
detection, including clone detection techniques such as
SmartEmbed [9], Deckard [10], Nicad [11], and LSH-
based approaches [12]. The LSH-based method is imple-
mented in Etherscan, which fingerprints smart contracts
and computes their similarity levels, categorizing them
as low, medium, or high.

E. Dynamic and Up-to-Date Repositories for Smart
Contract Analysis in Empirical Software Engineering

Etherscan! is a widely used Ethereum block explorer

that allows developers to submit the source code of
their smart contracts, making this code available for
verification and transparency. This platform provides
a comprehensive database essential for developers to
verify and analyze smart contracts deployed on the
Ethereum blockchain.

Smart Corpus [4] aims to be an organized and up-to-date
repository where developers can systematically access
Solidity source code and other metadata about Ethereum
smart contracts. This repository facilitates the retrieval
of detailed information on smart contracts and their
software metrics, streamlining the process for developers
and researchers.

Tools like Etherscan and Smart Corpus, which provide
accessible and current information on smart contracts,
are crucial for advancing empirical software engineering
research. They enable a thorough understanding of real
contracts deployed on Ethereum, supporting the devel-
opment of more robust and transparent smart contracts.
These repositories offer a variety of information about
smart contracts but do not provide the lineage of con-
tracts. Our study is situated in the same context and aims
to contribute information about smart contract lineages.

Thttps://etherscan.io/

Hence, our objective is to create a repository where
access to versions of smart contracts deployed on
Ethereum is streamlined.

III. DESIGN SCIENCE RESEARCH (DSR) AS
METHOD

We follow the Design Science Research (DSR) ap-
proach. The DSR process includes six steps: problem
identification and motivation, objectives for a solution,
design and development, demonstration, evaluation, and
communication. These are the essential activities that
make up the DSR process:

a) Problem Identification and Motivation: This
phase involves defining the research problem and
justify the importance of solving it. We recognized
the challenge of tracking smart contract lineages.
As a specific example, this gap hampers the ability
to study how vulnerabilities emerge and evolve
over time. This step is developed in detail in (IV-A)
and (IV-B).

b) Define the Objectives for a Solution: The goal of
this step is to formulate solution objectives based
on the problem and feasible solutions to define the
desired outcome. In this study, we aimed to build
an infrastructure to track and link contract versions,
enabling research on their evolution and security.
Further details of this step are found in (IV-C)

c) Design and Development: This step is to create
the artifact by defining its desired functionality and
architecture. We built ContractTrace to track
smart contract lineages using proxy contracts and
created lineageSet, a dataset for research purposes.
This is covered in (V)

d) Demonstration: This step is for utilizing the arti-
fact to address real-world instances of the problem.
We applied ContractTrace in a case study on
the lifecycle of vulnerabilities in smart contracts.
This is demonstrated in (VI).

e) Evaluation: The evaluation tests the effectiveness
of the artifact. We validated our approach by ap-
plying Locality-Sensitive Hashing (LSH) for clus-
tering contract versions, confirming the approach
robustness. Details of this evaluation are in (VII)

f) Communication: The final step involves sharing
the findings and the artifacts design to relevant
stakeholders. In this paper, we consider the com-
munication step as the dissemination of results
through publication of this paper.

IV. PROBLEM, MOTIVATION, AND OBJECTIVES

This section presents the application of the first two
phases of the Design Science Research approach.

https://etherscan.io/

A. Studies Highlighting the Need for Contract Lineage
Information

Our literature review identified several studies that pro-
pose algorithms leveraging code similarity metrics for
the classification of smart contract versions.

Chen et al. [I]. The predecessor/successor concept
was used in 2021 by Chen et al. to group smart
contracts into pairs of predecessor/successor. To obtain
predecessor/successor pairs for their research question,
which was "Why do smart contracts self-destruct?”, they
consider that the predecessor had to have executed the
self-destruct function and that the successor must be
deployed by the same creator address as its predecessor,
and it must also have similar functionality to that of
the predecessor. Hence, to determine the similarity rate
between two contracts, they employed the SmartEmbed
tool [9] and chose 0.6 as the minimum value for the
similarity rate between the predecessor and successor.
To filter out false pairs, they performed a manual check.
Their work presents the following limitations: (1) Repro-
ducing their work is difficult due to manual verification.
(2) Only contract versions that executed a self-destruct
function are included in their shared dataset. (3) Another
limitation of their approach is the risk of false pre-
decessor/successor pairs due to the manual verification
process.

