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GEOMETRIC BOUNDS FOR PERSISTENCE

ALEXEY BALITSKIY, BARIS COSKUNUZER, AND FACUNDO MÉMOLI

Abstract. In this paper, we offer a new perspective on persistent homology
by integrating key concepts from metric geometry. For a given compact subset
X of a Banach space Y, we analyze the topological features arising in the
family N‚pX Ă Yq of nested neighborhoods of X in Y and provide several
geometric bounds on their persistence (lifespans).

We begin by examining the lifespans of these homology classes in terms of
their filling radii in Y, establishing connections between these lifespans and
fundamental invariants in metric geometry, such as the Urysohn width. We
then derive bounds on these lifespans by considering the �8-principal compo-

nents of X , also known as Kolmogorov widths.

Additionally, we introduce and investigate the concept of extinction time
of a metric space X : the critical threshold beyond which no homological fea-
tures persist in any degree. We propose methods for estimating the Čech and
Vietoris–Rips extinction times of X by relating X to its convex hull and to its
tight span, respectively.
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1. Introduction

Over the past decade, numerous approaches within Topological Data Analysis
(TDA) have been developed to uncover patterns across a wide variety of data types.
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Among these, Persistent Homology (PH) has emerged as a cornerstone of TDA,
providing a robust multiscale feature extraction framework. This progress has been
driven by the development of efficient algorithmic procedures and effective software
implementations for its computation (see Section 2.1). Indeed, PH has gained
considerable traction in diverse machine learning applications spanning fields such
as:

‚ Bioinformatics and Biomedicine [NLC11,CCR13,GHI`15,CW17,AQO`20,
BHPG`21,SL22],

‚ Finance [GK18,RQD23],
‚ Materials Science [HNH`16,RSDFS16,SDB`22,ONH22,LBD`18],
‚ Neuroscience [CI08,SMI`08,DMFC12,RNS`17], and
‚ Network Analysis [HKNU17,HKN19,HGR`20,CCI`20,ZYCW20,AAF19].

In this paper, we explore aspects of the Persistent Homology (PH) methodology
through the lens of metric geometry. Our results offer new quantitative interpreta-
tions of the PH output, providing deeper insights into its structure and significance.

1.1. Persistent homology (in a nutshell). We recall the basic idea behind per-

sistent homology. Let Δ‚ “ tΔr

ιr,s
↪−Ñ Δsu0ărďs be a filtration: a nested family

of topological spaces or simplicial complexes, e.g. obtained via the Vietoris–Rips
filtration V‚pX q or the Čech filtration C‚pX Ă Yq induced from a compact met-
ric space X (in the case of the Čech filtration, one typically assumes that X is a
subset of a Banach space Y). For a nonnegative integer k, let ω be a nontrivial
degree-k reduced homology class appearing in the nested family Δ‚, that is, assume

that ω P rHkpΔr;Fq for some r ą 0.1 We in fact consider the degree-k homological
spectrum of the filtration Δ‚, SpeckpΔ‚q to be the collection of all such nonzero ho-

mology classes (see equation (1)). The birth time bω of ω P rHkpΔr;Fq is the infimal

u ą 0 such that there exists ωu P rHkpΔuq with the property that pιu,rq˚pωuq “ ω.
Similarly, we define the death time dω of ω to be the supremal v ě bω such that
ω does not become homologically trivial in Δv, that is pιr,vq˚pωq ‰ 0. This is
informally interpreted as indicating that the nontrivial class ω is “alive” inside the
interval Iω “ pbω, dωs.2 We call the quantity dω ´ bω the lifespan (or persistence)
of the class ω.

The notion of Persistent Homology is closely related to but subtly differs from
this process of recording birth and death times for individual homology classes
described above. The degree-k persistent homology of Δ‚ is the directed system of

vector spaces rHkpΔ‚;Fq. Under suitable tameness assumptions on the family Δ‚,
an up-to-isomorphism representation of this directed system can be obtained via
its persistence diagram, a multiset of intervals I on Rą0 supporting certain linearly
independent collection of nontrivial homology classes that are alive at all points in
I. See Section 2.1 for the precise definition of persistence diagrams (PD).

In many applications, the lifespan of a topological feature ω is critically signifi-
cant, as it is often interpreted as a measure of the “size” or “importance” of ω. In
practice, topological features with long lifespans—those that persist—are typically

1Here F is a fixed field.
2Whether the interval is left/right open/closed depends on semi-continuity conditions of Δ‚.

See Definition 2.18 for the case of neighborhood filtrations, the type of filtrations that we concen-
trate on in this paper.
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considered to represent the primary shape characteristics of a dataset, while fea-
tures with short lifespans are generally regarded as (topological) noise.3 Therefore,
determining (or estimating) and interpreting the lifespans of these topological fea-
tures appearing in the persistence diagram has critical significance for applications
such as the ones mentioned above.

1.2. Connections with metric geometry and main results. In this paper, we
aim to give a geometric interpretation of these lifespans by relating them to several
notions from Metric Geometry. We study the lifespans of individual homology
classes ω appearing throughout the Vietoris–Rips and Čech filtrations by resorting
to the notion of filling radius and to several notions of width. See Section 1.3 for
a discussion of the interplay between widths and filling radii in metric geometry.
Through these notions of width, our results show that the lifespans of homology
classes are controlled by the (geometric) size of their representatives in the filtration
thus providing precise (geometric) interpretations of the significance of the features
tracked by persistent homology.

We first discuss implications of the absolute (Gromov’s) and relative filling
radius of a homology class (Definition 2.31) in our setting. Then, we observe
that the Čech lifespan of a homology class ω is equal to its relative filling ra-
dius in ambient space (Section 2.3). Next, we give several bounds for the lifes-
pans of individual homology classes by resorting to the notions of Urysohn width,
Alexandrov width, and Kolmogorov width. They measure in various ways how
well a space can be approximated by a k-dimensional complex, and they are de-
noted by UWkp¨q,AWkp¨q,KWkp¨q, respectively. Since all these notions of width
are monotonically nonincreasing with respect to the dimension parameter (e.g.,
UWkpX q ě UWk`1pX q), any degree-k estimate automatically applies to homology
classes in higher degrees.

Corollary 3.18 (VR lifespans via Urysohn width). Let X be a compact metric
space, and let ω P SpeckpV‚pX qq, k ě 1. Then,

dω ´ bω ď UWk´1

`

N bω pX Ă EpX qq
˘

.

In particular,

dω ´ bω ď UWk´1pEpX qq.

Here and throughout the paper, N rpX Ă Zq denotes the closed r-neighborhood
of X inside the metric space Z and EpX q denotes the tight span of X (Defini-
tion 2.28), a canonically constructed metric space admitting an isometric embedding
of X and enjoying properties reminiscent of (but stronger than) the ones satisfied
by the convex hull.

Notice that in a special case, if X is a closed k-manifold, and ω “ rX s is
its fundamental class, since bω “ 0 in that case, the result above implies that
the Vietoris–Rips lifespan of ω is bounded above by the Urysohn width of X ,
i.e., dω ď UWk´1pX q (this particular bound goes back to Gromov; it follows
from [Gro83, Appendix 1, Example after Lemma (B)] combined with [Gro83, Ap-
pendix 1, Proposition (D)]).

3However, short lived, or even ephemeral, topological features also can carry useful information;
see Usher and Zhang [UZ16], Bubenik, Hull, Patel and Whittle [BHPW20], and Mémoli and Zhou
[MZ24].
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Next, we give several bounds for Čech lifespans. The first one is via Alexandrov
widths.

Corollary 3.14 (Čech lifespans via Alexandrov width). Let X be compact subset
of a Banach space Y and let ω P SpeckpC‚pX Ă Yqq, k ě 1. Then,

dω ´ bω ď AWk´1pN bω pX Ă convpX qq Ă Yq.

In particular,
dω ´ bω ď AWk´1pconvpX q Ă Yq.

Here convpX q Ă Y denotes the closure of the convex hull of X Ă Y.

Further, we introduce a new notion of width, called treewidth (Definition 3.9),
in order to obtain a finer estimate on Čech lifespans (Corollary 3.12). Notice that
in the estimates above, for each class ω, in order to obtain an upper bound for
its lifespan, the corresponding width needs to be calculated for the neighborhood
Nbω pX Ă ¨q of X , not for X itself. In the following, we get rid of this dependency
on the neighborhood.

The notion of treewidth permits establishing a certain multiplicative bound on
lifespans.

Corollary 3.24 (Čech lifespans via treewidth). Let X be compact subset in a
Banach space Y and let ω P SpeckpC‚pX Ă Yqq, with birth time bω ě 1. Then,

dω
bω

ď C ` 1 ` TWC
k pX Ă Yq.

Next, we consider the �8-version of principal component analysis (PCA8) for a
compact subset X of a Banach space Y (e.g., a point cloud in RN ). By using the
estimates in previous sections, we relate the pk`1q-variance νk`1pX Ă Yq with the
lifespans of classes ω appearing throughout the Čech filtration (Section 3.5). We
note that the variance νk`1pX Ă Yq is also known as the kth Kolmogorov width of
X in the approximation theory literature (Remark 3.27).

Corollary 3.29 (Čech lifespans via �8-variance). Let X be a compact subset of a
Banach space Y and let ω P SpeckpC‚pX Ă Yqq, k ě 0. Then,

dω ´ bω ď νk`1pX Ă Yq “ KWkpX Ă Yq.

Note that by monotonicity of widths (e.g., AWkpX Ă Yq ě AWk`1pX Ă Yqq,
all these bounds apply to homology classes of degree higher than k as well.

While these lifespan bounds depend on the homology degree, we next give a gen-
eral bound for Čech lifespans which is independent of degree. We achieve this by
generalizing Katz’s notion of spread [Kat83] to the extrinsic setting and introduc-

ing the notion that we call überspread (Section 4). Überspread basically measures
the Hausdorff distance from the space to the closest übercontractible space (a con-
tractible space where all neighborhoods are also contractible, see Definition 4.2) in
an ambient space. With this notion, we generalize the existing VR-lifespan esti-
mates via spread obtained by Lim, Mémoli and Okutan [LMO24] to Čech-lifespans
in any degree.

Theorem 4.5 (Čech lifespans via überspread). Let X be a compact subset of a
Banach space Y. Let ω P SpeckpC‚pX Ă Yqq for any k ě 0. Then,

dω ´ bω ď 2 ü-spreadpX Ă Yq.
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While the results above are effective for bounding individual lifespans (dω ´ bω),
we also attack a more general question: how to obtain a global bound for death
times of homology classes across all degrees? To do this we introduce a notion,
called extinction time, representing the maximal threshold after which there is no
nontrivial homology class in any degree k ě 0. We bound both Čech extinction

times qξpX Ă Yq and Vietoris–Rips extinction times ξpX q by relating X to their
convex hulls and tight spans, respectively. In the case of Čech filtrations, we in-
troduce a notion called convexity deficiency, cdefpX Ă Yq, which is the Hausdorff
distance of a space X to its convex hull in Y (Section 5.1).

Theorem 5.5 (Bounding Čech extinction). Let X be a compact subset of a Banach
space Y. Then,

qξpX Ă Yq ď cdefpX Ă Yq.

In the VR case, we define an analogous notion called hyperconvexity deficiency,
hcdefpX q, which is the Hausdorff distance between the tight span EpX q of X and
the isometric copy of X inside of it (Section 5.2). We then show that a result
analogous to Theorem 5.5 is also true in the VR-case (Corollary 5.10).

We highlight the bidirectional relationship between applied topology and met-
ric geometry: on one hand, with the goal of improving their interpretability, we
establish upper bounds for crucial quantities which originated in applied topology
(e.g., lifespans of homology classes) using concepts from metric geometry; on the
other hand, these results yield computational lower bounds or estimates for metric
geometry notions inspired by persistent homology; see Remark 2.36. This interplay
underscores the synergy between these fields, enabling insights that advance both
domains.

Cores. Conceptually, our results establish a relationship between a given space X
and another space ΛX , which functions as a core for X . This represents the central
thread weaving together the various parts of the paper. Specifically, estimates on
the lifespans of homological features that arise as the radius of neighborhoods of X
increases are derived from the distance between X and ΛX :

‚ In Section 3, where we explore various notions of widths, the role of the core
ΛX is, roughly speaking, assumed by a k-dimensional space closest to X .
In this context, the k-width can be interpreted as the distance between X
and this approximate core, ΛX . In this section, we first recall the classical
notions of Urysohn and Alexandrov width and then introduce a new variant
which we call treewidth.

‚ In Section 4, after recalling the notion of spread, we introduce the notion of
überspread, where the core ΛX is treated as an übercontractible space, and
the distance between X and ΛX provides an upper bound on the lifespans
in any degree. Notably, the condition imposed on the core in this context
is the triviality of its homology groups, rather than any restriction on its
dimension.

‚ In Section 5, where we analyze extinction times, we impose strong geo-
metric conditions—such as convexity or hyperconvexity—on ΛX to derive
extinction bounds based on the distance between ΛX and X . This is done
through the concepts of convexity deficiency and hyperconvexity deficiency,
which we introduce therein.
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1.3. Related work. In this work, we aim to build a bridge between two seemingly
disparate fields: applied algebraic topology and metric geometry. Both disciplines
address a similar fundamental question regarding the quantification of “shape”
using distinct tools:

How to measure the size of a set/space/manifold?

In applied algebraic topology, persistent homology is an effective tool for accom-
plishing this aim, and the lifespans (or persistence) of topological features induced
by Vietoris–Rips (or Čech) filtrations are used as a measure of the size or im-
portance of the corresponding topological features. In particular, Vietoris–Rips
(or Čech) complexes were invented in order to transform a given metric space
into a simplicial complex while maintaining its topological information, thus en-
abling an effective cohomology theory for metric spaces; see the papers by Vi-
etoris [Vie27], Borsuk [Bor48] and Hausmann [Hau95]. Numerous studies in the
literature explore Vietoris–Rips complexes and Vietoris–Rips filtrations across vari-
ous settings; see Latschev [Lat01], Chazal, Cohen-Steiner, de Silva, Guibas, Mémoli,
and Oudot [CCSG`09,CDSO14], Adamaszek, Adams, Frick, Gillespie, Lim, Mémoli,
Moy, Okutan, Reddy, and Wang [AA17,AAR19,AMMW24,AFV23,LMO24,Gil24],
Attali, Lieutier and Salinas [ALS13], Rieser, Bubenik and Milicevic [Rie20,BM24],
Turner [Tur19], Virk [Vir20,Vir22,Vir21], and Zaremsky [Zar22].

On the other hand, from the metric geometry side, estimating the size of a man-
ifold has been a key problem for several decades. Gromov introduced and studied
the notion of filling radius in his seminal paper [Gro83], and several other notions
of “largeness” in [Gro86]. Before Gromov, certain relative, or extrinsic, versions
of the filling radius were studied by Federer and Fleming [FF60], Michael and Si-
mon [MS73] and Bombieri and Simon [BS83] in geometric analysis in connection
with the isoperimetric inequality. Gromov brought the filling radius to the realm
of systolic geometry, and the study of scalar curvature [Gro83]. Several other mea-
sures of size of a given manifold or metric space, nowadays known as widths, were
also studied and popularized by Gromov [Gro83,Gro88].

The interplay between filling radii, widths, and other metric invariants (includ-
ing volume) has been an active research area since then. Katz determined the
filling radius of spheres and other essential spaces [Kat83, Kat89, Kat90, Kat91].
Several authors have studied the filling radii in comparison with other measures of
largeness [Cai94,BH10]. Guth proved some related conjectures of Gromov [Gut11,
Gut17]. Sabourau, Nabutovsky, and Rotman related the filling radius with sweep-
outs of manifolds [Sab20, NRS21]. Bounds on filling radius in terms of Haus-
dorff content follow from very general isoperimetric estimates due to Liokumovich,
Lishak, Nabutovsky, and Rotman [LLNR22].

