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Abstract—In this paper, we investigate downlink co-
frequency interference (CFI) mitigation in non-geostationary
satellite orbits (NGSOs) co-existing systems. Traditional miti-
gation techniques, such as Zero-forcing (ZF), produce a null
towards the direction of arrivals (DOAs) of the interfering sig-
nals, but they suffer from high computational complexity due to
matrix inversions and required knowledge of the channel state
information (CSI). Furthermore, adaptive beamformers, such
as sample matrix inversion (SMI)-based minimum variance,
provide poor performance when the available snapshots are
limited. We propose a Mamba-based beamformer (MambaBF)
that leverages an self-supervised deep learning (DL) approach
and can be deployed on the user terminal (UT) antenna array,
for assisting downlink beamforming and CFI mitigation using
only a limited number of available array snapshots as input,
and without CSI knowledge. Simulation results demonstrate
that MambaBF consistently outperforms conventional beam-
forming techniques in mitigating interference and maximizing
the signal-to-interference-plus-noise ratio (SINR), particularly
under challenging conditions characterized by low SINR, lim-
ited snapshots, and imperfect CSI.

Index Terms—Non-Geostationary orbits (NGSOs), co-
frequency interference (CFI), Deep Learning (DL), Receive
Beamforming

I. INTRODUCTION

Satellite communications (SatCom) will play a vital role
in next-generation wireless networks by providing service to
vast areas that lack terrestrial network coverage, especially
with the rapidly growing Low-Earth orbit (LEO) mega-
constellations [1]. These constellations are distributed in the
Non-Geostationary Satellite orbits (NGSOs) and must man-
age co-existence strategies for sharing the limited spectrum
[2]. Despite the proactive coordination efforts established
by the International Telecommunication Union (ITU) among
NGSO operators [3], there remains a risk of unintentional co-
frequency interference (CFI), especially in the Ku/Ka bands
where tens of thousands of NGSOs operate, potentially caus-
ing severe quality of service (QoS) degradation [4]. Thus,
advanced interference avoidance and mitigation techniques
that ensure both low complexity and efficient mitigation of
unintentional interference in NGSO spectrum co-existence
scenarios are needed.

Planar arrays are becoming popular user terminals (UT)
equipments, because they can be used to steer the receiver
electronically towards the moving satellite line of sight [5].
This work focuses on the adaptive beamforming (ABF)
techniques on the UT side, where low complexity and fast
adaptation are needed (due to the time-varying nature of
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the scenario). The goal is to generate antenna weights to
accurately steer the main lobe towards the signal of interest
(SOI) locations while minimizing the antenna gain towards
interference locations.

Conventional correlation-based ABF methods, such as
the Capon beamformer, also known as Minimum Variance
Distortionless Response (MVDR) [6], rely on knowledge of
the covariance (or correlation) matrix of the received signals.
The covariance matrix is typically estimated using snapshots
of the received signals, and accurate computation of the
inverse covariance matrix is key to nulling interferers while
preserving the SOI. Furthermore, this approach relies on
channel state information (CSI) to constrain the beamformer
towards the SOI direction. Moreover, traditional ABF’s main
drawbacks are the high computational complexity involved
in the weight calculation and the iterative nature of the
algorithms, which makes the temporal response of the fast-
moving satellites a critical concern.

Deep learning (DL)-based beamforming techniques have
emerged as a potential solution to the traditional beamform-
ing techniques’ drawbacks [7]. DL-based beamforming typ-
ically replaces or augments the classical weight calculation
with a neural network that directly outputs beamforming
weights. In this context, the authors in [8] compared the per-
formance of an encoder-based beamformer, a convolutional
neural network (CNN) and MVDR approaches in terms
of signal-to-interference-plus-noise ratio (SINR) for LEO
satellites communication systems; these approaches rely on
supervised learning, which requires per definition input-
output pairs. Obtaining such labeled data can be challenging
due to the unpredictable environments of NGSOs, making
the ground truth difficult to ascertain. In [9], the authors
introduced an unsupervised deep neural network (DNN)
beamforming (NNBF) model for the terrestrial uplink sum-
rate maximization problem; the CSI was used as an input,
but in the CFI case, only the desired CSI can be estimated.
Furthermore, such a model might be sensitive to imperfect
CSI scenarios.