Huang et al. [2]. To test their technique, which involves
guiding smart contract updates by detecting code smells,
they needed lineages of smart contracts. To construct a
dataset of lineages, they used two criteria: the submis-
sion of contracts by the same creator and a similarity
degree of 0.7 or higher between the contracts. Compared
to Chen et al. , their approach requires a higher similarity
rate. However, given the strong tendencies for code
copying, using similarity to determine contract lineages
may include contracts that do not actually belong to the
lineage.

B. Motivation for Leveraging the Proxy Pattern for
Lineage Construction

Our study is motivated by the need to establish up-to-
date repositories that facilitate easy and rapid access
to versions of smart contracts. These repositories can
serve as valuable resources for analyses in studies such
as those conducted by Chen et al. [1] and Huang
et al. [2]. This dynamic approach aims to streamline
the process of accessing and analyzing smart contracts
deployed on Ethereum, thereby supporting empirical
software engineering research.

To the best of our knowledge, there is no existing
infrastructure that provides a comprehensive, openly
accessible, and systematically organized dataset of smart
contract lineages. Our main objective is to establish an
infrastructure for building a publicly available dataset of
smart contracts meticulously grouped and ordered within
their respective lineages. To ensure the integrity of the

research process and facilitate further exploration within
the smart contract analysis community, the dataset will
be both reproducible and reliable.

To address this gap, we propose an approach using the
Proxy Pattern. Given that contract calls through proxies
are trackable, we plan to leverage this feature to develop
a method for constructing lineages. This approach will
enable the creation of a comprehensive and systemat-
ically organized repository, enhancing the accessibility
and utility of smart contract data for researchers and
developers alike.

C. Objectives

Our study aims to create a comprehensive and system-
atically organized repository of smart contracts that will
be publicly available and up-to-date. By leveraging the
Proxy Pattern, we anticipate several key outcomes:

« Enhanced accessibility, allowing developers and re-
searchers to benefit from easy and rapid access to
a well-organized dataset of smart contracts, which
will facilitate empirical software engineering re-
search.

o Detailed lineage information, providing meticu-
lously grouped and ordered smart contracts within
their respective lineages, offering valuable insights
into the evolution and relationships of smart con-
tracts.

« Reproducibility and reliability, ensuring the dataset
supports the integrity of the research process and
enables further exploration within the smart contract
analysis community.

o Supporting empirical study: By providing com-
prehensive data on smart contracts deployed on
Ethereum, the repository will serve as a valuable
resource for conducting empirical studies.

Additionally, we will test the applicability of this repos-
itory in analysis scenario to demonstrate its practical
utility and effectiveness in real-world research contexts.
These results will contribute significantly to the field of
smart contract analysis, supporting the development of
more robust and transparent smart contracts.

V. ContractTrace: DESIGN AND DEVELOPMENT

This section presents the protocol for collecting smart
contract lineages, its implementation, and the resulting
infrastructure.

A. Experimental setup

Here, we present the collection of smart contracts and
the rules defined to sort them into groups according to
their belonging to the same lineage.

Step 1: Data Collection: The infrastructure relies on
Etherscan to collect smart contracts. We target the con-
tracts that are called via proxy contracts.

Targeted contracts: In our collection, we focus only
on contracts updated by using the proxy technique.

This is because, unlike other upgrade methods, proxies
inherently track interactions with the contracts they
govern. Hence, this design choice is to reduce the likeli-
hood of false positives when classifying contracts within
lineages. Unfortunately, for contracts updated without
being associated with a proxy, we have not found a
common denominator to retrieve a link between the vari-
ous versions of the same contract. Prior works retrieved
versions of contracts regardless of the technique used
to update them. Still, their approaches require manual
investigations that can be error-prone (e.g., in [1]) or
rely on design choices leading to small datasets (e.g.,
in [2]). In our study, we aim to propose an approach
that yields a large, evolving, and reliable set of contract
versions. Consequently, automation is key. Hence, we
only target contracts called in proxy contracts.

Data sources: Etherscan and BigQuery While Ether-
scan offers access to details of smart contracts, including
source code and transaction information, it only provides
direct access to a limited set of the most recently verified
contracts (500 latest verified contracts 2.). Verified con-
tracts are contracts for which Etherscan has checked that
their provided source code matches with their bytecode
deployed on the blockchain at the given address. Since
our goal is to find lots of proxy contracts, we do not
rely solely on Etherscan. To overcome this limitation, we
combine Etherscan with the publicly available Ethereum
smart contract dataset on Google BigQuery 3, which
offers a broader range of contract addresses.
Collecting proxies and their callee contracts: The
proxy paradigm allows us to see the executing con-
tract that receives the calls throughout the lifetime of
the contract. Our approach leverages the fact that, the
proxy calls the ‘upgradeProxy‘ method of the interfacing
contract, with the address of the new contract. We use
Google BigQuery to identify all the contracts that called
that function. The function has a specific keccak-256
value that could be computed to represent the signature
of the function. Once the methods are identified, we
automatically collect the addresses. These addresses are
then used to query Etherscan and collect the details (in
particular, the source code) of the callee smart contracts.
Upon getting that list of contracts, we proceed to classify
them into their respective lineages based on a defined set
of criteria, which will be explained in the next step.
Step 2: Design choice for lineages formation and Con-
tract versioning: After collecting smart contracts that
were called by proxy contracts, we classified them into
lineages. In the following, we describe the classification
process.