In recent years, several articles have explored connections between these two
domains, addressing analogous problems with different methodologies. With this
aim, Lim, Mémoli and Okutan related the filling radius of a closed manifold to
the interval corresponding to the fundamental class in the top VR persistence di-
agram [LMO24]. As shown in [LMO24, Section 9.3.2], the stability of persistence
diagrams of Vietoris–Rips filtrations can be used to obtain lower bounds for the
Gromov–Hausdorff distance between spheres through considerations related to their
filling radii. These were shown not to be tight by Lim, Mémoli and Smith [LMS23]
and the polymath project [ABC`22] furthered this line work; see also Jeffs and
Harrison [HJ23] and Rodriguez-Mart́ın [RM24]. Adams and Coskunuzer used a
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well-known quantity in metric geometry, Urysohn width, to estimate the lifespans
in the persistence diagram of a given space [AC22]. In [Vir22], in the manifold
setting, Virk studied the relation between persistence diagrams for large degrees
and lower dimensional features.

In this paper, we aim to establish a direct connection between concepts from
applied algebraic topology and metric geometry by linking various quantities used
in both fields to measure the size of a metric space. In writing this paper, we have
prioritized accessibility, aiming to bridge the gap between the two fields and foster
greater collaboration and understanding.

2. Background

In this section, we provide an overview of the concepts from applied algebraic
topology and metric geometry that form the foundation of the paper. We give a
summary of our notations in Table 1 in the Appendix.

2.1. Persistent homology. Persistent Homology (PH) is a methodology rooted
in Applied Algebraic Topology that captures various structural characteristics of a
given topological or metric space. Its development can be traced to the pioneering
work of Frosini [Fro90] and Robins [Rob99], with its algorithmic framework later
established by Edelsbrunner, Letscher, and Zomorodian [ELZ02]. Earlier mani-
festations of persistent homology were retrospectively identified in the works of
Morse [Mor30], Deheuvels [Deh55], and Barannikov [Bar94].

In the past two decades, PH has been employed as a powerful mathematical
machinery for discovering patterns in data in applications within Machine Learning
and Data Science. This advancement has been made possible by the development of
efficient algorithms capable of computing PH in polynomial time. Specifically, the
total computational effort is a polynomial function of parameters related to the size
of the input simplicial filtration and the maximum homology degree to be computed;
see Edelsbrunner, Letscher and Zomorodian [ELZ02], Harker, Mischaikow, Mrozek
and Nanda [HMMN14,MN13], and Bauer [Bau21].

For more details on PH and its use in various settings, see Carlsson [Car09],
Edelsbrunner and Harer [EH10], Chazal, de Silva, Glisse and Oudot [CDSGO16],
Ghrist [Ghr18], Rabadán and Blumberg [RB19], Carlsson and Vejdemo-Johansson
[CVJ21], Joharinad and Jost [JJ23], and Polterovich, Rosen, Samvelyan and Zhang
[PRSZ20].

Neighborhood notation. Throughout the paper, we use both open and closed
neighborhoods and adopt the following notation. In the sequel, given a metric
space Z, a point z P Z and r ą 0, by Brpzq we will denote the open ball of radius
r around z. When X is a subset of a metric space Z, through

NrpX Ă Zq :“
ď

xPX
Brpxq,

we will denote the open r-neighborhood of X in Z while N rpX Ă Zq will denote
the similarly defined closed r-neighborhood of X in Z.
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2.1.1. Filtrations. As noted in the previous section, utilizing the PH machinery
requires a filtration—a nested family of topological spaces or abstract simplicial
complexes—denoted by Δ‚. One of the most natural examples arises by considering
nested neighborhoods of a subspace of a metric space, i.e., for X a subset of a metric
space Z, the family tNrpX Ă Zqurě0 defines a filtration. Simplicial constructions
are preferred in practical applications and the most common ones are Vietoris–Rips
and Čech complexes and the respective filtrations they induce. While our study
focuses primarily on these two types of filtrations, most of our results concerning
Čech complexes naturally extend to alpha complexes; see Remark 2.9.

Definition 2.1 (Vietoris–Rips complexes). Let pX ,dX q be a compact metric space.
For r ą 0, its Vietoris–Rips complex at scale r is the abstract simplicial complex
VrpX q where a k-simplex σ “ rxi0 , xi1 , . . . , xiks P VrpX q if and only if dX pxim , xinq

ă r for any 0 ď m,n ď k.

Definition 2.2 (Čech complexes). Let X be a compact subset of a metric space
Z. For r ą 0, the Čech complex at scale r is the abstract simplicial complex
CrpX Ă Zq where a k-simplex σ “ rxi0 , xi1 , . . . , xiks P CrpX Ă Zq if and only if
Şk

m“0 Brpximq ‰ H in Z.

In most scenarios Z “ Y, a Banach space.

Through the geometric realization functor, the nested families of simplicial com-
plexes provided by the Vietoris–Rips and Čech complexes induce filtrations.

Definition 2.3 (Filtration). A filtration of a topological space is a collection Δ‚ “
`

Δr, ιr,s
˘

0ărďs
such that for each 0 ă r ď s, Δr is a subset of the given topological

space and ιr,s : Δr ↪Ñ Δs is the inclusion map.

When there is no risk of confusion we will simply say that Δ‚ is a filtration
without mentioning the ambient topological space, with the understanding that it
can be recovered as the colimit of Δ‚. In the remainder of the paper, we use the
notation V‚pX q and C‚pX Ă Yq to denote the filtrations induced by the (geometric
realizations of the) Vietoris–Rips and Čech complexes of X , respectively.

Example 2.4 (Neighborhood filtrations). Another example of filtrations arising
in geometric scenarios is the following. Let X Ă Z be a nonempty compact subset
of a metric space pZ,dZq. Then, one considers the filtration N‚pX Ă Zq given,
for each r ą 0, by the open r-neighborhood NrpX Ă Zq of X in Z. We will refer
to any filtration arising in that manner as a neighborhood filtration. Of particular
relevance to this paper will be the case when Z “ Y, a Banach space.

Given the similarities in the definitions of Vietoris–Rips and Čech simplicial
complexes, it is natural to expect certain relationships between these two types of
complexes. By direct computation, it is straightforward to see that for any compact
X Ă Y,

CrpX Ă Yq Ď V2rpX q Ď C2rpX Ă Yq.

The Nerve Theorem directly relates the r-neighborhoods of X in Y, NrpX Ă Yq,
with the induced Čech simplicial complexes.

Lemma 2.5 (Nerve theorem; Alexandrov [Ale28] and Borsuk [Bor48]). Let X be a
compact subset of a Banach space Y. For any r ą 0, NrpX Ă Yq and CrpX Ă Yq

are homotopy equivalent to each other, i.e.,

NrpX Ă Yq » CrpX Ă Yq.
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There are “persistent”, or “functorial”, versions of this result; see Bauer, Kerber,
Roll and Rolle [BKRR23] for an overview of different variants of the functorial nerve
lemma. We will use the version below (see the discussion in [LMO24, Remark
4.4]) to relate the Čech filtration C‚pX Ă Yq and the Neighborhood filtration
N‚pX Ă Yq.

Theorem 2.6 (Persistent nerve theorem [LMO24, Proposition 4.5]). There exist
homotopy equivalences ϕs : CspX Ă Yq Ñ NspX Ă Yq for each s ą 0 such that for
each t ą s ą 0 the following diagram commutes up to homotopy:

CspX Ă Yq CtpX Ă Yq

NspX Ă Yq NtpX Ă Yq

ϕs ϕt

Note that Theorem 2.6 implies that the persistent homology of C‚pX Ă Yq is
isomorphic to that of N‚pX Ă Yq, a fact that we will repeatedly use in the sequel.

Since any compact metric space X can be regarded as a subset of L8pX q

(via its Kuratowski embedding, see Definition 2.24), one obtains an analogous re-
sult providing a connection between the Vietoris–Rips filtration and the filtration
N‚pX Ă L8pX qq consisting of nested neighborhoods

�

NspX Ă L8
pX qq Ď NtpX Ă L8

pX qq
(

0ăsďt

of X Ă L8pX q.

Corollary 2.7 ([LMO24, Theorem 4.1]). There exist homotopy equivalences ϕs :
V2spX q Ñ NspX Ă L8pX qq for each s ą 0 such that for each t ą s ą 0 the following
diagram commutes up to homotopy:

V2spX q V2tpX q

NspX Ă L8pX qq NtpX Ă L8pX q

ϕs ϕt

Remark 2.8. The result above remains valid if L8pX q is substituted by any other
injective metric space admitting an isometric embedding of X ; see Section 2.2 for
the definition and Section 5.2, where we in particular utilize the tight span EpX q as
one such choice. Also, the proof of Corollary 2.7 yields that C‚pX Ă L8pX qq and
V2‚pX q are naturally homotopy equivalent; see [LMO24, Section 4].

Remark 2.9 (Alpha complexes). Note that while we only discuss VR and Čech
filtered complexes in our paper, our results on Čech lifespans naturally apply to
lifespans of homology classes induced by alpha complexes as ArpX Ă Yq » CrpX Ă

Yq where ArpX Ă Yq represents the alpha complex induced by X with distance
threshold r ě 0; see Edelsbrunner and Harer [EH10, III.4].

2.1.2. Persistent homology. Here, we recall basic notions pertaining to persistent
homology that are necessary for our setting. We will follow the presentation
from [LMO24, Section 2.1].
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Definition 2.10 (Persistence module). A persistence module pVr,Φr,sq0ărďs over
Rą0 is a family of F-vector spaces Vr for some field F with morphisms Φr,s : Vr Ñ Vs

for each r ď s such that

‚ Φr,r “ idVr
,

‚ Φs,t ˝ Φr,s “ Φr,t for each r ď s ď t.

For conciseness we will denote by V‚ the persistence module given by
pVr,Φr,sq0ărďs. The morphisms Φ‚,‚ are referred to as the structure maps of V‚.
Note that a persistence module V‚ can be regarded as a functor from the poset
pRą0,ďq to the category of vector spaces.

Definition 2.11 (Interval persistence module). Given an interval I in Rą0 and
a field F, the interval persistence module induced by I is the persistence module
F‚rIs is defined as follows: The vector space at r is F if r is in I and zero otherwise.
Given r ď s, the morphism corresponding to the pair pr, sq is the identity if r, s are
both contained in I and zero otherwise.

Definition 2.12 (Barcode and persistence diagram). For a given persistence mod-
ule V‚, if there is a multiset of intervals pIλqλPΛ such that V‚ is isomorphic to
À

λPΛ F‚rIλs, then that multiset is referred to as a (persistence) barcode associated
to the persistence module V‚. Persistence Modules admitting such a multiset of
intervals are said to be interval decomposable. The persistence diagram of V‚ is
then given as the multiset of points pbλ, dλq P R2, where bλ, is the left endpoint of
Iλ and dλ is its right endpoint.4

In applied algebraic topology, many persistence modules arise as follows.

Definition 2.13 (Persistent homology of a filtration). For any k ě 0, applying the
k-dimensional reduced homology functor (with coefficients in a field F) to a filtration

Δ‚ “
`

Δr, ιr,s
˘

0ărďs
produces the persistence (homology) module rHkpΔ‚;Fq “

prHkpΔr;Fq,Φk
r,sq0ărďs where the morphisms Φk

r,s are those induced by ιr,s.
5

In what follows we will drop the field F from the notation since all of our results
hold for an arbitrary choice of F.

Under suitable assumptions, the persistence modules obtained from filtrations, as
described above, are interval decomposable. In particular, the persistence modules
obtained from neighborhood filtrations of compact subsets of a Banach space are
interval decomposable (so that they admit barcodes).

Theorem 2.14 ([LMO24, Theorem 1]). Assume X is a compact subset of a Banach
space Y. Then there is a (unique) persistence barcode associated to the persistence

module rHkpC‚pX Ă Yqq. In particular, rHkpV‚pX qq admits (unique) persistence
barcode.6

We will henceforth use PDkpX q and }PDkpX Ă Yq to respectively denote the
persistence diagrams of the Vietoris–Rips and Čech filtrations of X .

4Not every persistence module is interval decomposable; see Crawley-Boevey [CB15] for more
details.

5Note that we are using reduced homology in our definition in order to dispense with the usual
infinite length bar at the level of degree zero persistent homology.

6In [LMO24, Theorem 1] the authors only contemplate the case of the Y being equal to L8pX q

for some compact metric space X . However, the proof of their result directly applies to the setting
in the statement.
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2.1.3. Stability theorems. Persistence diagrams are an effective methodology for
encoding topological properties of the space X and its neighborhoods in Y. Per-
sistence diagrams are stable, as expressed by the following stability theorems. In-
formally, these state that if the shape and the size of two spaces are similar, then
their persistence diagrams are close to each other. To give formal statements, let
dbp¨, ¨q denote the bottleneck distance between persistence diagrams; see Edelsbrun-
ner and Harer [EH10]. Let dY

H be the Hausdorff distance between two subsets of
the same Banach space Y, and let dGH be the Gromov–Hausdorff distance between
two metric spaces; see Burago, Burago and Ivanov [BBI01, Chapter 7].

Lemma 2.15 (Stability theorem—VR; [CCSG`09, Theorem 3.1] and [CDSO14,
Theorem 5.2]). Let X and X 1 be two compact metric spaces. Then,

dbpPDkpX q,PDkpX 1
qq ď 2dGHpX ,X 1

q.

Lemma 2.16 (Stability theorem—Čech; [CDSO14, Theorem 5.6]). Let X ,X 1 be
two compact subsets of a Banach space Y. Then,

dbp}PDkpX Ă Yq,}PDkpX 1
Ă Yqq ď dY

H pX ,X 1
q.

Note that Lemma 2.16 implies Lemma 2.15. Indeed, this was implicitly used
in the proof of [CCSG`09, Theorem 3.1]. Notice that the coefficient 2 does not
appear in the second stability theorem.

2.1.4. Homological spectra. As described in Section 1, the chief goal of our paper
is to provide effective bounds for the lifetime of all homology classes that appear
along a (geometric) filtration of a metric space. We will formulate and realize this
goal in a setting that encompasses, but is more general than, persistence diagrams.

Remark 2.17. Notice that it is not true that the only homology classes that show
up across the filtration are those coming from the initial space. One well-known
example is that of the circle S1 (with its geodesic distance) and the Vietoris–Rips
filtration. Indeed, as shown by Adamaszek and Adams in [AA17], whereas VtpS

1q

has the homotopy type of S1 for t P
`

0, 2π
3

‰

, its homotopy type is that of S3 as soon

as t P
`

2π
3 , 4π

5

‰

. In fact, they show that V‚pS1q eventually attains the homotopy
types of all odd-dimensional spheres.

We recall some additional definitions and results from [LMO24].

Definition 2.18. For an integer k ě 0, a given field F, and a filtration

Δ‚ “
`

Δr, ιr,s
˘

0ărďs
,

let

(1) SpeckpΔ‚q :“
ď

rą0

ˆ

rHkpΔr;Fqzt0u ˆ tru

˙

be the k-th homological spectrum of Δ‚ (with coefficients in Fq.
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Now, fix an arbitrary pω, sq P SpeckpΔ‚q. Then, let

bpω,sq :“ inftr ą 0 : r ď s and D nonzero ωr P rHkpΔrq such that pιr,sq˚pωrq “ ωu,

(2)

dpω,sq :“ suptt ą 0 : t ě s and D nonzero ωt P rHkpΔtq such that pιs,tq˚pωq “ ωtu

(3)

“ suptt ě s : pιs,tq˚pωq ‰ 0u.(4)

Whenever Δ‚ is a neighborhood filtration N‚pX Ă Yq, as in [LMO24, Theorem
8], one has that bpω,sq ă s ď dpω,sq.

7 Let

Ipω,sq :“ pbpω,sq, dpω,sqs.

