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ABSTRACT

Web applications have been widely adopted to access a myriad of
services, regardless of their criticality and context. Applications
developers have accelerated their efforts to meet the demands of a
competitive and dynamic market for innovative products. Despite
considerable efforts to detect and mitigate vulnerabilities in appli-
cations, their prevalence continues to increase, primarily due to the
rapid pace of software development, which often prioritizes deploy-
ment speed, compromising security. This paper presents KAVE, a
static analysis tool that leverages a multi-layer knowledge graph
and a multi-agent system to detect web application vulnerabilities
with high precision. This paper showcases KAVE’s implementation
and ability to identify SQL injection (SQLi) and cross-site scripting
(XSS) vulnerabilities in real-world PHP applications.

CCS CONCEPTS

« Security and privacy — Software and application security.
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1 INTRODUCTION

The increasing reliance on online services has driven the exponen-
tial growth of web applications. However, this rapid expansion has
also led to a surge in cyber attacks exploiting vulnerabilities in
web applications, posing significant risks to users and organiza-
tions [4, 6]. Among the most prevalent and impactful vulnerabilities
are SQL Injection (SQLi) and Cross-Site Scripting (XSS) [3, 9, 22],
which can lead to unauthorized database access, data theft, and
malicious script execution. These vulnerabilities are particularly
common in PHP web applications due to their loosely typed nature
and widespread use in web development.

Static application security testing (SAST) tools (commonly known
as static analysis tools) have been seen as a proactive solution for
identifying vulnerabilities during software development by analyz-
ing the source code without executing it. This enables developers to
address security flaws before deployment. However, existing SASTs

This work is licensed under a Creative Commons Attribution 4.0 International License.
FSE Companion °25, June 23-28, 2025, Trondheim, Norway

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1276-0/2025/06.

https://doi.org/10.1145/3696630.3728601

1158

Ana Respicio
Ibéria Medeiros
alrespicio@fc.ul.pt
ivmedeiros@fc.ul.pt
ILASIGE, DI, Faculdade de Ciéncias, Universidade de
Lisboa, Portugal

often suffer from high false positive rates and limited precision,
which hinder their practical adoption [19]. Additionally, many tools
rely on code representations such as Abstract Syntax Trees (ASTs)
[5, 15, 16, 18], which lack the comprehensive inter-procedural in-
sights necessary for effective vulnerability detection.

To address these issues, we present KAVE (Knowledge-based
Agent-system Vulnerability dEtector) [21], an innovative static
analysis tool that combines advanced graph-based code representa-
tions with multi-agent systems to detect vulnerabilities in PHP web
applications with high precision and efficacy. The key features of
KAVE include: (1) A Multi-Layer Knowledge Graph (MLKG) that in-
tegrates diverse code representation graphs: Function Call Graphs
(FCG), Control Flow Graphs (CFG), Dependence Variable Graphs
(DVG) [24], and Program Dependence Graphs (PDG) [8, 25], en-
riched with security properties such as where entry points, sensitive
sinks, and sanitization functions are present in the code. (2) A Multi-
Agent System (MAS) that performs static taint analysis over the
MLKG to effectively and efficiently navigate the graph and identify
potential vulnerabilities. (3) A pruning method that strategically
reduces irrelevant paths in the MLKG, optimizing computational
efficiency while maintaining analysis accuracy.

This paper focuses on showcasing KAVE’s vulnerability detection
process, which outperforms traditional SASTs tools like WAP [15],
Pixy [10], and PHPCorrector [16].

2 KAVE OVERVIEW

2.1 Key Features and Architecture

KAVE is a tool designed to detect vulnerabilities in PHP web ap-
plications. By combining advanced graph-based code structures
that represent complex inter-procedural relationships with multi-
agent systems (performing taint analysis), KAVE achieves low false-
positive rates while performing inter-procedural analysis.

The architecture of KAVE consists of three main modules, as
illustrated in Figure 1:

(1) Code Property Graph Generator: Parses PHP source code
into different types of code property graphs, namely FCG,
CFG, DVG, and PDG graphs [8, 24, 25].