Notation Key: In terms of notations, we have:

o (' is the set of contracts accessible in the data source

Zhttps://etherscan.io/contracts Verified/
3https://cloud.google.com/blog/products/data-analytics/
ethereum-bigquery- public-dataset-smart-contract-analytics ?hl=en

(i.e., available in Etherscan);

e X is a contract lineage, defined as > = 51.55.....5,,
where the contract S; € C is the ith versions of the
contract code called by a unique contract proxy P;

o P is indeed unique, and prozy(X) = P; i.e., each
lineage lies with a unique proxy contract.

e P is a proxy means P is a contract which executes
a delegatecall instruction so, instructionsE(P) =
I115.....1,, where instructions I; are the executed
instructions in P’s source code. Hence,dl, ¢
instructionsE(P) such as I, contains a delegate-
call instructions.

o We also have address(S) which gives the address
of a smart contract S;

o We note by len(X) the number of contract versions
in the lineage .

Classification Rules:
A contract S is classified within a lineage > based on
the following set of rules:

e Rule 1: Lineage Members are Callees of the
Lineage’s Proxy
(2 = (55;:.....5,) and proxy(X) = P) =
vS; € X,3I, € instructionsE(P) such as I,
contains a delegatecall instructions and the callee
address in an execution of I, is address(S;). So,
each lineage relies on one proxy and in a lineage,
we cannot find a contract that was not called by the
Proxy.

e Rule 2: A lineage has at least 2 versions of
contract : len(X) > 2

« Rule 3: The versions are in chronological order

and there is no overlap in the activity period of
the lineage versions
We have: firstDelegateCall(P,S) (respectively
lastDelegateCall(P,S)) gives the date of the
first (respectively last) execution of a delegatecall
instruction in the proxy contract P where the callee
address in the delegatecall is address(S);
(X = 55.....5, and prozy(¥) = P) =
VS, € Y, lastDelegateCall(P,S;) <
firstDelegateCall(P, S;+1) with i < len(X).
The updated version should replace the previous
version then, it starts its activity after the previous
stop its activity. Our goal in doing this work was
to end up with a dataset that is of high confidence
and can be trusted for many various tasks. The
linear model that we decided to follow and the
rules that we set make sure that we can confidently
affirm that the said contracts are related. A tree-like
structure would imply a lot of dependencies that
could be hard to verify that they are related.

o Predecessor/successor pairs of contracts: These
rules are applied to classify contracts in their lin-
eage. Then, in each lineage, we classify contracts
in couples of predecessor/ successor. A predeces-

https://etherscan.io/contractsVerified/
 https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics?hl=en
 https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics?hl=en

sor (respectively a successor) of a contract is the
contract corresponding to the most (respectively the
least) recent version which precedes (respectively
succeeds) the contract. ¥ = S5155.....5, —
vS; € X, predecessor(S;) = S;—1 with ¢ > 1 and,
successor(S;) = Si+1 with ¢ < len(X).
Predecessor/successor pairs of file.sol: Each con-
tract version in a lineage is identified by one ad-
dress; some contracts have more than one file with
a ”.sol” extension. The ”.sol” extension refers to So-
lidity code files. Indeed, a contract S = f1 fo.....f,
where f; is a file with extension ”.sol”.

We also classify files from pairs of predecessor and
successor contracts to facilitate analyses based on
code changes. Each file is identified by its filename,
which may change from one version to another.
However, when examining predecessor-successor
contract pairs, we observed that filename changes
within the same subdirectories tend to involve only a
small number of characters. For example, we found
files named “LandRegistryV2.sol” and “LandReg-
istryV3.sol” accessible via the same subdirectories
in two consecutive versions of smart contracts. We
account for the possibility that these minor changes
can appear in the filename, considering a similar-
ity threshold with a two-character difference. We
implement this proposal to build our infrastructure
and collect smart contracts lineages.

