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Abstract

With the growing integration of 5G technologies, satellite communication (SatCom) net-

works, particularly next-generation geostationary (GEO) multi-beam systems, have been in-

creasingly designed to support a wide range of 5G applications and services. This evolution,

often based on High-Throughput Satellite (HTS) architectures and increasingly incorporating

AI-enabled dynamic management strategies, is driven not only by the technical potential of

SatCom to extend connectivity but also by intense market competition. In such a competitive

landscape, it is often economically impractical for service providers to deploy their own dedi-

cated satellites for each service category. Consequently, they rely on renting capacity (Mbts)

from satellite operators, which introduces the need for efficient and responsive resource allo-

cation mechanisms. In this context, dynamic, Quality of Experience (QoE) aware allocation

strategies are critical to manage the limited satellite capacity across heterogeneous service

demands efficiently. This approach seeks a well-balanced outcome: maximizing operator

revenue, minimizing service provider costs, and enhancing end-user QoE.

However, this model is constrained by limited satellite capacity and the stringent QoE

requirements of end users, which vary significantly across services. Accurate modeling of

QoE remains a fundamental challenge, especially in the face of dynamic, time-varying traffic

patterns that are unpredictable and not known in advance. Different services exhibit diverse

packet inter-arrival time distributions, further complicating resource allocation. Furthermore,

multiple services often coexist and compete for resources within the same satellite beam,

generating fluctuating and conflicting demands. These challenges underscore the critical

need for online, adaptive, and QoE-aware capacity allocation strategies that can operate

effectively under uncertainty.

To address capacity limitations more effectively, satellite operators need to enhance their

available capacity by exploiting various options, including utilizing Extremely High-Frequency

(EHF) bands. However, resource allocation, traffic steering, and load balancing in multi-
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gateway, multi-beam SatCom networks, particularly in the EHF bands (Ka, Q, and V) face

critical challenges due to unpredictable rain attenuation, dynamic traffic variations, and

stringent QoE requirements.

In response to these challenges, this thesis develops QoE-aware dynamic capacity manage-

ment strategies for multi-beam, multi-service SatCom networks. The aim is to design flexible

and proactive policies for online capacity and traffic management, accounting for the diverse

service requirements, stochastic traffic behavior, and environmental uncertainties. To this

end, we incorporate traffic demand forecasting and rain attenuation prediction techniques to

enable intelligent traffic steering, load balancing, and resource provisioning across beams and

gateways.

Chapter 2 presents a QoE-aware, cost-minimizing dynamic capacity renting framework

tailored for Satellite-as-a-Service (SaaS) enabled multi-beam SatCom systems. This model

is designed to minimize the rental costs of satellite service providers, considering the time-

varying traffic demand while simultaneously ensuring the QoE and blocking probability re-

quirements of diverse services. Our study models the QoE stochastically based on the trans-

mission waiting time of data packets in the system buffer, with a defined target threshold

and an allowable violation probability.

In Chapter 3, we address the limitation of uniform traffic models by developing a more

general, flexible capacity allocation policy that accommodates multiple services with varying

packet inter-arrival distributions and QoE expectations. In addition, to prioritize critical

services, our model includes service prioritization during congestion. This model utilizes

advanced Deep Reinforcement Learning (DRL) techniques to learn and adapt optimal policies

in real time.

Finally, Chapter 4 addresses the challenges of traffic and feeder link capacity management

in EHF bands. We propose a predictive framework for proactive beam traffic to gateway

matching, incorporating both traffic demand forecasting and rain attenuation prediction to

enable robust load balancing and improved resource utilization.
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Contents

This Ph.D. thesis, titled “QoE-Aware Dynamic Resource Allocation in Next Generation

Satellite Networks”, is structured into five chapters. Chapter 1 provides an introduction and

background on satellite networks, time-varying traffic demand, QoE modeling, and resource

allocation. It also outlines the motivation for the research and formulates the key research

questions. Chapter 2 proposes a QoE-aware, cost-minimizing dynamic capacity allocation

framework for multi-beam, multi-service SatCom systems. Chapter 3 builds on the work in

Chapter 2 by incorporating multiple services with different inter-arrival time distributions and

distinct QoE requirements, while also introducing service prioritization. Chapter 4 presents

a proactive beam traffic-to-gateway matching approach with load balancing for EHF bands,

taking into account both traffic demand forecasting and rain attenuation prediction. Finally,

Chapter 5 offers concluding remarks, a summary of the contributions, and potential directions

for future research.
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Chapter 1

Introduction

In today’s hyper-connected world, SatCom systems play a critical role in enabling global

connectivity and supporting diverse applications that demand high availability, resilience,

and service quality, especially in remote and underserved regions. The demand for satellite

services is growing rapidly and becoming increasingly dynamic due to a surge in users and

the diversity of service types [1], [2]. To meet these evolving needs, satellites across all

orbital regimes, such as GEO, MEO, and LEO, are increasingly being integrated into the 5G

ecosystem to extend coverage and support next-generation applications and services.

1.1 Satellite Networks Architecture

The SatCom network architecture can be broadly classified into transparent and regenerative

satellite systems, each with distinct roles in data processing, protocol handling, and traffic

management [3]. As illustrated in Fig. 1.1, when a user requests a service (downlink), the re-

quested data typically originates from the Internet or a centralized core network. This content

is routed through the satellite network, where it is delivered via a feeder link to the satellite

and then forwarded to the user terminal over the user link. The specific handling of this

data—whether processed onboard the satellite or managed entirely on the ground—depends

on the underlying satellite architecture.

Transparent satellites act as passive relays: they amplify and forward RF signals between

the user terminal and the ground segment. Consequently, all protocol processing, including

Radio Resource Control (RRC), Packet Data Convergence Protocol (PDCP), Radio Link

Control (RLC), and Medium Access Control (MAC), is performed at the terrestrial gateway

1
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(GW), where packet queues are maintained, resource allocation decisions are made, and traf-

fic is prioritized based on operator policies [4]. In contrast, regenerative satellites incorporate

onboard processing capabilities [4]. This enables the satellite to act as an intelligent net-

work node, such as an onboard gNB, with the ability to locally schedule resources, maintain

packet queues, and dynamically allocate capacity based on real-time traffic demands and

user priorities. As a result, regenerative satellites can achieve lower latency and more flexible

bandwidth utilization, particularly in highly dynamic or delay-sensitive scenarios. However,

they are also constrained by limited onboard computational and energy resources, which can

affect their ability to scale or support complex scheduling algorithms. In addition, both archi-

tectures must cope with challenges such as time-varying traffic demand, limited and shared

spectrum resources, the need for real-time adaptation, and the need to maintain consistent

and uninterrupted QoE.

Feeder link

User link

Transparent Satellite

Internet

Core networkService provider
 (content)

gNB

(a) Transparent satellite.

Feeder link

User link

Regenerative Satellite

Internet

Core networkService provider
 (content)

gNB

(b) Regenerative satellite.

Figure 1.1: Generic satellite architecture.

Therefore, regardless of the architecture, the deployment of an intelligent, QoE-aware
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dynamic resource allocation mechanism is critical to optimize traffic flow, prevent congestion,

and ensure service quality under heterogeneous and unpredictable network conditions.

1.2 Time-varying Traffic Demand

With the advancements of 5G and next generation SatCom networks and the continuous

evolution of their application scenarios, massive traffic data is being generated from different

applications and services [5,6]. Different services induce significantly different traffic volumes

and temporal characteristics. For example, video streaming applications typically produce

sustained high-throughput traffic, while massive machine-type communications (MTC) or IoT

devices generate short, intermittent bursts. Moreover, the number of concurrently active users

accessing these services fluctuates over time, influenced by diurnal patterns, user mobility,

and regional demands. This variation in user access leads to time-varying traffic, which

can exhibit highly volatile characteristics over different intervals. Traffic demand can be

conceptualized as a flow of packets transmitted over time. Each service typically generates

a sequence of packets with service-specific characteristics such as packet size, inter-arrival

times, and burstiness. When the same service is accessed by multiple users simultaneously,

the resulting traffic can be aggregated into a flow of packets with an effective arrival rate.

The temporal distribution of traffic—particularly the diversity in packet arrival patterns

reflected by varying inter-arrival time distributions—plays a critical role in modeling demand

variability. For example, certain services follow a Poisson arrival process, while others exhibit

heavy-tailed or bursty behavior, which is better modeled using distributions such as the

Weibull or Pareto distributions. The heterogeneity in these distributions across different

services complicates the modeling of traffic variability and burstiness [7, 8].

Additionally, the spatial distribution of traffic across satellite beam coverage regions is

far from uniform. Traffic demand differs significantly between beams, driven by variations in

population density, user activity patterns, and service subscriptions. This spatial disparity is

particularly pronounced in GEO satellite systems due to their fixed coverage areas and limited

beam reconfiguration capability. In contrast, non-geostationary (NGSO) constellations—with

their moving beams and dynamic footprint tend to experience more evenly distributed traffic

patterns, although still subject to regional hot-spots [10].

As shown in Fig. 1.2, the heterogeneous nature of 5G service traffic, characterized by
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Figure 1.2: Demand over time and inter-arrival distribution variation demonstration plot [9].

varying volumes and diverse inter-arrival distributions, necessitates precise modeling of traffic

variability, which is essential for maintaining and accurately estimating QoE.

1.3 Quality of Experience

The emergence of various services has introduced new challenges, intensified competition

among network satellite operators, and heightened user expectations for network services. As

a result, QoE has become a primary design objective in next-generation satellite networks,

serving as a critical metric for quantifying user satisfaction [11–13]. In practice, QoE is often

incorporated within Service Level Agreements (SLAs), which formally define the minimum

service quality that must be ensured.

In the context of multi-service networks, relying on aggregate or average QoE across ser-

vices can obscure critical performance bottlenecks. Since different applications have distinct

QoE sensitivity, it is essential to fulfill QoE in a service-specific manner [13]. To meet the

performance demands of these advanced applications, QoE must be accurately estimated.
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1.3.1 QoE Estimation

Traditionally, QoE estimation was conducted through user surveys, where users are asked

about their satisfaction with the application or service they use. They indicate their satis-

faction on a scale of 1 to 5. The opinions are then averaged to obtain a mean opinion score

(MOS) [13], [14].

State-of-the-art methods commonly use the MOS as a standard metric for QoE esti-

mation. However, the basic MOS approach may not accurately capture QoE, as it relies

on users’ subjective expectations of fulfilling certain requirements [11, 15]. It is also costly,

time-consuming, and impractical for large-scale environments due to the extensive number

of participants required for the experiment [16].

MOS, primarily designed for human-centric services like voice and video, is insufficient

for emerging 5G use cases such as massive MTC, where the end-users are often machines

rather than humans. These applications necessitate a redefined QoE paradigm that accu-

rately reflects the performance and reliability expectations of both human and machine users.

Consequently, network design and performance evaluation must evolve to incorporate these

new QoE assessment models, ensuring that future networks can effectively support the diverse

and stringent requirements of next-generation applications.

Alternatively, for continuous, consistent, and large-scale monitoring without the need for

constant human input, objective QoE estimation is applied [17]. The objective QoE esti-

mation is more important in 5G and beyond networks to enable real-time monitoring and

dynamic adaptation of network resources. Furthermore, the time-varying and uncertain traf-

fic demand and available resources necessitate the consideration of advanced QoE estimation

techniques [12,15].

1.4 Satellite Stackholders

Satellite stakeholders are entities that have a direct or indirect interest, investment, or role

in the operation, development, or use of satellite resources. Although there are several stake-

holders [18], they can be broadly categorized as follows,

• Satellite Operators: These are the infrastructure owners who manage and control the

satellites in orbit and the satellite resources in general.
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• Service Providers (SPs): These entities utilize the satellite infrastructure to deliver

communication services to their customers.

• Customers: These are the beneficiaries of services for various applications.

Each of these stakeholders has distinct interests. Satellite operators aim to maximize

their revenue by renting their available resources to as many SPs as possible. Conversely,

SPs seek to minimize rental costs, and customers prioritize obtaining a high QoE [19].