In this paper, we propose an self-supervised DL-based
beamformer approach using Mamba state space model
(SSM) layers [10]. These layers effectively capture both
spatial and temporal features from the input data that may
be relevant to generating the correct beamforming weight
vectors. Mamba-based beamformer (MambaBF) can be de-
ployed on the UT side for more energy-efficient training and
inference rather than on-board training [11], for assisting
downlink CFI mitigation in NGSO communications. Mam-
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Fig. 1. Desired satellite downlink (green) with aggregated interference from
a second independent NGSO constellation (red).

baBF is trained using the available received array snapshots
as input to produce a beamforming weight vector that can
maximize SINR by nulling interference directions.

II. SYSTEM MODEL

We investigate CFI between two coexisting NGSO satel-
lite constellations, as illustrated in Fig.1. In particular,
we consider a desired satellite (DS) serving a fixed UT,
and some interfering satellites (ISs) serving users in close
vicinity of the UT location and therefore, pointing their
signal power towards the nearby UT location. Our focus
in this work is on the UT-side receive beamforming strat-
egy, designed to avoid unintentional interference from other
satellites.

A. Channel and signal models

Consider the uniform planar array (UPA) at the UT lying
in the xy-plane with Mx ×My antenna elements on the x
and y axes respectively, and the array size M = MxMy .
Therefore, the UT array response vector can be written as
[12],

v(ϕ, θ) =
1√
M

[
1, · · · , ej 2π

λ a(mx sinϕ cos θ+my sin θ), · · · ,

ej
2π
λ a((Mx−1) sinϕ cos θ+(My−1) sin θ)

]T
∈ CM ,

(1)
where a is the inter-element spacing, 0 ≤ mx < Mx and
0 ≤ my < My are the antenna indices in the xy-plane, ϕ
and θ are the azimuth and the elevation angles respectively,
representing the directions of arrival (DoAs). For notational
brevity, we define a DoA as φ ≜ (ϕ, θ).

We are modelling a scenario where the DS transmits a
signal (sx ∈ C) with E{sxsHx } = 1 to its UT. Eventually,
K(K < M) interfering satellites (ISk, k ∈ 1, · · · ,K) are
visible to the UT and unintentionally transmit an interference
signal (si,k ∈ C) towards it (the underscore ”i” and ”d”
will be used to indicate interference satellite and desired
satellite parameters respectively). When placing the UT in
an obstacle-free elevated space as recommended by many
operators (e.g., STARLINK [5]), the line-of-sight (LoS)
component becomes dominant, thus the non-LoS (NLoS)

propagation components can be ignored. Assuming DS’s
Doppler shift is compensated for at the UT, we define
the statistical time-varying channel state information (sCSI)
model between the DS satellite and the UT at time instant
t and frequency fc,d as follows [13],

hd = χd · vd(φd) ∈ CM , (2)

where χd =
√
PdLdGut

d (φd) is the channel gain, and Pd,
Gut

d (φd) are the DS Equivalent Isotropic Radiated Power
(EIRP), and the maximum UT receive gain at (φd) direction.
Ld = ( λd

4πrd
)2 is the free space path loss inverse, rd

is the slant range between UT and DS, and λd is the
wavelength. Accordingly, the effective channel vector for the
kth interfering satellite ISk to UT receiver can be derived
as,

hi,k = χk · vk(φk). (3)

where χk =
√

PkLkGut
k (φk). The UT array receiving gain

Gut(φ) can be obtained as follows,

Gut(φ) = ηutDut(φ). (4)

where ηut, Dut are the UPA antenna efficiency and the
directivity towards φ direction. Note that the channel model
adopted in (2) and (3) is applicable over a specific coherence
time ”t” where the relative positions of the satellites and
UT do not change significantly, and the physical channel
parameters remain invariant. In this work, we simulate a
constitutive sequence of coherence times for the sake of
adaptability. Assuming that the UT array at the time instant
t can capture L total snapshots, the lth snapshot vector can
be expressed as,

y[l] = hdsx[l] +HiSi[l] + n[l] ∈ CM , (5)

where Hi ≜ [hi,1;hi,2; . . . ;hi,K ] ∈ CM×K , and Si ≜
[si,1; si,2; . . . ; si,K ] ∈ CK , here n ∈ CM presents the
additive white Gaussian noise (AWGN) at the UT receiver
with i.i.d. CN (0, σ2

n = κTutBWd), where κ, Tut, and Bd

are the Boltzmann constant, equivalent noise temperature of
the UT, and DS signal bandwidth, respectively.

