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ABSTRACT

This paper presents an interference mitigation framework that can be applied on the user side for Non-
Geostationary Satellite Orbit (NGSO) systems that share adjacent, overlapped frequencies to prevent
unintentional co-frequency interference (CFI) scenarios. We introduce a novel Attention-based Beamformer
(AttBF) model and explore its blind adaptive beamforming capabilities at the user terminals (UTs) side
for spatial NGSO-to-NGSO downlink interference nulling, utilizing estimation-free data (e.g., received
time-domain signals, frequency-domain representations, and sample covariance matrices (SCMs)) as direct
inputs. We present a comprehensive performance evaluation of the proposed AttBF model against traditional
deep learning (DL) models across various interference scenarios, encompassing both low spatial correlation
(at UT’s side-lobe) and high spatial correlation (at UT’s main-lobe). To facilitate this research and future
investigations into the interference management of NGSO systems, we implement innovative and extensive
realistic satellite orbiting simulation and data generation methodologies, introducing new open datasets for
the community. The results demonstrate that the proposed AttBF-based beamformer, particularly when
employing SCMs input, achieves superior performance in mitigating interference compared to time- and
frequency-domain inputs. Our findings highlight the enhanced nulling capabilities of the AttBF-based
approach compared to DL-based models, such as convolutional neural networks (CNNs), and traditional
methods, including zero forcing beamformer (ZFBF) and sample matrix inversion (SMI), underscoring the
potential of advanced DL techniques for improving the reliability and efficiency of NGSO systems.

INDEX TERMS NGSO interference mitigation, Adaptive beamforming (ABF), Transformer-encoder.

l. Introduction

ON-GEOSTATIONARY satellite orbits (NGSOs), par-

ticularly the rapidly growing low-Earth orbits (LEOs)
mega-constellations, stand as the cornerstone of the global
communication ecosystem led by Non-Terrestrial Networks
(NTN), their importance constantly amplified by the ever-
increasing demand for higher data throughput and the im-
perative for efficient spectrum utilization [1]. Given the
congestion in the lower S and C bands, NGSO systems are
increasingly leveraging higher frequency bands, including

Ku, K, and Ka, to meet growing bandwidth demands [2].
These systems must manage co-existence strategies for shar-
ing the limited spectrum [3]. Despite proactive efforts by
the International Telecommunication Union (ITU) to man-
age and regulate radio emissions worldwide, the potential
for unintentional co-frequency interference (CFI) remains
a significant concern among NGSO operators [4]. Thus,
advanced interference avoidance and mitigation techniques
have become key points in the future NGSO ecosystem.
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A. Background

For many years, satellite user terminals (UTs) have relied
on dish-type antennas that pointed to a fixed geostationary
satellite in the sky [5]. With the advent of mega-LEO
constellations, planar antenna arrays are gaining popularity
due to their ability to electronically - without mechanical
steering parts - steer the receiver main beam towards the
moving satellite line of sight (LoS) [6]. This capability,
known as beamforming, is a signal processing technique that
leverages antenna arrays to spatially direct transmission or
reception patterns [7]. By adjusting the complex weighting
coefficients of each array element, BF enables precise beam
control. Adaptive beamforming techniques (ABF) are those
that allow for dynamically optimizing and tuning the antenna
weights in real-time. In particular, ABF-based techniques
are helpful in interference scenarios, as they can enhance
the quality of the received signals, not only by focusing the
main beam toward the desired direction of arrivals (DOASs),
but they can also place low antenna gain values at unwanted
DOAs [8].

Conventional blind ABF methods, such as the Capon
beamformer, also known as the Minimum Variance Distor-
tionless Response (MVDR) [9], exploit the inherent statis-
tical properties of the desired signals or the knowledge of
the covariance matrix of the received signal. The covariance
matrix is typically estimated using a limited number of
snapshots “samples” of the received signal, and the observed
matrix is called the sample covariance matrix (SCM); more-
over, the traditional MVDR solution is replaced by a sample
matrix inversion (SMI) algorithm. However, the SMI method
requires a large number of signal snapshots to correctly
estimate the original covariance matrix and null interference
locations, which is not desirable in fast-moving NGSO
systems due to limited snapshots per coherent NGSO channel
duration. Furthermore, the iterative nature and computational
complexity in calculating the array weights (i.e, due to matrix
inversion operations) are their main drawbacks [10]. Sta-
tistical ABF techniques, such as zero-forcing beamforming
(ZFBF), provide optimal CFI interference nulling perfor-
mance under perfect and full channel state information (CSI)
knowledge, i.e., accurately knowing desired and interference
DOAs and transmission channel characteristics. However,
they usually rely on channel estimation for both desired and
interference channels, which is typically difficult to achieve,
especially in LEO systems, due to many factors such as:
1) fast time-variation of the LEO channels and the associ-
ated Doppler shifts [11], 2) high feedback overhead [12],
3) high computational complexity [13], and 4) imperfect
synchronization & unknown interference sources [14]. This
motivates the need for blind (estimation-free) beamforming
solutions.

In response to these challenges, deep learning (DL)-
based beamforming techniques have emerged as a poten-
tial solution to the drawbacks of traditional beamforming
techniques [10]. DL-based beamforming typically replaces

or augments classical weight calculation with a neural net-
work that directly outputs beamforming weights [15]-[17].
Despite the significant time required to train a DL model in a
satellite communications (SatCom) scenario, its fast temporal
response (inference time) can be exploited for adaptive
beamforming. After training, the DL model can perform
complex operations in real-time, representing a promising
solution for adaptive beamforming, where weights must be
repeatedly calculated and conventional solutions are time-
consuming.

B. Relevant Work

Achieving optimal beamforming in NGSOs presents more
complex challenges compared to terrestrial network systems
(TNs), including the need to adapt to highly dynamic en-
vironments characterized by moving satellites and UTs, the
complex task of managing interference from various sources,
and the continuous pursuit of enhanced performance under
different operational constraints [18]. The satellite channel
itself introduces impairments such as significant path losses,
propagation delays, and Doppler shifts, further complicating
the implementation of effective beamforming strategies [19].
Some state-of-the-art conventional ABF methods have been
applied in the SatCom domain. In [20], and to mitigate
the CFI of NGSOs, the authors propose a beamforming
and power control-aided interference mitigation (BFPC-IM)
scheme for uplink and downlink scenarios. In [21], the
authors propose an iterative CFI null algorithm for NGSO
systems that addresses an NP-hard unit modulus least squares
(UMLS) problem. These state-of-the-art approaches, among
others, have an iterative manner and usually assume prior
knowledge of the desired steering angle and/or the spatial
locations of the interferer, which is typically not the case in
CFI scenarios, where no information about the interference
locations is available.

Considering that interferers’ DOAs are unknown but the
received signal carries an impact caused by interferers,
DL-based beamforming approaches have been proposed for
estimating the array weight vector to steer the antenna array
towards the desired signal while nulling interference sources
in TNs [22] and signal processing applications [23]. In [22],
the authors introduced a deep neural network beamforming
(NNBF) model for the TNs uplink sum-rate maximization
problem (SRM). Here, the perfect and full CSI was used as
input to the NNBF, but in the coexisting CFI case, only the
channel component linked to the desired transmitter can be
estimated. Furthermore, such a model might be sensitive to
channel estimation errors. In [23], the SCM is used as input
to a convolutional neural network beamformer (CNNBF).
However, the approach in [23] assumes knowledge of the
desired beamformer weights. Both [22] and [23] are based on
a supervised learning approach, which requires input-output
pairs by definition, and obtaining such labelled data can be
challenging due to the unpredictable environments of NGSO
systems, making the ground truth difficult to determine.
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The Attention mechanism, introduced by [24], has been
crucial in the development of Transformer-based large lan-
guage model applications (LLM), which are now the back-
bone of many AI applications. Methods like convolution,
dropout, and batch normalization have been essential for
feature extraction and learning in DL models. The Attention
mechanism provides a significant degree of interpretabil-
ity. In particular, the model assigns attention weights to
the features of the input that shall gather more focus,
offering insights into the model’s decision-making process.
Transformer-based models have been introduced in the Sat-
Com domain for various tasks, such as resource management
[25], interference detection [14], and precoding [26]. In
this paper, we propose a novel self-supervised Attention-
based beamformer (AttBF) model, which can be deployed on
planar antenna arrays at the UT side. It does not rely on any
CSI information, and it only uses the SCM of the received
signal as an input. The results obtained are encouraging and
highlight the potential of advanced GenAl-based techniques
in improving conventional beamforming designs in NGSO
systems.

