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Abstract. Mixed-integer linear programming (MILP) is a pow-
erful tool for addressing a wide range of real-world problems, but
it lacks a clear structure for comparing instances. A reliable sim-
ilarity metric could establish meaningful relationships between in-
stances, enabling more effective evaluation of instance set hetero-
geneity and providing better guidance to solvers, particularly when
machine learning is involved. Existing similarity metrics often lack
precision in identifying instance classes or rely heavily on labeled
data, which limits their applicability and generalization. To bridge
this gap, this paper introduces the first mathematical distance met-
ric for MILP instances, derived directly from their mathematical
formulations. By discretizing right-hand sides, weights, and vari-
ables into classes, the proposed metric draws inspiration from the
Earth mover’s distance to quantify mismatches in weight-variable
distributions for constraint comparisons. This approach naturally ex-
tends to enable instance-level comparisons. We evaluate both an
exact and a greedy variant of our metric under various parameter
settings, using the StrIPLIB dataset. Results show that all compo-
nents of the metric contribute to class identification, and that the
greedy version achieves accuracy nearly identical to the exact formu-
lation while being nearly 200-times faster. Compared to state-of-the-
art baselines—including feature-based, image-based, and neural net-
work models—our unsupervised method consistently outperforms
all non-learned approaches and rivals the performance of a super-
vised classifier on class and subclass grouping tasks.

1 Introduction

Mixed-integer linear programming (MILP) is a fundamental tool for
formulating and solving optimization problems. It involves optimiz-
ing an objective function subject to constraints that include both con-
tinuous and discrete decision variables. This flexibility allows MILP
to address a wide variety of real-world problems across diverse fields,
including transportation [1], manufacturing [23], and e-health ser-
vices [18].

The MILP space remains vast and unstructured in terms of the
links between instances, and the introduction of structure within it,
as discussed in this paper, yields two primary benefits. First, it fa-
cilitates the characterization of sets of instances. For instance, it en-
ables the creation of heterogeneous benchmarks, as exemplified by
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the MIPLIB 2017 library [7]. This also allows for the evaluation of
the heterogeneity of an evaluation instance set, offering insights into
the generalizability of the assessed methods. Second, incorporating
structural information can significantly enhance solver performance.
In particular, machine learning (ML)-based approaches integrated
into MILP solvers—commonly referred to as ML-MILPs—have
demonstrated efficacy only within restricted subsets of similar in-
stances [10, 4, 5, 27, 17]. Structuring the MILP space into clus-
ters of homogeneous instances is therefore a critical step toward en-
abling the broader applicability of ML-MILP techniques across di-
verse problem domains.

Early attempts to structure the MILP space focused on problem
classes definition based on recurring real-world problem types to
structure MILPs [3]. However, these classes represent only a sub-
set of the MILP space. To capture the full range of instances, tagging
systems have been introduced [7], which assign multiple hierarchical
tags to instances, from the most specific to the most general. How-
ever, this system does not create disjoint classes, which are neces-
sary for a clean and meaningful structure. To overcome these limi-
tations, a similarity metric between instances would allow for a for-
mal characterization of their relationships, enabling the development
of a comprehensive classification of the MILP space. Current simi-
larity methods include the Image-Based Structural Similarity (ISS)
approach [19], which treats constraint matrices as grayscale images
analyzed by autoencoders. However, this method is sensitive to the
ordering of constraints. Graph Neural Networks (GNNs) [20] address
this by using invariant graph representations, but their applicability
is limited to pre-trained problem classes, restricting their generaliz-
ability. The MIPLIB 2017 framework [7] offers a different approach
by using over 100 handcrafted features in a high-dimensional fea-
ture space. However, it lacks a rigorous theoretical foundation for
feature selection and normalization, which diminishes its robustness.
A more comprehensive discussion of these methods can be found
in section 2.

This paper presents a training-free mathematical distance for com-
paring MILP instances, designed to identify instances belonging to
the same class as similar solely from their formulation. Variables,
weights, and right-hand sides are categorized into discrete classes,
allowing the definition of constraint distances based on mismatches
in weight-variable pairs and right-hand sides. The overall MILP dis-
tance is then computed by matching constraints in a way that mini-
mizes their distance, combined with the distance between objective
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functions. To accommodate instances of varying sizes, the method
employs a normalized representation that captures the proportions of
similar weight-variable pairs and constraints. By demonstrating that
this metric aligns with the Earth Mover’s Distance (EMD) [16], we
establish that it satisfies the properties of a mathematical distance.
For practical use, we introduce a greedy heuristic for efficient metric
computation, ensuring seamless integrations with reduced computa-
tional cost. This is detailed in section 3.

We conduct a series of evaluations using the StrIPLIB library [3],
which hierarchically organizes MILP instances into well-defined
classes and subclasses. Two experiments are performed: the first
replicates the protocol of [20] to assess the ability to identify in-
stances from the same class (19 in total), while the second focuses
on three selected classes to evaluate subclass-level grouping. In both
cases, we measure performance by computing the proportion of near-
est neighbors that belong to the same class (or subclass) as each test
instance. We evaluate several variants of our distance metric, each
omitting a specific component (e.g., weights, variables, right-hand
sides, or objective function) to assess its contribution. Results show
that each component plays a meaningful role in improving class iden-
tification. We also compare our greedy version with the exact one,
observing a performance gap under 4% for 17 of the 19 classes,
while achieving a 200× speedup. Compared to state-of-the-art simi-
larity metrics [19, 20, 7], our method outperforms both the feature-
based [7] and image-based [19] approaches, and matches the perfor-
mance of the GNN-based method [20], despite requiring no super-
vised training. Full experimental details are provided in section 4.