B. Resulting dataset: lineageSet

Following the implementation and execution of the two-
step process outlined above, we obtain lineageSet. This
dataset provides details on smart contract lineages built
based on proxy contracts and their called contracts. lin-
eageSet aims to contribute to the field of smart contract
software engineering research. Not only will lineageSet
provide much-needed data to the community, but also
it ensures that competing approaches are benchmarked
transparently on the same diverse and large-scale data.
lineageSet will keep growing because the collection is
conducted regularly using Etherscan and BigQuery to
collect real-world contracts deployed on the Ethereum
platform. The implementation and results are open ac-
cess*. We encourage users of our dataset to share their
analysis results with the community by adding their links
to the dedicated page in the repository. This page aims
to foster collaboration between researchers on smart
contract software engineering, promote open data and
up-to-date datasets, and enable comprehensive analyses.
Figures: After our first execution, we have figures
reported in I

Our dataset lineageSet had 1055 smart contract ad-
dresses which were called in 347 distinct proxy ad-
dresses. Then, we identified 347 lineages having 706

“4https://anonymous.4open.science/r/sclineages- A9A2

Number of Lineages

TABLE I
SUMMARY OF DATASET FIGURES
Metric Value
Lineages identified 347
Pairs of predecessor/successor contracts 706
All smart contracts 1055
Percentage of open source smart contracts 48.48%
Solidity files in open source smart contracts 6049
Percentage of updated files 17.79%
Pairs of of predecessor/successor files 3450
Average days to deploy new version 23
Files in predecessor/successor files pairs 88.68%
Average similarity rate between files paired 98%
Files pairs with similarity rate > 90% 97%
Number of functions classified in pair 43964

predecessors/successors pair. Only 48.48% of smart con-
tracts are open source. The total number of Solidity files
in these contracts is 6049.

Lineage Size
Fig. 2. Sizes of lineages in lineageSet

In figure 2, we classify lineages according to their
size in terms of their number of contract versions.
The lineage with the most number of contract versions
encompasses 14 versions of that contract. one hundred
seventy (170) smart contract lineages have only two
(2) versions collected. It takes an average of 23 days
to deploy a new version of a smart contract. We have
restructured the lineages and the predecessor/successor
relationships using open-source contracts. Additionally,
we have paired the files and functions within these
lineages. Approximately 88.73% of the Solidity files
had at least one other version in the lineages. Addition-
ally, we calculated the average similarity rate between
these files, classified as predecessor-successor in 3450
pairs, and found an average rate of approximately 98%,
whether comparing lines of code or entire files. In this
file, we have 43964 pairs of contracts in which the
data for the pie chart in Fig. 3 was derived from a
comprehensive analysis of Solidity files, where each file
was compared to its immediate predecessor to calculate
the similarity rate. Specifically, Fig. 3 illustrates the
distribution of similarity rates among pairs of Solidity

https://anonymous.4open.science/r/sclineages-A9A2

1.0

0.8 1

Files Pairs

I
I
.

0.2 1

0.0

Fig. 3.

files. Consequently, the pie chart categorizes the pairs
into two distinct groups based on their similarity rates:
those with a similarity rate of less than 90% and those
with a similarity rate of 90% or higher.

o
o
L

02 0.3 0.4 0.5 0.6 0.7 0.8 09 10
File Similarity
Distribution of Similarity Rates in Predecessor/Successor Pairs of

Solidity Files

The analysis reveals that a significant majority, 97%, of
the pairs exhibit a similarity rate of 90% or higher. On
the other hand, only 3% of the pairs have a similarity rate
of less than 90%, suggesting a relatively small propor-
tion of files with lower similarity. This rate quantifies
the degree of similarity between two consecutive file
versions, providing insight into the extent of changes
made between versions. Additionally, we could further
analyze the evolution of smart contract functionalities
over time.

VI. DEMONSTRATION: BUILDING A DATASET ON
SMART CONTRACT VULNERABILITIES AND CODE
CHANGES

Goal: With this case study, we aim to conduct an
empirical analysis of vulnerability management in smart
contracts, leveraging smart contract lineages of lineage-
Set. To that end, we reuly on vulnerability detection tools
that we apply on smart contract versions and track the
appearance and disappearance of vulnerability warnings.
Prior work has created a dataset by tracking GitHub
smart contract projects that have vulnerability fix com-
mits [13]. In contrast, we aim to construct a vulnerability
lifecycle dataset based on deployed smart contracts
available on Etherscan. Indeed, Etherscan ensures the
authenticity of smart contracts by allowing users to
verify the actual deployed code, while GitHub only
provides access to the code without guaranteeing that it
was deployed on the blockchain. Moreover, Etherscan
offers more comprehensive access to smart contracts
directly deployed on the Ethereum blockchain, ensuring
complete data on contract interactions, including all

transactions and event logs, which may not be fully
captured on GitHub. Additionally, in terms of size, the
GitHub-based approach is limited (46 projects). This
motivates our study to focus on deployed contracts. We
aim to adapt specific questions from the previous study
regarding vulnerability distribution and first and last
occurrences to the context of deployed smart contracts.