C. Contribution

The key contributions of this paper in the SatCom field,
particularly in the area of NGSOs coexisting interference
nulling via receive beamforming, can be stated as follows,

e We design and develop a novel AttBF-based adaptive
beamformer for NGSOs-to-NGSO interference miti-
gation. We investigate the AttBF model capabilities
to point towards the desired satellite while nulling
interference locations without the need for any CSI. In
particular, our proposed model works with the received
signal’s SCM, which is calculated within a coherence
duration of an NGSO satellite pass.

e The proposed AttBF is a self-trained model, mean-
ing that the learning is done based on Signal-to-
Interference-plus-Noise Ratio (SINR) feedback mea-
sured at the UT output. Once it is trained, it is deployed
in the customer UT, such deployment of the already-
trained model ensures fast inference capable of working
with short coherence duration and with UTs’ power-
limited devices.

e Due to the unavailability of real-world data, we imple-
ment extensive simulation and data generation method-
ologies to emulate a realistic NGSO scenario. We test
the proposed blind beamformer method, considering
interferences from different NGSO satellite orbits af-
fecting the NGSO satellite user. Moreover, all datasets
produced in this work are made publicly available at
[27] to ensure research reproducibility.

e We present an evaluation of the proposed AttBF model
against other beamforming methods for different in-
terference scenarios (e.g., low spatial correlation in
side-lobe scenarios and high spatial correlation main-
lobe scenarios). In particular, we compare our proposed
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method with DL-based models [22], [23] and traditional
non-learning methods such as ZFBF and SMIL

e The findings reveal that the proposed AttBF-based
adaptive beamformer exhibits high performance in mit-
igating spatial interference instantaneously at the pri-
mary and side lobes of the UT, demonstrating superior
null capabilities compared to other DL-based models
and traditional methods.

D. Notation and Organization

In this study, we adopt the following notation. We indicate
matrices in bold uppercase letters X and column vectors
in bold lowercase letters x. 0 is a zero column vector and
Iy is the identity matrix M x M. We use I when the
size of the matrix can be understood by the context. We
used || - || to indicate the Frobenius norm of the matrix.
We use the superscripts (-)7, (-)¥, and (-)~! to indicate
the transpose, the Hermitian transpose, and the inverse of
the matrix, respectively. R™ indicates the M -dimensional
real space and CM indicates the M-dimensional complex
space. Re(-) and Im(-) denote real and imaginary parts,
respectively. E, (x) indicates the expected value of x com-
puted with respect to the probability distribution of y. V f
denotes the gradient of f. The complex Gaussian distribution
with mean p and variance o is denoted by CA (i, 02) and
an analogous notation follows for the multivariate complex
Gaussian distribution. The time computational complexity is
expressed in Big-O notation, denoted as O(-).

The remainder of this paper is organized as follows.
Section II. outlines the proposed system model. Section
III. describes the proposed AttBF-based model with SCMs
input and its data preprocessing. Section IV. discusses the
simulation setup for NGSO-to-NGSO interference scenarios
and data generation, analyzes the results obtained from
training the models as well as the interference mitigation
performance, and provides a comprehensive comparison
between the AttBF-based model and traditional approaches.
The paper concludes in Section V, which provides a sum-
mary, remarks, and suggested future improvements.

Il. System Model

This section outlines the interference scenario between
NGSO systems, along with the system model and link budget
assumptions. It highlights the channel model, the signal
model, and the concept of adaptive receive beamforming.

A. Interference Scenario

In Fig. 1 we illustrate the interference scenario, where an
NGSO satellite system (green satellite icon) communicating
with its UT may eventually and unintentionally be interfered
with by other NGSO systems (red satellite icons), more
specifically any other NGSO satellites that uses the same
frequency bands and falls within the UT field of view
(spherical cap) defined by a minimum elevation (6y,;,) with
respect to the local horizon of the UT, as shown in Fig. 1.
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FIGURE 1. Considered scenario with a desired NGSO system (green) and
an interfering NGSO system (red).

Our scenario does not account for out-of-sight satellites
(gray satellite icons) or those with different frequency bands
within the spherical cap because they do not cause any
significant CFI. Considering this scenario, we investigate a
dynamic interference mitigation solution based on received
beamforming that can be deployed on the UT side of the
victim NGSO system.

B. Channel Model

In this paper, we assume that the UT is equipped with
a uniform planar array (UPA), as shown in Fig. 1. We
consider a scenario in which the beam center of the desired
satellite transmitters and interference satellite transmitters
continuously track the UT location, resulting in worst-case
interference scenarios at the UT. This is typically the case
for many NGSO systems, where the satellite spot beams
are Earth-fixed, meaning that they do not move during
the satellite pass. We are only interested in the receiving
beamforming at the UT side, and we focus on the downlink
from satellites to the UT. By adopting the UPA, we aim to
perform beamforming and achieve a high SINR.

Consider the UPA in the UT lying in the zy-plane with
M, x M, antenna elements on the = and y axes, respectively,
and the total number of antenna elements (antenna size)
M = M,M,. Therefore, the UT array response vector can
be written as [28],

b

V(¢,9) — 1]\4 [17. . 7ejo"d(mmsinqﬁcosG—&-mysinﬁ)’. .

T
od FEd((My—1) sin ¢ cos 0+(M, —1) sin 9)} eCM,

ey
where d is the inter-element spacing, 0 < m, < M, and
0 < m, < M, are the antenna indices in the zy plane,
¢ and 6 are the azimuth and elevation angles, respectively,
representing the DoAs of the desired satellite signal, and A =
¢/ fe is the carrier wavelength associated with the frequency
carrier f.. Note that the UT array response vector can be

modeled as a plane wave; thus, for notational brevity, we
define the pair angles of direction of arrival (DoA) as ¢
(¢,0), i.e., the DOAs for the desired satellite (DS) are g4
(¢d,0a)-

We are modeling a scenario where a DS transmits a
signal (sq € C) with E{sys} = 1 to its UT, eventually,
K(K < M) NGSO satellites interfere with the desired
downlink (IS, k € 1,---,K) and unintentionally transmit
an interference signal (s; , € C) towards it. The number of
main beam-pointing and nulling points should not exceed
the number of antenna elements that satisfy the condition
(K41 < M). A Rician fading channel can be assumed
for NGSO communications [29]; however, we assume that
the UT is placed in an obstacle-free elevated space, as
recommended by many operators (e.g., STARLINK [6]),
the LoS component becomes dominant, thus the non-LoS
(NLoS) component can be ignored. Doppler shift may in-
troduce rapidly changing phase rotations in the received
samples [30], thus, for the sake of simplicity, we assume
that the DS Doppler shift is compensated for at the UT using
system information (SI) [31]. We define the statistical time-
varying channel state information (sCSI) model between the
DS satellite and the UT at time instant ¢ and frequency f; 4
as follows,

(1> 1>

hg = x4 - va(®a), (2)
where Y, is the desired channel gain, given by,
PsatGut d
Ya = || (o) 3)
d

where P;% is the DS Equivalent Isotropic Radiated Power
(EIRP), and G4'(p4) is the UT receives gain in the DS
direction. L is the free-space path loss given by,

47
L4[dB] = 201og;, rq + 2010g;, fe + 2010g;, — ()

where 74 is the slant range between UT and DS and it can

be expressed in terms of elevation angle as,
1

2

rg= (RE T hDSCOnS)2 _ (RE + hut)Z 'COSQ(Qd) _

(R + h") - sin(6y),

(%)
where R denotes the radius of the Earth (Rg = 6371km),
h' is the altitude of the UT and APS¢"s is the altitude of
the desired constellation with respect to the Earth’s surface,
as shown in Fig. 1, the expression (Rp + hP5°"%) is also
known as the semi-major axis SM 4. The effective channel
vector for the k*" interfering satellite IS, to the UT receiver
can be derived as follows,

h; i = Xik - Vi(er), (6)
and,
PsatGut
i = 1| G (or) (7
Ly,
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FIGURE 2. Time frame of the simulation scenarios

where Pg is the IS transmit EIRP, and G}*(py) is the
UT receipt gain in k*" satellite IS direction. Similarly to (4)
and (5), we can calculate the FSPL from the k" interfering
satellite, using the slant range between the UT and IS,
denoted as r; . The UT array receiving gain G*(¢p), at
any DOAs ¢ can be obtained as follows [32],

G (p) = "' E" (). ®)

where n“t, Z%¢ are the UPA radiation efficiency and the
directivity towards the ¢ direction. Directivity is the ratio
of the radiation intensity in a given direction to the ra-
diation intensity averaged in all directions, and can easily
be calculated from the UPA array factor [33]. Intuitively
speaking, the directivity should be as low as possible at
interferences’ DOA, leading to a gain value closer to zero
=v at null locations approx0). Note that the channel
model adopted in (2) and (6) is applicable over a specific
coherence time T4y, as shown in Fig. 2, where the relative
positions of the satellites and UT do not change significantly,
and the physical channel parameters can be considered time
invariant. In the next section, we explain the signal model
for the entire pass of the desired satellite.