Informally, the interval Ipω,sq encodes the maximal region around s P Rą0 inside

which the class ω is “alive”.8

Definition 2.19. The value bpω,sq is referred to as the birth time of ω whereas
dpω,sq is the death time of ω. The value dpω,sq ´ bpω,sq will be referred to as the
lifespan of ω.

Remark 2.20 (A caveat). We focus on the special case of neighborhood filtrations.
The birth time bpω,sq was defined as the infimum of all times r ď s when a “prede-

cessor” of ω exists in rHkpNrpX Ă Yqq, and it is natural to ask whether there exists
a homology class supported on

č

bpω,sqărďs

NrpX Ă Yq “ N bpω,sq pX Ă Yq

that is also homologous to ω in NspX Ă Yq. It turns out this is not the case
even for the neighborhood filtration of a compact set in R2. Namely, there exists a
compact set X Ă R2, known as the Warsaw circle or closed topologist’s sine curve,
satisfying the following counter-intuitive property: its first singular homology is
zero, but every open neighborhood of it contains a homologically nontrivial circle;
see Borsuk [Bor75]. Every two of those circles are homologous to each other (within
the union of the two neighborhoods). But these circles do not converge, as we shrink

the neighborhood, to a nontrivial homology class of X , because rH1pX q “ 0. The
natural way to treat this “limit circle” is to consider Čech homology instead of

ordinary singular homology. The Čech homology qH1pX q is nontrivial, and contains
the “limit circle”. In general, a predecessor of the class ω naturally lives in the

Čech homology qHkpN bpω,sq pX Ă Yqq. Nonetheless, we consistently use singular
homology throughout the paper in order to avoid overly technical details.

To ease the notational burden, we will often drop the parameter s and will use
the more succinct notation bω, dω, Iω, etc.

Remark 2.21. A priori, one would expect the collection of all intervals
�

Iω; ω P SpeckpΔ‚q
(

7In general, the type of intervals (open-open, closed-open, etc) one obtains depends on whether
the filtration is defined via open or closed neighborhoods. Note that we’ve defined neighborhood
filtrations via open neighborhoods.

8Note that, since we are using reduced homology, there is no degree 0 class ω such that
dpω,sq “ 8.
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to be closely related to the k-th persistence diagram of Δ‚. Whereas Proposition
2.22 below establishes a sense in which this is the case, it is not always true that all

such intervals appear in the interval decomposition of rHkpΔ‚q (whenever it exists).
An example showing this discrepancy in the case of Vietoris–Rips filtrations can be
found in [LMO24, Example 9.16].

Proposition 2.22 ([LMO20, Proposition 9.2]). Let Δ‚ “
`

Δr, ιr,s
˘

0ărďs
be a

neighborhood filtration and let k ě 1 be an integer. Then, for all r ă s, the
multiplicity of the interval pr, ss in the barcode of HkpΔ‚q is equal to

max

#

mPZě0

ˇ

ˇ

ˇ

ˇ

ˇ

D linearly independent vectors ω1, . . . , ωm PHkpΔsq s.t. Ipωi,sq “ pr, ss @i

and no nonzero linear combination of these vectors belongs to Imppir,sq˚q

+

.

Proposition 2.22 indicates that for each interval I “ pr, ss in the barcode of Δ‚

there is a finite linearly independent collection ω1, . . . , ωm P HkpΔsq satisfying the
conditions above such that I “ Ipωi,sq for all i. One calls any such ωi a representative

of the interval I.9 See [LMO24, page 42] for an example demonstrating the role
of the condition that no nonzero linear combination of these vectors belongs to
Imppιr,sq˚q.

Remark 2.23. Proposition 2.22 implies that if I is an interval in the barcode of a
neighborhood filtration, then I “ Iωi

so that, in particular, its length is equal to
that of Iωi

, where ωi is as in the statement. Therefore, and as we will do in the
rest of the paper, if we have an upper bound for the length of all intervals Iω where
ω P SpeckpΔ‚q then we will automatically have an upper bound for the length of
every interval in the barcode of Δ‚.

2.2. Geometry of L8pX q and tight spans. While the discussion in this paper
applies to subsets of any Banach space, special attention is paid to the important
case of L8 spaces. There are two main reasons for that. The first one is that if we
start with a compact metric space that is a priori not an isometrically embedded
into a Banach space, there is a nice way of placing it inside L8pX q, the space of
bounded functions on X with the supremum norm.

Definition 2.24 (Kuratowski embedding). For a compact metric space pX ,dX q,
the map κ : X Ñ L8pX q, defined as x ÞÑ dX px, ¨q, is a distance-preserving embed-
ding, and it is called the Kuratowski embedding.

The second reason is that L8 spaces enjoy the hyperconvexity property: If several
balls have non-empty pairwise intersection then they share a point in common.

Definition 2.25 (Hyperconvex space). A metric space pE ,dEq is called hyperconvex
if for every family pxi, riqiPI of xi in E and ri ě 0 such that dEpxi, xjq ď ri ` rj for
every i, j in I, there exists a point x P E such that dEpxi, xq ď ri for every i in I.

The hyperconvexity of L8pX q implies that the Čech and VR filtrations of a
subset of L8pX q coincide (up to a factor of two in the filtration index). This gives
a way to study VR-lifespans of homology of X by immersing it in L8pX q and
then using the tools applicable to Čech-lifespans. Note that this idea has been
successfully used in the context of VR-persistence, cf. Proposition 2.34.

9In [LMO24, Proposition 9.2] the authors consider the case of the VR filtration of a totally
bounded metric space. The same proof applies to the more general statement given above.
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Hyperconvexity implies certain universal properties of L8 spaces, and these prop-
erties will be implicitly used below in relation to Urysohn width (see Remark 3.16),
and tight spans (a.k.a. injective hulls). We briefly discuss the latter now and we
refer the reader to Lang’s survey [Lan13] for more information.

Definition 2.26 (Injective metric space). A metric space E is called injective if
for every 1-Lipschitz map φ : X Ñ E and distance preserving embedding of X into
rX , there exists a 1-Lipschitz map rφ : rX Ñ E extending φ:

X rX

E
φ

rφ

It turns out that injectivity coincides with hyperconvexity.

Proposition 2.27. A metric space is injective if and only if it is hyperconvex.

The proof of Proposition 2.27 can be found in Aronszajn and Panitchpakdi [AP56]
and in [Lan13, Proposition 2.3].

It is known that L8pX q is injective [Lan13]. However, there exists a more efficient
injective space containing X .

Definition 2.28 (Tight span). The tight span EpX q of a compact metric space
X is the minimal injective metric space admitting an isometric embedding of X .
Minimality here means that any other injective metric space admitting an isometric
embedding of X contains an isometric copy of EpX q.

Tight spans are sometimes called injective hulls or hyperconvex hulls. The no-
tions of injectivity and hyperconvexity were first proposed by Aronszajn and Pan-
itchpakdi [AP56]. Isbell [Isb64] first identified the notion of tight span (although
the author used the term injective envelope). Additional contributions were made
by Dress [Dre84] and Lang [Lan13]; see Chepoi [Che97] for a historical account.

Proposition 2.29 (Properties of the tight span [Lan13]). The tight span EpX q of
a compact metric space X exists and satisfies:

(1) EpX q is compact.
(2) EpX q is contractible.
(3) EpX q is isometric to X for any metric tree X .
(4) diampEpX qq “ diampX q.

One particular realization of the tight span EpX q of X as a subset of L8pX q is
given as follows [Lan13, Section 3]:

EpX q :“ tf P ΔpX q : if g P ΔpX q and g ď f, then g “ f pi.e., f is minimalqu,

where

ΔpX q :“ tf P L8
pX q : fpxq ` fpx1

q ě dX px, x1
q for all x, x1

P X u.

Note that from the realization of the tight span recalled above, for any f P EpX q

and any x P X , it holds that

(5) fpxq “ max
x1PX

`

dX px, x1
q ´ fpx1

q
˘

“
›

›dX px, ¨q ´ f
›

›

8
.

Remark 2.30. Not only can the tight span EpX q be regarded as a subset of L8pX q

but also, directly from the fact that it is an injective metric space, there is a 1-
Lipschitz retraction of L8pX q to EpX q; see [Lan13, Proposition 2.2].
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2.3. Filling radius. The filling radius is a key notion in metric geometry intro-
duced by Gromov as a measure of largeness of a given closed manifold [Gro83]. To
fill a manifold M of dimension n, treated as a singular n-cycle, means to find an
pn` 1q-dimensional singular chain D with boundary M, i.e. BD “ M. In this case
we will also be saying that the cycle M bounds. The ambient space in which filling
happens, as well as the coefficients of singular homology, should be specified, as we
discuss below.

Definition 2.31 (Gromov’s filling radius [Gro83]). The filling radius ρpMq of a
closed n-dimensional Riemannian manifold M is the infimal number R ą 0 such
that M can be filled inside of the R-neighborhood of its Kuratowski image in
L8pMq.

Remark 2.32 (Coefficients). This definition makes sense with any homology coeffi-
cients. Some common choices include Z-coefficients if M is oriented, Z2-coefficients
if M is not oriented, and Q-coefficients in some contexts where torsion is a prob-
lem. However, the usual persistence homology is well-defined only over fields,10 so
in the rest of the paper we implicitly assume that an arbitrary choice of a field is
made (e.g., Z2), and that all filling radii and all persistence features are considered
over this field. All of our results hold for any field and, for this reason, the field is
omitted from the notation.

Before Gromov, a different type of filling radius notion was discussed for sub-
manifolds (or more generally, cycles) in RN in geometric analysis, especially in the
context of the isoperimetric problem [FF60,MS73,BS83]. We summarize both types
of filling radii in Definition 2.33, adapting it to the context of persistence.

Definition 2.33 (Relative and absolute filling radii of a homology class). Let

pX ,dX q be a metric space, and let ω P rHkpX q be a nontrivial reduced singular
homology class.

(1) Assume additionally that X is a subset of a Banach space Y, so that
the metric dX agrees with the one inherited from Y (that is, the em-
bedding X ↪Ñ Y is distance-preserving). The relative filling radius of ω
is the infimal number r such that the image of ω under the induced map
rHkpX q Ñ rHkpNrpX Ă Yqq is trivial. In other words, it is the infimal size
of a neighborhood in Y where some cycle representing ω bounds a pk ` 1q-
chain. We will use the following notation for the relative filling radius:
ρpω;X Ă Yq.

(2) In case when no ambient space Y is specified, one can take Y “ L8pX q,
and measure the relative filling radius of the Kuratowski image κpX q Ă

L8pX q. This way one obtains the (absolute) filling radius of ω: ρpω;X q “

ρpκ˚pωq;κpX q Ă L8pX qq; cf. [LMO24, Definition 24].

The word “absolute”, which is usually omitted, is justified by the fact that
ρpω;X q equals the infimum of ρpι˚pωq; ιpX q Ă Yq over all distance-preserving em-
beddings ι : X ↪Ñ Y [Gro83, page 8]; we will refer to this as the universal prop-
erty. Note that when X “ M is a closed Riemannian manifold, Gromov’s filling
radius (Definition 2.31) over Z2 is the same as the absolute filling radius of the
Z2-fundamental class rMs.

10See, however, [Pat18].
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The relationship between the VR filtration of a compact metric space and the
absolute filling radii ρpω;X q is studied in [LMO24, Section 9.3]. Proposition 2.34
applies in the general context of absolute neighborhood retracts (ANRs), which in-
cludes Riemannian manifolds, metric graphs and other commonly appearing metric
spaces.11

Proposition 2.34 ([LMO24, Propositions 9.28 and 9.46]). Let X be a compact

ANR metric space. Then, for any integer k ě 1 and any nonzero ω P rHkpX q we
have:

‚ ρpω;X q ą 0;
‚ the interval p0, 2ρpω;X qs appears in the degree-k barcode of V‚pX q.

Additionally, if X is a (closed and connected) Riemannian manifold, then there
are no other intervals with left-endpoint (birth time) equal to zero in the degree-k
barcode of V‚pX q.12 Here both the filling radius and persistent homology can be
computed with coefficients in an arbitrary field when M is orientable, and with
coefficients in Z2 when M is not orientable.

Remark 2.35 (Relative filling radius vs. absolute filling radius). To give an idea
about the difference between relative filling radius in Y and absolute filling radius,
here we give a toy example of a flying saucer in Y “ R3 (with Euclidean metric).

Let E be the ellipsoid in R3 given by E “ tpx, y, zq |
x2

100 `
y2

100 `
z2

1 “ 1u, and let
rEs be its fundamental class in H2pEq. There are two different ways to treat E as
a metric space, resulting in the different values of its filling radius.

(1) One way is to consider the Riemannian metric g on E induced by the
Euclidean metric of R3. The Riemannian surface Eg thus obtained has
absolute filling radius of about 10: ρprEs; Egq „ 10 (the exact computation
is tricky).

(2) The other way is to borrow the extrinsic distance function from R3. This
does not make E a Riemannian manifold, but rather just a compact metric
space embedded in R3 in a distance-preserving way. The corresponding
relative filling radius equals 1: ρprEs; E Ă R3q “ 1.

In this example we have ρprEs; Egq ą ρprEs; E Ă R3q, which might seem to con-
tradict the note above saying that ρpω;X q ď ρpω;X Ă Yq for distance-preserving
embeddings X Ă Y. There is no contradiction here: even though the embedding
Eg Ă R3 is a Riemannian isometry, it is not distance-preserving. Indeed, the ex-
trinsic distance in R3 between two points of E is smaller than the intrinsic distance
between them inside E (the length of the shortest path in E). If one computes the
filling radius of E with the extrinsic metric of R3, it will be at most 1.

In the following sections, we will see that Gromov’s filling radius of a Riemannian
manifold isometrically embedded in an ambient space Y can highly overestimate
the lifespan of a topological feature in its Čech filtration and that the relative filling
radius is better adapted to this context.

11Recall that an ANR is any metric space X with the property that whenever it is embedded
into another metric space Z through a homeomorphism h : X Ñ Z, then there is an open
neighborhood U of hpX q such that hpX q is a retract of U ; see Borsuk [Bor32] and Hu [Hu65]. It
is known that every compact (topologically) finite-dimensional locally contractible metric space
is an ANR. Thus, all Riemannian manifolds are ANRs.

12In particular, if X is an n-dimensional Riemannian manifold, then p0, 2ρpX qs is the unique
interval with left endpoint zero in the degree-n barcode.
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Remark 2.36 (Comment about estimation of filling invariants). The type of con-
nections between persistent homology and metric geometry that we explore in this
paper have the potential of permitting the estimation of quantities such as the fill-

ing radii ρpω;X q, ω P rHkpX q, via the polynomial time algorithms that have been
developed for computing persistent homology (see Section 2.1). Indeed, such an esti-
mate would be obtained via Proposition 2.34 and the stability of PH (Lemma 2.15)
through computing the VR-barcodes of a carefully chosen ε-net for X , for some
ε ą 0.

Filling radii & lifespans. The notion of lifespan of a homology class (Defini-
tion 2.19) is directly related to the filling radius as follows. Let X be a compact
subset of a Banach space Y. Let pbω, dωq be the homological birth and death times
of a degree-k homology class ω present at time s in the neighborhood filtration
N‚pX Ă Yq. Directly from the definition of the relative filling radius, we obtain

dω ´ s “ ρpω;NspX Ă Yq Ă Yq.

A bit more generally, if ωr P rHkpNrpX Ă Yqq is a predecessor of ω (that is, it is
mapped to ω by the map in homology induced by the inclusion), then

dω ´ r “ ρpωr;NrpX Ă Yq Ă Yq.

Letting r Ñ bω, we obtain a formula for the lifespan of ω in terms of the filling
radii of the predecessors of ω:

(‹)

dω ´ bω “ sup
bωărďs

ρpωr;NrpX Ă Yq Ă Yq

“ lim
rÑbω`0

ρpωr;NrpX Ă Yq Ă Yq.