B. Traditional beamforming techniques

For the UT to recover DS signals, we need to design
a beamformer weight vector w ∈ CM with the objective
of steering the UT main beam towards φ0 direction and
eliminating ”null” interference coming from φK directions.
The estimated signal after (ŝ ∈ C) after applying w is,

ŝ[l] = wHy[l] = wHhdsx[l] +wHHiSi[l] +wHn[l]. (6)

When we know the covariance matrix of a single snapshot
R[l] ≜ E{y[l]yH [l]}, the beamformer w can be obtained by
maximizing the output SINR [6],

SINRout[l] =
wHRd[l]w

wHRi+n[l]w
, (7)

where Rd = hdh
H
d ∈ CM×M , Ri+n = HiH

H
i +

σ2
nIM ∈ CM×M are the desired covariance matrix and the

interference-plus-noise covariance matrix, respectively.



The problem of maximizing (7) is mathematically equiva-
lent to the MVDR beamforming problem [14]. In particular,
the MVDR beamformer minimizes UT array input power
while maintaining unity gain in DS direction,

wMVDR = argmin
w

wHRw subject to wHvd = 1, (8)

This optimization problem leads to the following weights
for the beamformer wMVDR = R−1vd

vH
d R−1vd

. In the finite sample
case, R is unavailable; it is usually replaced by the sample
covariance matrix R̂ for L total snapshots, [15]

R̂ = E{YYH} =
1

L

L∑
l=1

y[l]yH [l], (9)

where Y = [y[1],y[2], · · ·y[L]] ∈ CM×L. When R̂ is used
to formulate (8), the solution is then called sample matrix
inversion (SMI)-based minimum variance beamformer and
is given by wSMI =

R̂−1vd

vH
d R̂−1vd

. As L increases, R̂ converges
to the theoretical covariance matrix R = Rd + Ri+n and
the corresponding SINR will approximate the optimal value
as L → ∞ . However, as the available snapshots size
L decreases, the gap between R̂ and R increases, which
dramatically affects the performance [6]. Here SINR can be
measured based on the Lth snapshot as a random variable
of a discrete random process [see Eq. 7.90 [6]], instead,
we assume average SINR (ASINR) from the available
snapshots,

ASINRout =
1

L

L∑
l=1

wHRd[l]w

wHRi+n[l]w
, (10)

In addition to adaptive wSMI, we will compare our results
with maximum ratio combining (MRC) and ZF beamformers
as follows

wMRC =
hd

∥hd∥
. (11)

wZF =

(
IM −Hi(H

H
i Hi)

−1HH
i

)
hd

∥
(
IM −Hi(HH

i Hi)−1HH
i

)
hd∥

. (12)

The benchmark approaches required different information
to perform well. SMI requires R̂ and hd, MRC requires hd,
while ZF requires Hi and hd.

In practice, UT might be able to estimate the CSI of the
DS link using a pilot signal or have prior knowledge of the
DS steering vector vd, but cannot access any information
about ISs links. The channel estimated usually suffers from
an estimation error ed,

ĥd = hd + ed (13)

where ed can be modeled as a complex Gaussian random
variable ed ∼ CN (0, σ2

eI).

III. PROPOSED APPROACH

To mitigate NGSOs’ CFI, we need a mechanism that can
be trained offline to utilize any available L snapshots of the
array output Y and generate a robust weight vector wMBF
without prior knowledge of desired or interference channels.

We propose a MambaBF to tackle this problem. Mamba-
based SSMs layers were first introduced by [10] with the
aim to address Transformers’ computational inefficiency on
long sequences of the input data by allowing the parameters
of the SSM to selectively retain or discard information along
the sequence dimensions based on the current state (i.e.,
snapshots in our case), thus improving the model’s ability
to handle sequences effectively.

A. Model Overview
We aim at generating wMBF directly from the received

snapshots Y signal. Fig. 2 (lower panel) illustrates the offline
training pipeline. When L snapshots are collected, the data
can be arranged in a matrix Y(n) ∈ CM×L, where n is a
training sample. Each complex entry is converted into its real
and imaginary parts before being fed into the neural network,
giving an input real-valued tensor of shape (2M,L).