C. Signal Model

Let us assume the DS pass of duration Tj,es, as shown
in Fig. 2, which may encounter interference from the IS
satellite. The satellite pass is divided into shorter time
periods of duration T§,,p,, which corresponds to the channel
coherence time. We assume that the UT array captures a total
of Tiamp snapshots within this coherence time. However, the
UT must update the receive beamformer with Ty << Tiamp
so that the resulting beamforming weights can be applied for
the remaining coherence time Tys = Tsamp — Ts.

The minimum value of 7 that provides enough statistical
information about the received signal is said to be at least
M independent snapshots [34]. However, in many research
articles, it is recommended to use at least double that, 20/
snapshots, to achieve better beamforming results [35].
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FIGURE 3. Typical structure of ABF

Let us now focus on a specific snapshot at a time instance
t. In the presence of a single desired satellite and /C interfer-
ing satellites, the received signal at the UT planar antenna
array at a time instance ¢ can be expressed as,

K
y(t) = hasa(t) + Y higsik(t) + 2(t), ©)
k=1

where z(t) is the additive white Gaussian noise (AWGN)
at the UT receiver z(t) € CM is iid. CN(0,02), with
02 = KT BW 4 where r, T"t, and BW ; are the Boltzmann
constant, equivalent noise temperature of the UT, and DS
signal bandwidth, respectively. Finally, sq(t) and s; (t) de-
note the independent information symbols transmitted from
DS and ISs, respectively, whose average power is assumed
to be normalized to one.

For the convenience of mathematical modeling, we will
make use of the following matrix notation,

H; 2 [h;; hiy ... hjx] € C*K (10)
H £ [hy H;] € CM* K+, an
Sz(t) £ [Si’l(t) Si’Q(t) e Si’}c(t)] € CK:XI. (12)

D. Traditional Receive Beamforming Techniques

At the front-end of the UT receiver, a beamformer weight
vector w € CM*1 is applied to steer the UT main beam
towards ¢4 direction and eliminating as much interference
as possible from ¢y, k = 1,..., KC directions. The estimated
signal after applying w is denoted as § € C and is given as,

3(t) = wiy(t)

= whhgsy(t) + wTH;S;(t) + wiz(t). (13)

Based on the above, the SINR after the receive beamform-
ing procedure is expressed as,
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wiR, w
Yot = —HH
wiR,; W
B WH(hdhfl{)w "
- wH(HHY 4 021w a4
|Wth|2
et [wHhy ]2 + o2 wHw'

where Ry = hgh#l € CM*M and R, = H;HY +
021y € CM*M gre the covariance matrix of the desired
signal and the interference-plus-noise covariance matrix,
respectively. Note that we dropped the time index ”t” here
and in the next parts for simplicity.

The problem of maximizing (14) without knowledge of the
interference DOA is mathematically equivalent to the MVDR
beamforming problem [36]. In particular, the MVDR beam-
former minimizes UT array input power while maintaining
unity gain in DS direction,

WMVDR = arg min wlRw subject to WHVd =1, (15)
w

where v, has been used to denote v4(p4) in a shorter way.
The optimization problem in (15) leads to the following
weights for the beamformer,

R_lvd

—_— 16
vIR v, (16)

WMVDR =
Clearly, the covariance matrix R = E [yy*] serves as
a fundamental tool in beamforming design, providing a
representation of the statistical relationships between the
signals received at different elements of an antenna array. It
contains information on the power of the signals received at
each antenna element and the correlation between the signals
received at different pairs of elements. This correlation struc-
ture is indicative of the spatial characteristics of the incoming
waveforms, including the DOAs of desired and interfering
signals. By analyzing the covariance matrix, beamforming
algorithms, such as MVDR, can learn insights about the
spatial distribution of signal sources and noise, which is
essential for designing effective beamforming weights that
enhance the reception of the desired signal while suppressing
interference. Traditionally, R is not available and must be
estimated from the receive signal by averaging the outer
product of the receive signal vector over a finite number
of time samples ( L), often referred to as snapshots [8]. The
covariance matrix can be estimated using the UPA snapshots
by simply calculating the SCM matrix denoted as R, which
is also called the autocorrelation matrix, and it is given as
follows,

1 1

L
R=2> ylly"i] =YY", (17
=1

|

where Y 2 [y[1];y[2];--- ;y[L]] € CM*E, When the SCM
is used in the MVDR expression, the resulting beamformer
is called the SMI beamformer, which solves the following

| Wsmi i | Wz |
| i 1 |
I | | |
: : } ZFBF }
- © > - | |
- - | H |
I |

| ‘ L0V ISCIM‘ i | Full CSI i
] Estimator Calculation | i ot |
I

FIGURE 4. Receive Beamforming Techniques: (a) sample matrix inversion
(SMI), (b) Zero forcing beamforming (ZFBF), (c) Maximum ratio combining
(MRC), and (d) The intended DL-based beamformer

minimum power distortionless response (MPDR) problem

(91,

WsMmp = arg min wiRw subject to vad =1, (18)
w

where wgy is the SMI-based minimum variance beam-
former given by,

N —1
R Vd

_. (19)
viIR vy

WsMmI =

Remark 1. As L increases, the SCM R converges to
the theoretical covariance matrix R = Ry + R4, and
the corresponding SINR, approximates the optimal value as
L — oco. However, as the size of the available snapshots L
decreases, the gap between R and R increases, dramatically
affecting the performance of SMI.

In Fig. 4, we illustrate the traditional benchmark methods
used in this paper, including the SMI beamformer Fig. 4(a),
alongside the intended DL-based beamformer, as shown in
this figure. In addition to the adaptive SMI beamformer
wsmi, we will compare our DL-approach results with two
famous statistical CSI-based beamforming benchmarks that
are detailed below.

1) Zero forcing beamformer (ZFBF): Illustrated in
Fig. 4(b), ZFBF represents the optimal/near-optimal scenario
where UT can place a null towards DOAs of the interfering
satellites ;. Clearly, ZFBF requires perfect full CSI estima-
tion that includes both DS and ISs DOAs. In other words,
the ZFBF uses the pseudoinverse of H as,

HH"H)"'3

= - 7 = 20
[H(HTH) 1] 0

WzF
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where 3 = [1;0;--- ;0] € NtHL

2) Maximum ratio combining (MRC) beamformer: II-
lustrated in Fig. 4(c), MRC represents the worst-case nulling
scenario, where the UT has only access to its own channel
estimate corresponding to the desired DOA ¢, and thus
focuses the UT main beam towards the DS satellite, without
generating nulls towards DOAs of ISs satellites. Assuming
perfect knowledge of hy;, MRC is simply derived as,

w _ h
M Il

MRC and ZFBF are sensitive to imperfect channel es-
timates (imCSI). Since we plan to evaluate the impact of
the imCSI, we provide the model of CSI estimation errors
herein. .