Traditionally, satellite operators managed both the infrastructure and service delivery,

providing direct services to end-users. For SPs to extend their reach and adapt to rapidly

changing markets due to the rising number of services, they are expected to make substantial

investments in network infrastructure and advanced satellite technology. However, the esca-

lating costs associated with launching and maintaining satellite infrastructure have prompted

a shift in this business model. Satellite SPs, facing prohibitive infrastructure expenses, have

found it unfeasible to deploy their own satellites for each service offered to customers. This

economic challenge has led to the emergence of the Satellite-as-a-Service (SaaS) model [20,21].

Under this paradigm, satellite operators lease resources to SPs based on predefined SLAs.

SaaS is increasingly seen as the future for major operators like SES and Eutelsat. This model

allows for more flexible, efficient, and cost-effective use of resources, allowing operators to

better meet the growing and dynamic traffic demands of users in the market [20], [22]. unless

the static renting contracts that involve fixed bandwidth allocations and regular payments,

the SaaS enabled dynamic renting contracts require operators to adapt to varying traffic

volumes and QoE requirements, complicating resource planning. Dynamic contracts neces-

sitate estimating resource needs, risking either wasted resources or unmet commitments if

overbooking is used.

1.5 Satellite Capacity Allocation

In early satellite systems, capacity allocation (CA) was static, with resources such as band-

width and power pre-assigned to specific users or services and remaining fixed. However, as

the number of users and traffic demand vary, this static allocation results in under-utilization

of capacity during low-demand periods and congestion during peak hours.

To address these inefficiencies, Dynamic CA (DCA) has emerged as a key mechanism in

modern SatCom systems. DCA enables the adaptive allocation of satellite capacity based on
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real-time traffic demands, QoS, and QoE requirements. Given the inherently time-varying

nature of traffic, satellite systems must contend with periods of underload (off-peak traffic) as

well as overload (peak-traffic), where demand exceeds available capacity. During peak traffic,

operators prioritize services based on business criteria and may not admit all traffic requests

at a time.

The responsiveness of the DCA mechanism is critical. Faster adaptation allows the sys-

tem to allocate resources more effectively, thereby improving capacity utilization. Conversely,

slower adaptation leads to inefficiencies in CA and possible degradation in service quality [10].

Therefore, designing effective admission and adaptation policies is crucial for optimizing satel-

lite resource use and enhancing network performance. Critical design parameters influencing

CA decisions include:

• Rate of Capacity Adaptation: Determining the frequency of capacity adjustments (e.g.,

every 5 minutes, 10 minutes, hourly, or daily) involves a trade-off between monitoring

complexity and resource allocation efficiency.

• Target QoE Requirements: Ensuring that QoE metrics are met and managing the trade-

off between capacity and target QoE requirements involves continuously monitoring

network conditions and dynamically adjusting capacity.

• Target Blocking Probability (BP): Setting acceptable levels of BP ensures that the

system can handle incoming traffic without excessive packet loss, thereby maintaining

service reliability.

Operators must design their CA models with these performance indicators in mind to

optimize resource utilization and ensure service quality, ultimately contributing to revenue

optimization. Additionally, the advancement of key enabling technologies such as digital

transparent payload systems lead to a dynamic and adaptable CA.

1.5.1 Data Packets Queuing Techniques

When users request access to a particular service, they are effectively initiating a demand for a

specific volume of data to be transmitted either from the internet or a content server through

the satellite GW. To minimize the transmission overhead and ensure efficient handling, data

from various applications is aggregated into flows of packets. These flows are managed by

the network to support smooth and reliable delivery. However, due to limited transmission
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capacity, incoming packets cannot always be processed and forwarded immediately upon

arrival. As a result, packets are temporarily stored in a queue within the satellite’s buffer

system, awaiting transmission.

(a) Static queue model. (b) Time-varying queue model.

Figure 1.3: Static versus time-varying queuing.

Queue Length (QL) is a widely adopted measure of congestion and queuing delay, which

directly impacts perceived latency and throughput, both critical components of overall system

performance and QoE [23]. In general, a longer QL returns a higher network congestion

probability and a longer service time that the users may suffer because the data spends

more time in the buffer before being processed and transmitted. As the QL approaches

the system’s maximum buffer size, the QoE deteriorates due to increased waiting times. In

critical scenarios, this may lead to buffer overflow, resulting in packet blocking and potential

packet loss. To cope with such an issue and conserve the required QoE, one demands a

higher allocated resource to increase the service rate. On another hand, letting the system

operate with very short queuing lengths may imply that an over-needed amount of resources

is allocated.

There exists a wide range of queuing techniques in the literature. Due to the highly

dynamic nature of 5G traffic that can vary significantly due to factors like user mobility,

diverse service requirements, and varying network conditions, the commonly used queuing

models likeM/M/1 and G/G/1 can not fully capture the complexities of the queuing analysis

[24], [25]. To estimate the congestion and queuing delay more accurately, we need to consider

advanced queuing models that could be suitable for time-varying arrival and service rates.

1.5.2 Optimization Techniques

Optimization techniques play a central role in enabling objective-driven decision-making in

dynamic resource allocation. They offer mathematically rigorous and systematic frameworks

to make efficient, fair, and reliable resource allocation under multiple system-level constraints.

These techniques are particularly effective at handling complex constraints, such as capacity

limits, QoE requirements, traffic dynamics, and environmental impairments.
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Conventional optimization approaches, such as linear programming, convex optimization,

and integer programming, often come with provable guarantees of optimality and convergence,

making them highly reliable for structured and well-defined problems [26]. Additionally,

Lagrangian duality—discussed in detail in Chapter 2—is a powerful technique for handling

large-scale optimization problems with coupling constraints. When the underlying problem is

convex, this method enables distributed solution of decomposed subproblems while ensuring

global optimality under strong duality.

For non-convex problems, especially those involving integer or combinatorial variables,

global optimality is harder to achieve due to the presence of multiple local minima. However,

exact methods such as the Branch and Bound (B&B) algorithm can still guarantee globally

optimal solutions by systematically exploring the solution space while pruning suboptimal

branches. As detailed in Chapter 4 of this thesis, while B&B is a powerful method for solving

non-convex mixed-integer linear (MILP) programs, it becomes computationally prohibitive

for large-scale problems due to its exhaustive search nature. In such cases, heuristic and

metaheuristic techniques, such as genetic algorithms and ant colony optimization, can offer

near-optimal solutions with significantly lower computational overhead [27], [28].

However, these conventional techniques may become less effective when dealing with:

• Very large or high-dimensional solution spaces.

• Highly dynamic systems with time-varying conditions.

• Poorly modeled or uncertain constraints.

In such cases, optimization problems become difficult to formulate explicitly or solve in real

time. Artificial Intelligence (AI) and Machine Learning (ML) models are well-suited for these

scenarios [29–31].

1.5.3 Artificial Intelligence and Machine Learning

The rapid advancement of 5G networks, along with the growing complexity of management,

traffic handling, and dynamic service demands, highlights the need for more intelligent re-

source optimization techniques. AI, particularly ML techniques, is becoming indispensable

to advance resource optimization and facilitate smarter, adaptive decisions in resource alloca-

tion [29]. Unlike traditional mathematical model-based approaches, AI utilizes a data-driven
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framework to dynamically allocate resources by continuously learning from the network en-

vironment. This approach provides insights into demand and available capacity over time,

enabling more efficient and adaptive resource management.

Data-Driven Models

Resource allocation becomes more efficient when guided by accurate traffic and channel con-

dition predictions [32], [33]. To achieve this, operators must anticipate user traffic demands

and environmental impairments such as rain attenuation. This requires maintaining spatio-

temporal historical data, including traffic patterns and weather events, which can support

predictive models for future resource planning. As detailed in Chapter 4 of the thesis, tech-

niques such as time series forecasting, including LSTM networks, are commonly used for this

purpose.

Nevertheless, prediction alone is not sufficient for optimal performance in highly dynamic

and uncertain environments. Satellite systems must also be able to respond rapidly to unan-

ticipated fluctuations. The next section explores how Deep Reinforcement Learning (DRL)

can be leveraged to enable such adaptive and QoE-aware resource allocation policies.

Deep Reinforcement Learning

RL is a ML approach that allows an agent to reach a specific objective by maximizing long-

term rewards through trial-and-error interactions with its environment [34, 35]. The agent

is the resource manager that can be located at the satellite GW or onboard the satellite,

depending on the satellite architecture. It interacts with the network environment by choosing

actions from its available action space based on its current state. Each action results in a

corresponding reward and a transition to a new state. This process is repeated until the

agent’s learning process converges to an optimal policy, maximizing the average reward [35,

36]. In the context of multi-beam SatCom systems, DRL offers a powerful solution for DCA by

learning to adaptively allocate resources based on fluctuating user demand, environmental

conditions, and service-level QoE requirements. Unlike rule-based or static optimization

approaches, DRL can operate in real-time, handle high-dimensional state-action spaces, and

generalize across different network scenarios [29]. This makes it well-suited to address the

inherent uncertainties and heterogeneity in traffic patterns and service types, ultimately

enabling efficient and QoE-centric resource management. Several efficient DRL algorithms
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exist, among which Deep Q-Networks (DQN), Double DQN (DDQN), and Dueling Double

DQN (D3QN) have been widely adopted and demonstrated to be particularly effective. The

detailed implementation is discussed in Chapter 3 of this thesis.

1.6 Motivation

The SatCom industry is undergoing rapid transformation. Well-known satellite operators

such as SES, Intelsat, Inmarsat, Airbus, and Viasat are now competing with emerging broad-

band SPs like SpaceX and Eutelsat for global market share [18]. Despite a 29% increase in

overall satellite broadband revenue and a 46% growth in subscriptions in 2024 [37], several

operators reported revenue declines. This apparent paradox is driven by intensifying mar-

ket competition, the rising influence of Over-the-Top (OTT) streaming platforms, and the

commoditization of satellite capacity through wholesale business models [38,39].

Concurrently, the SaaS market is projected to expand significantly, from USD $5.87 billion

in 2025 to USD $21.42 billion by 2034 [40]. This growth is fueled by increased demand

for satellite connectivity across industries such as agriculture, disaster management, remote

sensing, and maritime operations. In this evolving ecosystem, satellite operators face growing

pressure to deliver high QoE while minimizing operational costs and responding to dynamic,

heterogeneous traffic demands.

Traditional CA techniques, often based on static provisioning, are insufficient in this

context. Satellite networks are inherently constrained by limited spectrum, high latency,

and susceptibility to environmental disturbances like rain attenuation. These challenges are

further compounded by the unpredictable and time-varying nature of user traffic. Moreover,

accurately modeling QoE remains difficult due to the complexity of user behavior and diverse

application requirements.

To remain competitive and profitable, satcom SPs must adopt intelligent resource alloca-

tion frameworks that strike an optimal balance among capacity utilization, capacity leasing

costs, and user-perceived quality (see Fig. 1.4). This necessitates novel, QoE-aware ap-

proaches that can dynamically allocate network capacity while adapting to fluctuating traffic

patterns and uncertain channel conditions.

This thesis is motivated by the urgent need to develop a dynamic, QoE-centric CA

framework that can handle the inherent uncertainties of traffic demand and environmen-
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Figure 1.4: Capacity, cost, and QoE tradeoff in satellite networks.

tal impairments in satellite networks. Specifically, we aim to design scalable optimization

techniques that incorporate predictive QoE modeling, environmental awareness, and cost-

efficiency, thereby supporting sustainable satellite operations in a highly competitive and

service-oriented market.

1.7 Research Questions

Building on a detailed understanding of the limitations of current dynamic resource allocation

techniques, as well as the challenges posed by HTS communications and the transmission

of large, time-varying volumes of data to users, this thesis explores the following research

questions to develop novel methods for QoE-aware DCA in multi-beam, multi-service SatCom

systems.

Question 1: How can we design a cost-minimizing DCA method for next-

generation HTS systems, aimed at minimizing the capacity required to meet

target QoE and BP requirements?