The real and imaginary parts of Y are first normalized
and then processed by a 1D convolution (conv1D) plus
max-pooling (MaxPool1D) across the snapshot dimension
for dimensionality reduction. Each Conv1D output is Batch-
normalized to stabilize training. After these initial layers, the
latent input x ∈ RMz×L, Mz < 2M , where Mz is the latent
space size, is passed through the Mamba-based SSM layers
(MmLs), followed by fully connected (FC) layers. The final
output is a weight vector ŵ ∈ R2M , reshaped into CM , then
normalized to yield

wMBF =
ŵ

∥ŵ∥
. (14)

B. Core Mamba Layer (MmL).
The structure of the Mamba layers (MmLs) [10] incor-

porates multi-modal feature extraction capabilities through
the integration of linear transformations, convolutional op-
erations, and recurrent sequence modeling. We enhance the
local and global extraction of temporal and spatial features
by stacking two Mamba layers. An MmL block handles
sequences by merging two concurrent linear transformations
of the input, as illustrated in Fig. 3. One pathway applies
scaled exponential linear unit (SeLU) activation on the input,

x̃(ℓ) = SeLU
(
x(ℓ))

)
, (15)

the other linear path is first processed by a conv1D with
kernel size k, typically performing,

c(ℓ) = SeLU
(
Conv1Dk(x(ℓ))

)
, (16)

a Gated Recurrent Unit (GRU) further refines this sequence
representation c(ℓ) as a simple SSM model, as it unfolds
over ℓ modeling long-term dependencies in the data,

g(ℓ) = GRU
(
c(ℓ),g(ℓ− 1)

)
, (17)

the output of the GRU is then element-wise multiplied with
the skipped connection SeLU activation output, effectively
acting as an attention-like mechanism to emphasize relevant
features,

f(ℓ) = Wout

(
g(ℓ) ⊙ x̃(ℓ)

)
, (18)

where Wout is the model output projection matrix, x̃(ℓ) is a
skip-connection transform of x(ℓ), and ⊙ denotes element-
wise multiplication,
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C. self-supervised Training Objective

The proposed learning procedure offers self-supervised
training, and the loss function is customized to minimize
LASINR(n) = − 1

L

∑(n,L)
(n,l) SINR(l, n), where n is a training

sample. Given wMBF(Y(n)), we measure L(n) in terms of
the received power from the desired direction vs. interference
plus noise. We then perform backpropagation through the
MambaBF network using L(n+ 1) as our new cost.

IV. SIMULATION RESULTS

A. Parameters and Data Generation

Table I parameters were used to generate interference
scenarios in MATLAB, in addition to these parameters, for
simplification, the UPA is tilted to capture the DS signal
from DOAs [ϕd, θd] = [0, 0], while we assume that ISs
transmit severe interference (QoS degradation) could be
around side lobe levels (SLLs), so for an array operating

in scan angles ϕ, θ ∈ [−90 : 90] the critical angles are
assumed to be ϕk, θk ∈ [−40 : 40]. The UT directivity
in (4) points at DS direction with efficiency ηut = 0.99
and vd initial weights. This setup produces different SINR
values, particularly low SINR at highly correlated desired
and interference channels (in-line DOAs angles), and higher
SINR values at less correlated channels or at nulled SLLs
locations. The multi-snapshot data is generated at a sampling
rate fs = 2× Signal Bandwidth, producing 200 snapshots
per training data sample ”n”, this is for the SMI benchmark
where R̂ should be estimated assuming a full rank to ensure
a good performance of the matrix inversion.

TABLE I
SCENARIOS PARAMETERS

Parameters Values
Number of elements (M ) 10× 10 elements
Number of interfering satellites (K) 3 satellites
Satellites altitude (rd , rk) 1000, [500 to 600] Km
Satellites EIRP (Pd , Pk) 45 dBW, 40 dBW
Signal Bandwidth (sx, si,k) 50 MHz
Signal Downlink Frequency (fc,d , fc,i) 11.750 GHz
Signal Modcods (DS & ISs) QPSK, 8QAM
Number of snapshots (L) 200 snapshots
UT equivalent noise temperature (Tut) 230◦ K

To account for imperfect CSI, we introduce a 15% mis-
alignment error (i.e., σ2

e = 0.15) to the desired channel
vector hd, while keeping the interference channel matrix Hi

unaltered.