The estimation error of the estimated DS channel hy is
calculated as €4 mrc = hg —hg for MRC. When considering
both the DS and the ISs channels, we model the error as
€d = H- H, which will be used for ZFBF. Each error can
be modeled as a complex Gaussian random variable eg ~
CN(0,0%1,;). Note that perfect CSI (pCSI) is achieved for
ey = 0. All beamformers w in this study are already or will
be normalized, including SMI in (19), so that consistent and
controlled beamforming weights are achieved independently
of channel gains. In practice, UT might be able to estimate
the CSI of the DS link, i.e., hy, using pilot signals, or at
least have prior knowledge of the DS DOAs (to generate
the steering vector v,), but cannot access any information
about the ISs links. Estimation of DOA is usually performed
using the MUSIC algorithm, where, in this case, the number
of signal sources (desired and interference sources /C+ 1) is
required. Furthermore, estimation stages and matrix inverse
operations (e.g., SMI, ZFBF) add processing time and com-
plexity to the UT design, making the temporal response of
fast-moving NGSO satellites a critical concern.

In this paper, we introduce a DL-based model that relies
only on the available snapshots, specifically taking the SCM
as input to instantly generate good beamformer weights,
as illustrated in Fig. 4(d). The DL-based model does not
depend on any CSI or is sensitive to its estimation errors, and
provides acceptable performance in low and highly spatially
correlated scenarios (e.g., in-line interference events).

2y

lll. Proposed Attention-Based Beamforming

In this paper, we introduce a novel Attention-based beam-
former DL-model, denoted as AttBEF. The Attention mecha-
nism, introduced by [24], is the main component behind our
proposed AttBF model. This mechanism has been crucial
in the development of Transformer-based LLLM applications.
In the following subsections, we provide a detailed expla-
nation of the design of the proposed AttBF model and the
processing carried out in its individual steps, as illustrated in
Fig. 5. We also explain the training procedure, then outline
other DL-based beamforming methods in the literature that
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will be used as benchmarks and their computational time
complexity.

A. Data Pre-processing

Our proposed AttBF model does not use the raw time-
domain signal snapshot matrix Y (¢) directly, so before
feeding the proposed model with data, a few preprocessing
steps are performed.

1) Sample Covariance Calculation

First, during the coherent duration of a satellite pass, the
initial snapshots captured by UT during L = Ty << Tiamp
as in Fig. 2, and calculate the SCM, as in (17), more
particularly,

53

. 1 s 1
R = ss|l ssH ] = 7YSSYSSH 22
T, 2 Yss(lyss " [I] T : (22)
where Y 2 [y[1];y[2];- - ; ¥([Tis]] € CM*7>. The AtBF

model requires the SCMs’ data to work in an adaptive way.
SCMs represent spatial relationships and correlations within
the received signal snapshots.

2) Data Tokenization
We define a tokenization operator,

Tok(-) : « = [Re(z); Im(z)]”, (23)

we simply transform the complex-valued R matrix to a real-

valued matrix of tokens ' € RM*X2M yq
T'r = Tok (R)
P11 T2 T1,2M
T2,1 72,2 T22M (24)
- )
Par1 T2 PM,2M

where 7; ; € R, each row in I'r represents a single input
token (in this case an embedded vector € R1*2M ) and
M represents the total tokens. Each token corresponds to
a row in the matrix, which we represent as a real-valued
vector, meaning that there are always 2M features per
token corresponding to the real and imaginary components
of SCM. Unlike LLMs, where tokens represent linguistic
units, here, tokens represent spatial relationships encoded in
the SCM. This preserves the structural information of the
array data while converting it into a form compatible with
transformer-based architectures. Effectively, this tokenization
step bridges signal processing representations with deep
sequence models, enabling the network to learn embeddings
that adaptively capture interference patterns for robust beam-
forming.
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FIGURE 5. lllustration of the proposed AttBF beamformer.

B. AttBF Model Architecture

The architecture of the AttBF model is a sequence of DL-
based layers and matrix operations that process real-valued
SCM I'y through successive transformations, as illustrated
in Fig. 5, to predict beamforming weights waygr € CM The
Attention mechanism, forming the core Transformer com-
putation, enables the AttBF model to exploit the spatial
relationships within the SCM tokens, which are crucial
for effective beamforming. Instead of processing everything
equally, the Attention mechanism works more dynamically;
it efficiently weighs each token’s contribution in improving
the model’s beamforming performance by assigning weights
to different parts of the input, and it then self-adjusts its
learnable parameters to focus only on the token’s parts that
are most valuable to the model. We refer to the output of
a DL layer as AXjpayername and its learnable parameters as

®Layer Name -

1) Feature Extraction Layer

A single 1-dimensional (1D) convolution layer (Conv1D)
processes the AttBF model input using M filters, a single
kernel, and Gaussian Error Linear Unit (GELU) activation.
This layer acts as a dense layer applied independently to
each of the 2M features per token along the first spatial di-

mension, reducing it back to M features per token. This can
aid in feature extraction (FE) across the real and imaginary
components of input data for each antenna element, thereby
increasing the computational efficiency of the MHA block.

2) Multi-Head Attention Block

The next part of the AttBF model is the Multi-Head Attention
(MHA) block, which consists of a € {1,2,--- , A} Attention
heads with key dimensions corresponding to the number of
features extracted in each token (i.e., Dy, = M). First,
MHA performs a linear projection on the FE output to
produce for each head three matrices as:

e Query () matrix: Represents what an antenna element
is ”looking for” or a query about its correlation with
other elements.

Key (K) matrix: Represents the information an antenna
element "holds” or what it has to offer to a query.
Value (V') matrix: Contains the actual content or fea-
tures that should be propagated forward if the corre-
sponding key matches a query.

These matrices are formed as Q(®) = XFE®S)7K (a) —
XFE@(;?), and V(@ = XFEG)gf), where these projections
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(@) fgla) T
head, = Attention(Q®, K(¥) V(@) = Dropout (softmax <Q>> v,

are able to learn parameter matrices @8)76%)785}” €
RPkeyXDPrey  Bach head performs a scaled dot-product At-
tention with Dropout as in (25) to compute its Attention
Score.

In (25), for each token in the input, its Query matrix
@ is multiplied by the Key matrix K of all other tokens
(including itself). This produces a matrix of attention scores.
A high score between a query from token ¢ and a key from
token j indicates a strong relationship. This is the mechanism
by which the model “decides” which token features are
most relevant to each other for the purpose of producing
beamforming weights. For instance, it might learn that the
correlations between certain token features are critical for
identifying the desired signal or a strong interferer. The
attention scores are then passed through a softmax function
to normalize them into a probability distribution (where
all weights sum to 1). These normalized weights are then
multiplied by the Value matrix V. This step effectively
creates a weighted sum of all Value matrices. Tokens with
a high attention score (i.e., those deemed most important by
the model) contribute more to the output of that attention
head. The model thus “focuses” its attention on the most
critical parts of the input SCM. For instance, if the SCM
contains a strong interferer, the attention mechanism will
learn to assign high weights to the correlations associated
with that interferer, allowing the model to generate weights
that nullify it.

The ”multi-head” part of MHA means this entire process
is performed multiple times in parallel, with each head using
its own independent set of ), K, and V' projection matrices.
Each attention head can learn to focus on different aspects
of the tokenized SCM. For instance, one head might learn to
focus on the desired signal’s spatial signature, while another
might learn to identify and focus on the spatial signature of
a strong interferer. The outputs of all the individual heads
are then concatenated and passed through a final linear
projection layer as,

XMHA = MHA(XFE)

(26)
= Concat(head;, - - ,head 4)Ompya,

where @yya are the output projection matrices in the MHA
operation, and are also a learnable parameter that enables
dimensional alignment and feature fusion between Attention
heads.

The MHA block is then followed by a residual connection,
and a normalization layer (LayerNorm) to stabilize training
and improve generalization by normalizing activations across
the M feature dimension,

Xint = LayerNorm (Xpg + Xva) - 27
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vV Dkey

3) Feed-forward network (FFN)

The FFN consists of a two-layer transformation with linear
and Rectified Linear Unit (ReLU) activation, further pro-
cessing the features learned by the MHA block, allowing
for non-linear transformations of these features as,

Xern = (ReLU(AX1N1©F1))OF2, (28)

Afterwards a second residual connection and LayerNorm
process layer follow to help stabilize the learning process,

XLNZ = LayerNorm (XLNI + XFFN) . (29)

4) Beamforming Weights Refining

In the rest of the AttBF architecture, we apply some basic
DL-based layers to refine and extract the features that define
the beamforming weights. First, two successive Conv1D
layers are applied to the output of the second LayerNorm,
each with a single kernel, they progressively reduce the
number of features and further refine the feature maps along
their channel dimension, reducing the number of features
from M to % and then to 16. Here, the ReLU activation is
chosen to introduce non-linearity to the AttBF model,

XCN = (ReLU(XLNZ * ®C1))®C2~ (30)

The output tensor is flattened (FL) before a final Dense
layer; this flattened vector contains the processed features.