Satellite operators need to develop a flexible, cost-efficient CA strategy that allows them

to maximize revenue by leasing their available capacity to as many SPs as possible. This

can be achieved through a cost-effective (cost-minimizing) capacity renting mechanism

that ensures the QoE requirements of end-users. Finding the optimal balance between

operators’ revenue, SPs’ rental costs, and users’ QoE requirements is a crucial research
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question.

Question 2: How can we design a flexible CA policy for multiple services,

each characterized by distinct inter-arrival distributions and unique QoE

requirements?

Operators must design a QoE-aware DCA policy capable of accommodating the de-

mands of multiple services, each with different QoE requirements and distinct packet

inter-arrival patterns. In cases of limited capacity, the allocation strategy must priori-

tize services based on their priority levels. Designing a DCA policy that accommodates

multiple services, each with distinct QoE requirements and different packet arrival

times, is an interesting research question that needs to be addressed.

Question 3: How can we design a proactive beam traffic-to-GW (B2G)

matching strategy when traffic demand and rain attenuation are not known

in advance?

The utilization of EHF band SatCom systems is complicated by the unpredictability

of both traffic demand and rain attenuation levels, as these factors directly affect the

capacity of the GW to satellite feeder links. Therefore, satellite operators must develop

a proactive and optimal B2G matching mechanism to minimize service outages and

packet loss.

1.8 Contributions

The main contribution of this PhD thesis is distributed among the chapters 2, 3, and 4 that

are given below:

1. Chapter 2: Traditional satellite capacity leasing lacks the flexibility needed to efficiently

support 5G-NTN networks, which involve multiple services with highly dynamic traffic

demands. Satellite operators not only face the challenge of adapting to this variability

but must also minimize the costs incurred by SPs renting their capacity, all while

meeting stringent QoE requirements. Existing QoE models, often based on subjective

user opinions, are not scalable or reliable for such environments. To overcome these

limitations, we propose a dynamic, QoE-aware CA model that minimizes rental cost

while objectively estimating QoE based on buffer queue lengths. The model ensures
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that both stochastic QoE targets and BP constraints are satisfied, benefiting satellite

operators, SPs, and end users alike.

2. Chapter 3: In modern satellite and 5G-enabled networks, CA must account for the

diverse and dynamic nature of service demands. The primary challenges stem from the

need for real-time decision-making under uncertain and rapidly changing traffic condi-

tions, service-specific QoE requirements that are difficult to quantify, and the presence

of heterogeneous packet inter-arrival patterns across services. Traditional optimization

approaches struggle in such environments due to their static nature and reliance on

prior knowledge of traffic patterns. To address these challenges, we propose a DRL-

based approach for dynamic and intelligent CA. Specifically, we leverage DDQN to

flexibly allocate capacity among multiple services with varying inter-arrival time distri-

butions and distinct QoE expectations. Our model prioritizes more critical flows during

congestion, ensuring responsiveness to real-time conditions.

3. Chapter 4: Satellite operators are increasingly turning to EHF bands to expand avail-

able capacity [41], [42], [43]. However, these bands are highly susceptible to rain fading,

which is both severe and unpredictable—making it a major contributor to service out-

ages. In addition, the time-varying nature of traffic demand, with future demands

unknown in advance, often leads to load imbalances across feeder links and quality

degradation during peak periods. To address these limitations, we propose a proactive

and dynamic B2G traffic matching framework that balances load among feeder links

by predicting both rain attenuation and traffic demand in advance.

1.9 Scope and Limitations

This thesis investigates a QoE-aware DCA framework tailored for next-generation satellite

networks, with a primary focus on GEO satellites supporting multiple coexisting services

with service-specific QoE requirements. The scope is confined to forward link transmission

under unpredictably time-varying traffic demands and environmental impairments such as

rain fading. The study does not address non-GEO constellations or uplink resource manage-

ment.

The research methodology includes a comprehensive state-of-the-art review, system mod-

eling, problem formulation, solution design, and performance evaluation. All evaluations are
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carried out through analytical modeling and extensive simulations; no real-world satellite

experiments or hardware implementations are included.



Chapter 2

QoE-Aware Cost-minimizing

Dynamic Capacity Renting

This chapter is based on work published in IEEE Transactions on Communications,

vol. 73, no. 3, pp. 1773 - 1789, March 2024.

2.1 Introduction

SatCom systems are becoming important to provide global connectivity with a wide range

of applications requiring high availability and resilience to critical areas that are unreachable

by the current terrestrial networks [44, 45]. The growing attention on the dynamic SatCom

systems supporting service-aware communications and seamless coverage, as well as its asso-

ciated implementation costs, has inspired a number of big names in the industry to develop

new SaaS business platforms [20,21]. Such a platform comprises satellite operators - the own-

ers of the SatCom systems, and the service SPs which may rent certain satellite capacity from

the operators to provide different services to their end users [20,46,47]. This novel paradigm

can enable the operators to access new markets and it can release the SPs from investing a

huge amount of money in order to build dedicated satellites [48]. Given the unpredictable

and time-varying nature of traffic generated by diverse services, the development of flexible

and adaptive capacity renting mechanisms is becoming essential for SPs to optimize resource

usage while ensuring service-level QoE. This mechanism is expected to allow the SPs to ob-

tain capacity as needed rather than committing to a fixed amount. Such flexibility can boost

network utilization, enhance revenue for the operators, and help the SPs save the costs while

16
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ensuring the user QoE [49]. However, to establish such an optimal capacity renting framework

between the operators and SPs, one should carefully manage and analyze a vast number of

simultaneous data flows, each with distinct QoE requirements [50]. Specifically, the SPs must

swiftly make provisions on the required capacity while still guaranteeing the desired QoE for

their users. On the SatCom operators side, to realize the DCA mechanism, the advanced

digital transparent payloads (DTP) using “defacto” platform can be deployed [10,51]. Based

on this, the satellites can assign capacity across beams effectively and route traffic of various

types efficiently.

To ensure effective network resources renting from the operators, the SPs have to cope

with multiple challenges in maximizing their profit [48, 52]. Herein, the business problems

at the SPs include (but are not limited to) capacity estimation accommodating the irregular

and unpredictable “time-varying” data traffic from heterogeneous apps/services, and efficient

management of rented resources during both peak and off-peak periods to reduce costs [53,54].

Additionally, maintaining or expanding the customer base is a significant business challenge

for both the operators and SPs, and satisfying the diverse QoE requirements of customers

is a key point of resource management that should be addressed carefully. Furthermore,

the operators and SPs should also establish an agreement detailing the speed of capacity

adjustments and the maximum capacity SPs are allowed to use [46,52].

Consequently, the development of a dynamic, cost-effective, QoE-aware network resource

renting mechanism in SatCom systems has emerged as an interesting and compelling research

topic for both operators and SPs. Facilitated by the challenging problem, this paper focuses

on designing a new QoE-aware cost-minimizing capacity-renting framework in SaaS-enabled

multi-beam SatCom systems.

In the realm of wireless communication, the QoE at users can be affected by a variety

of factors, ranging from signal strength, data rate consistency, and connection reliability,

to service interruptions [55]. Among these aspects, a critical determinant of QoE in the

SatCom schemes is the end-to-end latency where extended delay can significantly compromise

a user’s overall experience. While all QoE issues are essential, reducing the latent period is

paramount [55]. It is worth noting that the end-to-end data transmission latency encompasses

both the signal propagation delay and the waiting time during which data resides in the

system buffer before transmission [56, 57]. However, in SatCom schemes, mitigating the

propagation delay poses a formidable challenge due to the Line-of-Sight (LoS) connection
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and almost-fixed distances between the satellite and user terminals. This inherent physical

limitation demands innovative solutions to ensure consistent and efficient communication,

enhancing the overall user experience.

In light of this challenge, our study focuses on addressing the QoE issue by modeling it

in terms of the waiting time of data packets in the system buffer. This approach underscores

the significance of minimizing delays to improve overall user satisfaction. At a specific time

instance, the waiting time of one beam is related to the stochastic queuing length, which can

be managed by dynamically allocating the capacity for the data transmission corresponding to

this beam when the data arrival rates vary. Then, our work aims to propose a novel dynamic

capacity planning model that minimizes the total renting cost of SPs while maintaining a

target BP of the system and a target queuing delay requirement of customers.

2.1.1 Related Works

The majority of existing frameworks for SatCom resource allocation have primarily focused on

maximizing overall power and spectrum utilization efficiency. Different techniques have been

used, such as non-convex optimization for flexible power and capacity assignment [58], beam

illumination and selective precoding [59], and joint beam selection and precoding [60]. The

work in [58] focused on satellite–user association-oriented to minimize the total uplink trans-

mit power for integrated satellite-terrestrial networks (ISTN). Research on QoE-aware DCA

to maximize user satisfaction in Orthogonal Frequency Division Multiple Access (OFDMA)

terrestrial networks considering time-varying channels has been conducted [61, 62]. These

approaches aim to satisfy the overall demand by improving power, capacity, or both utiliza-

tion efficiency. However, all previous works consider average beam demand which does not

change over time. In addition, the cost of satisfying this demand, the QoE of users, and

the amount of system capacity that remains unused is not well-documented in the literature.

Other studies have discussed profit opportunities associated with 5G infrastructure dynamic

leasing [52] and revenue management in SatCom systems [63].

Previous research has also applied different queue models for end-to-end latency estima-

tion, packet loss minimization, and buffer bloat prevention in various wireless communication

systems. For example, the M/G/1 queue model has been used to estimate transient QL [64],

latency estimation [65–67], the D/D/K queue model for dynamic buffer sizing [68], the

G/G/1 queuing model for Quality of Service (QoS) analysis [69], and the M/G/∞ queue
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model to estimate the minimum required system capacity [70]. While these studies use dif-

ferent queue models to maintain QoS in different wireless systems, they fail to consider the

QoE of users and the time-varying nature of average arrival rates.

In other areas, time-varying queue model-based resource allocation has been explored [71].

For example, in [72, 73] the application of different time-varying queue models in large-scale

service systems such as customer contact centers and hospital emergency departments is dis-

cussed. In these works, iterative staffing algorithms (ISA) are developed to optimize the staff

levels at the customer center to satisfy the stochastic waiting time requirement of customers.

Herein, the state-of-the-art Mt/M/S(t) queue model is exploited where the Mt indicates

time-varying Poisson arrivals, and the S(t) indicates time-varying servers and the M indi-

cates a constant serving capacity of the servers in every staffing interval. Then, an efficient

time-varying human-resource-management framework is established by iteratively determin-

ing the staff level at a specific time. Similarly, the authors in [24] also employed Mt/M/S(t)

to develop a Deep-Reinforcement-Learning based framework to optimize the beam-hopping

strategy adapting with time-varying data traffic flows coming to the multiple-beam SatCom

systems. Next, [25] describes how time-varying Mt/G/∞ queue models can be applied to

staffing and capacity planning of cloud services and protective equipment management in

hospitals during the outbreak of a disease. All works given in [25, 72, 73] focus on a fixed

processing rate at one serve (staff). On a different approach, the changeable processing rate

mechanism is studied in [74] where the Mt/Mt/1 queue model is used for efficient resource

allocation in industrial production by estimating the stochastic probability of the system QL.

However, this work mainly focuses on developing the admission control strategy for network-

slicing systems. Consequently, there is a very limited number of works considering multiple

traffic flows accessing satellite systems as time-varying queue models and exploiting this to

develop a QoE-aware dynamic capacity renting and allocation mechanism for the SPs to in

multiple-beam SatCom systems. Therefore, the work in this paper aims to fill this gap in the

literature.

2.1.2 Contributions

Our paper aims to propose a novel QoE-aware flexible capacity renting framework for SaaS-

enabled multiple-beam SatCom systems to effectively manage the renting costs at the SPs.