Note that both sides of this formula depend on homology coefficients lying in
the same field, which can be arbitrary.

Remark 2.37. As clarified in Remark 2.20, this lifespan cannot be written in terms
of the filling radius of a homology class of N bω pX Ă Yq. We cannot expect (a
predecessor of) ω to be present in the homology of N bω pX Ă Yq, unless we work
with Čech homology, and redefine the filling radius correspondingly.

Formula (‹) was given for the neighborhood filtration. In view of the functo-
rial nerve theorem (Theorem 2.6, Corollary 2.7), the formula specializes to two
important cases:

‚ For any ω P SpeckpC‚pX Ă Yqq,

dω ´ bω “ lim
rÑbω`0

ρpωr;NrpX Ă Yq Ă Yq.

‚ For any ω P SpeckpV‚pX qq,

dω ´ bω “ 2 lim
rÑbω`0

ρ
`

ωr;NrpκpX q Ă L8
pX qq Ă L8

pX q
˘

.

Remark 2.38. For the particular case of VR-lifespans, i.e. when Y “ L8pX q,
it is important to understand the behavior or the filling radii ρpωr;NrpκpX q Ă

L8pX qq Ă L8pX qq. We make a comment that this cumbersome notation is a bit
redundant; it turns out that

ρ
`

ωr;NrpκpX q Ă L8
pX qq Ă L8

pX q
˘

“ ρ
`

ωr;NrpκpX q Ă L8
pX qq

˘

.
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This is not obvious by default, since the absolute filling radius in the right-hand
side should be computed in the space L8

`

NrpκpX q Ă L8pX qq
˘

. Nevertheless, this
equality holds true, as it is explained in Section 3.3 (see Lemma 3.15).

Auxiliary definitions. Before concluding the background section, we define two
versions of the radius of a set X , which will be used in the remainder of the paper.
In the first one, there is no reference to an ambient space, and the center is in the
set X . In the second one (circumradius), the radius of X is computed in an ambient
space, and the center may not be in X .

Definition 2.39 (Radius). Let pX ,dX q be a compact metric space.

(1) The radius of X is

radpX q :“ inf
x0PX

sup
xPX

dX px, x0q.

(2) Assume additionally that X is a compact subset of a Banach space
pY, } ¨ }q.13 The circumradius of X in Y is

radpX Ă Yq :“ inf
yPY

sup
xPX

}x ´ y}.

3. Bounding lifespans via widths

In this section, we recall and establish upper bounds for the filling radius which
can be used to estimate the lifespans in both Čech and Vietoris–Rips settings. The
basic idea behind many constructions is simple and can be illustrated as follows.
Let X be a subset of a Banach space Y, and let k ą � be positive integers. A
degree-k homology class of X can be “killed” by deforming X to an �-dimensional
complex inside Y (a “core”), and if every point moves by some controlled distance,
then we obtain an estimate for the filling radius of the degree-k homology.

3.1. Background on widths. Here we recall three classical approaches to mea-
suring approximate dimension. Informally, the k-width of a space X measures the
extent to which X fails to be k-dimensional.

The Urysohn width was historically the first one to be introduced. Definition 3.1
is equivalent to the one given by Urysohn around 1923 in the context of dimension
theory; it was posthumously published by Alexandrov [Ale26].

Definition 3.1 (Urysohn width). Let X be a compact metric space. For an integer
k ě 0, the Urysohn k-width of X is defined as

UWkpX q “ inf
f

sup
p

diampf´1
ppqq,

where f : X Ñ Δk is any continuous map to any finite k-dimensional simplicial
complex.

By definition, widths are monotone in the dimension parameter:

UW0pX q ě UW1pX q ě UW2pX q ě . . . ,

and UW0pX q :“ diampX q if X is connected. The n-width of an n-dimensional
manifold is zero, and all preceding k-widths are positive for 0 ď k ă n.

The crucial connection between the Urysohn width and the filling radius is due
to Gromov.

13So that dX px, x1q “ }x ´ y} for all x, x1 P X .
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Theorem 3.2 ([Gro83]). For any closed n-dimensional Riemannian manifold M,

ρpMq ď
1

2
UWn´1pMq.

The homology coefficients in the definition of ρpMq do not matter here; ev-
erywhere below we assume them to lie in an arbitrary field, which is fixed and
omitted from the notation. The importance of this result for bounding lifespans
becomes immediate once one notices that the proof of this inequality can be easily
generalized for any homological feature, and not just the fundamental class.

Theorem 3.3. For any compact metric space X , any integer k ě 1, and any

homology class ω P rHkpX q,

ρpω;X q ď
1

2
UWk´1pX q.

Proof sketch, following [Gro20]. Let f : X Ñ Δk´1 be a map for which δ “

supp diampf´1ppqq is just a tiny amount bigger than UWk´1pX q. Consider the

cylinder X ˆ r0, δ{2s and glue its end X ˆ tδ{2u to a copy of Δk´1 along the map f ;
that means, pinch every fiber of f inside X ˆ tδ{2u to a point. The resulting space
Cf can be endowed with a metric that restricts on X ˆ t0u to the original metric
of X , and makes the length of every interval txu ˆ r0, δ{2s equal to δ{2. Now, any
k-cycle S in X ˆt0u representing ω becomes null-homologous in Cf (informally, one
can just slide it towards the pinched end of the cylinder, where it degenerates to
a pk ´ 1q-dimensional set). Next, we embed Cf to L8pCf q in a distance-preserving
way, and post-compose it with the 1-Lipschitz restriction L8pCf q Ñ L8pX q, corre-
sponding to the inclusion X ˆ t0u Ă Cf . The pk`1q-chain that we built in Cf to fill
S pushes forward to L8pX q, and there it lies within distance δ{2 of the Kuratowski
image of X . �

It is natural to look for a relative version of Theorem 3.3. We provide such an
inequality below (Theorem 3.5), additionally replacing its right-hand side by the
quantity that is comparable to the Urysohn width but easier to compute; the cor-
responding metric invariant implicitly appeared in the work of Alexandrov [Ale33]
on dimension theory.

Definition 3.4 (Alexandrov width). Let X be a compact subset of a Banach space
pY, }¨}q. For an integer k ě 0, the Alexandrov k-width of X (relative toY) is defined
as

AWkpX Ă Yq :“ inf
f

sup
xPX

}x ´ fpxq},

where f : X Ñ Y is any continuous map whose image is a finite simplicial complex
of dimension at most k.

The Alexandrov width enjoys similar properties with the Urysohn width: it is
monotonically decreasing in k until it reaches zero when k becomes equal to the
dimension of X . If X is connected, AW0pX Ă Yq equals the circumradius of X in
Y, that is, AW0pX Ă Yq “ radpX Ă Yq (see Definition 2.39).

It is easy to see directly from the definitions that UWkpX q ď 2AWkpX Ă Yq.
Combining this with Theorem 3.3, we obtain the estimate ρpω;X q ď AWk´1pX Ă

Yq, which we will improve by replacing the absolute filling radius by the relative
one.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

8456 ALEXEY BALITSKIY, BARIS COSKUNUZER, AND FACUNDO MÉMOLI

Theorem 3.5. For any compact set X sitting in a Banach space Y, any integer
k ě 1, and any homology class ω P HkpX q,

ρpω;X Ă Yq ď AWk´1pX Ă Yq.

This is the relative counterpart of Theorem 3.3. It will follow from a stronger
estimate below (Theorem 3.10), but the intuition behind it is simple as described
at the preamble of this section: One can kill higher homology of X by deforming
it to a low-dimensional complex in Y, and if every point moves by some controlled
distance, then we obtain an estimate for the filling radius.

The virtues of Theorem 3.5 are twofold. First, the Alexandrov width seems to be
easier to estimate than the Urysohn width. Basically, the Urysohn width considers
all maps to a k-dimensional space, whereas the Alexandrov width only considers
a special class of those maps with the images lying in the same ambient space Y;
this is also the reason why UWkpX q ď 2AWkpX Ă Yq. Second, in Appendix A we
explain that AWkpX Ă Yq ď UWkpX q. Hence, together with Theorem 3.5, this
implies one can bound the relative filling radius with the Urysohn width (if X is
compact), too, and we do not lose much when substituting the widths, since

AWkpX Ă Yq ď UWkpX q ď 2AWkpX Ă Yq.

When Y is hyperconvex (for example, L8pX q), one can claim more (see Re-
mark A.2):

UWkpX q “ 2AWkpX Ă Yq.

While Urysohn’s and Alexandrov’s notions measure nonlinear width, a simpler
concept of linear width appeared in the work of Kolmogorov [Kol36] in the context
of approximation theory. It is commonly used in infinite-dimensional settings.

Definition 3.6 (Kolmogorov width). Let X be a compact subset of a Banach space
Y. For an integer k ě 0, the Kolmogorov k-width of X (relative to Y) is defined as

KWkpX Ă Yq :“ inftr | X Ă NrpP Ă Yq for some affine k-plane P Ă Yu.

Again, these quantities monotonically decrease in k. It is immediate from def-
initions that AWkpX Ă Yq ď KWkpX Ă Yq. From Theorem 3.5 it follows then
the relative filling radius of degree-k homology can be bounded as ρp¨;X Ă Yq ď

KWk´1pX Ă Yq. The following finer estimate is another corollary of Theorem 3.10.

Theorem 3.7. Let X be a compact subset of a Banach space Y. Then for any

homology class ω P rHkpX q, k ě 0,

ρpω;X Ă Yq ď KWkpX Ă Yq.

Remark 3.8 (Filling radius and k-widths). We give a toy example to illustrate the
relation between the k-width and filling radius.

Form ď N , consider the pm´1q-dimensional ellipsoid E Ă RN (with the extrinsic
metric) given by

E :“

#

x P RN

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“1

x2
i

a2i
“ 1, and xj “ 0 for j ą m

+

,

where a1 ą a2 ą ¨ ¨ ¨ ą am ą 0. The widths can be roughly estimated as UWkpEq „

AWkpE Ă RN q „ ak`1 for 0 ď k ă m. On the other hand, the relative filling radius
of E in RN equals the length of the shortest axis: ρprEs; E Ă RN q “ am. Here,
the dimensions m,N and the sequence taiu are arbitrary. Theorem 3.5 tells us



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

GEOMETRIC BOUNDS FOR PERSISTENCE 8457

that ρprEs; E Ă RN q ď AWm´2pE Ă RN q, but we see that the discrepancy between
ρprEs; E Ă RN q “ am and AWm´2pE Ă RN q „ am´1 can be arbitrarily large.
In other words, the Alexandrov (and Urysohn) width can highly overestimate the
filling radius. However, the estimate of Theorem 3.7 in this example is sharp:
ρprEs; E Ă RN q “ KWm´1pE Ă RN q “ am.

For more information on widths, we refer the reader to Balitskiy [Bal21].

3.2. Bounds for Čech lifespans via treewidth. Recall (from formula (‹) in
Section 2.3) that SpeckpC‚pX Ă Yqq-lifespans can be written in terms of relative
filling radii as follows:

dω ´ bω “ lim
rÑbω`0

ρpωr;NrpX Ă Yq Ă Yq,

where ωr maps to ω by the homology map induced by the inclusion (see Section 2.3).
To estimate lifespans, we need upper bounds for filling radii, such as in Theorem 3.5
and Theorem 3.7. Both estimates can be simultaneously strengthened using the
following new width invariant. Recall that throughout the paper, we use homology
with coefficients in a fixed field, which is omitted from the notation.

Definition 3.9 (Treewidth). Let X be a compact subset of a Banach space pY, }¨}q.
For an integer k ě 0, let us define the kth treewidth of X as

TWkpX Ă Yq :“ inf
f

sup
xPX

}x ´ fpxq},

where f : X Ñ Y is any continuous map whose image fpX q is a finite simplicial
complex of dimension at most k with trivial kth reduced homology.

The treewidth satisfies evident properties:

radpX Ă Yq “ TW0pX Ă Yq ě TW1pX Ă Yq ě TW2pX Ă Yq ě . . . .

An equivalent definition of the kth treewidth (perhaps, better motivating our choice
of the word treewidth) is obtained if one only considers maps f such that the
image fpX q is a subcomplex of a finite k-dimensional contractible complex inside Y.

Indeed, to any k-complex with trivial rHkp¨q one can glue several cells of dimension
ď k to kill all its homology in lower degrees as well as its fundamental group. In the
opposite direction, any subset of a k-dimensional contractible complex has trivial
rHkp¨q.

The motivation behind the definition of treewidth is to give a common gener-
alization of Theorem 3.5 and Theorem 3.7. Both follow from the following re-
sult combined with the evident bounds TWkpX Ă Yq ď AWk´1pX Ă Yq and
TWkpX Ă Yq ď KWkpX Ă Yq.

Theorem 3.10. For any compact set X sitting in a Banach space Y, any integer

k ě 0, and any homology class ω P rHkpX q,

ρpω;X Ă Yq ď TWkpX Ă Yq.

Proof. Fix any number δ ą TWkpX Ă Yq, and pick a witness map f : X Ñ Y,

whose image fpX q “ T has dimension at most k and trivial rHkpT q, such that
}x ´ fpxq} ď δ for all x P X . Pick a cycle S Ă X representing ω and continuously
deform it via the linear homotopy h : S ˆ r0, 1s Ñ Y given by

hpx, tq “ p1 ´ tqx ` tfpxq.
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Figure 1. A shape with small 1-treewidth but considerable
Alexandrov 0-width and Kolmogorov 1-width

Every point x P S moves by distance at most δ, so the continuous deformation
always stays in NδpS Ă Yq. At time t “ 1, the deformed cycle hpS, 1q lies in T
and bounds a pk ` 1q chain within hpS, 1q, because T is of dimension k with trivial
rHkpT q. Therefore, S is null-homologous in NδpS Ă Yq (basically, S bounds the
pk ` 1q-dimensional trace of the homotopy h). �

A simple example in which Theorem 3.10 gives a stronger bound than Theo-
rem 3.5 and Theorem 3.7 is depicted in Figure 1; the fundamental class of this cir-
cle has a small filling radius, which can be efficiently estimated by the 1-treewidth
(approximating the shape by a tree, red in the figure), while approximations by
straight lines or points give significantly worse bounds.

We proceed with a strengthening applicable to noncompact sets of the form
NrpX Ă Yq. Notice that the width in the right-hand side of the following estimate
is computed on a compact set, since in Banach spaces the closure of the convex hull
of a compact set is compact; see e.g. Lax [Lax02, Section 13, Exercise 9].

Theorem 3.11. For any compact set X sitting in a Banach space Y, any integer

k ě 0, any positive number r, and any homology class ω P rHkpNrpX Ă Yqq,

ρpω;NrpX Ă Yq Ă Yq ď TWkpN rpX Ă convpX qq Ă Yq.

Proof. Let our homology class ω P rHkpNrpX Ă Yqq be represented by a singular
cycle S0 supported in NrpX Ă Yq. Since S0 is a compact subset of Y, it can be
covered by finitely many open balls Brpxq, x P X 1 Ă X , |X 1| ă 8 (recall that Brpxq

denotes the open ball of radius r centered at x). Consider the union U “
Ť

xPX 1
Brpxq

and choose any partition of unity subordinate to the cover of U by Brpxq, x P X 1.
This partition of unity gives rise to a map from U to the nerve L of that cover. By
the nerve theorem, this map φ : U Ñ L is a homotopy equivalence, with an evident
homotopy inverse ψ : L Ñ U , which sends every vertex of L to the center of the
corresponding ball in the cover U “

Ť

xPX 1
Brpxq, and extends affinely on the rest of

L. Therefore, ω|U “ ψ˚ ˝φ˚pω|U q P rHkpUq, and the class ω can be represented by a
cycle S supported in ψpLq Ă convpX q. A similar argument shows that if S bounds
in NRpX Ă Yq, for some R ą r, then the filling chain can also be taken with the
support in convpX q. Therefore,

ρpω;NrpX Ă Yq Ă Yq ď ρpω;NrpX Ă convpX qq Ă Yq.
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Now we are in position to apply Theorem 3.10 to the compact set N rpX Ă

convpX qq:

ρpω;NrpX Ă convpX qq Ă Yq “ ρpω;N rpX Ă convpX qq Ă Yq

ď TWkpN rpX Ă convpX qq Ă Yq.