Our contributions can be listed as follows:

• Identification of the challenge in structuring the MILP space, par-
ticularly pertinent in the context of ML, which can be addressed
through a similarity metric.

• Introduction of a normalized representation of MILP instances,
leveraging feature classification to enable meaningful compar-
isons across instances of varying sizes.

• Definition of a mathematical distance that captures structural pat-
terns within and across constraints.

• Comprehensive experiments with new benchmarks and additional
baselines, demonstrating our approach’s efficiency.

2 Related Works and Positioning

In this section, we present the latest advancements in ML applied
to MILP solvers, highlighting the current limitations with regard to
generalizability. Next, we discuss the existing efforts for structuring
the MILP space, starting with instance categorization methods and
followed by similarity approaches between instances. Finally, we ex-
plain how our approach addresses the shortcomings of existing meth-
ods. We emphasize that our method has the potential to resolve the
generalizability issue faced by ML-MILPs.

2.1 ML for MILP

ML has played a growing role in advancing MILP solvers by
automating key components such as branching strategies, search
heuristics, and cutting plane selection, leading to substantial per-
formance improvements [10, 4, 5, 17, 27]. State-of-the-art on ML-
MILPs, including those proposed in [8, 6, 9, 21, 12, 22, 15], are typ-
ically trained on synthetic datasets or well-established benchmarks
limited to specific problem classes. Their generalization is usually
evaluated by scaling instance size, rather than by assessing structural

diversity. As a result, these models often fail to generalize effectively
to heterogeneous or real-world instances. Although heterogeneous
benchmarks such as MIPLIB 2017 [7] have been employed to assess
the performance of ML-enhanced techniques—such as cutting plane
generation or adaptive search policies [24, 11]—results have often
been mixed due to challenges related to model convergence and the
selection of suitable training sets.

At present, ML-MILPmodels generally require structurally homo-
geneous instance sets—i.e., instances drawn from the same underly-
ing problem type, albeit with varying sizes. These models continue to
struggle with generalization across the entire MILP space. A promis-
ing direction to address this limitation is to partition the MILP space
into groups of structurally similar instances. Such structured parti-
tioning would enable the design of specialized ML-MILP models
tailored to each group, thereby improving generalizability.

Furthermore, most existing studies define their own evaluation
sets, often without a principled assessment of heterogeneity. This
practice complicates the comparison of different ML-MILP ap-
proaches in terms of their generalization capacity. Establishing a
rigorous characterization of heterogeneity within evaluation datasets
is thus essential for meaningful benchmarking and fair performance
comparisons.

On these two grounds, we review existing approaches from two
complementary angles: (i) methods for partitioning the MILP space
and (ii) techniques for evaluating heterogeneity between instances.

2.2 Categorization of MILP Instances

Efforts to partition theMILP instance space have a long history. Early
work focused on categorizing well-known problem domains in logis-
tics and flow management [2, 14], which facilitated the development
of specialized solution techniques targeted at specific problem types.
More recently, StrIPLIB [3] has extended this by proposing a dataset
of over 21,000 MILP instances drawn from the literature and orga-
nizing them into 33 hierarchically structured classes and subclasses.
While this represents a significant step toward formalizing the MILP
instance space, the classification framework exhibits several short-
comings. Many classes are not mutually exclusive; for example, the
General Assignment problem reduces to a Knapsack problem when
restricted to a single agent. Furthermore, the scope and granularity
of the classes vary widely. Some categories, such as Bin Packing, en-
compass thousands of instances (e.g., 3,640), whereas others—like
Binary/Ternary Code Construction—contain only a handful (e.g., 2).
As a result, certain classes disproportionately dominate the dataset,
while others cover only narrow and specialized niches, raising con-
cerns about the structural balance and homogeneity of this existing
classification appraoch. Additionally, this categorization is far from
exhaustive. Real-world MILP problems often fall outside the bound-
aries of the predefined classes, rendering the current classification
schemes insufficient for capturing the full diversity of the MILP
space.

In parallel, MIPLIB 2017 [7], a benchmark library of real-world
instances, employs a constraint tagging system to describe instance
structures. These tags are linked to manually defined constraint
templates, allowing for the characterization of instances directly
from their formulations. While this approach enables broad cover-
age—any instance can be described using a combination of tags—the
system does not support partitioning. Tags are inherently hierarchi-
cal, ranging from general to highly specific, and instances often re-
ceive multiple tags, precluding a clean division of the space into dis-
joint, homogeneous groups.

G. Maudet and G. Danoy / A Distance Metric for Mixed Integer Programming Instances 895



Despite these initiatives, a robust and comprehensive segmentation
of the MILP space into disjoint, structurally homogeneous classes
remains an open challenge. Achieving such a segmentation would
likely require the development of a principled and reliable similar-
ity metric capable of quantifying structural relationships between in-
stances.