e QI.1 How many vulnerabilities are reported by
the vulnerability analysis tools, and in how many
Solidity files do they occur?

e (QI.2 How many vulnerabilities have disappeared,
and how many new vulnerabilities have been intro-
duced?

e (1.3 How many vulnerabilities have been patched?

Method: Life cycle analysis requires smart contract
versions, which are not readily available on Etherscan.
We therefore rely on lineageSet. We employ analysis
tools such as Slither [14], Mythril [15], and Conkas [16]
to detect vulnerabilities in these versions. Slither and
Mythril were chosen for their effective balance between
performance and execution cost [17], and Conkas was
integrated subsequently.

We analyzed this dataset to answer the questions.
Results:

Vulnerabilities Distribution. The dataset includes 79,677
data points detailing vulnerabilities across 384,676 vul-
nerable lines of code contained in 4,449 different files
from 470 unique smart contracts (91.41%) distributed
across 165 distinct lineages in lineageSet. This high rate
of vulnerable smart contracts is obtained by combining
the tools through a union operation and significantly
decreases when the tool results are combined through
the intersection. This finding is similar to the results of
previous works that analyzed smart contracts with nine
vulnerability detection tools [17], highlighting perfor-
mance issues of vulnerability detection tools.

Figure 4 illustrates the distribution of distinct vulnerabil-
ities, vulnerable files, and total detected vulnerabilities
across various security analysis tools. A logarithmic
scale is used to account for the significant variation in
results. Each element in the diagram is represented by a
specific color: blue for distinct vulnerabilities, gray for
vulnerable files, and red for total vulnerabilities. The fig-
ure provides a visual breakdown of how vulnerabilities
and vulnerable files are identified across the different
tools.

The diagram shows the differences in the types and
distribution of vulnerabilities detected, offering valuable
insights into the effectiveness and coverage of each tool.
Vulnerabilities life cycle. 49.19% of the vulnerabili-
ties represent newly introduced vulnerabilities, while
21.53% of them have disappeared in a successor version.
16.73% of updated files in open source contracts of
lineageSet, we have at least a vulnerability disappearing
without a newly introduced vulnerability. These files

Logarithmic Scale (Counts)

r
B Distinct Vulnerabilities

mmm Distinct Files
mmm Total Vulnerabilities

2
NG &
& &

Vulnerability Detection Tools

Q

Fig. 4. QI1.1: Vulnerabilities and Vulnerable Files by Tool

were distributed across 164 contract versions in 99
contract lineages. Vulnerabilities persistence We note
an average of 283 days for vulnerabilities to disappear
without a new introduction in lineage, while our previous
finding underscores the need for Automated Program
Repair (APR) tools.

VII. EVALUATION: REVISITING THE RELIABILITY
OF SIMILARITY-BASED CONSTRUCTION OF SMART
CONTRACT LINEAGES

Goal: Our objective is to evaluate the effectiveness of
similarity-based lineage construction methods used in
prior research. To that end, we leverage lineageSet, built
conservatively, as a ground truth dataset. We consider
the locality-sensitive hashing (LSH) to be a measure of
similarity. It is used in the Etherscan search engine.
Methodology: LSH is integrated within Etherscan, un-
derlying its search engine, which allows for greater
automation and flexibility in processing future Ethereum
features. We compute smart contract similarity us-
ing Etherscan-based LSHimplementation. The similarity
scores are expressed in three categories: Low, Medium,
and High. Because our lineages in lineageSet are
Ethereum smart contracts, they can serve as ground truth
to discover false positives and false negatives based
on the applied similarity thresholds of Etherscan. The
experiment answers the following research question:
RQ2: To what extent does the LSH-based approach ac-
curately identify lineage relationships between Ethereum
smart contracts?

The LSH-based approach of the Etherscan search engine
evaluates smart contract similarity by comparing their
fingerprints. In practice, it is possible to make a request
on Etherscan to obtain smart contracts that are similar
to a given contract, with their degree of similarity
categorized as low, medium, or high.