�

Corollary 3.12 (Čech lifespans via treewidth). Let X be compact subset of a
Banach space Y and let ω P SpeckpC‚pX Ă Yqq, k ě 0. Then,

dω ´ bω ď TWkpN bω pX Ă convpX qq Ă Yq.

In particular,

dω ´ bω ď TWkpconvpX q Ă Yq.

Remark 3.13. Recall the monotonicity of the treewidth: TWkp¨q ď TW0p¨q “

radp¨q. Therefore, as a trivial consequence of Corollary 3.12, we can upper-bound
lifespans in all dimensions by TW0pconvpX q Ă Yq “ radpX Ă Yq.

Proof of Corollary 3.12. We use the aforementioned formula

dω ´ bω “ lim
rÑbω`0

ρpωr;NrpX Ă Yq Ă Yq,

and bound each filling radius by the treewidth of NrpX Ă Yq:

ρpωr;NrpX Ă Yq Ă Yq ď TWkpN rpX Ă convpX qq Ă Yq.

To conclude, we need a continuity property:

lim
rÑbω`0

TWkpN rpX Ă convpX qq Ă Yq “ TWkpN bω pX Ă convpX qq Ă Yq.

Its proof is explained in the appendix; see Lemma A.3. �

Combining this with the trivial inequality TWkp¨q ď AWk´1p¨q, we obtain the
following bound.

Corollary 3.14 (Čech lifespans via Alexandrov width). Let X be compact subset
of a Banach space Y and let ω P SpeckpC‚pX Ă Yqq, k ě 1. Then,

dω ´ bω ď AWk´1pN bω pX Ă convpX qq Ă Yq.

In particular,

dω ´ bω ď AWk´1pconvpX q Ă Yq.

We would like to point out that while k-widths are effective for bounding lifespans
of homology classes of degree ą k, they do not say much about the lifespans of
homology classes in lower degrees. In Figure 2, we give a simple 2-dimensional

example S. Here, AW1pS Ă R3q is small, and hence, the homology class in rH2pSq

has short lifespans by Corollary 3.14. However, one can easily see that homology

classes α P rH1pSq can still have very large lifespans. One can generalize this example
to any dimension and codimension. In Section 5 we take a different perspective,
and give global bounds for lifespans and death times in all degrees simultaneously.
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α

S

Figure 2. For the surface S, while AW1pS Ă R3q is small, the

lifespan of red curve α P rH1pSq is large

3.3. Bounds for Vietoris–Rips lifespans via Urysohn width. Recall the re-
lationship between SpeckpV‚pX qq-lifespans and filling radii implied by formula (‹)
of Section 2.3:

dω ´ bω “ 2 lim
rÑbω`0

ρ
`

ωr;NrpκpX q Ă L8
pX qq Ă L8

pX q
˘

,

where ωr maps to ω by the homology level map induced by the inclusion, and
κ : X Ñ L8pX q is the Kuratowski embedding. Recall also (Remark 2.38) that the
right-hand side can be rewritten a bit shorter:

ρ
`

ωr;NrpκpX q Ă L8
pX qq Ă L8

pX q
˘

“ ρ
`

ωr;NrpκpX q Ă L8
pX qq

˘

.

This follows from Lemma 3.15.

Lemma 3.15. Let Z be a subset of L8pX q containing the Kuratowski image κpX q.

Then, for any homology class ω P rHkpZq, the following is true:

ρpω;Z Ă L8
pX qq “ ρpω;Zq.

Proof. The inequality “ě” follows from the universal property of the absolute filling
radius (see the comment after Definition 2.33). To show the inequality “ď”, we first
recall that

ρpω;Zq “ ρpκ1
˚pωq;κ1

pZq Ă L8
pZqq,

where κ1 : Z Ñ L8pZq is the Kuratowski map. Second, we make use of the
injectivity (Definition 2.26) of L8pX q in the following way. The inclusion Z Ă

L8pX q, via the Kuratowski identification Z „
Ñ κ1pZq, gives rise to a distance

preserving (hence, 1-Lipschitz) map κ1pZq Ñ L8pX q. This map can be extended
to a 1-Lipschitz map p : L8pZq Ñ L8pX q, by invoking the injectivity of L8pX q.
This map pushes forward the cycle κ1

˚pωq to ω. Moreover, it pushes forward any
chain filling κ1

˚pωq inside Nrpκ1pZqq Ă L8pZq, to a chain filling ω inside NrpZ Ă

L8pX qq. �
To estimate VR-lifespans, we need to know how to upper-bound quantities

like ρ
`

¨;NrpκpX q Ă L8pX qq
˘

, for which Theorem 3.3 is not applicable: the set
NrpκpX q Ă L8pX qq is not compact (even after taking the closure). One way to
deal with noncompactness is to intersect NrpκpX q Ă L8pX qq with the closure of
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the convex hull of X , like we did in Theorem 3.11. That theorem, together with the
inequality TWkp¨q ď AWk´1p¨q, will give us a bound on ρ

`

¨;NrpκpX q Ă L8pX qq
˘

in terms of the Alexandrov width of N r

`

κpX q Ă convpκpX qq
˘

. It turns out the
latter can be interpreted in terms of the Urysohn width.

Remark 3.16 (L8-interpretation of Urysohn width). In the inequality ρpω;X q ď
1
2 UWk´1pX q, the left-hand side is defined via the Kuratowski embedding in L8pX q,
and it is instructive to interpret the right-hand side as well, in a way compati-
ble with the picture of κpX q sitting in L8pX q. This interpretation goes back to
Tikhomirov [Tik76]. Some references in English are [Gro83, Appendix 1, Proposi-
tion (D)] by Gromov and [Bal21, Theorem 2.1.9 and Definition 2.3.1] by Balitskiy.
Here we provide a short summary. The width UWk´1pX q can be equivalently
defined as the infimal number δ ą 0 such that there is map f : X Ñ L8pX q

whose image is at most pk ´ 1q-dimensional complex in L8pX q, and such that
}κpxq ´ fpxq}8 ď δ{2 for all x P X . In a nutshell, Theorem 3.3 says that one can
try killing higher homology of X by deforming κpX q to a low-dimensional complex
inside L8pX q, and if every point moves by some controlled distance, then we get
an estimate for the filling radius. This interpretation can be shortly reformulated
as follows:

UWk´1pX q “ 2AWk´1pκpX q Ă L8
pX qq.

Given that interpretation, the following estimate is immediate:

ρ
`

ω;NrpκpX q Ă L8
pX qq

˘

ď
1

2
UWk´1

`

N rpκpX q Ă convpκpX qqq
˘

.

We will go further and give an even better estimate for estimate ρ
`

¨;NrpκpX q Ă

L8pX qq
˘

by replacing the convex hull with the tight span (Definition 2.28). The
following result subsumes Theorem 3.3 when r “ 0. The specific realization of
EpX q in L8pX q that was described in Section 2.2 has an isometric copy of X
inside, and the corresponding embedding of X in L8pX q agrees with the Kuratowski
embedding.

To simplify notation a bit, in the rest of this section, we omit κ and simply write
X Ă EpX q Ă L8pX q. Notice that the set N rpX Ă EpX qq is compact, as a closed
subset of the compact metric space EpX q.

Theorem 3.17. For any compact metric space X , any integer k ě 1, any positive
number r, and any homology class ω P HkpNrpX Ă L8pX qqq,

ρ
`

ω;NrpX Ă L8
pX qq

˘

ď
1

2
UWk´1

`

N rpX Ă EpX qq
˘

.

Proof. We have a chain of distance-preserving embeddings X Ă EpX q Ă L8pX q as
well as X Ă NrpX Ă EpX qq Ă NrpX Ă L8pX qq. All distances below are measured
using the L8-norm. We need to bound ρ

`

ω;NrpX Ă L8pX qq Ă L8pX q
˘

.
Recall the following property of the tight span (Remark 2.30): there exists a

1-Lipschitz retraction π : L8pX q Ñ EpX q. Our first observation is that π maps
NrpX Ă L8pX qq to NrpX Ă EpX qq. Indeed, take any point y P NrpX Ă L8pX qq.
Since }y ´ x} ă r for some x P X , and π is 1-Lipschitz retraction, it follows that
}πpyq ´ x} “ }πpyq ´ πpxq} ď }y ´ x} ă r. Therefore, π

`

NrpX Ă L8pX qq
˘

“

NrpX Ă EpX qq. Denote the reverse inclusion

ι : NrpX Ă EpX qq ↪Ñ NrpX Ă L8
pX qq.
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Since both y and πpyq lie in the open radius r ball centered at x, the whole straight
line segment between them lies in that ball and in NrpX Ă L8pX qq. Therefore, a
cycle representing ω can be continuously deformed to a cycle representing ι˚ ˝π˚pωq

by letting each y in the support of ω slide along the straight line segment towards
πpyq. This homotopy takes place entirely in NrpX Ă L8pX qq, and therefore, ω “

ι˚ ˝ π˚pωq.
It should be obvious now that

ρ
`

ω;NrpX Ă L8
pX qq Ă L8

pX q
˘

ď ρ
`

π˚pωq;NrpX Ă EpX qq Ă L8
pX q

˘

.

Indeed, any cycle S representing π˚pωq P rHk

`

NrpX Ă EpX qq
˘

lies entirely in
NrpX Ă L8pX qq and there represents the homology class ι˚ ˝ π˚pωq “ ω P

rHk

`

NrpX Ă L8pX qq
˘

. If S bounds in the neighborhood of NrpX Ă EpX qq of
certain radius, then it bounds even in a smaller neighborhood of NrpX Ă L8pX qq.

Using the observation at the beginning of this subsection, we deduce that

ρ
`

π˚pωq;NrpX Ă EpX qq Ă L8
pX q

˘

“ ρ
`

π˚pωq;NrpX Ă EpX qq
˘

.

The next step follows trivially from the definition of the filling radius:

ρ
`

π˚pωq;NrpX Ă EpX qq
˘

“ ρ
`

π˚pωq;N rpX Ă EpX qq
˘

.

The final step is to apply Theorem 3.3 to the compact set N rpX Ă EpX qq, to
conclude that

ρ
`

π˚pωq;N rpX Ă EpX qq
˘

ď
1

2
UWk´1

`

N rpX Ă EpX qq
˘

.

Assembling all these inequalities together, we obtain the result. �

Corollary 3.18 (VR lifespans via Urysohn width). Let X be a compact metric
space, and let ω P SpeckpV‚pX qq, k ě 1. Then,

dω ´ bω ď UWk´1

`

N bω pX Ă EpX qq
˘

.

In particular,

dω ´ bω ď UWk´1pEpX qq.

Remark 3.19. It follows that lifespans in dimensions 1 and higher can be upper-
bounded by UW0pEpX qq “ diampX q. It is easy to see that lifespans in dimension
0 are also bounded above by diampX q.

Proof of Corollary 3.18. Recall that

dω ´ bω “ 2 lim
rÑbω`0

ρ
`

ωr;NrpX Ă L8
pX qq Ă L8

pX q
˘

,

where ωr maps to ω by the homology map induced by the inclusion. Upper-bounds
for these filling radii are given by Theorem 3.17. To conclude, it remains to use the
continuity property of the Urysohn width [Bal21, Theorem 2.4.1]:

lim
rÑbω`0

UWk´1

`

N rpX Ă EpX qq
˘

“ UWk´1

`

N bω pX Ă EpX qq
˘

.

�
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3.4. Robust bounds for Čech lifespans via treewidth. The estimates pro-
vided in the preceding sections have a drawback: there is no a priori method to
directly relate the width of X Ă Y to the width of its r-neighborhood NrpX Ă Yq.
This poses a challenge, as the bounds in Corollaries 3.12, 3.14, and 3.18 rely on the
width of a specific neighborhood of X . However, by further refining the class of po-
tential “cores”, we can ensure the derivation of more effective bounds. For example,
this is possible if the core is an affine k-dimensional subspace (see Section 3.5).

Here, we introduce a modified version of treewidth that enables bounding lifes-
pans directly in terms of X itself, rather than its neighborhood. To this end, we
introduce an auxiliary definition to help constrain the geometric complexity of po-
tential “cores”.

Definition 3.20. Let pY, } ¨ }q be a Banach space, and let T Ă Y be a simplicial
complex. Suppose there is a retraction map f : Y Ñ T . We say that f is C-robust
if for any finite set X Ă Y, and any x P convpX q,

}fpxq ´ x} ď max
x1PX

}fpx1
q ´ x1

} ` C ¨ radpX Ă Yq.

Remark 3.21. Recall that, given T Ă Y, a retraction f : Y Ñ T is a continuous
map fixing every point of T . Since Y is contractible, the existence of a retraction
implies that T is contractible.

Examples.

(1) If T is a closed affine subspace of Y, and f is any linear projection on T ,
then f is 0-robust.

(2) If T is nonempty closed convex subset of Y, and f is a continuous nearest-
point projection (metric projection) on T , then f is 0-robust.14

(3) If the assignment x ÞÑ }fpxq ´ x} is C-Lipschitz, then f is C-robust.
(4) If Y “ R2 is the Euclidean plane, and T is the union of m ě 3 equian-

gular rays (or intervals) with a common endpoint, then there is a natural
retraction to T which is 1

tanpπ{mq
-robust.

Definition 3.22 (Robust treewidth). Let X be a subset of a Banach space pY, }¨}q.
For an integer k ě 0, and a real number C ě 0, we say that the C-robust k-
dimensional treewidth of X is at most δ, if there is a C-robust retraction f : Y Ñ T
to a finite simplicial complex T Ă Y of dimension at most k, displacing every point
of X by distance at most δ:

}fpxq ´ x} ď δ @x P X .

The infimum of the numbers δ satisfying this condition will be denoted by
TWC

k pX Ă Yq.

It is immediate from the definition that TWC1

k pX Ă Yq ě TWC2

k pX Ă Yq for

any C1 ď C2, and that TWC
k pX Ă Yq ě TWkpX Ă Yq for any C.

Theorem 3.23. For any compact set X sitting in a Banach space Y, any integer

k ě 0, any real numbers C ě 0 and r ą 0, and any homology class ω P rHkpNrpX Ă

Yqq,

ρpω;NrpX Ă Yq Ă Yq ď TWC
k pX Ă Yq ` Cr.

14It is known that a nearest-point projection exists, if Y is reflexive, but it does not have to
be continuous in general; see for example the discussion after [Meg12, Corollary 5.1.19].
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Proof. Suppose we are given a C-robust retraction f : Y Ñ T to a k-dimensional
simplicial complex T Ă Y, such that }x ´ fpxq} ď δ for all x P X .

Let our homology class ω P rHkpNrpX Ă Yqq be represented by a singular cycle
S0 supported in NrpX Ă Yq. Since S0 is compact as a subset ofY, it can be covered
by finitely many open balls Brpxq, x P X 1 Ă X , |X 1| ă 8 (here Brpxq denotes the
open ball of radius r centered at x). Consider the union U “

Ť

xPX 1
Brpxq and choose

any partition of unity subordinate to the cover of U by Brpxq, x P X 1. This partition
of unity induces a map from U to the nerve L of that cover. By the nerve theorem
this map φ : U Ñ L is a homotopy equivalence, with an evident homotopy inverse
ψ : L Ñ U , which sends every vertex of L to the center of the corresponding ball
in the cover U “

Ť

xPX 1
Brpxq, and extends affinely on the rest of L. Therefore,

ω|U “ ψ˚ ˝ φ˚pω|U q P rHkpUq, and the class ω can be represented by a cycle S
supported in ψpLq; in other words, S is obtained by gluing flat k-simplices with
vertices in X , and with the circumradius of each simplex at most r.