2.3 Similarity Measures Between MILPs

Various methods have been proposed to assess the similarity between
MILP instances, either to guide solvers in the resolution process or
to evaluate the heterogeneity of instance sets. For the first objec-
tive, Steever et al. explored similarity methods, emphasizing that
the structure of a MILP can reveal valuable insights into its solu-
tion process without more details. Their initial approach, the ISS
method [19], represents instances by encoding constraint matrices
as grayscale images analyzed via autoencoders, producing a lower-
dimensional representation of the input instance. Subsequently, they
introduced a GNN-based approach [20], where an input graph repre-
sentation of an instance is processed to output the probability of the
instance belonging to each of the trained classes, using training data.
The second objective, evaluating heterogeneity, was pursued in the
construction of the MIPLIB2017 library [7], where their similarity
metric was employed to define instance libraries that maximize het-
erogeneity. This metric represents instances through 100 handcrafted
features, including attributes such as problem size, coefficient dis-
tributions, and categorization tags. In both methods, the similarity
between instances is measured using the Euclidean distance in the
output space.

Despite these contributions, existing similarity measures face im-
portant limitations. Unsupervised approaches such as the feature-
based method lack rigorous theoretical justification for feature se-
lection, which limits confidence in their applicability across diverse
MILP formulations. The ISS method has been shown to underper-
form compared to the GNN-based alternative. On the other hand, the
supervised GNN model relies on predefined instance classes during
training—a framework that lacks theoretical coherence for defining
a global, principled structure over the MILP space. This reliance in-
troduces significant difficulties in selecting appropriate training sets,
especially when aiming to generalize to the full diversity of MILP
problems.

In summary, existing similarity metrics remain constrained either
by poor performance for unsupervised appraoch or by the need for
supervised training on ill-defined class labels, motivating the search
for alternative, mathematically grounded approaches that can support
unsupervised structuring of the MILP space.

2.4 Positioning

To overcome the limitations identified in previous approaches, we
propose a lightweight similarity metric for MILP instances that is
directly derived from their mathematical formulations and supported
by well-defined mathematical properties. Instead of relying on prede-
fined, discrete problem classes, our approach generalizes this concept
by defining similarity as a continuous measure of structural close-
ness. Within a given problem class—assuming a consistent repre-
sentation—strong structural patterns tend to persist across instances,
even as instance sizes vary. That is, larger instances may intro-
duce additional variables or constraints, yet the fundamental struc-
ture (e.g., variable types, constraint templates, and coefficient distri-
butions) typically remains stable. The goal is thus to identify these

persistent structural similarities that are preserved as instance size
increases.

The proposed metric not only facilitates the selection of evalu-
ation sets by controlling heterogeneity—similar to the motivation
in [7]—but also enables the quantitative assessment of heterogeneity
in existing benchmarks. This, in turn, provides a principled means for
evaluating the generalizability of optimization and learning methods.
Moreover, as noted by Steever et al., such similarity metrics can be
leveraged to guide solver behavior, enhancing performance. From an
ML perspective, a reliable similarity metric allows for the segmen-
tation of the MILP space into structurally coherent subsets. This en-
ables training ML-MILP models on homogeneous instance groups,
which improves convergence and mitigates the difficulties associ-
ated with training set selection. In contrast to handcrafted heuris-
tics—often tailored to specific problem families—ML methods are
inherently data-driven and adapt to the structure of the training data.
As such, defining similarity directly from instance formulations,
rather than relying on problem-type semantics, presents a promising
approach for developing ML-MILP methods that are both scalable
and broadly applicable.

Nevertheless, the task of explicitly partitioning the MILP
space—though a natural extension of our metric—is beyond the
scope of this paper. Our primary goal here is to validate the relevance
and robustness of the proposed distance measure itself.

3 Formal Definition of the Distance

In this section, we formally define a distance metric for compar-
ing MILP instances, with the goal of identifying structurally simi-
lar instances—even when their sizes differ—by leveraging common
patterns typically observed within instances of the same problem
class. The metric is constructed by categorizing variables, their cor-
responding weights, and right-hand sides, followed by introducing a
normalized instance representation aimed at eliminating dimension-
dependent parameters. Using this representation, we define a dis-
tance between individual constraints and extend it to entire MILP
instances by comparing proportions of similar weight-variable pairs
and constraints, rather than direct pairwise comparisons. This metric
satisfies the properties of a mathematical distance. having similarities
with the well known EMD.

3.1 Background

A MILP instance P can be expressed mathematically as (1):

Minimize z =
∑

j∈N0

wj
0v

j ,

Subject to i ∈ {1, . . . ,m}, ci :
∑

j∈Ni

wj
i v

j ≤ bi,
(1)

where the key components are defined as follows:

• (vj)1≤j≤n: the set of variables in the instance.
• C = (ci)1≤i≤m: the set of constraints, with c0 conventionally

denoting the objective function. For each constraint ci, Ni ⊆
{1, . . . , n} represents the indices of variables with non-zero
weights, with ni = |Ni| the number of variables in the constraint.

• bi ∈ R: the right-hand side of constraint ci.
• (vj)j∈Ni : the variables associated with constraint ci.
• (wj

i )j∈Ni : the weights associated to the variables in ci.
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For clarity, when necessary, we denote ci(P) to explicitly refer to
constraint (or objective function) ci associated with instance P.