Knowledge Graph Creator: Constructs the MLKG by in-
tegrating the FCG, CFG, DVG, and PDG graphs, and then
enrich it with security properties, specifying the entry points

(e.g., user input like $_GET), sensitive sinks (e.g.,mysqli_query),

and sanitization (e.g., htmlentities). These security prop-
erties are added here to enhance the graph’s utility in vul-
nerability detection.
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Figure 1: KAVE System Architecture.

(3) Pruner: Removes nodes from the MLKG that are unneces-
sary for the analysis (e.g., functions that do not have entry
points as input arguments and contain sensitive sinks in
their body).

(4) Vulnerability Detector: Utilizes the MAS to navigate the
MLKG and identify vulnerabilities.

2.2 Multi-Layer Knowledge Graph (MLKG)

The MLKG [7, 21] serves as the core data structure for KAVE by
integrating multiple code representation graphs to a unified one:

o The first layer consists of the FCG [2, 24], where nodes rep-
resent user functions and edges represent function calls.

e The second layer links each FCG node to its corresponding
PDG [8, 25], which encapsulates both control flow (CFG) and
data dependencies (DVG).

o The third layer aggregates security properties [21] from the
PDGs into the FCG nodes, enabling efficient navigation and
effective analysis.

One example of how the MLKG would look like can be found in
Fig. 2. On the left side of the figure, we can observe the FCG with its
functions as nodes, each pointing to the PDG that constitutes it. On
the right side, a PDG is depicted, containing the control flows, data
dependencies, and the interconnections between them. Security
properties presented in PDG (in blue) are then aggregated in the
respective function node (in blue).

The integration of these specific graphs is essential for achieving
a comprehensive representation of the application’s code. The FCG
provides an overview of inter-procedural relationships, making
it possible to track how data flows between functions. The PDG
combines control flow and data dependencies within individual
functions, offering a detailed view of intra-procedural behavior. By
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linking these layers, the MLKG ensures that both high-level and
fine-grained information about the application is available.

One of the key advantages of this hierarchical structure [21] is
its ability to focus computational resources on relevant parts of the
code. For instance, if no evidence of potential vulnerabilities is found
in the first layer (FCG), there is no need to traverse deeper into the
internal layers (PDGs). This targeted approach reduces unneces-
sary computations and improves overall efficiency. Additionally, by
isolating security properties such as entry points, sensitive sinks,
and sanitization functions in a separate layer, the MLKG allows for
precise pruning and prioritization during vulnerability detection.

Compared to traditional tools that analyze entire codebases ex-
haustively, KAVE’s hierarchical approach leverages the MLKG to
streamline analysis by narrowing down potential vulnerability
paths early in the process. This design not only optimizes com-
putational effort but also enhances scalability, making it suitable
for large and complex web applications.

2.3 Multi-Agent System (MAS)

The MAS in KAVE [21] comprises specialized agents that operate
autonomously within the MLKG:

o The Travel Agent Identifies entry points in the MLKG and
initiates taint propagation.

o The Verification Agent validates potential vulnerabilities
by analyzing their propagation paths.

e The Translation Agent examines how variable definitions
change between functions.

e The Flow Agent tracks tainted variables across control flow
paths within a function’s PDG.

e The Data Agent examines data dependencies to determine
whether tainted variables reach sensitive sinks.

These agents coordinate their efforts to efficiently traverse the
MLKG and identify vulnerabilities avoiding the exhaustive explo-
ration of irrelevant paths. Figure 3 presents the MAS with the
interactions on the different layers of MLKG.

The Travel Agent identifies potential vulnerability paths in the
FCG by locating entry points and sensitive sink pairs. It then com-
municates these paths to the Verification Agent, which validates
the existence of data and control flow dependencies along the iden-
tified paths. For a deeper analysis, the Verification Agent delegates
tasks to the Translation Agent, which examines how variables are
transformed between functions in the PDG. Finally, the Flow Agent
and Data Agent are activated to assess control flow and data de-
pendencies within specific PDGs, ensuring that vulnerabilities are
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confirmed only when all necessary conditions are met. This multi-
agent collaboration ensures that only relevant parts of the MLKG
are analyzed, reducing computational overhead.

2.4 Pruning Method

To optimize performance, KAVE [21] employs a pruning method
that removes unnecessary nodes from the MLKG: i) Nodes without
entry points, sensitive sinks, or sanitization functions are removed
because they do not contribute to vulnerability detection. ii) Func-
tions that are isolated or do not propagate tainted data are converted
into connectors or trimmed entirely.