X = vec(Xen), (31)

Finally, a Dense layer with 2M output units maps the
learned features to the size of the complex beamforming
weights. A hyperbolic tangent function (Tanh) activation
function constrains the output values to the range [—1,1].
The output is then reshaped to (M x 2), where the last
dimension represents the real and imaginary components of
the complex weight for each of the M antenna elements,

KXow = Tanh(XFL)Gouta (32)

W = Reshape(Xoy). € RM*? (33)

The complex-valued beamforming weights waupr € cM
can be constructed from the AttBF output matrix Waugr as,

o _ G )T W2
AUBF — (n)

W aupr(, 1)+ ‘7"/(&%31:(1» 2)||

This final step preserves the phase and relative amplitude
information needed for the beamformer weights.
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C. AttBF Model Objective

The basic working concepts of the proposed AttBF design
are illustrated in Fig. 6. The proposed learning procedure of-
fers an offline, self-supervised training approach, or reward-
like learning, as it learns without requiring explicit, human-
labeled data. After training, the model can be used on new,
unseen data to perform blind inference (Blind beamforming)
without needing any prior knowledge or additional infor-
mation about the environment. For the sake of notation
specific to the proposed model, we add the index n as {-}(")
to refer to the processed sample in the training datasets
n=1,...,Np, or testing n =1,..., Np,.

During the training phase, the model takes signal snap-
shots matrix Yg?), calculates the SCM Rg?) and transfers
them into a DL-friendly form (i.e, tokens), then learns a
beamformer design w g that is then fed back into the
UT planar array to collect feedback from the environment in
the form of a loss function £, this loss function is customized
to maximize SINR as,

1 B
'CB = _527(53)7
n

where B is the batch size. AttBF model modifies its learnable
parameters according to the feedback of the loss function L
through the backpropagation process (Backprop).
Algorithm 1 summarizes the training process for the
AttBF. First, the model parameters (®04e1) are set to random
values at the start. The model inputs a sample YS;) from
the processed mini batch of the training dataset Dry, outputs
the beamforming weights wgﬁ)BF for that mini batch, and
update the model parameter using the loss function feedback,
the loss here is the negative SINR observation, and in this

(35)

algorithm it is calculated per mini batch using Rg") and
REZLF)Z for each training sample. The gradients Gradients

(V) of the loss are calculated per mini batch; they are
basically derivatives with respect to the model weights. An
optimizer {2 uses these Gradients to update the model’s
parameters. This is the “learning” step where the model
adjusts itself to produce a better beamformer in the next
mini-batch. This loop continues until all mini-batches in an
epoch are processed, and then it repeats for the next iteration
(epech). Throughout training, the model keeps track of the

best-performing set of parameters (61(1:)5321)’ which is the

final output of the training process after maximum iterations
E — epoch. The loss-per-epoch tensor Lepochs is used later
on in the results section to compare the learning process
performance with other DL-based benchmarks.

Algorithm 1: The Proposed Model Training Phase.

Input: Training dataset Dr,, Model fg, Optimizer )
Output: Optimized model parameters Oy

1 Initialize: Model parameters ©,04e1, B mini batches
Be Dt
2 for epoch =1 to E do

3 'Ctotal +0
4 | forn=1:|B|do
5 Yg?), R&n), RE:’_)Z — DTr{B} // Inputs
6 Fg) <—Y§Z) // Pre-process (23)
7 Wxﬁgl: — f@(].-‘%b)) // Model outputs
s Yo Yo (Wi RS R

// Calculate SINR (14)
9 B %’75+’y§$)// B SINR
10 Lp + —mean(yg)// B mean SINR (35)
11 Ve « Gradient(ﬁg, (")model) // Backprop
12 Onmodel Q(@mode1, V@) // Optimizer
13 L Etotal — £t0tal + ACB // epoch loss
14 ®m0del = Append(@model)
15 | Lepochs = Append(ﬁlotal/B)

@Ulm) — BeSt(@modd) // Return

16 Return Lp,chs, model

loss/epoch values and recall best parameters

Once the AttBF model is trained, it is deployed online,
using the model’s learned parameters, to provide instant
predictions of the beamforming weights waypr for any
input sample (i.e., any Ys), that focus the UT main beam
towards the DS and null ISs directions.

D. Benchmark Models
The main objective of this paper is to introduce a DL-
based beamforming model that does not require any CSI or
DOAs estimations. The AttBF model can learn to map the
spatial correlation matrix R into an appropriate beamforming
weight vector wagpp to maximize the received SINR.
Although our AttBF proposal works with the SCM R
as input, the same model can be adapted to work directly
with the time and frequency domain representations of the
received signal snapshots Y,,. We will consider these as
benchmark approaches to strengthen the argument that the
SCM provides more reliable performance in this context. To
differentiate between the proposed model, which will also
be referred to as AttBF(R) from hereafter, and the other
models, we will denote the type of input data that will be
used for each model. More particularly,
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e AttBF(Y) model: Consider time-domain snapshots
Y, as input after data normalization and tokenization
preprocess (ie., I'y € REXZM vy ),

o AttBF(FFT) model: Consider the fast Fourier trans-
form (FFT) representation of time-domain snapshots
Y, as input after data tokenization preprocess (i.e.,
Trrr € RE2M  FFT(Y,,) ¢+ Yso).

We also compare our proposed model with other tradi-
tional DL-based beamformers available in the literature,

e NNBF(H) model: It assumes the NNBF model intro-
duced [22], which relies on full CSI input data (i.e.,
inputs H € CM*(X+D)  thus, it is expected to be
sensitive to CSI estimation errors.

e CNNBF(R) model: Inspired by the CNNBF model in
[23], it uses the SCM inputs (i.e., the real-valued matrix
[R(R); S(R)] € CM*2M ) This is particularly useful
for comparing the traditional CNN-based models with
the proposed model using the same input data.

Note that the same loss function and training approach
as in Algorithm 1 are used for all benchmark models for a
fair comparison. Table 1 shows the difference between all
traditional methods and train-based models benchmarks in
terms of input type.

TABLE 1. Comparison between our proposed model and other bench-

marks

Model/Method Input CSI-Free?

Proposed SCMs (R € CMx2M) (22) Yes

AttBF(Y) Time domain samples (Yss € CL*2M) Yes

AttBF(FFT) Frequency domain samples (FFT(Yss) € Yes
CLx2M)

NNBF(H) [22] Full CSI matrix (H € CM*(K+1)) (11) No

CNNBF(R) [23] | SCMs (R € CMx2M) (22) Yes

ZFBF Full CSI matrix (H € CM*(K+1)) (11) No

MRC Desired satellite CSI vector (hg € CM) (2) No

SMI SCMs (R € CMx2M) (22) and Yes
Desired satellite response vector (vq € CM)

E. AitBF Computational Time Complexity :

The time complexity of an off-line training DL model can
be observed from the number of floating point operations
(FLOPs) by each layer in inference [37], the complexity per
layer for ConvlD: O(Nseq - D3,,), Attention: O(Dyey -
Nfeq), and Dense: O(N;y, - Nyt ), where Ny, is the size of
the input sequence, Dy;q is the hidden dimension, Dy, is
the attention key size [24], and N;,, N, are the input and
output neurons. Assuming the training data have been pre-
processed, we can derive the per data sample time complex-
ity for AttBF(Y) and AttBF(FFT) is O(L?), and is equal
to O(M?) for other models for constant Dye,y = Dpig = M.
However, only considering the number of FLOPs cannot
be sufficient to draw a fair comparison between DL-based
models and traditional methods, so we propose both end-to-
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end inference time complexity and the pure inference time
in the following subsection as a performance indicator.