3.2 Classification of MILP Features

To define the distance between constraints—and by extension, entire
MILP instances—we classify the three essential features of MILP
formulations: right-hand sides, variables, and weights. This classifi-
cation discretizes these features into distinct classes, enabling sim-
plified comparisons through binary similarity measures, while also
accounting for redundancies both within and across constraints.

Formalism of MILP Feature Classes

The classification process assigns classes to elements as follows:

• Each right-hand side bi is assigned a class t(bi) ∈ C(b).
• Each variable vj is assigned a class t(vj) ∈ C(v).
• Each weight wj

i is assigned a class t(wj
i ) ∈ C(w).

To define the distance, we use the indicator function �, which com-
pares two elements x1 and x2 of type x (right-hand sides, variables,
or weights). If x1 and x2 are in the same class, �(t(x1) �= t(x2)) =
0; otherwise, it equals 1.

Choices Made for the Classification

For variables, we use the standard classification into three categories:
binary (B): vj ∈ {0, 1}, integer (I): vj ∈ Z, and continuous (C):
: vj ∈ R. Constraints on lower and upper bounds are excluded to
maintain a reduced number of classes. For weights and right-hand
sides, the domains are R and R

∗, respectively. To define classes,
instead of defining intervals, which may introduce boundary chal-
lenges, we classify by isolating the most frequently occurring single-
tons as distinct classes. The remaining values form a complementary
class encompassing all other elements. The classification is derived
from the MIPLIB 2017 collection, a comprehensive dataset of 1065
MILP instances [7] representing diverse MILP problems. Analysis
of this dataset identifies −1 (40%) and 1 (33%) as the most frequent
singletons for weights, and 0 (57%) and 1 (21%) for right-hand sides,
with high occurrence rates validating the singleton-based approach.
Similar patterns are observed in the strIPLIB instances used for eval-
uation. In summary, the classification scheme is as follows:

• C(v) = {B, I, C} for variables,
• C(w) = {−1, 1,R \ {−1, 1}} for weights,
• C(b) = {0, 1,R \ {0, 1}} for right-hand sides.

This discretization scheme is motivated by principles from entropy-
based discretization [26], aiming to preserve the most informative
distinctions in the data. Additionally, by using the same number of
classes across different features and ensuring balanced class propor-
tions, we improve comparability of feature importances and prevent
any single feature type from dominating the similarity computation.

3.3 Normalized Representation of an Instance

From this classification, redundancies are identified both within con-
straints, in terms of repeated weight-variable pairs, and across con-
straints with identical constraint representations. To capture repeti-
tions of weight-variable pairs, let n(ŵj , v̂k, i) represent the number
of occurrences of the pair ŵj , v̂k in constraint ci, and define their

proportion as pc(ŵj , v̂k, i) =
n(ŵj ,v̂k,i)

ni
. Similarly, redundancies

between structurally identical constraints are addressed by identi-
fying the set of structurally unique constraints (ci)i∈M(P), where
M(P) ⊆ {1, . . . ,m}, and for i ∈ M(P), mi denotes the number of
repetitions of constraint ci. The proportion of a constraint ci within
the instance P is given by pP(P, ci) = mi

m
. Thus, we can define

a normalized representation of an instance by removing the dimen-
sions induced by the instance itself, representing the proportions of
occurrence of weight-variable pairs within a constraint and the pro-
portions of occurrence of constraints within the instance. Using the
notation

∑
ŵj ,v̂k

=
∑

ŵj∈C(w)

∑
v̂k∈C(v), we define the normalized

version of an instance P as in (2):

Minimize z =
∑

ŵj ,v̂k

pc(ŵj , v̂k, 0)ŵj v̂k,

Subject to i ∈ M(P),

pP(P, i)× ci :
∑

ŵj ,v̂k

pc(ŵj , v̂k, i)ŵj v̂k ≤ t(bi).

(2)

Table 1. Normalized representation of the app1-2 instance. The first
row displays the objective function to minimize, followed by the list of

constraints. The first column represents the proportional occurrence (denoted
as ex = 10x) of each constraint type, and the second column shows the
constraint representation. In each constraint, a weight-variable pair is

denoted as the proportion of that pair× the weight class · the variable class.
The class R represents the class excluding singletons for both the weight and

the right-hand side.

Minimize 1.0×−1 · B
Prop Constraint Representation

2.0e-1 0.33× R · B+ 0.33× 1 · C+ 0.33×−1 · C ≤ R

2.0e-1 0.33× 1 · B+ 0.33×−1 · C+ 0.33× 1 · C ≤ 1
2.0e-1 0.5× 1 · C+ 0.5×−1 · C ≤ 0
1.9e-1 0.83× R · C+ 0.17×−1 · C ≤ 0
1.9e-1 0.83× R · C+ 0.17× 1 · C ≤ 0
4.5e-3 0.8× R · C+ 0.2×−1 · C ≤ 0
4.5e-3 0.8× R · C+ 0.2× 1 · C ≤ 0
4.0e-3 1.0×−1 · B ≤ R

2.1e-3 0.33× R · B+ 0.33×−1 · C+ 0.33× 1 · C ≤ R

2.1e-3 0.33× 1 · B+ 0.33× 1 · C+ 0.33×−1 · C ≤ 1
2.1e-3 0.5×−1 · C+ 0.5× 1 · C ≤ 0
1.5e-5 1.0×−1 · C ≤ R

1.5e-5 1.0× 1 · C ≤ 1

An example is provided in Table 1, where the normalized ver-
sion of the instance app1-2 from MIPLIB 2017 is illustrated (https://
MIPlib.zib.de/instance_details_app1-2.html). This instance consists
of 53,467 constraints1 and 26,871 variables, yet only 13 unique con-
straint representations, each containing at most three distinct types of
weight-variable pairs.