This approach significantly reduces the size of the MLKG while
preserving all critical information required for accurate vulner-
ability detection. This is facilitated by the MLKG design, which
separates the security properties of the code into a distinct layer,
independent of its generation, as we can notice in Figure 4.

3 EXPERIMENTAL EVALUATION

3.1 Previous Results Summary

KAVE [21] has been evaluated in 12 open-source PHP web appli-
cations, where it detects 235 vulnerabilities with precision 95.9%.
These results demonstrate the KAVE’s ability to outperform tradi-
tional tools such as WAP [15], Pixy [10] and PHPCorrector [16]
in terms of precision and false-positive rates. For instance, while
Pixy flags a significant number of vulnerabilities, it suffers from
a high false-positive rate, resulting in low precision. In contrast,
WAP and PHPCorrector had fewer false positives but missed several
vulnerabilities, which affected their recall. KAVE achieved a joint
optimal result by combining high precision with low false positives
and minimal loss of true positives (i.e., false negatives).

3.2 New Vulnerability Scenarios Evaluation

Although KAVE demonstrated strong performance in real-world
web applications, testing in individual SARD code snippets [17]
revealed areas for improvement [21]. Specifically, in certain edge
cases for SQLi and XSS [11, 12, 23], vulnerabilities were not fully
addressed by the tool. To further refine its capabilities, we conducted
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Figure 4: Prunning result for the MLKG in Figure 2.

an extended evaluation in which we focused on these isolated corner
cases. This evaluation involved:

o Analysis of SQLi corner cases [11, 14], such as complex query
concatenations and nested SQL statements.

e Analysis of XSS corner cases, including DOM-based XSS
[13, 23] patterns and unconventional input/output flows.

This evaluation aimed to identify specific vulnerability scenarios
that are not yet fully supported by KAVE, providing insights for
future enhancements. The targeted analyses revealed that KAVE
successfully detected 55.7% of SQLi corner cases and 91.4% of XSS
corner cases in the test dataset. These results align with expecta-
tions: XSS vulnerabilities are generally simpler to identify through
static analysis due to their well-defined patterns and reliance on
specific entry points and sinks. In contrast, SQLi vulnerabilities
often involve more complex data flows and sanitization scenarios,
which can be harder to capture accurately. Tables 1 and 2 summarize
the results of these focused tests.

For SQLi, KAVE performed well in certain test suites, such as
Multi Query and Real Query, achieving a perfect detection rate of
100%. However, the tool struggled significantly in the MySQLi Multi
Query and MySQLi Real Query test suites, where detection rates
were only 7.3%. Upon further analysis, these failures were primarily
due to KAVE incorrectly labelling some scenarios as unsafe when
they were actually safe. This suggests that KAVE currently lacks
the ability to recognize certain sanitization mechanisms specific to

Table 1: Detection Results for SQLi Corner Cases

Test Suite Total Cases  Detected Cases  Accuracy (%)
Handmade Corner Cases 28 25 89.3
Multi Query 492 492 100.0
MySQL Query 39 31 79.5
MySQLi Multi Query 492 36 7.3
MySQLi Real Query 492 36 73

Real Query 492 492 100.0
Total 1996 1112 55.7

Table 2: Detection Results for XSS Corner Cases

Test Suite Total Cases  Detected Cases  Accuracy (%)
DOM-based XSS 20 18 90.0
Reflected XSS 15 14 93.3
Stored XSS 15 14 93.3
Unconventional Flows 10 9 90.0
Complex Input/Output Flows 10 9 90.0
Total 70 64 914
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MySQLi queries. Addressing this limitation will require extending
KAVE’s knowledge base to include additional sanitization functions
and improving its handling of complex sanitization scenarios.

For XSS vulnerabilities, KAVE demonstrated strong performance
across all tested scenarios, with detection rates exceeding 90% for
each test suite. The high accuracy in identifying DOM-based XSS,
reflected XSS, and stored XSS vulnerabilities highlights KAVE’s
ability to effectively track tainted data from entry points to sensitive
sinks in a variety of contexts.