TABLE 2. Comparison of the End-to-end inference/latency time Complexity

Model/Method Input

Proposed Té%lM + Tgé)llf/[ +O(M?)
AttBF(Y) ook + O(L?)
AttBF(FFT) T + Tapreyy + OL?)
NNBF(H) [22] | 7858 cqr + Tt + O(M?2)
CNNBF(R) [23] | 753 + meemr + O(M?2)

ZFBF Tt g + OM(K 4+ 1)2 + (K +1)3)
MRC 788t ar + O(M)
SMI TStpoa * S8 + O(MPL + M)

In Table 2, we show the overall time complexity required
by a model/method to perform an inference on a testing
data sample. For the DL-based models, the Big-O notation
written in the table refer to the model per data sample time
complexity, in addition we notated the pre-precess steps time
complexity as 7”7, for example, our proposed AttBF(R)
model includes two data pre-processing steps, which are the
SCM calculation time denoted as 752, = O(M2L) as in
(17), and then its tokenization -a constant-time operation to
separate the real/imaginary parts of SCM- step detonated
as Taox; = O(M?) as in (23), finally, the proposed model
per data sample inference complexity would be same as the
training one, hence, it is equal to O(M 2).

The rest of the DL-based model pre-precess time com-
plexity notations are as follows: 1) The snapshots matrix
Y tokenization 7% = (O(L?), 2) The standard FFT
operation on Yy takes 7o' = O(MLlogL) and its
tokenization Tg%kT(Y) = 7tok 3y The full CSI channel H
estimation 7§53 ; depends on the estimation algorithm used,
for example a pilot based method will not be possible for the
unknown K interference channels, overall £, would be
significant without mentioning the additional complexity of
knowing the number of IC interference sources. Separating
Real/Imaginary parts of full CSI channel H will equal to

Tflzlelggll = O(M(K+1), 4) Separating Real/Imaginary parts

of SMC is 7po/i — 7ok

Similarly, for the traditional methods, the Big-O notation
listed in the table refers to the computational time complexity
of the benchmark beamforming method per data sample
as in (19), (20), and (21). In addition, we noted the time
complexity of the pre-calculating/estimation steps as 7. The
ZFBF method requires full CSI estimation 7£5nq;, While
MRC only requires the desired CSI channel estimation, but
also depends on the estimation algorithm (e.g., for least-
square (LS) estimation with L pilot signals it will equal to
O(ML)). The SMI method involves an SMC calculation
753y and desired satellite DOA estimation 7550, (e.g.,
using MUSIC algorithm) for calculating v4. Note that UT
arrays shall be simple for NGSO applications (e.g., Direct

to device (D2D)), reducing the overall complexity.

11
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FIGURE 7. Proposed NGSO systems constellations

IV. Simulation Results

In this section, we present the simulation setup, including
details on data generation, the model training phase, and
validation and comparison of our proposed model with the
traditional techniques and different DL-based models.

A. Data and Simulation

We run a satellite simulation scenario with one desired
NGSO satellite and multiple interfering NGSO satellites
using MATLAB satellite toolbox [38]. We adopt a realistic
approach to representing satellite motion by assigning each
satellite to a defined plane orbit through the six Kepler
orbit elements: the semi-major axis, eccentricity, inclination,
right ascension of the ascending node (RAAN), argument
of perigee, and true anomaly. MATLAB built-in functions
provide estimates of latitude, longitude, and altitude over
time according to the satellite trajectory. Using this setup,
we consider the physical environment (distances, angles,
satellites’ orbit propagation, etc.) and the operational condi-
tions (frequency, bandwidth). With the correct adjustments of
these simulation elements, we can alter SINR values. We can
summarize the paper simulation and the datasets generation
phase in a few steps,

1) Using MATLAB built-in functions within the Satellite
Communication Toolbox, we simulate two co-existing
NGSOs constellations and a fixed UT location, as
shown in Fig. 7, using parameters in Table 3 and
Table 4. We then initiate two simulations 71, and
Tts for training and testing datasets generation. Each
simulation starts with one DS satellite from a fixed
satellite plane in the DScons and one IS satellite (}C
= 1) that can be randomly selected from the IScons.

2) The DS satellite pass duration, where the DS is
visible to the UT, is defined by the UT minimum
elevation angle 6,;, = 15°, and in our simulation it
equals T},ss = 300 seconds. We consider Tg,mp = 1
seconds, whichleads to 300 coherent channels (sam-
ples/pass). The UT assumes knowledge of DOAs of

the desired signal and thus apply an initial beamformer

Win = WMRC -

3) During each coherence time Ty,mp, We calculate the
link budget for both DS and IS satellite links as
in equations (1)-(8), using link budget parameters in
Table 5, we also save the first L = T, snapshots (9)
and save the Y, Yout, and H, matrices in Dr, tensor
for training dataset generating phase, or Dy tensor
for testing dataset generating phase. For the sake of
evaluation, we apply a minimum interference-to-noise
ratio (INR) threshold of -12 [dB], to only consider
interference where the quality of service (QoS) of the
desired link is affected [14].

4) The simulation is precisely configured to stop when
reaching Aty = 9000 training data samples (30 desired
satellite passes) and Ng, = 900 testing data samples
(3 desired satellite passes).

5) The lowest number of snapshots possible is what will
make the SCM (f{) a full rank, which requires at
least L = M independent data samples (snapshots)
[34], in many research articles it is recommended
to use at least L = 2M snapshots when estimating
the covariance matrix for better beamforming results
[35]. We repeated the above data generation steps and
generated three sets of data for when L = M, 2M,
and 4M.

The full datasets in this article are available with more
details on the SmartSpace project web page [27]. That said,
it will strengthen the proposed AttBF-based model, and
possibly other Al-based solutions, if real-world datasets are
made available by satellite operators. Authors are committed
to disseminate the importance of this issue with relevant
industrial partners.

TABLE 3. Constellations parameters

Parameters DScons IScons
Constellation Altitude (h°°™%) 550 [Km] 950 [Km]
Eccentricity 0.01 0.04
Inclination 55° 120°
RAAN 135° 35¢
Argument of Perigee 20° 35°
True anomaly 82° 75°
Ahcons 450 [Km] | 450 [Km]
ARAAN +12° +12°

Fig. 8 shows the SINR measured on the UT side for a DS
pass Thass assuming that a fixed wivrc is applied at the UT
planar array for the entire pass of the satellite (non-adaptive
beamforming). We can observe several SINR drops due to
interference, particularly in the first half of the satellite pass.

'In LoS scenarios, and when pCSI exist this yield to wyrc = ”:—ZH =~
vg = Win and You(WMRC) & Vin Where i, is the measured SINR using

the initial beamformer wy,.
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TABLE 4. UT Parameters

Parameter Value Parameter Value
Latitude 49.6257° | # Elements (M) 8 X 8 =064
Longitude 6.1598° Noise Bandwidth 50 MHz
Altitude (hU) 100 [m] Temperature (Tt 94°K
Min elevation (Opi,) 15° Efficiency (n%?) 0.99
TABLE 5. Satellite Link Budget Parameters
Parameters DS Satellite | IS Satellite
Signal bandwidth (BW) 50 MHz 55MHz
Operational frequency (f¢) 11.75 GHz 11.75 GHz
Satellite EIRP (P3%%) 34 dBW 45 dBW
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FIGURE 8. A representation link status from the L = 2 test data of a
desired satellite pass with nearby interference satellites as received by UT
during Tpass

B. Training Phase Results

The TensorFlow and Keras frameworks are used to build all
DL models in Python. All models are compiled with £ in
(35) as the primary loss function, and Nesterov implemented
Adam as the optimizer ). The model parameters were
updated using the N, training samples in the training dataset
D1y The results were validated using the Nt testing samples
in the testing dataset Drs. All three AttBF models have
A = 2 Attention heads, Dyey = Dpiq = 64, and Dropout
layers (with rate 0.2) are applied to avoid training overfitting.
The experiments in the following parts were carried out using
an 8-core AMD Ryzen 7 7700X CPU unit with 12 GB
RAM. During the training phase, as in Algorithm 1, we
assume I = 200 epochs for all models, a training batch
size B = 300 includes all data samples per DS pass Tpqss,
leading to B = 30 training batches.