It is worth noting that a strong similarity can be drawn with the
MIPLIB 2017 tagging process, which constructs manually defined
constraint templates 2. Our standardization approach enables the def-
inition of these templates while also generalizing the process through
the automatic definition of templates that compactly represent the in-
stance.

1 Additional constraints were introduced in our model to convert equality
constraints into two inequality constraints.

2 See https://MIPlib.zib.de/statistics.html
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3.4 Distance Definitions

Our objective is to define a distance measure between MILP in-
stances that effectively groups instances from the same problem
class, even when their sizes differ. Specifically, by analyzing mod-
ifications of similar problem types of varying sizes, we aim to assign
zero distance to: (i) constraints that vary in the number of variables
but maintain proportionality in the distribution of weight-variable
pairs; (ii) instances with different numbers of constraints but the
same proportion of similar constraints. Our distance measure is based
on the normalized representation in (2), where we aim to minimize
mismatches in the weight-variable pairs for constraint comparison,
and minimize the distances between constraints to determine the
overall distance between instances.

Distance between Weight-Variable Pairs

First, to compare a weight-variable pair, we establish the following
rules: (i) if the weights belong to different classes, we add α > 0; (ii)
if the variables belong to different classes, we add β > 0. Therefore,
for a pair of weight and variable ŵj , v̂k and another pair ŵl, v̂o, their
similarity is expressed as (3):

dw,v(ŵj , v̂k, ŵl, v̂o) = α�(ŵj �= ŵl) + β�(v̂k �= v̂o) (3)

dw,v represents the discrete distance metric, it satisfies the properties
of a mathematical distance.

Theorem 1. The function dw,v defined in (3) is a mathematical dis-
tance between elements of C(w)× C(v).

Distance Between Constraints

The distance between two constraints, cq and cr , is defined as the
minimal transfer of proportions of weight-variable pairs from cq to
cr . This transfer is weighted by dw,v , and it includes an additional
term accounting for potential differences in their right-hand sides,
weighted by γ. Considering the proportions of weight-variable pair
occurrences (p(ŵj , v̂k, q))ŵj ,v̂k for cq and (p(ŵl, v̂o, r))ŵl,v̂o for
cr , the simiarity is expressed mathematically as (4):

dc(cq, cr) =

min
∑

ŵj ,v̂k

∑

ŵl,v̂o

dw,v(ŵj , v̂k, ŵl, v̂o) · f(ŵj , v̂k, ŵl, v̂o)

+ γ�(t(bq) �= t(br)),

(4)

subject to the following constraints given in (4.1):

∀ŵj , v̂k, ŵl, v̂o, f(ŵj , v̂k, ŵl, v̂o) ≥ 0,

∀ŵj , v̂k,
∑

ŵl,v̂o

f(ŵj , v̂k, ŵl, v̂o) = pc(ŵj , v̂k, q),

∀ŵl, v̂o,
∑

ŵj ,v̂k

f(ŵj , v̂k, ŵl, v̂o) = pc(ŵl, v̂o, r).

(4.1)

Here, f(ŵj , v̂k, ŵl, v̂o) represents the transfer of proportions from
the weight-variable pair ŵj , v̂k in cq to the pair ŵl, v̂o in cr . The
constraints ensure that the total transfer from all pairs ŵj , v̂k equals
the proportion pc(ŵj , v̂k, q), and similarly, the total transfer to ŵl, v̂o
equals pc(ŵl, v̂o, r). Notably, this corresponds to the EMD [16], also
commonly referred to as the Wasserstein distance [25]. This distance
quantifies the minimum amount of change required to transition from

one distribution to another. Combined with an additional distance
component, this metric satisfies the properties of a mathematical dis-
tance.

Theorem 2. The function dc defined in (4) is a mathematical dis-
tance between constraints represented as (2).

Distance Between Instances

The distance between two instances is defined using the previously
established constraint distance. For instances Ps and Pt, the set
(cis(Ps), pP(Ps, cis(Ps))is∈M(Ps) represents distinct constraints
and their proportions for Ps, with a similar representation for Pt.
The distance is calculated by transferring the proportions of con-
straints from Ps to Pt, weighted by dc, and including an additional
term weighted by ζ > 0 to account for the objective function dis-
tance, as shown in (5):

dP(Ps,Pt) =

min
∑

is∈M(Ps)

∑

it∈M(Pt)

dc(cis(Ps), cit(Pt)) · f(is, it)

+ ζdc(c0(Ps), c0(Pt)),

(5)

subject to the following constraints given in (5.1):

∀is ∈ M(Ps), ∀it ∈ M(Pt), f(is, it) ≥ 0,

∀is ∈ M(Ps),
∑

it∈M(Pt)

f(is, it) = pP(Ps, cis(Ps)),

∀it ∈ M(Pt),
∑

is∈M(Ps)

f(is, it) = pP(Pt, cit(Pt)).