B. Model Training

The proposed model processes input tensors of shape
(Batch, 2M,L), where Batch ≤ [Ntr, Nts]. We set Ntr =



Fig. 4. ASINR for multi-snapshot with (a) perfect CSI (left) and (b) imperfect CSI (right)

4000 for training and Nts = 1000 for testing. These samples
are iteratively and randomly generated using the parameters
in Section IV-A. Throughout the experiments, the Batch
size is fixed to 16, and model weights are updated over 30
epochs. The model reduces the dimensionality of the input
to (Batch,Mz, L), where Mz = 100.

C. Model Performance

We evaluate the performance of the proposed MambaBF
beamformer using off-training (test) samples. Earlier, we
assumed UPA has knowledge of the DS’s DOA, thus the
initial beamformer win is set to vd(φd), thus the measured
SINR using the initial beamformer will be indicated by
SINRin in this paper. Our goal is to compare various beam-
formers’ performances by replacing win with a new updated
beamformer wout and measuring the resulting SINRout(wout)
where wout ∈ [wZF,wMRC ,wSMI,wMBF].

Figs. 4 plot SINRin versus SINRout for both perfect
CSI and imperfect CSI conditions. a) Perfect CSI (Left
Figure): SMI exhibits poor performance when the number of
snapshots (here 200) is limited 1. ZF performs exceptionally
well under high-quality CSI by exploiting full knowledge
of the desired and interference channels; it fully cancels
interference but struggles in negative SINRin due to the
high correlation between desired and interference channels
(i.e., vd ≈ vk). MRC performs the worst among the classical
approaches since it maximizes only the desired signal power
without explicitly nulling interference. MambaBF mostly
outperforms MRC and sometimes outperforms ZF at low
SINRin, converging at higher SINRin with minor fluctua-
tions. b) Imperfect CSI (Right Figure): With channel estima-
tion errors, SMI, ZF, and MRC see noticeable performance
drops, illustrating their sensitivity to imperfect CSI. The
MambaBF model, in contrast, outperforms these methods
across both low and high SINRin, showing robustness under
realistic imperfect CSI conditions.

Figs. 5 and Figs. 6 illustrate a representative beam-nulling
case under perfect and imperfect CSI conditions, respec-
tively. Each sub-figure shows the array directivity (in dB) as

1The performance of SMI can improve and get closer to optimal
MVDR if the number of snapshots is significantly increased (e.g., 100,000
snapshots), which is substantially higher than the 200 snapshots used for
MambaBF.

a function of UT’s azimuth and elevation angles. The desired
satellite’s DOA is marked with a black circle (◦), while the
interference satellite’s DOAs are indicated by black crosses
(×). The average output SINR (ASINR) for each method
is noted in square brackets. Due to the limited space, we
cannot cover other cases. These figures show each approach
performs at nulling interference locations, demonstrating the
strengths and weaknesses of each beamforming approach.
With accurate channel knowledge (Fig. 5), ZF effectively
cancels the interference sources, achieving high ASINR at
the cost of slightly reduced main-lobe gain in DS direction.
SMI, by contrast, struggles to null both interference signals,
leading to negative ASINR when the number of snapshots
is insufficient. MRC maximizes the gain at DS direction,
but does not suppress interference, resulting in a moderate
ASINR.

Notably, MambaBF demonstrates a balanced capability,
its beam pattern is directed toward the DS while also trying
to null the interferers, yielding an ASINR comparable to
ZF but without requiring explicit CSI knowledge. Under
channel estimation errors, ZF and MRC exhibit performance
degradation relative to the perfect-CSI scenario. SMI is es-
pecially sensitive to imperfect covariance estimates, showing
a pronounced drop in ASINR. In contrast, MambaBF main-
tains robust interference nulling and DS gain enhancement,
achieving the highest ASINR among the methods shown.
Because MambaBF does not rely on explicit CSI, it adapts
more effectively to channel misalignment errors, confirming
its suitability for real-world applications where perfect CSI
is rarely guaranteed.

V. CONCLUSION AND FUTURE WORK
We have presented MambaBF, an self-supervised DL

beamforming method that maximizes the SINR and sup-
presses interference using only the available array snapshots.
Numerical results confirm that MambaBF is the most flexible
approach, especially under imperfect CSI, where classical
methods deteriorate. This highlights MambaBF’s potential
for real-world deployments with inevitable channel imper-
fections. Potential future directions include evaluating Mam-
baBF under more complex scenarios with moving users,
as well as exploring larger-scale datasets for improving the
beamforming capability to ZF (optimal) level performance.



Fig. 5. Beam nulling performance (representative case 1: perfect CSI)
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