Given a smart contract .S, the engine will output smart
contracts that are similar. We consider them as candi-
dates for being in the same lineage as S. To summarize:

(1) We collect contracts that are similar to S

(2) We define a similarity threshold 7'

(3) We form a lineage with .S and the collected contracts
that have a similarity level to .S of at least T’

Results: Since the Etherscan LSH-based similarity com-
putation relies on fingerprints, we differentiate two types
of smart contracts which may have different level of
reliable fingerprints: open-source smart contracts tend
to have more artifacts compared to non-open-source
contracts, thus their fingerprints may be more accurate.
The LSH-based approach defines various scenarios to
form lineages. The differences between scenarios lie
in the defined minimum similarity threshold 7' that
contracts in the same lineage must meet and whether the
model targets all contracts or just open-source contracts.
The evaluation methodology consists of three steps:

a) Ground Truth Lineages Data: lineageSet is used
as the benchmark for evaluating the performance
of the LSH-based method.

b) Lineage Construction with the LSH Model:
The model is used to predict other contracts that
belong to the same lineage as those in the Ground
Truth Lineages Data (lineageSef) based on the
aforementioned scenarios.

c) Evaluation: We compared the lineages formed by
the model with the ground-truth lineages in [lin-
eageSet. The evaluation measured overall precision
and recall for each scenario.

TABLE I

EVALUATION OF LSH-BASED APPROACH FOR SMART CONTRACT

LINEAGE IDENTIFICATION

| Contract Type | Similarity threshold | Precision (%) | Recall (%) |

Observations |

Low 48.33 15.80 Higher precision
Open-source Medium 62.27 11.63
High 70.08 6.09
Low 44.58 8.08
All contracts Medium 56.12 6.05 Lower precision and recall
High 63.40 312

Table II indicates a trade-off between precision and
recall across different similarity thresholds, with open-
source contracts showing better overall performance
compared to all contracts combined. Indeed, open-source
contracts exhibited higher precision across all similarity
thresholds, starting at 48.33% at the low threshold
and reaching 70.08% at the high threshold, although
recall decreased significantly from 15.80% to 6.09%.
In contrast, all contracts, including non-open-source
ones, showed lower precision and recall. Their precision
began at 44.58% at the low threshold and peaked at
63.40% at the high threshold, while recall declined from
8.08% to 3.12%. These findings indicate that focusing
on open-source contracts improves precision, but recall
presents a challenge as similarity thresholds increase.
This trade-off underscores the importance of balancing
precision and recall based on specific use cases and

the availability of open-source data. This observation
emphasizes the critical need to balance precision and
recall when utilizing similarity computed by the LSH
method for lineage formation.

Low Recall Across All Scenarios: Similarity-
based approach to building lineages for smart
contracts leads to low recall. When consider-
ing all contracts in Ethereum, the conservative
proxy-based approach used to build lineageSet
has a significantly higher precision and recall.
Even when the required similarity is low, recall
remains poor with LSH, including when consid-
ering open-source contracts.

The results of this approach align with previous research
on code smart contract code reuse [3] which postulate
that they have many code reuses. The findings of this
case study also reinforce our relevance to construct
lineages based on proxies.

VIII. DISCUSSION, LIMITATION AND RELATED
WORK
A. Lineage construction

Our approach shares commonalities with those of Chen
et al. [1] and Huang et al. [2].

TABLE III
COMPARISON OF OUR STUDY WITH PREVIOUS WORKS

for Java programs enabled studies on automatic program
repair (e.j [19]). lineageSet is similar to Megadiff and
can therefore enable research in field of smart contract
similar to those leveraging megadiff. In sum, /ineageSet
emerges as a large-scale, open-source, and reproducible
dataset specifically designed for smart contract lineage
analysis. The automation and public availability of our
approach further enhance its usability and value for the
research community.

However, it is important to acknowledge the limitations
of our approach, which will be discussed in the follow-
ing subsection.

IX. THREATS TO VALIDITY

Our approach has inherent limitations, which we discuss
and justify in the table below, explaining our design
choices.

TABLE IV
THREATS TO THE VALIDITY OF ContractTrace.

Source Risk

Rationale for Design
Choice

Proxy contracts only

Ensures reliable up-
grade tracking

Limited coverage

Rule 3: Linear ver- | Overlapping versions | Reduces complexity
sioning assumption possible

SCLineage Chen et al. [1] Huang et al. [2]
Targeted method of Proxy-based with self-destructed All
Contract upgrades upgrades version
Target deployed . . -
%ontral;tsy Yes Yes Yes
Aut tion Fully No Fully
Granularity Contracts, .ﬁles, and Contract level Contract level
functions
Similarity-based No Yes Yes
Corpus availabilit; AIl contract Some An
P ¥ addresses (self-destructed) Y
CO““P“O'_I.SIY Yes No No

A key advantage of our approach lies in its automation.
This ensures scalability and efficiency and reduces the
risk of human error. Additionally, the implementation
details and results of our work are publicly available on
GitHub. Despite the technical differences, we believe
there is potential for synergy between our approach and
those of Chen et al. and Huang et al. Their techniques
could be complementary to ours, particularly for target-
ing updated contracts that do not utilize a proxy pattern.
We plan to investigate the combination of these methods
in future work.