(5.1)

Similarly to the distance between constraints, f(is, it) represents
the transfer of proportions from the constraint cis(Ps) to cit(Pt),
with constraints ensuring that the transfer respects the proportions
pP(Ps, is) and pP(Pt, it). This first term corresponds to the EMD,
ensuring that, when combined with another distance, dP adheres to
the properties of a mathematical distance.

Theorem 3. The function dP defined in (5) is a mathematical dis-
tance between instances represented as (2).

This metric enables the formal comparison of MILP instances,
supports defining neighborhoods of instances, and facilitates clas-
sification methods that rely on a valid distance measure. Our goal
was to design a distance metric capable of identifying as similar the
instances belonging to the same type, even when their sizes differ.
Specifically, when identical constraints (i.e., constraints with similar
proportions of weight-variable pairs) appear in the same proportions
across the compared instances, the distance is dP = 0. In more gen-
eral cases, the proposed distance quantifies the minimum proportion
of changes necessary to transform one instance into another, based
on the normalized representation of (2). In particular, a change in
weight incurs a penalty of α, a change in variables incurs a penalty
of β, a modification to the right-hand side incurs a penalty of γ, and
an additional weighting factor ζ is applied to account for differences
in the objective functions. Still, a known limitation of this formu-
lation is its flexibility with respect to dimensionality: for example,
a constraint involving a single variable can have zero distance from
one in which that variable appears multiple times, even though their
semantics may differ significantly.
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3.5 Greedy Heuristic for Distance Computation

The exact computation of the EMD has a complexity of
O(n3 log(n)) [13], which presents a significant computational chal-
lenge due to its application in both constraint-level and instance-
level distance calculations. To address this, we propose an alterna-
tive greedy heuristic that iteratively matches the closest pairs, first at
the constraint level and subsequently at the instance level, offering a
computationally efficient and straightforward approach. At the con-
straint level, weight-variable pairs from one constraint are iteratively
matched with their closest counterparts (based on dw,v), with match-
ing proportions determined by the smaller of the two proportions.
A constraint contains at most |C(w)| × |C(v)| unique pairs, where
|C(·)| denotes the number of elements in the set. Thus, comparing
two constraints has a complexity of O(|C(w)|2 × |C(v)|2). Extend-
ing this to compare all constraints of instances Ps and Pt, the total
complexity for constraint-level comparisons becomes O(|C(w)|2 ×
|C(v)|2×|M(Ps)|× |M(Pt)|), where |M(·)| represents the number
of distinct constraints in an instance. At the instance level, constraints
fromPs are iteratively matched with their closest counterparts inPt

(based on dc), again matching proportions according to the smaller
value. This step adds a complexity ofO(|M(Ps)|×|M(Pt)|), which
remains negligible when compared to the constraint distance compu-
tation.

4 Evaluation

The main objective of our experimental study is to evaluate
the ability of similarity measures to group structurally related
MILP instances. While problem classification is not without limi-
tations, instances within the same class typically share key struc-
tural traits—which is precisely what we aim to capture. We lever-
age this principle by using the strIPLIB dataset [3], which contains
over 21,000 MILP instances organized into hierarchically structured
classes and subclasses. We deliberately choose not to use MIPLIB
2017 [7], as its real-world instances often span multiple problem
types, making class-based evaluation less suitable. We recall that
some modeling choices in our distance formulation—such as the cat-
egorization of weights and right-hand sides—are derived from em-
pirical observations on MIPLIB instances.

Two experiments are conducted to evaluate the performance of
our similarity metric. The first replicates the methodology proposed
in [20], which assesses the capability to identify instances belonging
to the same class. The second extends this analysis by examining the
ability to group instances within the same subclass for classes already
studied. All source code and resources are publicly available on the
Git repository at https://gitlab.com/uniluxembourg/snt/pcog/ultrabo/
clustering-for-search-strategy.

For each experiment, we sample 50 instances per class (or sub-
class), denoted by c ∈ C, where C is the set of all considered classes.
Each class provides 10 test instances, written asPi

c(t) for i ∈ [1, 10],
and 40 reference instances, denoted Pj

c(r) for j ∈ [1, 40]. Each
test instancePi

c(t) is compared against all reference instancesPj
ć(r)

from every class ć ∈ C. The 40 reference instances with the smallest
distances TOP40

(
d(Pi

c(t),P
j
ć(r))

)
are selected. The top-40 accu-

racy is defined as the proportion of these 40 nearest neighbors that
belong to the same class c. The final score for each class is the aver-
age top-40 accuracy over its 10 test instances. It is important to note
that each added class contributes 40 additional comparison points per
test instance. As such, performance is influenced by the total number

of (sub)classes considered, and results are only comparable within
the same experiment, not across experiments. To enhance clarity, the
highest score for a class (or subclass) among baselines is highlighted
in green in the result tables. Conversely, if the performance is at least
50% worse than the best score, the corresponding cell is marked in
red, with intermediate values represented by a gradient transitioning
between these colors.