By employing the stochastic queuing theory, we first formulate the problem as a stochastic
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optimization problem. This allows us to examine the impact of system and user requirements

on the rent cost and the trade-off between them, thereby assisting SPs in predicting the

capacity they need to request operators to maintain a satisfied customer base while minimizing

rent costs. Our key technical contributions in this article can be summarized as follows:

• First, we express the traffic flows using a time-varying (Mt/Mt/1) queuing model and

estimate the stochastic QL of packets waiting in the system by using the continuous-

time Markov chain (CTMC). The analysis results are then employed to formulate a

stochastic optimization problem for QoE-aware DCA that includes queue status-based

dynamic spectrum sharing among adjacent beams of the same cluster to minimize cost.

The problem aims to help SPs to be able to efficiently allocate capacity and reduce

un-utilized capacity as well as their rent costs.

• Next, we estimate the stochastic BP and the probability of violating the waiting-time

requirement over the observation period, which allows SPs to predict the impact of

decisions on user experience. We further analyze the trade-off between maintaining user

satisfaction and capacity rent cost in SatCom systems will assist SPs in determining the

optimal balance between these two objectives, based on which we provide a closed-form

solution based on Lagrangian duality making use of the estimated BP.

• For comparison purposes, we introduce a greedy algorithm and modify the ISA frame-

works in [72,73] to suit our design requirements. The proposed algorithms are validated

through numerical results and Monte Carlo simulations using practical simulation pa-

rameters. The numerical and simulation outcomes have effectively confirmed the theo-

retical soundness of our proposed frameworks.

In summary, our proposed approach is based on the stochastic queuing theory and aims to

assist satellite SPs in predicting the capacity they need to maintain a satisfied customer base

while minimizing rent costs by using a QoE-aware DCA model.

2.2 System Model and Problem Formulation

We examine a SaaS platform in a multi-beam GEO communication system where the overall

available capacity of a GEO satellite is owned by an operator that can be rented by SPs. The
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Figure 2.2: The footprints of clusters containing J adjacent beams with non-overlapping frequency.

study focuses on a scenario where a specific SP1 rents a time-varying amount of capacity from

the operator to provide broadband services to multiple users randomly distributed across B

beams. Let W (t) (bps) represent the total capacity rented by the SP from operator to serve

all traffic flows across all beams. Each beam is assigned a portion of this capacity, denoted by

W b(t), which can range from 0 to W (t), i.e. 0 ≤ W b(t) ≤ W (t). The network operates in a

time-slot manner, with each time slot having a duration of TTS as the transmission time. Due

to possible processing speed capability limitations of DTP reconfiguration combined with

the consequent signaling through the tracking, telemetry, and command system (TT&C)

links [10], it is assumed that W b(t) remains constant for a cycle duration of M time slots.

W b(t) can only be reset at time-slot indices tc ∈ {0,M, 2M, ..., kM, ...} andW b(t) =W b(kM)

if t ∈ ((k − 1)MTTS, kMTTS] where k = 1, 2, ...,K. We refer to W b(kM) as W b
k , which

represents the allocated capacity of beam b in cycle k. The design framework considers a

1The work can be efficiently scaled up for a general scheme consisting of multiple SPs as well.
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monitoring period of K cycles, equivalent to a total operation time of T = KMTTS (seconds).

Let f (X) stand for the cost function corresponding to X (bps) that the SP rents from

operator. Normally, f (X) is a monotonic increasing function with respect to X which reflects

the idea that renting more capacity incurs more rental cost. Then, the total renting cost that

the SPs have to pay to the operator during T seconds can be expressed as,

FSP = f

(∫ T

0
W (t)dt

)
= f

(
B∑
b=0

K−1∑
k=0

MTTSW
b
k

)
. (2.1)

2.2.1 Capacity Allocation and Frequency Reuse

To address the strong cross-beam interference between adjacent beams, a dynamic multi-

color policy is employed in this multi-beam transmission system. This differs from traditional

color-reuse schemes, where the spectrum is equally distributed. Here, the spectrum is freely

allocated to beams, ensuring that different and non-overlapping frequency bands are assigned

to two arbitrary adjacent beams. It follows that the sum of capacity assigned to any cluster

of J adjacent beams must not exceed the maximum available spectrum band capacity. For

instance, Figs. 2.2a and 2.2b demonstrate settings of 3 and 4 adjacent-beam clusters with

non-overlapping spectrum.

For a specific beam pattern, let C be the number of available J-adjacent-beam clusters and

U ∈ {0, 1}C×B be the adjacency matrix. In the cth row of U, only J elements corresponding

to the indices of J adjacent beams of cluster c are set to one, while the others are set to zero.

The dynamic multi-color reuse requirement can then be described by the following constraint:

UWk ≤Wmax1C×1, (2.2)

where Wk =
[
W 1

k , ...,W
b
k , ...,W

B
k

]T
, Wmax (bps) indicates the maximum reusable capac-

ity available per cluster, and 1C×1 stands for a one-vector with size of C × 1.

2.2.2 Queuing Model

From user perspective, a single device can generate multiple data packets that correspond to

various applications operating on it concurrently. It’s assumed that packets corresponding to

a specific application type have identical packet sizes. Consequently, the number of packets

resulting from a particular application, which is run by several devices concurrently, can be
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Figure 2.3: Capacity allocation for a queued flow of packets in multiple beam satellite networks.

consolidated into a traffic flow with a projected arrival rate. This number of packets adheres

to a random process, with the estimated arrival rate serving as the mean value [75–77]. This

work deals with heterogeneous time-varying traffic rates generated by different applications

such as voice, video streams, and web browsing. To handle this, the demands from end users

are modeled as multiple queues accessing each beam. The data flows are classified based on

their corresponding statistical parameters, such as arrival rates and packet lengths. In this

model, the arrived packets are processed based on the basic first-come first-served strategy.

Consider F data-flows corresponding to F services tending to access each of B beams

as shown in Figure 2.3. We further assume that the flow f carrying data packets of Lf -bit

length comes to beam b at a time t following an independent Poison process2 [75–78] with a

time-varying arrival rate of λbf (t), i.e., λ
b
f (t) is the number of packets that changes over time.

The total arrival rate in bits per second to a beam becomes

Λb(t) =
F∑

f=1

λbf (t)Lf . (2.3)

Suppose that a packet of L bits is a normalized processing unit in this SatCom system. As a

result, the arrived data can be divided into packets of L bits for transmission. Consequently,

2The traffic-flow arrival rates of some typical use cases for the next-generation communication services,
such as Internet of Things with small packets and virtual-image communication, have been reported to follow
the Poisson process [75–78].
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the total arrival rate in terms of the number of packets at beam b can be determined as

λb(t) = Λb(t)/L. (2.4)

Additionally, the service rate for all flows entering beam b at any time t, which is estimated

as the number of packets based on the corresponding allocated capacity, can be expressed as,

µb(t) =W b(t)TTS/L. (2.5)

Remark 1. The users’ demands in terms of QoS can be captured by the traffic flow model.

For instance, a higher transmission rate can be equated to an elevated arrival rate (λbf (t)

is scaled-up) or an extended packet size (Lf is set to a larger value). Moreover, rapid time-

varying requirements can be depicted by a more fluctuating function of the time-varying arrival

rate setting, λbf (t).

2.2.3 QoE Requirement and Problem Formulation

In this section, we aim to ensure that the allocated capacity for every beam does not become a

bottleneck violating the required QoE. Here, we probabilistically model the QoE requirements

in the manner of transmission delay (waiting time) for the users in each beam with the queuing

length of packets available in the data buffer corresponding to that beam transmission.

Specifically, let qb(t) denote the queuing length of data packets stored in the buffer of

beam b at time t. Then, one denotes Pn,b(t) = Pr(qb(t) = n) as the probability that there

are n packets in the buffer of beam b at time t. As discussed in [71], due to the time-varying

arrival rate models, Pn,b(t) can be expressed as a function of t. Assuming that users in all

beams have the same waiting time tolerance which corresponds to a QoE threshold of queuing

length qQoE. The experience of network utilization is considered “acceptable” by the users if

the probability of that such threshold is violated is less than a commitment factor P̄QoE, i.e.,

0 < P̄QoE < 1. Therefore, the design in this work focuses on keeping the probability that the

QL surpasses qQoE packets3 over the window time of [0, T ] less than P̄QoE for all the beams,

which can be expressed as

1

T

∫ T

0
Pr{qb(t) ≥ qQoE}dt ≤ P̄QoE, ∀b. (2.6)

3Service specific QoE requirements are explained in Chapter 3 of this thesis.
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One further assumes that the length of every beam buffer is limited by qmax, so-called the

maximum buffer length. Herein, it also needs to ensure that the QL at every beam does not

surpass qmax beams as much as possible, otherwise, the processing of all data flows to the

particular beam will be blocked. Regarding the network admission requirements, our design

needs to maintain the BP below a predetermined threshold4 for every time slot [78]. This

requirement can be cast by the following constraint,

Pr{qb(t) ≥ qmax} ≤ P̄Blk ∀(t, b), (2.7)

where P̄Blk is the target BP. Taking into account that Pr{qb(t) ≥ N} = 1 −
∑N

n=1 Pn,b(t),

our technical designs can be formulated into a statistical optimization problem as follows.

min
W

f

(∑
∀b

∑
∀k

MTTSW
b
k

)
(2.8a)

s.t. constraint (2.2),
qmax∑
n=0

Pn,b(t) ≥ 1− P̄Blk, ∀(t, b), (2.8b)

1

T

∫ T

0

(qQoE∑
n=0

Pn,b(t)

)
dt ≥ 1− P̄QoE, ∀b, (2.8c)

where W represents the matrix containing all W b
k ’s. As observed, this presents a stochastic

optimization problem wherein the constraints correspond to a random process. The primary

challenge in resolving this problem stems from the statistical formulas articulated in con-

straints (2.8b) and (2.8c). In this context, while the problem data remains uncertain, the

queuing model incorporating the Poisson process, as discussed in Section 2.2.2, serves as the

foundation for our solution framework.

Remark 2. It is worth noting that f(X) is an increasing function so the SP has to pay more

if it rents more capacity. Hence, problem (2.8) is equivalent to the following,

min
W

MTTS
∑
∀b

∑
∀k

W b
k

s.t. constraints (2.2), (2.8b), and (2.8c).

(2.9)

4In practice, different services have different BP requirements. However, in this context, we associate the
BP with the likelihood that the QL exceeds the maximum buffer size, which is assumed to be constant across
all services
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2.3 Queuing Stochastic Analysis and Problem Approximation

2.3.1 Time-Varying Queuing Stochastic Brief Discussion
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Figure 2.4: Queue state transition diagram of beam b.