B. Lineage construction Implications

lineageSet extends previous empirical software engineer-
ing works on up-to-date repositories for smart contracts,
such as Etherscan and Smart Corpus [4]. In java pro-
gram, the Megadiff [18] study which is on code diff

Targeted contracts: Our approach deliberately focuses
on contracts upgraded through proxy mechanisms. This
inevitably excludes lineages of contracts that were up-
dated without proxies. Indeed, according to a study
conducted in 2021 targeting 178 developers [8]: 39.39%
of the selected respondents admitted that they discarded
the old contract directly and deployed a new one,
while 35.76% of them reported developing upgradable
contracts. Thus, to be conservative, our dataset excludes
many contract lineages. We did not employ similarity-
based approaches, which could have allowed us to
address various types of contracts. This is motivated by
the homogeneity of Ethereum smart contracts, which is
facilitated by code plagiarism, among other factors [3].
Rule 3 Contract Version Ordering: As a design choice,
we opted for a linear versioning assumption within
lineages. This implies that contract versions are as-
sumed to be deployed chronologically, without over-
lapping activity periods. This decision was made with
the objective of constructing a high-confidence dataset
suitable for various applications. The linear model of
this established rule allows us to confidently assert the
relationships between the identified contracts. A more
complex, tree-like structure would introduce intricate
dependencies that could be challenging to verify. The
weakness of this design choice is that we may exclude
some versions in the lineages. In summary, our ap-
proach to collecting smart contract lineages introduces
the potential to overlook certain contract versions within
lineages. Additionally, we have excluded contracts that

were not updated using the proxy method. However,
these design choices are justified by our prioritization
of a conservative approach that minimizes the inclusion
of false positives and ensures the integrity of the lineage
classifications.

X. CONCLUSION

We addressed the challenge of identifying and classi-
fying versions of smart contracts, which is crucial for
various research areas in smart contract engineering.
By applying a Design Science Research approach, we
proposed ContractTrace, a novel infrastructure for
systematically collecting and classifying smart contract
lineages. It leverages the proxy pattern to minimize er-
rors in lineage identification. Our up-to-date open-source
dataset, lineageSet produced by ContractTrace, fa-
cilitates extensive research and analyses.

We demonstrated the utility of our approach in soft-
ware engineering research, by conducting a case study
focused on vulnerability tracking across smart contract
versions, using lineageSet. Additionally, our methodol-
ogy was evaluated through Locality-Sensitive Hashing
(LSH) to test the effectiveness of clustering contract
versions, confirming its robustness and relevance.
Building on the findings from both the case study
and evaluation, we propose several directions for future
research:

e ContractTrace and lineageSet provide valuable
resources for advancing research in software en-
gineering and security, facilitating more effective
studies on smart contract vulnerabilities and their
resolution. These tools can also be leveraged for
developing smart contract repair techniques.

e Our findings from this case study reinforce those
of previous works [13], [17] and emphasize the
need for further exploration of Automated Pro-
gram Repair (APR) techniques for smart contracts,
particularly those with enhanced precision capa-
bilities. When integrated with ContractTrace,
these techniques could facilitate the creation of an
up-to-date dataset that tracks code changes made to
address vulnerabilities, similar to Big-Vul, a dataset
focused on C/C++ code vulnerabilities [20].

« Investigating enhancements to the performance of
LSH-based similarity metrics could improve the
construction of contract lineages, extending their
applicability to all types of contracts, irrespective
of their update mechanisms. Future models can be
tested using lineageSet as a ground-truth resource
for lineage construction.

XI. ACKNOWLEDGMENTS

This work is supported by the Luxembourg Ministry
of Foreign and European Affairs through their Dig-
ital4Development (D4D) portfolio under the project
LuxWAyS (Luxembourg/West-Africa Lab for Higher

Education Capacity Building in CyberSecurity and
Emerging Topics in ICT4Dev.)

REFERENCES

[1] J. Chen, X. Xia, D. Lo, and J. Grundy, “Why do smart
contracts self-destruct? investigating the selfdestruct function
on ethereum,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 31, no. 2, pp. 1-37, 2021.