Our method, denoted Formal, depends on parameters α, β, γ and
ζ, which respectively control the influence of weights, variables,
right-hand sides and the objective function in the distance computa-
tion. In the first experiment, we conduct a sensitivity analysis: we test
configurations where one parameter is deactivated (denoted with a �·
symbol), and compare these to the baseline setting where all param-
eters are set to 1 (denoted ∅). All sensitivity variants use the greedy
version of the distance computation for efficiency. We also report
results from the exact version of our metric (denoted ∅E), and in-
clude computation times for both greedy and exact variants. For the
second experiment, we restrict our comparison to the greedy version
with α = β = γ = ζ = 1.

We compare our proposed metric against the three main similar-
ity measures available in the literature—these are, to the best of our
knowledge, the only established methods for assessing similarity be-
tween MILP instances:

• Features-Based Method [7]: This method represents an instance
in a 100-dimensional space by extracting features. The similar-
ity between two instances is calculated as the Euclidean distance
within this feature space. We denote this method as Feat. The fea-
ture extraction code is publicly available 3, and we utilized this
implementation for all experiments. Notably, a direct comparison
of this method to other baselines has not been conducted in previ-
ous works.

• ISS [19]: In this approach, instances are converted into grayscale
images, which are subsequently fed into an autoencoder. The sim-
ilarity between instances is computed as the Euclidean distance
between the autoencoder’s output vectors. We denote this method
as ISS. Since the authors did not provide an available implementa-
tion, we relied on the reported results from the original paper for
the first part of our experiments. However, this method is excluded
from the second part of our analysis due to the unavailability of an
open-source implementation.

• GNN Similarity [20]: This method leverages a GNN trained to
classify instances into 19 predefined categories, using the ref-
erence set of 40 instances per class from the first experiment.
The similarity between instances is defined as the Euclidean dis-
tance between the output embeddings of the GNN. We denote this
method as GNN. Although the official repository provides a pre-
trained model, it does not include the necessary code for construct-
ing or training the GNN. Consequently, we rely on the reported
results from the corresponding paper for experiments under the
same framework and utilize the pre-trained GNN model for addi-
tional experiments.

4.1 Identifying Membership to Similar Classes

The primary objective of this evaluation is to assess the ability of our
method to effectively group instances belonging to the same class.
To ensure a fair comparison, we adopt the same experimental frame-
work described in [20], leveraging their specified test and reference
sets. This approach allows for direct performance comparisons with

3 https://MIPlib.zib.de/downloads/feature_extractor.zip
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the ISS and GNN methods by using the data provided in [20]. Ad-
ditionally, we evaluate the performance of the Features method. The
experiment considers 19 problem classes from the strIPLIB dataset.
The abbreviations used for these classes are detailed in [20, 19].
These classes were justified in [19] as follows: "19 problem types
which contained at least 50 total instances across all sources for that
problem type". However, the specific selection process for these 50
instances per class is not detailed. It is also noteworthy that, since the
release of the library, 6 additional problem classes now contain more
than 50 instances. Furthermore, some previously listed classes, such
as bpp, bp2, and bif, have since been reclassified as subclasses.

Formal Feat ISS GNN

�α �β �γ �ζ ∅E ∅
bpp 42 47 49 26 47 47 27 32 81
bp2 62 71 100 71 95 95 24 52 100
bif 50 44 50 50 50 50 21 32 43
clp 54 59 37 64 57 56 28 12 37
col 40 40 40 40 40 40 27 36 40
cpm 49 54 51 52 65 54 32 47 100
cut 26 48 57 34 49 48 20 16 99
cvr 82 62 87 92 91 91 15 40 93
cwl 100 97 95 97 100 97 100 23 100
gap 100 100 98 98 100 100 22 30 100
inr 56 61 55 84 63 63 88 19 84
kps 100 100 100 100 100 100 35 82 100
lot 48 57 72 49 68 56 36 28 87
map 55 65 67 42 62 65 33 27 97
pcp 59 87 91 87 83 87 33 57 100
rel 28 38 31 27 38 38 18 22 25
sch 100 100 100 99 100 100 45 24 87
tup 97 100 100 93 100 100 64 75 100
vrp 100 100 100 100 100 100 56 100 100
mean 66 70 73 69 74 73 38 40 83

Table 2. Evaluation of similarity measures to identify whether instances
belong to the same problem class.

The experimental results are summarized in Table 2. Focusing first
on the different variants of our method Formal, we observe that re-
moving any component of the distance (by setting its weight to zero)
generally leads to a drop in performance. The full version (∅) consis-
tently outperforms both �α and �ζ—the latter in all but one class—and
is marginally superior to �β in all but three classes. The variant with-
out right-hand side comparison (�γ) yields results that are, on average,
similar to the full version, but shows a significantly higher worst-case
drop (up to 19%), indicating greater variability and instability. When
comparing the greedy version (∅) to the exact formulation (∅E), re-
sults are identical in 17 out of 19 classes. The average runtime to
compute the top-40 neighbors per test instance is 2.8×10−3 seconds
(std 4.4 × 10−3) for the greedy version, compared to 0.37 seconds
(std 0.65) for the exact method. This highlights not only a 200×
speedup but also a much more stable runtime, making the greedy
variant clearly preferable in practice. In comparison to the baselines,
both our method (Formal) and the supervised GNN approach consis-
tently outperform Features and ISS. The latter two perform at least
50% worse than the best score in 12 out of the 19 evaluated classes.
While GNN benefits from supervised training on nearly 800 labeled
instances from similar classes, the performance gap between the two
remains small. Formal achieves results within 5% of the best score
in 12 out of 19 classes, compared to 14 out of 19 for GNN, with
similarly close average accuracy.