Now we continuously deform S using the linear homotopy h : S ˆ r0, 1s Ñ Y
given by

hpx, tq “ p1 ´ tqx ` tfpxq.

By the robustness property of f , every point x P S is moved by a distance at most
δ ` Cr, so the continuous deformation always stays in Nδ`CrpS Ă Yq. At time
t “ 1, the deformed cycle hpS, 1q lies in T and bounds a pk`1q chain within hpS, 1q,

because T is of dimension k with trivial rHkpT q. Therefore, S is nullhomologous in
Nδ`CrpS Ă Yq (basically, S bounds the pk ` 1q-dimensional trace of the homotopy
h). �

Corollary 3.24 (Čech lifespans via treewidth). Let X be compact subset in a
Banach space Y and let ω P SpeckpC‚pX Ă Yqq, with birth time bω ě 1. Then,

dω
bω

ď C ` 1 ` TWC
k pX Ă Yq.

Proof. We again employ formula (‹), now bounding filling radii by Theorem 3.23:

dω ´ bω “ lim
rÑbω`0

ρpωr;NrpX Ă Yq Ă Yq

ď lim
rÑbω`0

TWC
k pX Ă Yq ` Cr

“ TWC
k pX Ă Yq ` Cbω.

For bω ě 1, if we divide the entire inequality by bω, we obtain the result. �

Remark 3.25 (Comments about Corollary 3.24). We make the following remarks.

‚ Notice that on the right-hand side, there is no reference to the birth time bω.
Therefore, C-robust treewidth yields strong control on late-born homology
classes (i.e. those satisfying bω ě 1).

‚ If the assumption bω ě 1 is changed to bω ě
1
α for some α ą 0 then the

conclusion becomes dω

bω
ď 1 ` C ` αTWC

k pX Ă Yq.
‚ The corollary implies a robust estimate on the multiplicative persistence of
intervals in the persistence barcode of the Čech filtration C‚pX Ă Yq. See
Bobrowski, Kahle and Skraba [BKS17] and Adams and Coskunuzer [AC22]
for studies of multiplicative persistence.
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‚ Additionally, the proof above gives the following estimates for pbω, dωq:

– If bω “ 0, then dω ď TWC
k pX Ă Yq.

– If bω ě TWC
k pX Ă Yq, then

dω
bω

ď C ` 2.

3.5. Robust bounds for Čech lifespans via Kolmogorov width and PCA8.
For a given finite set X in RN , standard Principal Component Analysis or PCA
(see [Has09, §14.5]) approximates X by affine k-dimensional subspaces through
minimizing over all such subspaces P the sum of squared distances of points in X
to P. The infimum obtained through this procedure is called the pk`1qth-variance
of X .

Since its introduction by Pearson in 1901 [Pea01], PCA has become one of the
most widely used data analysis techniques, owing to its interpretability and the
availability of highly efficient computational algorithms. In this work, we investigate
a specific �8-variant of classical PCA, designed for compact subsets of Banach
spaces, and examine its connections to persistent homology by analyzing how it
constrains the lifespans of homology classes.

Definition 3.26 (PCA8). Let X be a compact subset in a Banach space pY, } ¨ }q.
For 0 ď k ă dimpYq, let Ak be the space of affine k-dimensional subspaces in Y.
Then, we define the pk ` 1qth �8-variance of X as

νk`1pX Ă Yq :“ inf
PPAk

sup
xPX

dYpx,Pq,

where dYpx,Pq is the distance from x to the k-subspace P, i.e., dYpx,Pq :“
infpPP }x ´ p}.

Remark 3.27. The term �8-variance is just a different name for Kolmogorov widths
(cf. Definition 3.6):

νk`1pX Ă Yq “ KWkpX Ă Yq.

Theorem 3.28. Let X be a subset of a Banach space Y. Then, for any r ą 0 and

any homology class ω P rHkpNrpX Ă Yqq, k ě 0,

ρpω;NrpX Ă Yq Ă Yq ď νk`1pX Ă Yq “ KWkpX Ă Yq.

Proof. Apply Theorem 3.23 with T being a k-dimensional affine subspace, and f
being a 0-robust nearest-point projection. �

Čech Lifespans of homology classes in degree ě k cannot exceed the pk ` 1qth

variance, νk`1pX q.

Corollary 3.29 (Čech lifespans via �8-variance). Let X be a compact subset of a
Banach space Y and let ω P SpeckpC‚pX Ă Yqq, k ě 0. Then,

dω ´ bω ď νk`1pX Ă Yq “ KWkpX Ă Yq.

Proof. Combine formula (‹) with Theorem 3.28. �
Remark 3.30. Notice that Corollary 3.29 gives strong estimates for point clouds in
RN . For example, if the variance νk0`1pX q is small, then, in applications where
only long-lived homological features are relevant, the corollary implies that one can
ignore homology classes in SpeckpC‚pX Ă Yqq for k ě k0. We should note that, by
its very definition, PCA8 is more sensitive than the original PCA against outliers.
We discuss this difference and pose a statistical question about the relationship
between the original PCA and persistent homology in Section 6.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

8466 ALEXEY BALITSKIY, BARIS COSKUNUZER, AND FACUNDO MÉMOLI

Remark 3.31. Notice that all lifespan bounds in Corollaries 3.12, 3.14, 3.18, 3.24,
and 3.29 are stated in terms of homological lifespans (dω ´bω). Remark 2.23 implies
that all these bounds therefore apply to the length of every interval in either PDkpX q

or }PDkpX Ă Yq.

4. Bounding lifespans by spread

This section is concerned with global upper bounds for Čech lifespans of ho-
mology classes in arbitrary degrees dimension. In terms of the conceptual descrip-
tion laid out on page 8441, to formulate these results we will choose cores to be
übercontractible spaces, as defined below.

Our results in this section are somewhat analogous to the following result con-
cerning VR lifespans.

Theorem 4.1 (VR-lifespans via spread; [LMO24, Proposition 9.19 and Remark
9.18]). Let X be a compact metric space and let ω P SpeckpV‚pX qq. Then dω ´bω ď

spreadpX q.

Here Katz’s notion of spread is used [Kat83]; see also [Wil92, Definition 4]. By
definition, spreadpX q is the infimum of the real numbers δ ě 0 for which there is a
finite subset A “ ta1, . . . , amu Ă X with diampAq ď δ and dX

H pX , Aq ď δ.
In the rest of this section, we work in a Banach space Y and, for each compact

set X Ă Y, we consider a certain variant of the notion spread for which we prove
an analogue of Theorem 4.1.

Definition 4.2 (Übercontractibility). A set T , sitting in a Banach space Y, will
be said to be δ-übercontractible if its neighborhood NrpT Ă Yq is contractible for
every r ě δ.

Remark 4.3 (Acyclicity). For our purposes a slightly weaker condition would suffice:
all neighborhoods NrpT Ă Yq, r ě δ, are acyclic (have trivial homology groups)
rather than contractible (have trivial homotopy groups). The acyclicity condition is
equivalent to having almost trivial Čech persistence diagram (trivial beyond death
time δ), and is implied by übercontractibility as defined above.

Definition 4.4 (Überspread). For a compact subset X of a Banach space Y, we
define its überspread as

ü-spreadpX ĂYq :“ inf

#

δ ě 0

ˇ

ˇ

ˇ

ˇ

ˇ

DT ĂY a δ-übercontractible simplicial complex
such that dY

H pX , T qďδ

+

.

Note that for any point p P Y the singleton set tpu is δ-übercontractible for all
δ ě 0. In particular, this implies that

ü-spreadpX Ă Yq ď radpX Ă Yq.

For additional constructive examples of übercontractible sets, we refer the reader
to Appendix B, where we show that the cut-locus of a convex set is typically 0-
übercontractible.

Theorem 4.5 (Čech lifespans via überspread). Let X be a compact subset of a
Banach space Y. Let ω P SpeckpC‚pX Ă Yqq for any k ě 0. Then,

dω ´ bω ď 2 ü-spreadpX Ă Yq.
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Figure 3. The bound d ´ b ď 2 ü in Theorem 4.5 is sharp; here
Y “ R2 and ü “ ü-spreadpX Ă R2q

Proof. Via the functorial nerve theorem (Theorem 2.6), we will argue at the level
of neighborhood filtrations, as opposed to simplicial filtrations. Let T be a δ-
übercontractible simplicial complex in Y which is Hausdorff distance at most δ
away from X , where δ is just a tiny bit greater than ü-spreadpX Ă Yq. Then, for
all r ą 0 we have

NrpX Ă Yq Nr`2δpX Ă Yq

Nr`δpT Ă Yq

pr

ir,r`2δ

qr`δ

where ir,r`2δ, pr, and qr`δ are the obvious inclusion maps. Applying the homology
functor to the above diagram gives, for all r ą 0, that

rHkpir,r`2δq “ rHkpprq ˝ rHkpqr`δq “ 0

since Nr`δpT Ă Yq is contractible. Then this means that dω ´ bω ď 2δ. The proof
follows. �

Remark 4.6 (Katz spread vs. ü-spread). Let us compare Theorem 4.5 with [LMO24,
Proposition 9.19]. Suppose we are given a compact metric space X and a finite
subset A “ ta1, . . . , amu Ă X with diampAq ď δ and dX

H pX , Aq ď δ. In other
words, the Katz spread of X does not exceed δ:

spreadpX q ď δ.

Embed X in L8pX q via the Kuratowski map κ, and note that the set κpAq Ă L8pX q

is δ{2-übercontractible. Hence, we can apply Theorem 4.5 and conclude that Čech
lifespans of κpX q Ă L8pX q do not exceed 2δ. Therefore, VR lifespans of X do not
exceed 4δ. This is weaker than the conclusion of [LMO24, Proposition 9.19], which
tells us that in this situation VR lifespans of X do not exceed spreadpX q ď δ.

In general, the estimate in Theorem 4.5 cannot be improved (see Figure 3). How-
ever, the factor of 2 in that estimate can sometimes be removed if the comparison
set T (i.e. the “core”) admits a 1-Lipschitz nearest-point projection from Y.
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Theorem 4.7. Let X be a compact subset of a Banach space Y. Assume that
convpX q admits a 1-Lipschitz nearest-point projection to a closed convex set T Ă

Y.15 Then any ω P SpeckpC‚pX Ă Yqq, k ě 0, has lifespan at most dY
H pX , T q.

Remark 4.8. Theorem 4.7 cannot be derived from the stability results in Lemma 2.15
and Lemma 2.16, as those results apply exclusively to homology classes associated

with points in the persistence diagram }PDkpX Ă Yq. In contrast, Theorem 4.7
applies to all elements of SpeckpC‚pX Ă Yqq, which, as expressed by Remark 2.21
and Proposition 2.22, generally includes strictly more homology classes than those

represented by points in the persistence diagram }PDkpX Ă Yq. Nevertheless, the
proof of Theorem 4.7 shares ideas with (certain simplicial-level) proofs of the sta-
bility results.

Proof of Theorem 4.7. Let δ “ dY
H pX , T q. By assumption, there exists a 1-Lipschitz

nearest-point projection π : convpX q Ñ T ; there is also a (possibly discontinuous)
map j : T Ñ X such that

}x ´ πpxq} ď δ and }a ´ jpaq} ď δ @x P X and a P T .

It is easy to see that π and j induce, for each ε ą 0, simplicial maps

πε : CεpX Ă Yq Ñ CεpT Ă Yq and jε : CεpT Ă Yq Ñ Cε`δpX Ă Yq.

To see this in the case of π we proceed as follows. Let σ “ tx0, . . . , xnu P CεpX Ă Yq.
Let yσ P convpX q satisfy }xi ´ yσ} ď ε for all i. Then, since π : convpX q Ñ T is
1-Lipschitz, we have

}πpxiq ´ πpyσq} ď }xi ´ yσ} ď ε

for all i. Hence, πεpσq P CεpT Ă Yq.
In the case of j, let σ “ tx0, . . . , xnu P CεpT Ă Yq. Let yσ P Y satisfy }xi´yσ} ď

ε for all i. Then,

}jpxiq ´ yσ} ď }jpxiq ´ xi} ` }xi ´ yσ} ď δ ` ε

for all i. Hence, jεpσq P Cε`δpX Ă Yq.
We then have the following (not-necessarily commutative) diagram:

CεpX Ă Yq Cε`δpX Ă Yq

CεpT Ă Yq

πε

iε,ε`δ

jε

where iε,ε`δ is the obvious inclusion map.

Claim. For each ε ą 0 the maps jε ˝ πε and iε,ε`δ are contiguous.

To see the claim, let σ “ tx0, . . . , xnu be any simplex in CεpX Ă Yq. We will
prove that τ :“ σ Y j ˝ πpσq is a simplex in Cε`δpX Ă Yq. This requires us to find
a point yτ P Y such that }v ´ yτ } ď ε ` δ for all v P τ .

Let yσ P Rd be such that }xi ´ yσ} ď ε for all i. Notice that then we can write

τ “ tx0, . . . , xnu Y tj ˝ πpx0q, . . . , j ˝ πpxnqu.

Then, we let yτ :“ πpyσq and calculate

max
vPτ

}v ´ yτ } “ max
´

max
i

}xi ´ πpyσq},max
i

}j ˝ πpxiq ´ πpyσq}

¯

.

15For example, this is true whenever Y is Euclidean.
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For the first argument of the maximum above,

}xi ´ πpyσq} ď }xi ´ πpxiq} ` }πpxiq ´ πpyσq}

ď }xi ´ πpxiq} ` }xi ´ yσ}

ď δ ` ε.

For the second argument,

}j ˝ πpxiq ´ πpyσq} ď }j ˝ πpxiq ´ πpxiq} ` }πpxiq ´ πpyσq}

ď }j ˝ πpxiq ´ πpxiq} ` }xi ´ xσ}

ď δ ` ε,

which establishes the claim.

Now, going back to the proof of the theorem: apply the homology functor rHk to
the diagram above and obtain the following commutative diagram:

rHkpCεpX Ă Yqq rHkpCε`δpX Ă Yqq

rHkpCεpT Ă Yqq

rHkpπεq

rHkpiε,ε`δq

rHkpjεq

Now, rHkpCεpT Ă Yqq “ 0 since T is convex. Then,

rHkpiε,ε`δq “ rHkpjεq ˝ rHkpπεq “ 0,

which completes the proof. �

5. Bounding extinction times

In Section 3, we discussed bounds for the lifespans of individual homology classes
in degree ě k via different notions of k-width from metric geometry. However, as
Figure 2 suggests, these k-widths do not give any bound for the lower homology
classes in lower degrees. In other words, if AWkpM Ă RN q (or another k-width) is

small, the filling radius (or lifespan) of a homology class α P rHjpMq for j ă k can
still be very large. It is easy to see that the example in Figure 2 can be generalized
to any dimension and codimension. In particular, k-widths do not say much about
the size of topological features in dimensions lower than k.

In this section, we use a different approach and propose a global bound to the
lifespans of homology classes in all degrees at once. Our goal is to bound the
following quantity.

Definition 5.1 (Extinction time). Let X be a compact metric space. Then,

ξpX q :“ sup
kě0

sup
�

dω | ω P SpeckpV‚pX qq
(

is called the VR-extinction time of X . We similarly, define qξpX Ă Yq, the Čech-
extinction time for the Čech filtration of a subset X of a Banach space Y. We will
use the terms VR-extinction (respectively Čech-extinction) for short.