Fig. 9 plots the epochs versus the average SINR per epoch,
that is, the negative loss/epochs (—Lcpochs) for each model
on the . = 2M datasets, demonstrating how beamforming
performance quality improves (or stabilizes) as training
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progresses. Our AttBF(R) model, labeled as Proposed,
achieves high convergence stability in early epochs and
maintains a lead value throughout the rest of the epochs,
indicating faster convergence and superior performance.

TABLE 6. Comparison of models training (# L = M | 2M | 4M)

Model # Parameters [x103] | Train Time [min]
AttBF(Y) 184 | 315 | 577 1.64 | 3.69 | 6.44
AttBF (FFT) 184 | 315 | 577 181|342 | 695
Proposed 184 | 184 | 184 3.26 | 3.24 | 3.25
NNBF(H) [22] 203 | 203 | 203 175 | 1.77 | 174
CNNBF(R) [23] 511|511 | 511 177 | 173 | 175

In Table 6, we compare the beamforming DL-based beam-
forming models in terms of their input, trainable parameters
in their architectures, and training time efficiency.

o Number of parameters: The total trainable parameters
(in thousands [x10%]) is an indicator of the size of the
model. The spatial sharing of weights in Conv1D and
Attention drastically reduces the number of parame-
ters compared to Dense layers used in CNNBF(R).
Furthermore, NNBF(H) input size is changing with
the increment of /C, which may require a different
architecture for each size of K. With an increasing
number of snapshots L, the proposed AttBF(R) model
always has a fixed input token sequence M, compared
to changing L tokens in AttBF(Y) and AttBF(FFT)
models, making it the smallest model in terms of
trainable parameters.

e Train Time: Our AttBF-based models fall behind
conventional CNN models in terms of training time.
However, the input size and the type of trainable
layers used in each model may suggest that more time
may be required for training. Moreover, overhead from
operations like softmax, LayerNorm, or Dropout in
all AttBF-based models may result in slower training?,

2Backprop is typically implemented using matrix operations, which

influence computational and memory requirements for each model.
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FIGURE 10. SINR distribution per beamforming method (when L = M | 2M | 4M)

compared to CNNBF(R) and NNBF(H) models. De-
spite this, the training time is not very relevant for
offline training as it usually depends on the model
architecture, training environment, and hardware (e.g.,
CPU, GPU, accelerators) [39].

C. Beamforming Performance Results

During the testing phase (inference), a test batch size B =1
includes all data samples per DS T}, pass, leading to
B =900 testing batches. In Fig. 10, we show histograms of
the output SINR distribution per beamforming method (DL-
based models and traditional methods) for the 900 instances
in the testing dataset Dry, the signal-to-noise (SNR) results
are not realizable in real-time and serve as an upper bound
for reference only (assuming no interference is present all the
time). In each sub-figure, the X-axis (you: [dB]) represents
the output SINR in decibels, a higher range of values, com-
pared to the SNR plot, indicates a stronger desired satellite
signal and better null performance in case of interference
occurrence, as it means that the desired signal is relatively
larger to the combined power of interference and noise. The
Y-Axis (Count) shows the number of times a particular SINR
value occurred across the entire test dataset. The height
of the bars in each histogram indicates the frequency of
the corresponding SINR range. Finally, the histograms are
stacked and color-coded (i.e., "red” (L = M), yellow”
(L = 2M), and “cyan” L = 4M); other colors within the
bars show the contribution of each condition stacked on top

of each other. Here, the "Proposed” method’s histogram, it
can be seen that the majority of the instances are stacked on
top of each other (the light green portion), indicating that
this method performed similarly well under all L amounts,
same as ZFBF, compared to other model/methods which
have some wider and some negative o, values. In Table 7
we summarize the key insights of Fig. 10 results, along with
the pure inference time:

e Pure Inference Time : Inference time is particularly
crucial for fast adaptive beamforming in high-mobility
NGSOs, where real-time processing is essential. The
pure interface time here is observed without considering
the pre-processing duration per model (i.e., for the pro-
posed AttBF(R) model, we assume SCM is calculated
and tokenized), and only observes the per-sample model
processing time and the calculation time for the tradi-
tional methods (e.g., for the ZFBF method we assume
full CSI is already estimated). The proposed AttBF(R)
model offers the fastest inference time ’average on all
test data” among learning-based methods (~ 4.5 pus),
CNNBF(R) has similar time performance (~ 4.6 ps).
Other DL-based models have slightly slower inference
(~ 6 —7 us). Regarding classical methods, MRC offer
the fastest inference (~ 1.2 ps) but without interference
nulling ability, ZFBF comes slightly after (~ 2.5 us).
Still, the SMI method is the slowest among all metrics
(~ 133 ps), making it not preferable for real-time
deployments.
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TABLE 7. Comparison of models/methods beamforming performance (# L = M | 2M | 4M)

Model/Method Pure Inference Time Yout [dB]

[ues] Min Max Mean
AttBF(Y) 6.21 ] 6.95 | 7.38 -7.04 | -6.46 | -9.23 15.26 | 1525 | 15.25 | 11.69 | 11.60 | 11.44
AttBF(FFT) 6.74 | 6.99 | 7.73 2075 | -9.49 | -8.14 | 1525|1524 | 1526 | 11.68 | 11.55 | 11.52
Proposed 4.36 | 4.70 | 4.57 8.00 | 8.03 | 8.06 15.29 | 15.30 | 15.30 | 12.09 | 12.11 | 12.13
NNBF(H) [22] 6.54 | 6.53 | 6.56 5.07|7.25]6.72 1529 | 15.28 | 15.29 | 12.05 | 12.08 | 12.07
CNNBF(R) [23] 4.67 | 4.50 | 471 -11.48 | -9.01 | -7.27 | 1527 | 15.28 | 15.28 | 11.40 | 11.47 | 11.62

ZFBF (optimalBF)

2.14 | 2.80 | 2.77

8.10 | 8.10 | 8.10

15.31 | 15.31 | 1531

12.18 | 12.18 | 12.18

MRC

1.31 | 1.16 | 1.08

-8.65 | -8.65 | -8.65

15.31 ] 15.31 | 15.31

10.80 | 10.80 | 10.80

SMI

133.02 | 132.65 | 134.33

-30.65 | -2.53 | 1.88

-9.64 | 153 [ 5.96

-16.40 | -0.37 | 3.83

SNR

| 8300830830 [ 153115311531 [ 12421242 [ 12.42

e Min/Max SINR Stability : The Min/Max values show
the minimum and maximum 7, in the results distri-
bution achieved from each test dataset. The proposed
model shows stable values for minima ( sim8 [dB])
and maximum (~ 15.30 [dB]), similar to the optimal
beamformer ZFBF method. NNBF(H) model shows
competitive results. In contrast, other DL models and
traditional methods fall behind, especially on minimum
SINR, indicating limitations on interference nulling
performance in high INR scenarios (i.e., In-Line sce-
narios).

e Mean SINR Performance : The Mean value calculated
from the distribution of the results indicates the average
Your achieved from each test dataset. The proposed
model demonstrates the highest mean SINR “7v,,;” in
the test data, which is almost aligned with the optimal
ZFBF results. NNBF(H) with full CSI inputs (both
desired and interference channels) has slightly lower
average 7o+ values compared to the proposed model.
All other DL-based models show moderate average v,
values due to wider distribution spread, implying less
stable beamforming performance. The classic MRC
method falls short under interference conditions; it only
indicates the initial average 7,,¢, which is improved by
all other methods except SMI, with worse performance
due to an insufficient number of snapshots.

e Impact of Snapshots: As explained in the data
generation steps Section IV.A, we have three main
datasets, each with a different snapshot amount (L =
M,2M,4M). The amount of snapshots has no no-
ticeable effects on inference time, except for the
AttBF(Y) and AttBF(FFT) models, where it in-
creases with more snapshots, probably because of the
model architecture changes. The proposed model and
the CNNBF(R) model show some performance im-
provement in Min/Max/Mean results with more snap-
shots. The SMI shows noticeable improvements with
more snapshots (see Remark. 1).