Regarding class-wise performance, more than ten classes exhibit
near-perfect top-40 accuracy above 95%, while others perform sig-

nificantly worse. Further analysis (not shown) highlights notable
structural overlaps between certain classes. For instance, at least
10% of the top 40 most similar instances retrieved by Formal in
some cases belong to a different class, and vice versa. Notably, bpp
and cut are explicitly marked as structurally similar in the StrIPLIB
documentation. Likewise, cpm and cwl both fall under capacity-
constrained formulations, and map and col share similar structures
despite being distinct classes. The rel class also performs poorly
across all metrics, likely due to its high internal heterogeneity and
overlap with the bif class. These overlaps appear to result from the
inherently ambiguous nature of instance class definitions, which of-
ten blur structural boundaries between problems.

4.2 Identifying Belongings to Similar Subclasses

Formal Feat GNN

bpp

conflicts 0.51 0.32 0.5
item-fragmentation 0.46 0.37 0.89
plain 0.99 0.28 1.0
two-dimensional 0.84 0.28 1.0

lot

linked-lot-sizes 1.0 0.31 0.48
sizing multi-level 0.52 0.47 0.6
sizing multi-level-with-
setup-time 0.42 0.33 0.45

sizing single-level 1.0 0.47 0.46

vrp
capacitated 0.96 0.21 1.0
concrete-delivery 0.73 0.5 1.0
time-windows 1.0 0.38 1.0

mean 77 36 76

Table 3. Evaluation of similarity measures to identify whether instances
belong to the same subclass.

The objective of this second part of the simulation is analogous
to the first; however, it focuses on problem subclasses, making it in-
trinsically more complex as it requires distinguishing between sets
of more closely related instances. To maintain consistency within the
training framework of the GNN method and to ensure a fair compar-
ison, the subclasses studied belong exclusively to the classes trained
by GNN. We select the set of subclasses based on the following cri-
teria: (i) the class must be part of the GNN reference set; (ii) the
subclass must contain at least 50 instances; and (iii) there must be
more than one eligible subclass per class. This selection yields three
classes, each with three to four subclasses. Notably, three of the four
subclasses within the bpp class were explicitly trained as separate
classes by the GNN, potentially giving it a specific advantage. The
instances are selected using the seed {1} to ensure reproducibility.

The results of this experiment are presented in Table 3. Once again,
the Features method performs significantly worse compared to both
Formal and GNN. However, it remains challenging to definitively
determine superiority between Formal and GNN. For the bpp class,
GNN outperforms Formal by 48% and 16% on two of the subclasses,
respectively, with both methods achieving similar results on the re-
maining two subclasses, although GNN was specifically trained to
recognize these subclasses. For the lot class, each method excels in
two of the four subclasses. However, while GNN underperforms by
at least 52%, Formal’s performance is never more than 6% below
the best, demonstrating greater reliability across these subclasses.
For the vrp class, GNN achieves perfect classification, while Formal
closely follows, with an average gap of approximately 10%. Over-
all, both methods reach comparable mean performance, with Formal
slightly ahead by 1%.
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To summarize these experiments, Formal significantly outper-
forms all unsupervised baselines (ISS and Features). When com-
pared to GNN, neither method clearly surpasses the other. However,
GNN benefits from supervised training on this specific set of prob-
lem classes using a labeled dataset of 760 instances. These problem
classes have inherent limitations, and GNN is confined to its training
framework, making the generalizability of its similarity metric across
the entire MILP space impractical.

5 Conclusion and Future Works

In this paper, we introduced a novel similarity metric for MILP that
exhibits the mathematical properties of a distance function. This met-
ric is derived solely from the intrinsic data of the problems being
compared, without requiring any training process. We demonstrated
that our proposed metric outperforms the considered baselines, par-
ticularly challenging a classification method that relies on a labeled
training dataset.

Our proposed similarity metric offers several advantages. First,
it can effectively characterize the heterogeneity within a set of in-
stances, making it applicable to various use cases, such as selecting
heterogeneous benchmark instances (e.g., MIPLIB) or quantifying
the diversity of any evaluation set. Second, it defines instance classes
based solely on the structural representation of constraints, without
needing to consider the specific objective of the instances. This ap-
proach not only bridges existing instance classes but also enables the
association of unlabeled or sparsely labeled instances with known
groups.

Future work will focus on extending this methodology to develop
a classification of the entire MILP space, with the aim of general-
izing ML-MILP methods across all MILP instances. As highlighted
in previous studies, ML methods for MILP solvers (e.g., branching,
searching, cutting) typically perform well only on structurally simi-
lar instances. A comprehensive classification of the MILP space will
facilitate the development of specialized ML-MILP models targeting
specific instance classes, improving their overall effectiveness.
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