3.3 Efficiency Analysis

The runtime performance during the extended evaluation remained
consistent with previous results. Consistently, KAVE analyzed in-
dividual code snippets in under 0.1 seconds and previously larger
applications ranging from 270 to 7704 lines of code in times concise
between 1 and 8 seconds for approximately. This efficiency is attrib-
uted to the pruning method applied to the MLKG, which reduces
irrelevant paths and optimizes computational effort.

3.4 Runtime Example

To illustrate KAVE’s functionality, consider the PHP code snippet
of Listing 1 that contains SQLi and XSS vulnerabilities. The code
accepts user input from the id parameter via a $_GET request and
directly incorporates it into an SQL query without proper saniti-
zation or validation, also ending up echoing it. Also, if the records
returned from the database contain malicious data in the username
field, when this is used in the echo sensitive sink without sanitiza-
tion, an XSS vulnerability is triggered. This lack of input handling
makes the application vulnerable to malicious attacks.

Listing 1: A PHP script with an XSS and SQLi vulnerabilities.

// Retrieve the 'id' parameter from the GET request
$id = $_GET['id'];

// Construct an SQL query without sanitizing the input
$query = "SELECT_*_FROM_users_WHERE_id_=_$id";

// Execute the query
$result = mysqli_query($connection, $query);

// Fetch and display results
while ($row = mysqli_fetch_assoc($result))
echo "User:." . $row['username'];

If a malicious user provides input such as 1 OR 1=1, the query be-
comes: SELECT * FROM users WHERE id = 1 OR 1=1; This allows
attackers to retrieve all records from the users table, bypassing
authentication mechanisms.

Listing 2: Output of KAVE over the code of Listing 1.

Number of vulnerabilities: 2

Total vulnerabilities found:
XSS: 1
SQLi: 1

Graph stats:
N graphs: 8

N functions: 1
N variables: 5
N nodes: 8

N edges: 7
Elapsed time: ©.09 seconds
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Executing KAVE with this code snippet, saved as file1.php, and
using the following command: python3 main.py /filel.php, the
output generated by the tool provides detailed information about
detected vulnerabilities and graph statistics (Listing 2).

4 CONCLUSION

This paper presented KAVE, a static analysis tool that combines
a MLKG with a MAS to detect vulnerabilities in web applications
with high precision and efficiency. By integrating diverse code rep-
resentations such as FCG, CFG, DVG, and PDG, KAVE provides a
comprehensive framework for inter-procedural vulnerability de-
tection. The pruning method improves the system’s efficiency by
discarding irrelevant paths, while the MAS performs effective static
taint analysis to identify SQLi and XSS vulnerabilities.

4.1 Availability

KAVE is an open-source tool designed to be accessible to developers
and researchers alike. The tool, along with its documentation, sam-
ple datasets, and installation instructions, is available on GitHub
[20] at [https://github.com/rframires/KAVe], and includes: (i) The
source code repository containing all necessary files for installation
and usage. (ii) A step-by-step user guide detailing how to analyze
PHP applications using KAVE. (iii) Sample vulnerable PHP applica-
tions and code snippets for testing and experimentation.

The tool requires Python 3 as the runtime environment and
depends on two Python libraries, namely matplotlib for visual-
izations and networkx [1] for graph processing. To deploy KAVE,
users can clone the repository, install the dependencies using pip,
and run the tool directly on their PHP source code. Detailed instruc-
tions and example applications are provided in the repository to
help users get started with analyzing vulnerabilities.

4.2 Limitations & Future Work

While KAVE demonstrates significant improvements in precision
and efficiency for detecting vulnerabilities in PHP web applica-
tions, it has limitations. Firstly, KAVE is specifically designed for
PHP applications and does not currently support other program-
ming languages. This limits its applicability to a broader range of
web applications written in other languages, such as JavaScript or
Python. Secondly, the reliance on static analysis means that KAVE
cannot detect vulnerabilities that depend on runtime behavior or
dynamic inputs, which are often necessary for identifying certain
types of security flaws. Additionally, the MAS relies on predefined
rules and heuristics, which may not adapt well to novel or evolving
vulnerability patterns without manual updates.

As future work, we aim to address these limitations. Also, we
aim to explore artificial intelligence techniques, such as Large Lan-
guage Models, to further reduce the false positives and improve
vulnerability detection accuracy.
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