The total demand in each beam, which is the sum of arrivals of all data flows, varies over

time and can be modeled as a continuously varying arrival rate. Consequently, the number

of packets in the buffers in each time slot is a stochastic process. To model this behavior, we

represent the number of packets at each time slot as a CTMC, as shown in Fig. 2.4. This

stochastic process can be described using a system of ordinary differential equations (ODEs)

known as the Kolmogorov equations [71], and the QL follows a birth-death process. The

transient solution of the Kolmogorov equation yields the stochastic QL values as:

∂P0,b(t)

∂t
=


−λb(t)P0,b(t) + µb(t)P1,b(t), if n = 0,

λb(t)Pn−1,b(t) + µb(t)Pn+1,b(t)

−(λb(t) + µb(t))Pn,b(t), if n > 0,

(2.10)

where
∂P0,b(t)

∂t
indicates the derivative of Pn,b(t) at time t. However, since the Kolmogorov

equation does not yield explicit solutions for the transition probabilities, various more suitable

methods have been developed to approximate the solutions, as described in [71,74,79]. Denote

Q(t) as the QL at time t. Then, the transient probabilities can be approximated by a

cumulative distribution function given by:

F (Q, t) = Pr(Q(t) ≤ Q). (2.11)

The expected value of the queue distribution at the buffer of beam b provides,

∫ n+1

n
F (Q, t)dQ ≈ Pn,b(t). (2.12)
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The beam utilization at any time slot t is calculated as,

ρb(t) =
λb(t)

µb(t)
. (2.13)

The continuous-model approximation is exact in steady-state [74]. Therefore, the approxi-

mated probability of the availability of n packets in the buffer system of beam b at any time

slot t can be expressed as

P̂n,b(t) =

∫ n+1

n
F (Q)dQ = ρb(t)n(1− ρb(t)). (2.14)

2.3.2 Problem Approximation

This section exploits the continuous-model approximation in (2.14) to express the stochastic

QL in terms of capacity and express the constraints as a function of capacityW b
k . Expressing

µb(t) in (2.5) in terms ofW b
k for t ∈ ((k − 1)M,kM) and k ∈ {1, ..,K}, one can rewrite (2.14)

as,

P̂n,b(t) = gn,b(W
b
k , t) =

(∑F
f=1 λ

b
f (t)Lf

TTSW
b
k

)n(
1−

∑F
f=1 λ

b
f (t)Lf

TTSW
b
k

)
, ∀(k, b). (2.15)

Since the beams can not serve beyond their maximum capacity, the system utilization con-

straint needs to satisfy ρb(t) ≤ 1 [74]. Otherwise, ρb(t) > 1 indicates the system is over-

congested and users are blocked from accessing the corresponding beam. Letting Ωk denote

the set ((k − 1)M,kM ], one can restate problem (2.9) as,

min
W

MTTS

B∑
b=1

K∑
k=1

W b
k (2.16a)

s.t. constraint (2.2),

qmax∑
n=0

gn,b(W
b
k , t) ≥ 1− P̄Blk,∀k, ∀b and t ∈ Ωk, (2.16b)

1

T

K∑
k=1

∫ kM

(k−1)M

qQoE∑
n=0

gn,b(W
b
k , t)dt ≥ 1− P̄QoE,∀b, (2.16c)

0 ≤ ρb(t) ≤ 1, ∀t,∀b. (2.16d)
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2.4 Dynamic Capacity Allocation Design

In this section, we aim to explain the step-by-step approach to find the optimal dynamic

capacity allocated across all beams.

2.4.1 Problem Convexity Characterization

In order to solve problem (2.16), we first characterize its convexity. To begin with, we

first define the lower bound capacity amount required per cycle in which µb(t) is fixed by

considering the following proposition.

Proposition 1. Constraints (2.16b) and (2.16d) in problem (2.16) can be merged into one

constraint as

W b
k ≥ αb

k = max
(
αb
k,1, α

b
k,2

)
, ∀k, ∀b, (2.17)

where αb
k,1 = maxt∈Ωk

Lλb(t)/TTS,

αk,2 = maxt∈Ωk
Lg−1

qmax
(1− P̄Blk, t)/TTS, and g

−1
qmax

(P̄Blk, t) is the inverse function of
∑qmax

n=0 gn,b(W
b
k , t).

Proof. The proof is given in Appendix 5.2

In the next move, based on the result of this proposition and the fact that (2.17) is a

linear constraint, we state the convexity of problem (2.16) in the following theorem.

Theorem 1. Problem (2.16) can be transformed into the following optimization problem

which is convex,

min
W b

∑
∀b

∑
∀k

MTTSW
b
k (2.18a)

s.t. constraint (2.17),∑
∀k

zk(W
b
k) ≥ 1− P̄QoE, (2.18b)

where zk(x) =MTTS/T −Ab
k/
(
TxqQoE+1

)
.

Proof. The proof is given in Appendix 5.2

Thanks to Proposition 1 and Theorem 1, one can state that (2.16) is equivalent to convex

problem (2.18). In the following section, a dynamic resource allocation algorithm is proposed

by developing an optimization-based approach to obtain the optimal solution of this problem.
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2.4.2 Duality-based Dynamic Capacity Allocation Algorithm

Duality Approach

We first define the Lagrangian function L associated with (2.18) as,

L(W,β, ζ) =MTTS
∑
∀(b,k)

W b
k +

∑
∀(k,c)

ζc (ucWk −Wmax) −
∑
∀b

βb

(∑
∀k

zk(W
b
k)− 1 + P̄QoE

)
(2.19)

where βb and ζc are the Lagrangian multipliers; uc stands for the vector generated from

the c-th row of U; and Wk = [W 1
k ,W

2
k , ...,W

B
k ]T . Then, the dual function of W b

k can be

defined as the minimum of the Lagrangian function as,

g(β) = min
W

L(W,β, ζ) s.t. (2.17). (2.20)

To find the best lower bound that can be obtained from the Lagrange dual function, the

dual problem can be written as,

max
βb,ζc

g(β, ζ) s.t. βb ≥ 0, ζc ≥ 0. (2.21)

Since problem (2.18) is convex, the dual-gap between the primary and dual problem is

zero [26]. In the following, one will describe a searching approach to define the optimal

solution. In particular, the dual problem is always convex, g(βb, ζc) can be maximized by

using the standard sub-gradient method where the dual variables βb and ζc are first initialized

to random values in the dual feasibility region of βb > 0, ζc > 0, g(βb, ζc) > −∞ [80]. The

dual variables can be iteratively updated as follows:

βb[ℓ+1] =

[
βb[ℓ] − δ[ℓ]

(
K∑
k=1

zk(W
b
k)− 1 + P̄QoE

)]+
, (2.22)

and ζck,[ℓ+1] =
[
ζck,[ℓ] + δ[ℓ] (u

cWk −Wmax)
]+
, (2.23)

where the suffix [ℓ] represents the iteration index, δ[ℓ] is the step size, and [x]+ is defined

as max(0, x). This sub-gradient method guarantees the convergence for any initial primary

point of {W b
k}’s if the step-size δ[ℓ] is chosen appropriately so that δ[ℓ]

ℓ→∞−→0 such as δ[ℓ] = 1/
√
ℓ

[26, 81].
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Solving the optimization problem related to dual function

This section focuses on minimizing the Lagrangian function,

min
W

L(W,β, ζ) s.t. constraint (2.17). (2.24)

Proposition 2.

(W b
k)

⋆ = max(αb
k, Ŵ

b
k), (2.25)

where,

Ŵ b
k =

 βbAb
k(qQoE + 1)[(

MTTS +
∑C

c=1 ζ
cUc,b

)
T
]


1/(qQoE+2)

, (2.26)

Ab
k is as defined in (5) and Uc,b is the element on row c and column b of matrix U.

Proof. The proof is given in Appendix 5.2.

Proposed Duality-based Algorithm

Thanks to the duality approach, the optimal solution of problem (2.18) can be obtained by

alternatively solving problem (2.24) - the right-hand-side of (2.20) - as presented in Proposi-

tion 2, and updating Lagrangian multipliers βb and ζc as in (2.22) and (2.23) in each iteration

until the convergence. The optimization-based approach is summarized in Algorithm 1 where

the iteratively solving process can be stopped when the gaps ∆1 =
∑B

b=1|βb[i+1] − βb[i]| and

∆2 =
∑C

c=1|ζc[i+1] − ζc[i]| are sufficiently small.

2.4.3 Benchmark Algorithms

Greedy Algorithm

To mitigate the complexity of solving our problem given in the previous section, this

section introduces a straightforward and efficient greedy algorithm. As evident, the primary

challenge in addressing problem 2.16 arises from the coupling of all W b
k throughout the entire

time window T as illustrated in (2.16c) for each beam. In particular, directly handling this

constraint needs to consider the average probability of QoE violation across the entire time

window T . To simplify this process, we disregard the average value, prompting the system

to meet the QoE requirement at every given moment. As such, constraint (2.16c) is replaced
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Algorithm 1 Duality-based Dynamic Capacity Allocation

1: Initialization:

• Choose initial dual vector values βb and ζc.

• Select a tolerate ϵ, step size δ, and set ∆1 = 1, ∆2 = 1 i = 0.

• Define U , Wmax and provide values for qQoE, P̄Blk, P̄QoE and qmax.

2: while ∆1 > ϵ and ∆2 > ϵ do
3: Given βb[i] and ζ

c
[i], define (W b

k)
⋆’s as in (2.25) and (2.26).

4: Based on (W b
k)

⋆’s, update βb[i+1] as in (2.22).

5: Based on (W b
k)

⋆’s, update ζc[i+1] as in (2.23).

6: Re-set ∆1 := |βb[i+1] − βb[i]|.
7: Re-set ∆2 := |ζc[i+1] − ζc[i]|.
8: Set i := i+ 1.
9: end while

10: Return W⋆
k.

Algorithm 2 Greedy-based Dynamic Capacity Allocation

1: Inputs:

• Provide initial values for λbi,k, Lf .

• Provide values for qQoE, P̄Blk, P̄QoE and qmax.

2: for b = 1 to Number of beams do
3: for k = 1 to Number of cycles do
4: Calculate αk,1, αk,2, αk,3 .
5: Calculate max(αk,1, αk,2, αk,3).
6: end for
7: end for
8: Return W⋆.

by a more stringent version, which is presented as follows:

qQoE∑
n=0

gn,b(W
b
k , t) ≥ 1− P̄QoE,∀k, ∀b and t ∈ Ωk. (2.27)

This new constraint is similar to (2.16b). By employing the same approach handling

(2.16b) given in Proposition 1, we first define the maximum arrival rate over one cycle as,

λbi,k = max
t∈Ωk

λbi(t). (2.28)
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Then, the new constraint in (2.27) can also be translated into,

W b
k ≥ αb

k,3 = max
t∈Ωk

Lg−1
qQoE

(
1− P̄QoE, t

)
/TTS. (2.29)

Thanks to Proposition 1, we are able to estimate the required capacity of each beam over

every cycle by taking the maximum capacity that satisfies the problem constraints. That is,

(W b
k)

⋆ = max
(
αb
k,1, α

b
k,2, α

b
k,3

)
. (2.30)

The greedy algorithm is summarized in Algorithm 2.

Iterative Staffing Algorithm (ISA)

This subsection introduces another benchmark solution for comparison purposes, which is

developed by adapting the ISA given in [72]. The ISA is well-established for time-varying

human resource management to satisfy the stochastic waiting time requirement of customers.

In [72], the Mt/M/N(t) queue model is employed where the serving capacity of one server

(or employees) is fixed (M) while the number of servers (employees) can be varied over the

time. Herein, N(t) represents the number of allocated employees at time t, and the ISA is

designed to determine N(t) coping with the time-varying customer arrival rate efficiently.

As can be seen, the queuing model utilized in [72] is different from our Mt/Mt/1 scheme

which is related to one server with variable serving capacity. Hence, in order to modify this

work to address our problem, we assume that the capacity amount allocated to beam b in

cycle k can be represented by a number of “fixed capacity packages”. Let W0 (bps) be the

capacity of one such package, and N b
k denote the number of capacity packages assigned for

beam b in cycle k. Then, we have,

W b
k = N b

kW0. (2.31)

In addition, the processing rate corresponding to one package can be estimated as

µ0 =W0TTS/L. (2.32)

Now, we can employ the ISA to optimize {N b
k}’s by regarding the constraints (2.8b)

and (2.8c) instead of the stochastic waiting time as designed in [72]. Specifically, at the

initialization, {N b
k}’s are randomly selected and then adjusted over iterations. There are two
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Algorithm 3 ISA-based Capacity allocation

1: Input:

• Initialize a vector of the number of packages N b
k(0).

• Set values of P̄Blk , P̄QoE, µ0, ∆ and ∆0, ϵ1 = 10−4 , counter i = 0.

2: while ∆ > ϵ1 and ∆0 > ϵ1 do
3: For every t ∈ Ωk , calculate ρb(t) = λb(t)/(µ0N

b
k(i)) and P̂n,b(t) according to (2.14).

4: Calculate V b
bl,k(i) as in (2.35) and V b

QoE,k(i) as in (2.38).

5: Calculate Υb
bl,k(i) as in (2.34) and Υb

QoE,k(i) as in (2.37).

6: Calculate N b
bl,k(i+ 1) as in (2.33) and N b

QoE,k(i+ 1) according to (2.36).

7: Set ∆ = |V b
QoE,k(i)− P̄QoE|.

8: Set ∆0 = |V b
bl,k(i)− P̄Blk|.