Notice that via the VR-extinction ξpX q, we are not only bounding the lifespans
of homological features with birth time “ 0, but we are bounding the death time
of all homological features (in degree 1 and higher) appearing throughout the fil-
tration. Also, note that, as pointed out in [LMO24, Remark 9.8], the radius of X
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(Definition 2.39) automatically gives an upper bound for the VR-extinction time,
that is, ξpX q ď radpX q. This is easy to see since the VR complex VrpX q is a sim-
plicial cone for r ě radpX q. A similar statement is clearly true for Čech-extinction,

i.e. qξpX Ă Yq ď radpX Ă Yq. See Remark 5.2 for comments on the usefulness of
this type of bounds.

Remark 5.2 (Utility of extinction time bounds). Bounds on extinction times can
be useful in practice for reducing the computational effort incurred by algorithms
designed for calculating PH, as we now explain. By Proposition 2.22, any bound
on the extinction times of a compact metric space provides an upper bound on
the right endpoints of every interval in the barcode of the VR-filtration for that
space; see Remark 2.23. This is particularly useful due to the inherent structure of
algorithmic procedures for computing persistence diagrams of simplicial filtrations
whose complexity increases with the total number of simplices; see [EH10, Chapter
VII]. For instance, both the software packages Ripser [Bau21] and Eirene [HG16]
use radpXq as a cut-off value for the filtration parameter. Any computationally
feasible approximation to the extinction time bounds below could similarly boost
efficiency in practical applications.

In the following, we aim to give much finer estimates for extinction times in both
the VR and Čech settings.

Remark 5.3 (Motivating example). Here, we give a toy example to motivate the
notion of extinction defined above. Let E be the pN ´ 1q-dimensional ellipsoid in
RN given by

E :“

#

x P RN

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

x2
i

a2i
“ 1

+

,

where a1 ą a2 ą ¨ ¨ ¨ ą aN ą 0. While E has trivial homology groups in low degrees,
one can easily add some topology to E by adding k-handles for 0 ă k ă N ´ 1 as
follows. Fix 0 ă k ă N ´ 1. Let

E :“

#

x P RN

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

x2
i

a2i
ď 1

+

be the solid ellipsoid. Given an integer m ě 1, we will use notation E
m

:“ tx P E |

xi “ 0 for i ą mu. Let tD1, D2, . . . , D
ku be �k disjoint small disks in E
N´k

. Then,
consider the following surgery operation. For 1 ď j ď �k, let Ωj :“ E X pDj ˆ Rkq.
Let Sj :“ E X Ωj , and Tj :“ clpBΩjzSjq. Then, swapping the Sj and the Tj will
give a new closed manifold

pE :“

˜

Ez


k
ď

j“1

Sj

¸

Y


k
ď

j“1

Tj Ă RN .

See Figure 4 for an illustration. While rHkpEq is trivial for 0 ă k ă N ´ 1,

rankprHkppEqq ě �k because of the homology classes generated by the k-handles

tTju. By choosing tDju such that tΩju are all pairwise disjoint, one can obtain pE
with nontrivial homology in all desired degrees k.

Notice that, through Kolmogorov widths, Corollary 3.29 yields that

dω ´ bω ď KWkppE Ă RN
q “ ak`1
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Figure 4. The space pE from Remark 5.3 for the case N “ 3 and
k “ 1

for any class ω P SpeckpC‚pX Ă RN qq. By suitably choosing the numbers taiu,

all k-widths for k ď dimppEq ´ 1 can be made arbitrarily large. However, it is not
hard to see that, in this particular example, the death times of all these homology
classes do not exceed the smallest axis length aN . This example therefore shows
that k-widths can highly overestimate lifespans. In other words, we have that the

Čech extinction satisfies qξppE Ă RN q ď aN . In the following sections, we estimate
extinction radii by comparing a given space to a nearby topologically trivial space.

5.1. Bounding Čech-extinction via convex hulls.

Definition 5.4 (Convexity deficiency). For a compact set X sitting in a Banach
space pY, } ¨ }q, we define the convexity deficiency of X as

cdefpX Ă Yq :“ dY
H pX , convpX qq “ sup

yPconvpX q

inf
xPX

}y ´ x}.

Theorem 5.5 (Bounding Čech extinction). Let X be a compact subset of a Banach
space Y. Then,

qξpX Ă Yq ď cdefpX Ă Yq.

Proof. For any r ě 0, and any points x1, . . . , xm P X , the intersection of balls
Şm

i“1 Brpxiq is nonempty inY if and only if the intersection
Şm

i“1pBrpxiqXconvpX qq

is nonempty. Therefore, the filtered Čech complexes CpX Ă Yq and CpX Ă

convpX qq are identical. However, the homotopy type of CrpX Ă convpX qq is triv-
ial whenever r ě cdefpX Ă Yq, so no topological feature persists beyond time
cdefpX Ă Yq. �

Remark 5.6 (Stability vs. extinction). The stability theorems (Section 2.1.3) do not
imply the previous result for the following reasons:

(1) In contrast with the stability theorems Lemma 2.15 and Lemma 2.16, which
apply only to homology classes associated to points in the persistence dia-

gram }PDkpX Ă Yq, Theorem 5.5 applies to all elements of SpeckpC‚pX Ă

Yqq. Recall, from Remark 2.21 and Proposition 2.22, that in general
SpeckpC‚pX Ă Yqq contains strictly more homology classes than those

which can be associated with points in the persistence diagram }PDkpX Ă

Yq.
(2) Strictly speaking, one should not expect that, in general, stability holds for

the lifetime or extinction of arbitrary classes in SpeckpV‚pX qq or SpeckpC‚pX
Ă Yqq. For example, the filling radius of an m-dimensional manifold M
coincides with both the lifetime and extinction of its fundamental class
rMs P SpecmpV‚pMqq. However, the filling radius of M is not stable under
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the Gromov–Hausdorff distance as explained in [LMO24, Sections 9.4 and
9.5].

(3) Even if we restricted ourselves to those homology classes associated with
points in the persistence diagram, the stability theorems would only yield
bounds on lifespans but not on death times (i.e. on extinction). Indeed,
Lemma 2.16 implies that

dbp}PDkpX Ă Yq,}PDkpconvpX q Ă Yqqq ď dY
H pX , convpX qq “ cdefpX Ă Yq.

Since }PDkpconvpX q Ă Yq “ H, the stability result and the definition of the

bottleneck distance [EH10] imply that for any point pb, dq P }PDkpX Ă Yq,

d ´ b ď 2 cdefpX Ă Yq.

However, both b and d can be arbitrarily large without violating this in-
equality. Meanwhile, Theorem 5.5 bounds from above the second coordi-

nate of every element of }PDkpX Ă Yq: for any pb, dq P }PDkpX Ă Yq,

d ď cdefpX Ă Yq.

Remark 5.7. Example in Figure 3 shows that it is not true that the extinction
qξpX Ă Yq is bounded from above by the überspread ü-spreadpX Ă Yq.

While Remark 5.7 shows that the distance to the nearest übercontractible space
(überspread) fails to bound extinction, it might be still true that distance to a
specific cleverly chosen übercontractible space might give an estimate on extinction.
One natural choice for the role of an übercontractible space T approximating X Ă Y
is the convex hull of X ; this is exactly what has just been discussed; with this choice,
there is an extinction bound (Theorem 5.5), but it is tempting to improve it by
choosing a finer T . Another natural choice of T is given by the cut-locus of the
boundary of the convex hull of X (see the discussion in Appendix B). Unfortunately,
the extinction time is not bounded from above by the distance from X to this T
(chosen as the cut-locus of BconvpX q, assuming convpX q full-dimensional). We omit
the discussion of examples in view of the negative nature of the result, but they
can be obtained as subsets of a square (one can take a square and cut out a large
off-centered disk).

Question 5.8 (Čech extinction and cut-locus of convpX q). Let X be a compact
subset of a Banach space Y. Let CBconvpX q be the cut-locus of the convex hull of X
(see Appendix B). Is it possible to upper-bound the extinction qξpX Ă Yq in terms
of the Hausdorff distance to CBconvpX q? That is, is it true that

qξpX Ă Yq ď CY ¨ dY
H pX , CBconvpX q

q

for some CY ą 0?

5.2. Bounding VR-extinction via the tight span. To derive a bound on
VR-extinction times, Theorem 5.5 can be applied to the Kuratowski (distance-
preserving) embedding of X into L8pX q. However, this approach yields a subopti-
mal result. Here, we present a refinement.

Definition 5.9 is analogous to Definition 5.4 in that the convex hull of X Ă Y
is supplanted by EpX q (see Definition 2.28). Recall that X naturally embeds in its
tight span, so we can assume that X Ă EpX q.
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Definition 5.9 (Hyperconvexity deficiency). The hyperconvexity deficiency of a
compact metric space X is defined as the number

hcdefpX q :“ d
EpX q

H pX ,EpX qq “ sup
fPEpX q

inf
xPX

}f ´ dX px, ¨q}8.

Corollary 5.10 to Corollary 2.7 is analogous to Theorem 5.5.

Corollary 5.10 (Bounding VR extinction). Let X be a compact metric space.
Then,

ξpX q ď 2 hcdefpX q.

Furthermore, this bound is tight (see Remark 5.11).

Proof. The claim follows from Corollary 2.7 and Remark 2.8 together with the facts
that (1) NtpX Ă EpX qq “ EpX q for all t ě hcdefpX q and (2) EpX q is contractible.

�

Remark 5.11 (Tightness of the bound). Let X be the unit �8 sphere in R2. Then,

in that case, by results of Kılıç and Koçak [KK16], EpX q is isometric to
´

r´1, 1s ˆ

r´1, 1s, �8

¯

and we compute that hcdefpX q “ 1. Since NtpX Ă EpX qq » X » S1

for every 0 ă t ă 1, and for t ě 1 we have NtpX Ă EpX qq “ EpX q, which is
contractible, by Corollary 2.7 we have

‚ VrpX q » S1 for every 0 ă r ă 2, and
‚ VrpX q is contractible for r ě 2.

Hence, for ω “ rS1s, dω “ 2; see also [LMO24, Corollary 7.13].

Recall from [LMO24, Remark 9.8] that VrpX q becomes contractible as soon as
r ě radpX q. Proposition 5.12 proves that the bound in Corollary 5.10 is never
worse than this bound.

Proposition 5.12. The inequality

2 hcdefpX q ď radpX q

holds for every compact metric space X .

Remark 5.13 (Comparison of radpX q and hcdefpX q). The upper bound given by
Corollary 5.10 can be much smaller than radpX q. Indeed, Let X be any metric tree,
then, in that case (by item (3) of Proposition 2.29) EpX q “ X so that hcdefpX q “ 0.
However, X can be chosen so that radpX q (and also its spread) are arbitrarily large.

Proof of Proposition 5.12. Assume that δ ą radpX q and let x0 P X be a point such
that dX px0, xq ă δ for all x P X . Pick any f P EpX q and recall that, according to
equation (5), we have that

fpx0q “ max
x1PX

`

dX px0, x
1
q ´ fpx1

q
˘

.

Let x1
0 P X be such that fpx0q “ dX px0, x

1
0q ´fpx1

0q. Notice that then, by equation
(5), we have both

}f ´ dX px0, ¨q}8 “ fpx0q and }f ´ dX px1
0, ¨q}8 “ fpx1

0q.

Adding these two expressions together we obtain that

}f ´ dX px0, ¨q}8 ` }f ´ dX px1
0, ¨q}8 “ fpx0q ` fpx1

0q “ dX px0, x
1
0q ă δ.
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From this, we conclude that

inf
xPX

}f ´ dX px, ¨q}8 ď min
`

}f ´ dX px0, ¨q}8, }f ´ dX px1
0, ¨q}8

˘

ă
δ

2
.

Since f P EpX q was arbitrary, this proves that hcdefpX q ă
δ
2 from which the claim

follows. �

6. Final remarks

Here we provide some remarks that could suggest further exploration.

Widths and lifespans. Although our results providing bounds on lifespans via widths
are primarily theoretical, they offer practical value both in terms of improving the
interpretability of PH features and in applications. Computing the exact Alexan-
drov, Urysohn, or Kolmogorov k-width for a given set X is often computationally
challenging. However, by definition, these widths arise as infima of certain mea-
surements over k-dimensional spaces (the “cores”). While identifying the optimal
k-dimensional space could be highly complex, any meaningful and well-chosen k-
dimensional space can yield relevant measurements that serve as upper bounds for
these widths and, consequently, for the lifespans. Thus, even if calculating the op-
timal bound is infeasible, our results can be effectively leveraged to provide rough
yet meaningful upper bounds for the lifespans of significant topological features.
See Remark 5.2 for other considerations related to potential uses of our bounds.

We highlight that our framework enables a bidirectional exchange of concepts,
integrating ideas from metric geometry into applied algebraic topology and sup-
porting their application in the reverse direction. Specifically, since lifespans are
bounded above by various notions of width introduced in Section 3, they conse-
quently provide lower bounds for these quantities. In other words, for a given
metric space X , the maximum lifespan over classes in SpeckpV‚pX qq (with zero
birth time) serves as a lower bound for the corresponding width (e.g., UWk´1pX q).
This relationship offers a practical approach for estimating widths by leveraging
topological persistence. We exemplify this now.

Example 6.1 (The Urysohn width of the n-torus). Let n ě 1 be any integer and
a1 ě a2 ě ¨ ¨ ¨ ě an ą 0. Consider the n-torus Tn :“ a1S

1 ˆ a2S
1 ˆ ¨ ¨ ¨ ˆ anS

1

endowed with the �8 product metric, and where each aiS
1 factor has the geodesic

metric (with diameter πai). Then, we claim that for any k P t1, . . . , nu we have

2π

3
ak ď UWk´1pTn

q ď πak.

The upper bound can be trivially obtained by considering the projection onto the
first k ´ 1 factors of Tn. The lower bound can be obtained through an argument
via PH as follows:

(1) As proved by Adamaszek and Adams in [AA17], I :“
`

0, 2π
3

‰

is the only

bar in the VR-barcode of S1 whose left endpoint is zero. Furthermore, this
interval appears in degree-1.

(2) By the Künneth formula for the VR-barcodes of �8-products of compact
metric spaces (see e.g. [LMO24, Theorem 6.1 and Example 6.4]), the only
intervals in the degree-k VR-barcode of Tn with zero left endpoint must
arise from intersecting exactly k of the intervals a1I, a2I, ¨ ¨ ¨ , anI each cor-
responding to the degree-1 VR-barcode of one of the n S1-factors of Tn.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

GEOMETRIC BOUNDS FOR PERSISTENCE 8475

These intersections are precisely of the form p0, dpLqs where L Ă t1, . . . , nu

s.t. |L| “ k and

dpLq :“ 2π
3 min


PL
a
.

Then, the maximum of dpLq over all such subsets L equals 2π
3 ak.

(3) By Theorem 3.3 and Proposition 2.34 we now conclude that 2π
3 ak ď

UWk´1pTnq.

Compare with [Gro88, (E1)] and see also [Gro83, page 8].

Standard PCA vs. lifespans. In Section 3.5, we give bounds for Čech lifespans via
the variances tνku induced by PCA8 (Corollary 3.29). As one can easily notice,
in order to have such a rigorous bound, we modified the usual PCA definition and
considered an �8-variant. However, this makes the PCA8 structure highly sensitive
to outliers in comparison with the original PCA. On the other hand, standard PCA
is a mainstream, highly effective dimension reduction tool for real-life applications
with several very efficient computational techniques available. While our results
do not say anything about the relation between the original PCA and PH, an
experimental result relating the lifespans of bars in the persistence diagram of the
Čech filtration C‚pX Ă RN q with variances rνk`1pX q of original PCA would be
very interesting, for a given finite set of points X Ă RN . It would be particularly
interesting and useful for real-life applications to carry out a statistical comparative
analysis for random finite subsets X in RN (and for k ě 1).