[2] Y. Huang, Q. Kong, N. Jia, X. Chen, and Z. Zheng, “Recom-
mending differentiated code to support smart contract update,”
in 2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC). IEEE, 2019, pp. 260-270.

[3] N. He, L. Wu, H. Wang, Y. Guo, and X. Jiang, “Characterizing
code clones in the ethereum smart contract ecosystem,” in
Financial Cryptography and Data Security: 24th International
Conference, FC 2020, Kota Kinabalu, Malaysia, February 10—
14, 2020 Revised Selected Papers 24. Springer, 2020, pp. 654—
675.

[4] G. A. Pierro, R. Tonelli, and M. Marchesi, “An organized repos-
itory of ethereum smart contracts’ source codes and metrics,”
Future internet, vol. 12, no. 11, p. 197, 2020.

[5] N. Szabo, “Formalizing and securing relationships on public
networks,” First monday, 1997.

[6] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Decentralized Business Review, p. 21260, 2008.

[7]1 V. Buterin et al., “A next-generation smart contract and decen-
tralized application platform,” white paper, vol. 3, no. 37, pp.
2-1, 2014.

[8] J. Chen, X. Xia, D. Lo, J. Grundy, and X. Yang, “Maintenance-
related concerns for post-deployed ethereum smart contract de-
velopment: issues, techniques, and future challenges,” Empirical
Software Engineering, vol. 26, no. 6, p. 117, 2021.

[9]1 Z. Gao, V. Jayasundara, L. Jiang, X. Xia, D. Lo, and J. Grundy,
“Smartembed: A tool for clone and bug detection in smart
contracts through structural code embedding,” in 2019 IEEE In-
ternational Conference on Software Maintenance and Evolution
(ICSME). 1EEE, 2019, pp. 394-397.

[10] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable
and accurate tree-based detection of code clones,” in 29th
International Conference on Software Engineering (ICSE’07).
IEEE, 2007, pp. 96-105.

[11] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-
miss intentional clones using flexible pretty-printing and code
normalization,” in 2008 16th iEEE international conference on
program comprehension. 1EEE, 2008, pp. 172-181.

[12] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in
high dimensions via hashing,” in VIdb, vol. 99, no. 6, 1999, pp.
518-529.

[13] Y. Wang, X. Chen, Y. Huang, H.-N. Zhu, J. Bian, and Z. Zheng,
“An empirical study on real bug fixes from solidity smart
contract projects,” Journal of Systems and Software, vol. 204,
p. 111787, 2023.

[14] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis
framework for smart contracts,” in 2019 IEEE/ACM 2nd Inter-
national Workshop on Emerging Trends in Software Engineering
for Blockchain (WETSEB). 1EEE, 2019, pp. 8-15.

[15] https:// github.com/ConsenSys/mythril.

[16] https:// github.com/nveloso/ conkas.

[17] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical
review of automated analysis tools on 47,587 ethereum smart
contracts,” in Proceedings of the ACM/IEEE 42nd International
conference on software engineering, 2020, pp. 530-541.

[18] M. Monperrus, M. Martinez, H. Ye, F. Madeiral, T. Durieux, and
Z. Yu, “Megadiff: A dataset of 600k java source code changes
categorized by diff size,” arXiv preprint arXiv:2108.04631,
2021.

[19] H. Ye, “Improving the precision of automatic program repair
with machine learning,” Ph.D. dissertation, KTH Royal Institute
of Technology, 2023.

[20] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “Ac/c++ code
vulnerability dataset with code changes and cve summaries,”
in Proceedings of the 17th International Conference on Mining
Software Repositories, 2020, pp. 508-512.

https://github.com/ConsenSys/mythril.
https://github.com/nveloso/conkas

	Introduction
	Background and Foundation
	Ethereum Smart Contract
	Proxy pattern: A Nuance Between Immutability and Upgradable Smart Contracts
	Smart contracts versions
	Computing Smart Contract Similarity:
	Dynamic and Up-to-Date Repositories for Smart Contract Analysis in Empirical Software Engineering

	Design Science Research (DSR) as Method
	Problem, Motivation, and Objectives
	Studies Highlighting the Need for Contract Lineage Information
	Motivation for Leveraging the Proxy Pattern for Lineage Construction
	Objectives

	ContractTrace: Design and Development
	Experimental setup
	 Resulting dataset: lineageSet

	Demonstration: Building a dataset on Smart contract vulnerabilities and code changes
	Evaluation: Revisiting the Reliability of Similarity-Based Construction of Smart Contract Lineages
	Discussion, Limitation and Related work
	 Lineage construction
	 Lineage construction Implications

	Threats to validity
	Conclusion
	Acknowledgments
	References