9: Set i = i+ 1.
10: Set N b

k(i) = max {N b
bl,k(i+ 1), N b

QoE,k(i+ 1), N b
k(0)}.

11: end while
12: Return Wb

k = Lµ0N
b
k/TTS.

components to define N b
k in every iteration i, the first is N b

bl,k(i) - being updated according to

the BP requirement, and the latter is N b
QoE,k(i) - being adjusted due to QoE-related demand.

Here, constraint (2.8c) is considered for every cycle to updateN b
QoE,k(i). To ensure compliance

with the BP requirement stated in (2.16b), N b
bl,k(i) is updated as follows:

N b
bl,k(i+ 1) =


⌈N b

bl,k(i)Υ
b
bl,k(i)⌉ if Υb

bl,k(i) ≥ 1,

⌊N b
bl,k(i)Υ

b
bl,k(i)⌋ otherwise, ∀k,

(2.33)

where ⌈.⌉ and ⌊.⌋ indicate the ceil and floor operators and Υb
bl,k(i) is the blocking-probability

influence factor corresponding to N b
k(i) and P̄Blk. In particular, Υb

bl,k(i) can be given as

Υb
bl,k(i) = 1 +

V b
bl,k(i)− P̄Blk

P̄Blki
, ∀k, (2.34)

where V b
bl,k(i) indicates the maximum BP during cycle k corresponding to N b

k(i). Specifically,

V b
bl,k is given as follows:

V b
bl,k = max

t∈Ωk

Qmax∑
n=0

P̂n,b(t)
∣∣∣
W b

k=W0Nb
k(i)

. (2.35)
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Similarly, the N b
QoE,k(i) in iteration i is updated as follows:

N b
QoE,k(i+ 1) =


⌈N b

QoE,k(i)Υ
b
QoE,k(i)⌉ if Υb

QoE,k(i) ≥ 1,

⌊N b
QoE,k(i)Υ

b
QoE,k(i)⌋ otherwise,∀k,

(2.36)

where Υb
QoE,k(i) is a QoE-related influence factor corresponding to N b

k(i) and P̄QoE. Here,

Υb
QoE,k(i) is expressed as,

Υb
QoE,k(i) = 1 +

V b
QoE,k(i)− P̄QoE

P̄QoEi
, ∀k, (2.37)

where V b
QoE,k(i) indicates the maximum probability of violating the target QoE requirement

during cycle k with N b
k(i) as

V b
QoE,k = max

t∈Ωk

qQoE∑
n=0

P̂n,b(t)
∣∣∣
W b

k=W0Nb
k(i)

. (2.38)

In addition, to meet the condition ρb(t) ≤ 1 of (2.16c), it is essential to carefully set N b
k in a

way µ0N
b
k ≥ λb(t) for every t ∈ Ωk. Then, N

b
k can be updated as

N b
k(i) = max {N b

bl,k(i+ 1), N b
QoE,k(i+ 1), N b

k(0)} (2.39)

Accordingly, the adapted ISA is summarized in Algorithm 3.

2.4.4 Complexity Analysis

The complexity of Algorithm 1 arises from calculating αb
k and also processing a number of

loops in each of that βb[ℓ], ζ
c
[ℓ], and (W b

k)
⋆ are estimated as given in (2.22), (2.23), (2.26), re-

spectively. As given in (2.17), the complexity of estimating αb
k is the order of O

(
KBMq2max

)
.

Regarding the effort of estimating zk(W
b
k) and

∑K
k=1 zk(W

b
k), the complexity due to equation

(2.22) can be given as O
(
K2BMqQoE

)
. Similarly, the complexity due to equation (2.23)

is the order of O(KBC). Next, the complexity due to equation (2.26) is associated with

the summation of C elements and a power-of-qQoE calculator. Hence, the computation ef-

fort for calculating
{
Ŵ b

k

}
’s corresponding to B beams and K cycles can be the order of

O (KB(C + qQoE)). One assumes that implementing Algorithm 1 required ℓ(1) iterations to

get convergence and obtain the solution, the overall complexity of the algorithm taking the
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highest degree polynomial becomes

XAlg.1 = O
(
KB

[
Mq2max + ℓ(1)(KMqQoE + 2C + qQoE)

])
.

This shows that our problem can be easily solved and converged in a polynomial amount

of computation time. Considering the greedy algorithm, one can see that the outcome can

be obtained by estimating αk,1, αk,2, αk,3. According to (2.17) and (2.29), the required com-

putation effort for implementing Algorithm 2 can be described as

XAlg.2 = O
(
KBM(q2max + q2QoE)

)
. (2.40)

Consequently, we study the complexity of the ISA method. As summarized in Algorithm 3,

the process of ISA method encompasses multiple loops of estimating N b
k through equations

(2.33) and (2.36). In each loop, the heaviest task of determining N b
k replies on calculating

V b
bl,k and V b

QoE,k in (2.35) and (2.38), respectively. Therefore, the complexity of ISA can be

given as

XAlg.3 = O
(
ℓ(3)KBM(q2max + q2QoE)

)
. (2.41)

This has shown a relatively low computation effort. While both the greedy and ISA ap-

proaches are simpler than the duality method, we favored the latter because of its superior

efficiency, as showcased in Section 2.5.2. Moreover, the duality method, unlike some algo-

rithms which may require exponential time to converge, promises convergence in polynomial

time. This not only ensures more predictable computational demands but also bolsters its

viability as an optimal approach for real-world applications.

2.5 Performance Evaluation and Numerical Results

In this section, we simulate and analyze a time-varying queuing model to estimate the stochas-

tic BP over time and to find the optimal capacity that can satisfy the defined QoE and BP

requirements.

2.5.1 Simulation Setup and Parameters

In this subsection, we conduct a Monte Carlo simulation consisting of 5000 independent

data trials. The simulation includes generating random arrival rates based on a time-varying



36 Chapter 2

Figure 2.5: Considered GEO beam footprint pattern with N = 10.

Table 2.1: Simulation parameters.

Parameters Considered values

Cycle duration (M) 10 minutes
Normalized packet length (L) 64 (KBytes) [82]
Maximum buffer size (qmax) 30 packets 2 MB [83]
Total available capacity of the satellite (Gbps) 2.1 Gbps [84]
Number of beams (J) per cluster 3 [85]
Number of virtual beams (N) 10 [86]
Number of cycles (K) 6
Number of time slots 180000
Price per Mbits (γ) 0.1 Euros [87]
Random (rbf ) [1− 4]

Random (abf ) [0− 1]

Random phase (ϕbf ) [1− 360] degrees

Target BP (P̄Blk) 0.01 [88]
Time slot duration (TTS) 20 ms [89]

Poisson process [75–77] for various time slots, as well as assigning time-varying service rate

values for different cycles. In each iteration, the arrival rate function is chosen to represent

time-varying demand that varies between zero and the assumed system’s maximum capacity,

using a sinusoidal representation as described in [90]. Three data flows are generated for

every beam and the corresponding time-varying arrival-rate functions for beam b are given

as

λbi(t) = rbi (1 + sin(abi t+ ϕbi)), (2.42)
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where suffix i stands for data flow i and rbi is an influencing factor corresponding to the average

number of arriving packets at time t, abi is a positive number influencing the periodicity of

the arrival time of packets, and ϕbi ’s are phase shift angles. Here, rbi is selected randomly in

a range of [1, 4] so that the average of the total demand (
∑F

f=1 Lλ
b
f (t)/TTS) is not greater

than the assumed beam capacity of 700 Mbps as presented in [84]; abi is selected randomly a

range of (0, 1] as in [91], [92], while ϕbi is chosen randomly within [0, 360] to ensure all flows

have different peak and off-peak periods. The remaining parameters provided in Table 2.1

are adopted for all simulations unless specified otherwise.

Alg.1 Alg. 2 Alg. 3
Estimated

Queue Length
(15)

Numerical Approaches

Monte-Carlo Simulation
(5000 trials)

Capacity
Allocation

Analysis
Results

Simulation Results

(Figs. 14,15)

(Figs. 14-17)
(Figs. 7-13)

Figure 2.6: The diagram of obtaining numerical, analysis, and simulation results.

By utilizing the mean arrival rate function obtained from the Monte Carlo trials and

the service rate values obtained from the optimal allocated capacity according to (2.5), we

compute the QL, BP, and the probability of violating QoE requirements for each time slot t.

The simulation results as compared to the analytical results are explained in the next sub-

section for different values of the considered parameters. Regarding the renting cost function

f(W ), we exploit a linear form as f(W ) = γW [46, 93] where γ represents the price per

capacity unit, i.e., Euros/Mbits. Additionally, Fig. 2.6 illustrates the diagram of obtaining

numerical, analysis, and simulation results in this section. As can be seen, Algorithms 1-3

are first employed to determine the rented capacity solutions based on which the costs can

be calculated. They are so-called numerical results which are demonstrated in Figs. 2.7-2.12.

Furthermore, the capacity outcomes are utilized to obtain the analysis results by using (2.15),

which are illustrated in Figs. 2.13 and 2.13a. Additionally, the Monte Carlo simulation results

based on the numerical capacity solutions are illustrated in Figs. 2.13-2.15.
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Figure 2.7: Running time versus the number of cycles (K).

2.5.2 Numerical Results and Discussion

This section first shows the running time and convergence of the proposed algorithm, then

we investigate the effect of varying parameters, namely qQoE, P̄Blk, qmax, P̄QoE, and K, on the

optimal allocated capacity and total renting cost to meet the time-varying demand. Assuming

both polarizations are used in all beams, we can put a minimum of 3 adjacent beams per

cluster to avoid cross-beam interference [85]. Hence, our numerical results are based on 3-

beam clustering framework arrangement with 10-beam footprints as described in Fig. 2.5.

In particular, there are 10 clusters in this beam pattern setting which are (1, 4, 5); (1, 2, 5);

(2, 5, 6); (2, 3, 6); (3, 6, 7); (4, 5, 8); (5, 8, 9); (5, 6, 9); (6, 9, 10) and (6, 7, 10). Accordingly,

constraint (2.2) corresponding to cycle k is demonstrated as



1 0 0 1 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0

0 1 0 0 1 1 0 0 0 0

0 1 1 0 0 1 0 0 0 0

0 0 1 0 0 1 1 0 0 0

0 0 0 1 1 0 0 1 0 0

0 0 0 0 1 0 0 1 1 0

0 0 0 0 1 1 0 0 1 0

0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 1 1 0 0 1





W 1
k

W 2
k

W 3
k

W 4
k

W 5
k

W 6
k

W 7
k

W 8
k

W 9
k

W 10
k



≤Wmax



1

1

1

1

1

1

1

1

1

1



. (2.43)
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Figure 2.8: Convergence plot.
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(c) Considering different values of P̄Blk.
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(d) Considering different values of P̄QoE

Figure 2.9: Optimal allocated capacity to satisfy the time-varying arrivals (demand).
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(d) Considering different values of P̄QoE.

Figure 2.10: Total renting cost of the optimal allocated capacity to all beams.

Fig. 2.7 shows the running time of duality, greedy and ISA algorithms with varying values

of K, using Matlab (tic-toc method) on an Intel(R) Core(TM) i7 processor. The plot for the

duality algorithm indicates that it is close to the expected polynomial time complexity which

is proportional to power 2 of the size of cycles, which confirms the analysis results given in

Section 2.4.4. Next, we present the convergence plot of our proposed algorithm alongside the

benchmark ISA in Fig.2.8. The figure in 2.8b illustrates the changes in capacities assigned to

the beams when Algorithm 1 is implemented. As shown, the assigned capacity for each beam

decreases before stabilizing at its minimum value across iterations. Moreover, different beams

necessitate various numbers of iterations to reach convergent capacity values. Similarly, the

fluctuations in the total number of packages allocated to all beams in Fig. 2.8a are the result

of employing Algorithm 3 across iterations. The consistent increment or decrement by 1
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package in the plot arises from the rounding effects in the expression (2.33) of Algorithm 3.