VOLUME

1) Robustness to high Correlation

It is well-known that the presence of high spatial correlation
between desired and interference signals (similar DOAs)
makes it harder to separate them, even with accurate channel
information. The mutual coherence measures how “similar”
or “aligned” the normalized steering vectors of two signals
are. For a desired steering vector vy and K interfering
vectors, mutual coherence measures the highest correlation
as [40],

Pmax = max_|vi vl (36)

1<k<K

When pmax = 0, it means they are perfectly orthogonal
(and thus completely uncorrelated). At the same time, a
small value pgnax — 0 shows that they are nearly orthog-
onal, meaning that they can generally distinguish between
the corresponding signals. When pn.x — 1, the channel
matrix H becomes poorly conditioned, posing challenges to
methods that involve matrix inversion. A good beamformer
should be able to null interfering DOAs while reserving
power toward desired DOAs under correlation conditions up
to pmax ~ 0.9 [40].

In Fig. 11 and Fig .12, we present a comparative evaluation
of beamforming methods, we show a single DS satellite
pass duration T}, from the testing data set Dr, containing
only 300 testing samples, as shown in the left-upper part
of this two figures, this highlights all methods SINR perfor-
mance per data sample (except AttBF(Y), AttBF(FFT), as
proposed AttBF(R) model shows better results than these
Attention-based models already, and also to save space).
Here, perfect CSI is assumed for the benchmark mod-
els/methods. In each figure, we zoomed in on a specific part
of that pass, representing an interfering case, and indicated
it with a red box. For each zoomed-in part, we plot six
sub-figures representing each model/method beam patterns
visualization as seen from the UT side for a specific data
sample n (assuming that method/model was applied to the
UT at that particular sample), in these beam patterns, x-axis:
azimuth angle ¢°, y-axis: elevation 6°, and z-axis: directivity
=t the DS satellite is highlighted with a black circle (o),
while the IS satellite is indicated by black crosses (x). The
observations of the two cases are as follows,
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FIGURE 11. Case1: a main-lobe correlation (pmax = 0.67)

e Case 1 - High Mutual Coherence between desired

and interference

Looking at the UT array beam pattern obtained from
MRC, we can see that the interferer satellite power is
captured in the main-lobe, thus suffering a severe in-
terference impact (i.e., extremely low SINR level). The
DOAs of the DS satellite are ¢ = [— 27.92°; 19.970]
and the DOAs of the IS satellite are ¢; = [ —
20.94°; 15.530] , leading to very high mutual coherence
of pmax = 0.67. Here, the proposed AttBF(R) model
creates a well-formed beam pattern and gives the high-
est You: compared to other DL-based methods despite
the high spatial correlation. NNBF(H) with full CSI
input follows behind, and CNNBF(R) seem to have
weak nulling capabilities for high ppn, values. ZFBF
has the optimal interference nulling with pCSI, and
SMI has the worst performance among all methods, as
expected, because with low snapshots, it only reduces
power “null” in the DOAs of the IS satellite direction
without focusing the power towards the DOAs of the
DS satellite.

e Case 2 - Low Mutual Coherence between desired

and interference

Noting that both satellites are moving, and we can
see with the MRC beamformer, the interferer satellite
power is now moved to the side-lobe, thus the sys-
tem suffered a lower interference compared to Case
1. In this instant, the DOAs of the DS satellite are
Yd = [— 9.56";12.380] and the DOAs of the IS
satellite are ¢; = [— 31.17°; 7.780], which leads to
a low mutual coherence of ppmax = 0.19. Here, the
proposed AttBF(R) model still provides a well-formed
beam pattern, focusing the power toward the DOAs
of the DS satellite and reducing the power “null” in
the DOASs of the IS satellite direction, which achieves
the highest y,,; compared to other DL-based methods.
NNBF(H) and CNNBF(R) models show competitive
SINR and nulling performance with the proposed model
in side-lobe instances. ZFBF always has the optimal
interference nulling with pCSI, and SMI continues to
give the worst performance among all methods.
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FIGURE 12. Case2 : a side-lobe correlation (pmax = 0.19).
2) Robustness to imCSI
To analyze our model in contrast to CSI-dependent methods, 10;;‘4.5_
we chosen an interference case in the satellite pass (i.e., a 81 Y = Proposed
main-lobe instant (pmax = 0.78)), then show how the ou 6 * . —-&-~NNBF(H)
. L . ; . . b ~-&-- CNNBF(R)
value varies with increasing variance of imCSI estimation al \ ~ % -ZFBF
error (ag), observed from 500 MontyCarlo realizations, as ] \‘\ - % -MRC
in Fig. 13. The proposed model AttBF(R) is clearly the ) ? " mEosMI
most robust and effective, maintaining a high SINR without _g P, i‘\_._._._.. *‘\B*""‘““' PRI P
the need for CSI estimation quality. CNNBF(R) and SMI T oar % A,
offer very low but consistent performance, due to their 4t % h‘w‘s\u\ By Hepn
input of the SCM and their lack of reliance on any CSI 0 *5%s ¥0-0589 080
information. NNBF(H) performs well at small estimate | fon SN ke
error, but its performance degrades with higher error levels. BE o e R RR R

ZFBF and MRC are not reliable under imperfect practical -10
CSI conditions, as 7o, performance gradually degrades with
increasing error.

Avoiding CSI estimation and its errors, especially when
unknown spatial interference is present, is desirable in NGSO
systems, where fast mobility and Doppler effects make CSI
acquisition costly and/or inaccurate. This makesDL modes,
such as our proposed AttBF(R) model, promising for co-
existing NGSO system users.
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In conclusion, Table 8 provides a comprehensive summary
and the expected trade-off for each beamforming approach
discussed in this article.
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TABLE 8. Summary Comparison of Beamforming Methods for NGSOs Interference Mitigation

* Generate a beamformer from frequency-domain inputs.

Method Advantages Trade-offs

Proposed * No CSI knowledge required, « Needs SCM R calculation.
* High SINR maximization performance,
* Fast inference (~ 4.5us).

AttBF(Y) * No CSI knowledge required, * Moderate SINR maximization performance.
* Generate a beamformer from time-domin signals inputs.

AttBF(FFT) * No CSI knowledge required, * Moderate SINR maximization performance.

* Requires FFT transformation.

NNBF(H) [22] * High SINR performance with pCSI.

* Requires full CSI knowledge,
e Performance degrades with imCSI errors.

CNNBF(R) [23] | * No CSI estimation required,

* Fast inference (~ 4.5 us).

* Moderate SINR maximization performance,
 Largest model in terms of trainable parameters,
* Needs SCM calculation.

ZFBF * High SINR maximization performance with pCSI. * Requires full CSI knowledge,
* Performance degrades with imCSI estimation error,
* Complex (contain matrix inversion operations).
MRC e Lowst latency (~ 1.1 us inference), * Requires desired channel CSI knowledge,
* Low complexity. * Performance degrades with imCSI errors,
* Not suitable for interference nulling tasks.
SMI * No CSI knowledge required. « Sensitive to the low accuracy of the estimated R,

* Requires lots of snapshots (L <— Tsamp) to perform optimally,
* Highest latency (~ 133 us),
« Needs SCM R calculation.

V. Conclusion and Future Work

In this work, we have presented the model AttBF(R), a
self-supervised DL beamforming method that learns a non-
linear mapping from the SCM to the complex beamforming
weights. The goal is for this mapping to implicitly learn
to identify the spatial characteristics of the desired signal
and the interfering signals from the SCMs. By learning to
produce appropriate complex weights, the beamformer can
steer the main lobe towards the desired user and create nulls
in the direction of the interference sources, thus mitigating
CFI interference in the NGSOs co-existing environment with
latency. The proposed AttBF(R) model appears to be a
promising beamforming technique that balances fast interfer-
ence null performance, CSI-free requirements, and DL mod-
els’ computational efficiency, achieving the highest SINR
among other DL-based techniques, while traditional methods
such as SMI that use the same input as the AttBF(R) model
had the worst performance among all methods due to their
sensitivity to the SCM estimation accuracy. Future works
may investigate UT mobility scenarios, complex channel
model (with NLOS, Doppler effect, etc.), various interfering
sources (terrestrial, jamming CFI signals), and real hardware
scenarios, which are critical topics for integrating SatComs
with the 6G communication systems. In this context,there is
a need for collaborations with satellite operators to provide
real measurements and generalized datasets, which currently
limits the real-world validations for our method (and similar
Al-based techniques). It’s important to making such data
publicly available in future work to accelerate research in
this domain.
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