Principal curves and surfaces. One can notice that when describing the width-based
arguments in Section 3, we first introduce a k-dimensional optimal core Λk for a
given set X , then the k-width WkpX q is defined as some kind of “distance” from X
to k-core Λk. Hence, when WkpX q is small, in metric geometry, X is regarded as
“essentially k-dimensional”. There is a similar notion in statistics called Principal
Curves and Surfaces; see Hastie and Stuetzle [HS89], Delicado [Del01], and Ozertem
and Erdogmus [OE11]. While principal curves and surfaces are defined as 1- and
2-dimensional objects, one can easily generalize the idea to any dimension k, e.g.
principal k-manifolds. In our setting, for a compact subset X in a Banach space
Y, principal curves and surfaces can be considered as k-dimensional objects Σk

which minimize the �2-distance from X to Σk for k “ 1, 2 with some normalization
condition on Σk. In this sense, principal curves and surfaces can be viewed as
nonlinear generalizations of principal component analysis (PCA).

Similarly, for a given set X , our k-cores and principal k-manifolds can be re-
garded as analogous constructs which extend the underlying idea to a broader geo-
metric framework. In Section 3.5, we defined PCA8 as �8-version of the original �2

PCA . Similarly, our k-cores Λk minimize the �8-distance between X and Λk while
principal k-manifolds Σk minimize the �2-distance between X and Σk. By using
this analogy, as principal curves and surfaces are suggested as dimension reduction
method, one can consider our k-cores represent the essential structure of X when
WkpX q is small. Furthermore, just like the discussion in the preceding paragraph
(PCA vs PCA8), it would be interesting to carry out a statistical study of the
relationship between the Čech lifespans and �2-distance to principal k-manifolds.
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Appendix A. Auxiliary properties of widths

It was mentioned in Section 3.1 that

AWkpX Ă Yq ď UWkpX q ď 2AWkpX Ă Yq.

The right-hand side inequality is trivial, whereas the inequality on the left requires
an explanation.

Lemma A.1 (Alexandrov [Ale33]). For any compact set X in a Banach space Y,

AWkpX Ă Yq ď UWkpX q.

Proof. Suppose UWkpX q ă δ, and let us show that AWkpX Ă Yq ă δ. There is
a continuous map f : X Ñ Δk to a finite k-dimensional complex with fibers of
diameter ă δ. Subdivide Δk very finely, so that the preimage of any open star of
Δk under the map f has diameter ă δ.16 For each vertex v P Δk, pick a point cv
in the preimage of the open star Sv (unless this preimage is empty; in this case,
we can safely remove Sv from Δk). The ball Bδpcvq Ă Y of radius δ centered at
cv covers f´1pSvq. Consider an auxiliary map γ : Δk Ñ Y defined by sending any
vertex v P Δk to cv P Y, and then extending linearly on Δk. Compose this map
with f , and consider γ ˝ f : X Ñ Y. Its image is a simplicial complex of dimension
at most k, and to complete the proof it suffices to show that every point x P X
is moved by distance }x ´ γpfpxqq} ă δ. Let fpxq lie in the relative interior of
a simplex of Δk with the vertices v0, . . . , vm. Then x P f´1pSviq Ă Bδpcviq, and
}x ´ cvi} ă δ, where 0 ď i ď m. By construction of γ, the point φpfpxqq lies in the
convex hull of the points cvi , 0 ď i ď m. Therefore, }x ´ γpfpxqq} does not exceed
the maximum of }x ´ cvi} over 0 ď i ď m, and this maximum is less than δ. �
Remark A.2. Depending on the geometry of Y, this inequality may be slightly
improved if for each vertex f´1pSvq we cover f´1pSvq by a ball of the smallest
possible radius. For example, if Y “ RN is Euclidean, then it follows from Jung’s

theorem [Jun01] that this radius can be taken to be δ
b

N
2pN`1q

(instead of δ).

The rest of the proof runs without changes, and the final result is AWkpX Ă

RN q ď

b

N
2pN`1q

UWkpX q ă
1?
2
UWkpX q. Another extreme example is when Y

is hyperconvex (for example, L8pX q), and any bounded set A can be covered
by a ball of radius 1

2 diampAq. In this case, our estimates actually imply that
UWkpX q “ 2AWkpX Ă Yq.

The following property was used in Section 3.2.

Lemma A.3. The treewidth enjoys the following continuity property. Let X1 Ą

X2 Ą ¨ ¨ ¨ be a nested sequence of compact sets in a Banach space Y, and let k be a
nonnegative integer. Then

lim
iÑ8

TWkpXi Ă Yq “ TWk

˜

č

i

Xi Ă Y

¸

.

Proof. Denote X “
Ş

Xi, w “ TWkpX Ă Yq, and let f : X Ñ Y be a witness map:
a continuous map whose image lies in a finite contractible k-dimensional simplicial
complex Δ Ă Y , and such that }x ´ fpxq} ă w ` ε{3 for all x P X and some

16Recall that the open star Sv of a vertex v P Δk is the union of the relative interiors of all
simplices of Δk that contain v.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

GEOMETRIC BOUNDS FOR PERSISTENCE 8477

arbitrarily chosen ε ą 0. For each point y P Δ, the fiber f´1pyq lies in the open ball
Bw`ε{3pyq (note that f´1pyq can be empty). Since f is continuous on the compact
set X , it is uniformly continuous, hence there is a tiny radius ρ ą 0 such that the
“thickened fiber” f´1pBρpyqq lies in the open ball Bw`2ε{3pyq, for each y P Δ. Since
Δ is a finite complex of dimension k, there is a finite closed cover

Ť

Dj “ Δ such
that its multiplicity is k ` 1, its nerve is homotopy equivalent to Δ, each Dj fits in
a ball Bρpyjq, and Cj :“ f´1pDjq fits in the ball Bw`2ε{3pyjq.

We claim that the sets in the closed cover
Ť

Cj “ X can be inflated a lit-
tle bit while preserving their intersection pattern. For each collection of indices
J “ tj1, . . . , jnu such that the intersection

Ş

jPJ

Cj is empty, it follows from the

compactness of X that the number

δJ “ min
xPX

max
jPJ

distpx,Cjq

is attained and positive. Take a positive δ smaller than ε{3 and also smaller than
each δJ over all collections J such that

Ş

jPJ

Cj “ ∅. Consider the open cover tUju

of X , where Uj “ NδpCj Ă Yq. It has the same nerve as tCiu, and each Uj is
contained in Bw`εpyjq. We have

X Ă

ď

j

Uj “ NδpX Ă Yq.

Now pick a partition of unity tψju subordinate to tUju. Use it to map
Ť

j Uj to its

nerve. Namely, a point x P
Ť

j Uj is mapped to
ř

j

ψjpxqyj . This gives a (possibly

nonsurjective) map
Ť

j Uj Ñ Δ. Since Uj Ă Bw`εpyjq, every point under this map
is shifted by distance less than w ` ε.

Notice that the open set
Ť

j Uj contains all Xi for i large enough, as it can be
easily deduced from compactness. Therefore, we have a map from Xi, for all i large
enough, to a contractible k-dimensional simplicial complex inside Y, and every
point is shifted by a distance less than w ` ε. Hence,

TWkpXi Ă Yq ´ TWkpX Ă Yq ă ε.

Since ε was arbitrary, the result follows. �

Appendix B. Übercontractible sets

Here we only work in Y “ RN with Euclidean metric, and we are interested in 0-
übercontractible sets, which we call übercontractible. A rich source of übercontract-
ible sets comes from the cut-locus construction, usually considered in a more general
Riemannian setting; see, e.g., Wolter [Wol85]. A very close concept is that of
skeleta (see, e.g., Fremlin [Fre97]), different from our definition only in that we take
the closure. In computational geometry, low-dimensional skeleton constructions
are also called medial axes ; see, e.g., the survey by Saha, Borgefors and Sanniti
di Baja [SBdB16]. We only formulate the definition of the cut-locus for convex
hypersurfaces in Y “ RN .

Definition B.1. Let K Ă Y be a convex body (that is, a compact convex set with
a nonempty interior). For each x P K, consider the largest closed ball centered at
x and contained in K; let rBKpxq ě 0 be its radius, and BBKpxq Ă BK be the set
of the points where this ball touches the boundary of K. The cut-locus of BK is
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the closure of the set of all such x P K for which the cardinality of BBKpxq is at
least 2:

CBK
“ cl

`

tx P K : |BBK
pxq| ą 1u

˘

.

There is a canonical retraction cBK : K Ñ CBK defined as follows. For x P CBK , set
cBKpxq “ x. For each point x P KzCBK , let bBKpxq be the only element of BBKpxq,
and consider the largest closed ball contained in K and touching BK at bBKpxq.
The center of this ball belongs to the cut-locus and will be denoted cBKpxq.

Theorem B.2. The cut-locus CBK of the boundary of a convex polytope K is
übercontractible.

The key lemma in the proof comes from the Morse theory for the distance func-
tional. It was applied by Bárány, Holmsen and Karasev in [BHK15, Section 3] to
give a sufficient condition for a set to be contractible, but the proof there, in fact,
guarantees that the set is übercontractible.

Lemma B.3 (Cf. [BHK15, Theorem 2]). Let T Ă Y be a union of finitely many
compact convex sets. For each x R T consider the largest ball centered at x whose in-
terior does not meet T . Let BT pxq be the set of the points where this ball touches T .
Suppose that for each x R T we have x R convpBT pxqq. Then T is übercontractible.

Proof of Theorem B.2. Suppose K is a convex polytope. It can be shown that CBK

is a polyhedral complex of codimension 1 in Y . Let F be a facet of K, and let
nF be the corresponding inner normal vector. The (relative) boundary of F lies in
CBK . The map cBK , restricted to F , sends each point x P F along nF until it hits
CBK . Together F and the polyhedral surface cBKpF q bound a convex polytope KF .

Consider a point x P KzCBK . It then lies in KF , for some facet F . It is sufficient
to verify the assumption of Lemma B.3: one needs to check that x R convpBT pxqq,
where T “ CBK . Indeed, for every y P BT pxq, the vector y ´ x forms an acute
angle with nF , and therefore, the entire set BT pxq lies in the open halfspace tz P

Y : xz ´ x, nF y ą 0u. Therefore, x R convpBT pxqq. �

We conclude this section by speculating how Theorem B.2 can be proven for
convex bodies other than polytopes. Unfortunately, the case of a general convex
body K cannot be proven by approximating K with polytopes Ki, because in order
to guarantee C0-convergence CBKi Ñ CBK , we cannot get away just with polytopes.
We sketch an argument that works for fairly general convex bodies, modulo some
technicalities. We take a different approach and assume the following “tameness”
assumption: CBK consists of finitely many compact convex sets. It allows us to
apply Lemma B.3, but it is highly likely that the lemma can also be stated and
proven in greater generality. Not only the class of tame convex bodies includes
polytopes, but it also seems to be C2-dense among all C2-smooth convex bodies
(we do not discuss this in detail since this digresses too far from the main topic of
the paper).

Sketch of the proof of Theorem B.2 for tame convex bodies. The following two prop-
erties will be shown to imply the übercontractibility of CBK .

(1) The cut-locus of BK consists of finitely many compact convex sets (so we
can use Lemma B.3).

(2) The boundary of K is C2-smooth and strongly convex in the sense that its
second fundamental form is positive definite.
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The tameness assumption guarantees the first property. We argue that we can
inflate K slightly to get a new convex body K 1 that satisfies the second property,
while preserving cut-locus CBK1

“ CBK “ T . This amounts to choosing rBK1
pxq

for x P T carefully, so that on every face of T , rBK1
is C1-close to rBK , and rBK1

is
strongly convex. The details are omitted.

In the rest of the proof we assume that K satisfies the two properties above,
and we will verify the assumption of Lemma B.3 for T “ CBK to show that it is
übercontractible. Pick points x P KzT , and y P BT pxq. Our goal is to prove that
xy ´ x, ny ą 0, where n is the inner normal to BK at bBKpxq. This will imply that
x R convpBT pxqq Ă tz P Y : xz ´ x, ny ą 0u.

Suppose, for the contrary, that xy ´ x, ny ď 0. Parametrize the straight line
segment rx, ys linearly as xptq, t P r0, 1s, xp0q “ x, xp1q “ y. For each t P r0, 1q, let
uptq “ bBKpxptqq be the only element BBKpxptqq. Consider also vptq “ cBKpxptqq,
for t P r0, 1s, and notice that vp1q “ y. The key idea is to look at the continuous
family of straight line segments rxptq, vptqs, and investigate how they intersect the
open ball O centered at x of radius rBKpxq. We make the following observations.

‚ The open ball O does not intersect T , and vptq P T . So for each t P r0, 1q,
the segment rxptq, vptqs starts inside O and ends outside of O.

‚ The strong convexity of BK implies that the angle between the vectors y´x
and vptq ´ xptq is strictly increasing for t P r0, 1q. To see that, one needs
to differentiate in t the inner normal to BK at uptq (which is collinear with
vptq ´ xptq).

‚ Initially, the angle between the vectors y ´ x and vp0q ´ xp0q is nonacute
(since by assumption xy ´ x, ny ď 0). Therefore, for t close to 1 the angle
between y ´x and vptq ´xptq is obtuse, and tends to a limit that is obtuse.
It follows that the length of the part of rxptq, vptqs that lies in O is bounded
away from 0.

‚ But, as t Ñ 1, the segment rxptq, vptqs degenerates to the point y, so its
length must approach zero. This contradiction concludes the proof.

�
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Appendix C. Notation table

Table 1. Notation and main symbols

Notation Definition Place

convpX q Convex hull of X in a Banach space
convpX q Closure of convex hull of X in a Banach space
Hkp¨q Singular homology in degree k
rHkp¨q Reduced singular homology in degree k
NrpX Ă Zq Open r-neighborhood of X in Z Section 2.1
N rpX Ă Zq Closed r-neighborhood of X in Z Section 2.1
VrpX q Vietoris–Rips complex of X for distance r Definition 2.1
CrpX Ă Zq Čech complex of X Ă Z for distance r Definition 2.2
SpeckpΔ‚q Homological spectrum of the filtration Δ‚ Definition 2.18
PDkpX q kth-persistence diagram of X with VR filtration Section 2.1.2
}PDkpX Ă Yq kth-persistence diagram of X Ă Y with Čech filtration Section 2.1.2
bω, dω Birth and death time of the homology class ω Definition 2.19
dω ´ bω Persistence (lifespan) of the homology class ω Definition 2.19
dbp¨, ¨q Bottleneck distance between persistence diagrams Section 2.1.3
dY
H p¨, ¨q Hausdorff distance between two subsets in Y Section 2.1

dGHp¨, ¨q Gromov–Hausdorff distance between two metric spaces Section 2.1
L8pX q Space of bounded functions on X with sup norm Section 2.2
EpX q Tight span of X Definition 2.28
ρpMq Gromov’s filling radius of M Definition 2.31

ρpω;X Ă Yq The relative filling radius of ω P rHkpX q relative to Y Definition 2.33

ρpω;X q The absolute filling radius of ω P rHkpX q Definition 2.33
radpX q The radius of X Definition 2.39
radpX Ă Yq The circumradius of X relative to Y Definition 2.39
UWkpX q Urysohn k-width of X Definition 3.1
AWkpX Ă Yq Alexandrov k-width of X relative to Y Definition 3.4
TWkpX Ă Yq kth treewidth of X relative to Y Definition 3.9

TWC
k pX Ă Yq C-robust k-dimensional treewidth of X Definition 3.22

KWkpX Ă Yq Kolmogorov k-width of X relative to Y Definition 3.6
νkpX q kth variance of X (PCA8) Definition 3.26

ü-spreadpX Ă Yq Überspread of X relative to Y Definition 4.4
ξpX q VR-extinction time of X Definition 5.1
qξpX Ă Yq Čech-extinction time of X relative to Y Definition 5.1
cdefpX Ă Yq Convexity deficiency of X relative to Y Definition 5.4
hcdefpX q Hyperconvexity deficiency of X Definition 5.9
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