Figs. 2.9a and 2.10a show the total allocated capacity per cycle (
∑B

b=0W
b
k) and the total

capacity rental cost (
∑B

b=0

∑K
k=0 γMTTSW

b
k) obtained by using the Lagrangian duality, ISA

and greedy algorithms at varying qQoE values, respectively. The parameters qmax = 32,

P̄Blk = 0.01, P̄QoE = 0.05, K = 12, and TTS = 20 ms have been taken into account. Here, one

assumes that the capacity of one package is set to 5 Mbps for implementing ISA algorithm,

which is equivalent to the scenario of the transmission over a 1 MHz sub-channel with 32-

QAM modulation at acceptable signal-to-noise ratio [94]. The study results indicate that

a system catering to users with a higher tolerance for waiting requires less capacity and

thus incurs lower costs. Moreover, higher values of qQoE and qmax can lead to lower required

capacity, resulting in smaller costs.

Figs. 2.9b and 2.10b show the sum of optimal allocated capacity per cycle and total

rental cost of all beams, respectively, when varying qmax while keeping other parameters

(qQoE = 15, K = 12, P̄Blk = 0.01, and P̄QoE = 0.05) constant. The results obtained through

the Lagrangian duality and ISA method indicate that allowing more packets stored during

congestion requires less allocated capacity. In contrast, the greedy algorithm assumes the

maximum capacity required to meet the target qQoE requirement, neglecting the buffer size

and its influence on . The figures also reveal that a larger buffer size and greater queuing

delay tolerance result in lower allocated capacity and rental costs.

Fig. 2.9c demonstrates the allocated capacity per cycle at various P̄Blk values using the

Lagrangian duality, ISA, and greedy algorithms at qmax = 32, qQoE = 20, P̄QoE = 0.05, and

K = 12. The Lagrangian duality and ISA approaches show that systems with lower BP

requirements have greater allocated capacities than those with higher blocking probabilities.

However, the greedy algorithm provides the same optimal capacity for all P̄Blk values, as it

only considers the maximum value associated with queuing delay violations and not with BP.

This makes our model more efficient in accounting for BP. Fig. 2.10c shows the relationship

between BP and total rental costs at different qQoE values. As can be seen, the lower BP

requirements return higher allocated capacities and costs. For example, based on the obtained

results, an increase in P̄Blk from 0.01 to 0.05 results in a cost reduction of approximately 5%,

while an increase from 0.01 to 0.1 leads to a reduction of 7.23%.

Next, Figs. 2.9d and 2.10d depict the relationship between P̄QoE and total allocated ca-

pacity as well as rental costs obtained by implementing the three algorithms. As expected,



42 Chapter 2

the outcomes of all three algorithms imply that a smaller probability of violating the QoE

requirement necessitates the SP to allocate a higher capacity and, conversely, less capacity

for a higher probability of violation. For instance, the obtained result indicates, an increase

in P̄QoE from 0.01 to 0.05 results in a reduction of the renting cost by 6.11%.

Figs. 2.11a and 2.11b present the total allocated capacities per cycle and the associated

renting costs for the three algorithms for various values of K. From the figures, it’s evident

that whenK rises, there’s a decrease in the optimal . This trend suggests that a more adaptive

system can fulfill demand using less capacity, leading to reduced costs. For instance, results

show that when K increases from 6 to 18, the renting cost drops by 11.38%, and a surge

from 12 to 18 results in a decline of 6.1%. Parameters for this analysis, including qmax = 32,

qQoE = 20, P̄Blk = 0.01, and P̄QoE = 0.05, were consistently considered.

The results, as depicted in all the above figures, highlight the superiority of the duality

method over both ISA and greedy algorithms in terms of flexibility and adaptiveness. For

instance based on the obtained result and for the case where qmax = 32, qQoE = 20, P̄Blk =

0.01, P̄QoE = 0.05 and K = 6, the proposed model can meet the requirement at a 9.85%

and 3.1% lower cost compared to the greedy and ISA algorithms. However, as K increases,

the greedy algorithm becomes as efficient as the proposed method, as larger values of K

represent nearly immediate capacity changes, which are ideal conditions for greedy algorithms

to perform well.
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Figure 2.11: Sum of the optimal allocated capacity and cost of all beams at different values of K

We need to examine if the capacity is shared among beams based on corresponding de-

mand. We also need to assess whether the proposed model meets the requirements discussed
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Figure 2.12: Optimal capacity allocation to beams in the same cluster for different arrival rates.
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Figure 2.13: Blocking probability achieved by analysis and simulation.

in Section 2.2.3. Fig. 2.12 displays the demand per beam as a function of the mean arrival

rate (Lλb(t)/TTS) and the optimal allocated capacity to different beams in a random cluster

consisting of beams 2, 3, and 6. In every cycle, a higher capacity is assigned to the beam

with the highest arrival rate, which corresponds to the highest demand, as demonstrated in

the figure. This allocation meets the requirements in equation (2.2). For this demonstration,

the parameters used are qmax = 32, qQoE = 20, P̄Blk = 0.01, P̄QoE = 0.05, and K = 12.

The Figs. 2.13a and 2.13b depict the mean QoE requirement violation probability and

the mean BP of all beams, respectively. The target BP of P̄Blk = 0.01 was set with the

parameters qmax = 32, qQoE = 20, P̄QoE = 0.05, and K = 6. The results show that all tech-

niques satisfy the BP requirement. Figs. 2.13a and 2.13b, and Table 2.2 clearly illustrate
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Figure 2.14: Cumulative Distribution Function (CDF) of blocking probabilities over time-window of
beams 1, 2, 3, 6, 8.
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Figure 2.15: Mean value of QL over time-window T and 5000 trials due to beams 1− 5.

Table 2.2: P̄QoE values at Q ≥ qQoE = 20 threshold using optimal capacity.

qQoE 20 24 28 32

Duality
Analysis 0.01 0.0066 0.0025 0.0016

Simulation 0.0093 0.0061 0.0021 0.0014

Greedy
Analysis 0.0089 0.0052 0.0019 0.0011

Simulation 0.0083 0.0048 0.0017 0.0010

ISA
Analysis 0.009 0.0062 0.0020 0.0013

Simulation 0.0086 0.0059 0.0018 0.0012

the close alignment between our analytical and simulation methods. Furthermore, the minor

differences in average BP and QL across various beams, as depicted in Figs. 2.14 and 2.15,

affirm the accuracy and validity of our proposed method. This shows an effective integra-

tion of the inherent randomness and stochastic nature of user traffic demands for capacity

management. Additionally, Table 2.2 shows that the queuing delay requirement is duly met
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across all instances of Q surpassing the threshold qQoE. Interestingly, the greedy and ISA

algorithms result in lower blocking and QoE violation probabilities than the proposed duality

method. Similarly, the greedy and ISA algorithms result in lower queuing length than the

proposed duality method as shown in Fig. 2.15. This is because of that these benchmarks

return the higher assigned capacity for beams.

2.5.3 Discussion on Feasibility of Practical Implementation

The simulation results underscore the computational efficiency of the proposed method,

demonstrating its capability to adeptly manage the dynamic and fluctuating traffic demands

inherent to SatCom systems. Specifically, as illustrated in Fig. 2.7, the method takes mere

minutes (under 100 seconds when K ≤ 12) to determine the optimal amount of rented BW

over a one-hour time window. It’s pertinent to highlight that this execution time can be

further trimmed when the proposed algorithm runs on a more powerful industrial-grade com-

puter. Such a run-time is practically viable, allowing the SPs to ascertain the necessary

capacity prior to entering rental agreements with the operators. Another pivotal factor for

the successful implementation of our proposed algorithm in the practical systems is a deep

understanding and accurate estimation of the time-varying arrival rate function, specifically,{
λbf (t)

}
’s. However, within the scope of this study, one does not delve into traffic model

estimation. Several existing studies, including those by [95–97], have dedicated efforts to

unpack this intricate domain. Their insights suggest that a machine-learning-based model,

which adjusts based on real-time data and historical patterns, could be the most efficient way

to determine the stochastic information of the network traffic.

2.6 Conclusion

In conclusion, this chapter has proposed a novel and efficient DCA model for multi-beam GEO

satellite systems. The method aims to minimize the renting cost while ensuring the target BP

and QoE violation requirements. Traffic arrivals are modeled using the Mt/Mt/1 queueing

model, and the stochastic QL was estimated using the CTMC. The optimization problem

has been solved using the Lagrangian duality method and the obtained results demonstrate

its effectiveness and superiority over the benchmark ISA and greedy algorithms.
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DQN for QoE-aware dynamic

capacity allocation

This chapter is based on work published in IEEE Transactions on Vehicular Technology, Early

Access, 2025, DOI: 10.1109/TVT.2025.3599772.

3.1 Introduction

SatCom networks have emerged as a promising technology, offering ubiquitous wireless con-

nectivity in regions that lack terrestrial radio access service. They are expected to play an

important role in the improvement of resilience for different applications and contribute sig-

nificantly to future communication networks and services [98]. SatCom operators worldwide

are racing to provide the fastest, most reliable, and extensive 5G coverage, catering to hetero-

geneous services. Their main aspect is to satisfy their users with various QoE requirements

under limited network resources [11].

In wireless communication systems, QoE-aware dynamic DCA strategies have been con-

sidered advanced technologies that significantly impact network operators’ revenue and rental

costs incurred by SPs [52]. A key component in this process is the MAC layer, which

manages packet transmissions and buffer queue status [68]. The MAC layer formats data

for physical transmission and coordinates closely with the physical and radio link control

(RLC) layers [99], facilitating effective scheduling, resource allocation, and traffic prioriti-

zation [100, 101]. By flexibly prioritizing capacity based on SLA and user QoE, SatCom

operators can implement proactive and effective DCA policies. Such policy design is crucial,

46
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as allocating the minimum capacity needed to ensure satisfactory QoE effectively reduces

capital and operational expenditures [102, 103]. The primary challenges are due to the fol-

lowing.

• Network operators often struggle with defining metrics to accurately model the QoE, a

challenge exacerbated by evolving stochastic quality expectations [12,15,104].

• Traffic demands fluctuate unpredictably over time, making it difficult to pre-allocate

capacity without risking over-provisioning or service degradation.

• Different services exhibit distinct packet inter-arrival characteristics, complicating the

modeling of burstiness and increasing the complexity of traffic handling [105].

• Dynamically coordinating limited capacity among multiple services is challenging due to

competing demands, which complicate the prioritization of services during congestion,

necessitating more intelligent and adaptive CA policies.

To handle these challenges, SatCom operators must model the time-varying characteris-

tics of packet arrivals and inter-arrival times for various service types. Assuming simplistic

or homogeneous traffic models, such as applying a Poisson distribution to all traffic, fails to

capture the burstiness and diversity of real-world traffic [7,8]. To address this, we tackle the

more realistic and complex nature of SatCom traffic by incorporating diverse inter-arrival

distributions and service-specific behaviors. Yet, due to the inherent uncertainty in user

demand, real-time performance indicators are still necessary for effective decision-making.

Due to limited capacity, satellites cannot admit every incoming packet instantly. Instead,

packets are buffered, and traffic fluctuations lead to time-varying QL within the system. In

this context, QL naturally emerges as a key metric. The QL serves as a critical indica-

tor of network congestion, providing insight into allocated capacity, queueing delay, packet

drop probability, and overall QoE. This makes it a valuable indicator to optimize network

performance [106, 107]. Traffic demand is inherently time-varying and uncertain, making it

challenging to ensure that a preallocated capacity consistently satisfies the requirements of

the target QL. To address this, we propose a stochastic evaluation framework for QoE that

quantifies the probability of meeting the target queuing delay thresholds. This approach

provides a more realistic and comprehensive assessment of the interaction between unpre-

dictable traffic demand, preallocated capacity, and QoE performance, effectively addressing

the challenges posed by dynamic network conditions.
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Telecom operators engage in periodic planning and optimization of available capacity to

ensure efficient utilization and meet SLAs. These optimization activities occur at varying

intervals, ranging from minutes, hours, and days to monthly, guided by operator policies

and network stability [108], [109]. Despite enhancing capacity utilization efficiency, these

methods often exhibit a reactive nature, leading to potential resource under-utilization or

over-utilization between optimization intervals. Consequently, there is a growing need for

adaptive strategies that can dynamically respond to changing network conditions and opti-

mize planning strategies effectively [110].

In the quest to improve adaptive and flexible CA in SatCom networks, numerous opti-

mization approaches have been explored. However, traditional optimization techniques often

break down or become intractable in highly dynamic, uncertain, and partially observable

environments—exactly the kind of environment where satellite networks operate. A signif-

icant advancement in dealing with time-varying traffic models is to exploit ML techniques,

particularly RL algorithms. Notably, DRL algorithms, such as Multi-agent DQN, DDQN,

and D3QN offer promising solutions for addressing the challenges of flexible CA in these net-

works [29–31,35,36]. Using these advanced techniques, we can quickly obtain near-optimal CA

solutions, even amidst significant fluctuations in network traffic demands. This is achieved by

preemptively learning the intricate relationship between traffic patterns of different services

and optimal CA, ultimately enhancing the QoE for users across various services.

Q-learning has been widely used for resource allocation, but it becomes impractical for

large-scale problems due to the complexity of managing a Q-table in high-dimensional state

and action spaces [36]. To enable decentralized decision-making, where individual agents

can optimize CA for different services independently, and for additional reasons explained

in Section 3.5, this paper proposes leveraging a multi-agent DDQN to address QoE-aware

flexible CA planning in multi-beam SatCom networks. Using advanced ML techniques, such

as DDQN, the proposed approach aims to proactively optimize CA decisions, thus improving

QoE for diverse service requirements and improving overall network efficiency.

3.1.1 Related works

The limited availability of satellite spectrum capacity has become a significant obstacle in fully

meeting customer demands. This issue can be alleviated by employing capacity-enhancing

techniques, such as advanced 5G CA methods, or by minimizing unutilized and wasted ca-
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pacity during off-peak hours. As discussed in Section 2.1.1, most existing studies primarily

focus on augmenting available capacity to meet aggregate traffic demand. However, they

often overlook the importance of minimizing unused capacity and explicitly accounting for

QoE requirements. Another approach to capacity planning in [31,111,112] focuses on meeting

specific demand and coverage requirements by dimensioning the available spectrum band ca-

pacity. The works can notably balance the required and maximum capacities to meet target

demands, thereby enhancing the capacity utilization efficiency. However, these works focused

on aggregate demands and did not explicitly address service-specific QoE or the unpredictably

time-varying demands of different services in their research.

QoE estimation and evaluation is another research topic in the literature. Most works

use the subjective Mean Opinion Score (MOS) as a metric for estimating QoE [113], [114].

The authors in [115] and [116] work on extending QoE analysis beyond traditional MOS by

introducing the concept of θ−acceptability, defined as the probability of an opinion score

exceeding a given threshold θTr. The works further evaluate QoE by taking the percentage

of good or better and the percentage of poor or worse opinion scores as metrics. However,

their work still relies on subjective opinions in the modeling, and it does not account for

time-varying traffic demand or resource allocation models. The authors in [117], [118] work

on the objective estimation of QoE without considering resource allocation.

Resource allocation to meet QoE demands has been extensively studied in the literature.

In [16], the authors investigate QoE-aware pricing, power allocation, and admission control

to ensure a minimum data rate to maintain the QoE of video call services. Similarly, [119]

examines the joint QoE-based subcarrier and power allocation for multi-user, multi-service

5G networks. QoE-driven resource allocation frameworks for video streaming on 5G net-

works are proposed in [120,121]. Additionally, the works in [122,123] introduce a self-tuning

algorithm for optimizing QoE across multiple services in LTE networks by adjusting service

priority parameters based on network performance statistics. However, these works neglect

the consideration of time-varying traffic demand, flexible CA, and stochastic variation in

QoE requirements. Furthermore, these works estimate QoE solely based on the basic MOS

approach. In dynamic multi-service environments, quality can fluctuate rapidly, and the

MOS approach might not accurately reflect these variations, as it is based on post-experience

feedback.

Conventional optimization methods have limitations in harnessing historical data, accu-
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rately predicting outcomes, and managing large datasets for adaptable and flexible capacity

management. Although traffic prediction followed by optimization techniques can be applied,

the time complexity of optimizing post-prediction is significantly higher than utilizing online

RL methods.

Recently, the application of RL has been getting attention for demand-aware resource

allocation. Authors in [124] exploit the Q-learning approach to develop a CA mechanism

for heterogeneous three-layer SatCom networks. Similarly, the study in [125] introduces a

dynamic channel reservation approach grounded in a DQN tailored for multi-service LEO

SatCom systems. While the work accounts for service type-specific traffic demand with pri-

oritization, it does not address the crucial factors of QoE and the diverse arrival distribution

patterns of packets across different service types. Another study on ML-based QoE estima-

tion in multiple-service 5G Networks is presented in [104]. However, the authors relied on the

traditional MOS for QoE estimation, overlooking the optimal capacity required to achieve

the estimated QoE. To the best of our knowledge, the existing literature has not yet explored

QoE-aware flexible CA planning that accommodates multiple coexisting services, each with

distinct QoE requirements and varying arrival rate distributions. The method proposed in

our work aims to fill this gap in the literature.

3.1.2 Contributions

In this study, we focus on QoE-aware flexible CA planning, leveraging time-varying QL

dynamics and DDQN to derive an optimal CA planning policy. Our primary contributions

are:

• Diverse service scenarios: We consider multiple co-existing services, each characterized

by distinct inter-arrival distributions. This nuanced approach captures the varied com-

munication patterns inherent in real-world scenarios, providing a more comprehensive

understanding of system behavior.

• Customized QoE requirements: We introduce a novel dimension by considering the

diverse QoE requirements associated with different services. Recognizing the varying

sensitivities of services to allocated capacity enables us to tailor our CA planning strat-

egy and to optimize user experience based on specific preferences.

• Service prioritization: Developed a novel flexible CA planning mechanism using DDQN,
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Figure 3.1: CA for a queued flow of packets using RL.

integrating QoE-awareness and priority-based service provisioning to efficiently manage

capacity across diverse services, mitigating performance degradation during congestion.

During high-congestion periods, priority levels can be dynamically adjusted to ensure

essential services receive adequate resources.

• Prediction followed by optimization: The traffic demand expected in future time slots

(TSs) is not known in advance, making it difficult to apply optimization techniques for

CA online.

In summary, our proposed approach leverages multi-agent DDQN for adaptable capacity

dimensioning, to aid satellite SPs in optimizing capacity for delivering multiple services while

prioritizing QoE requirements.

3.2 System Model and Problem Formulation

We consider a GEO satellite capable of providing multiple radio access services over B radia-

tion beams to users randomly distributed across these beams’ coverage areas. In this scheme,

the downlink traffic demand (transmission requests) from various users within the coverage

of beam b comes from the core network and is aggregated at the top of Layer 2, within the

Service Data Adaptation Protocol (SDAP) [100] and represented as multiple packet flows.

We assume that there are F different data flows, each with different packet lengths, arriving

at the GW buffer, specific to a particular satellite beam. These data flows are assumed to

originate from user requests within the coverage area of that beam. The GW is aware of the

users residing in each beam and accordingly routes packets from external networks to the
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appropriate buffers. In this system, the dynamic CA mechanism is developed centrally at the

network controller located on the ground, e.g., integrated at the GW side as shown in Fig. 3.1.

This centralization enables informed decision-making in real time based on a holistic view of

network conditions, ensuring efficient resource allocation and adaptability to dynamic traffic

flows. Using this mechanism, the SatCom operator can dynamically and efficiently allocate

varying amounts of capacity to different beams based on the needs of the flows within them,

satisfying user QoE requirements over time and minimizing operator costs.

3.3 Time-Varying Capacity Allocation

LetWmax (bps) denote the maximum satellite capacity that the operator can allocate to serve

F traffic flows in all beams. Each flow in each beam is assigned a portion of the capacity at

any time t, denoted by W b
f (t), which can range from 0 to Wmax, i.e., 0 ≤W b

f (t) ≤Wmax. In

addition, it is imperative to allocate capacity to each type of service (flow), ensuring that the

total capacity assigned to all flows across all beams does not exceed the maximum available

capacity of the operator, which yields the following constraint.

b=B∑
b=1

f=F∑
f=1

W b
f (t) ≤Wmax. (3.1)

Following the model described in Section 2.2, the design framework in this chapter also

assumes that W b
f (t) remains constant ∀(b, f) during each cycle of M time slots. Therefore,

we denote W b
f (kM) as W b

f,k.

Extending the work in Chapter 2, this chapter addresses the challenges of managing

heterogeneous traffic demand varying in time, originating from various services, each of which

exhibits diverse patterns of arrival rate distribution and distinct QoE requirements. To

address this issue, the demands from end users in different services are classified by service

type and modeled as service-specific flows of packets queued to access each beam.

The data flows are categorized according to their respective statistical parameters, in-

cluding arrival rates, service rates, and packet lengths. Consider F data flows corresponding

to F services that tend to access each of B beams, as shown in Fig. 3.1. We further assume

that the flow f (f = 1, ..., F ) transports data packets of length Lf bits. Additionally, flow f

corresponding to beam b has a time-varying arrival rate of λbf (t) packets. The service rate
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given in Equation 2.5, for a flow f of beam b at any time t can be re-expressed as follows:

µbf (t) =W b
f (t)TTS/Lf . (3.2)

Consequently, the QL of packets due to flow f of beam b at any time t is given as

qbf (t+ 1) = min
(
max (qbf (t) + λbf (t)− µbf (t), 0), qmax

)
, (3.3)

where max (qbf (t)+λ
b
f (t)−µbf (t), 0) is to ensure that the QL is always non-negative. Similarly,

the minimization process assumes that the QL will not exceed the maximum. Here, qmax

indicates the maximum buffer length. Having qbf (t), the mean QL of flow f in beam b over a

cycle k can be simply calculated as

q̄bf,k =

∑t=kM
t=(k−1)M qbf (t)

M
. (3.4)

3.4 QoE Requirements

Similar to what is discussed in Section 2.2.3, we define QoE as the probability that data

packets of a specific service type will not encounter a QL exceeding a threshold qQoE, upon

their first arrival in the GW buffer, along with a predetermined probability of violating it. The

probability that the expected QL exceeds the required target should not surpass a designated

threshold known as the probability of QoE violation. Hence, Equation 2.6 concerning this

requirement can be re-expressed as

Prob
{
qbf (t) ≥ qfQoE

}
≤ P̄QoE, ∀(t, b, f) (3.5)

where qfQoE and P̄QoE stand for the target QL requirement of flow f (i.e. service f), and the

threshold probability of QoE violation. Here, we assume that the different flows corresponding

to different services have different QoE requirements (qfQoE). Similarly, the probability of the

QL reaching or exceeding the maximum QL given in Equation 2.7 can be re-expressed as

Prob
{
qbf (t) ≥ qmax

}
≤ P̄Blk, ∀(t, b, f) (3.6)

where P̄Blk is the target BP of all flows.
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3.4.1 Problem Formulation

To enhance the revenue of satellite operators by accommodating more users, we need to

allocate the minimal capacity that meets the QoE and BP requirements. Hence, the problem

can be formulated as follows

min
{W b

f,k}′s

∑
∀b

∑
∀f

∑
∀k

W b
f,k (3.7a)

s.t. Prob{qbf (t) ≥ qfQoE} ≤ P̄QoE,∀(k, b, f), (3.7b)

Prob{qbf (t) ≥ qmax} ≤ P̄Blk, ∀(k, b, f), (3.7c)

Constraint (3.1), (3.7d)

where constraint (3.7b) stipulates that the probability of the QL exceeding qfQoE throughout

the period must not surpass P̄QoE for all flows across all beams and cycles. Likewise, (3.7c)

ensures that the BP of packets in each flow within beam b at every cycle and time t remains

below the target. Constraint (3.7d) ensures that the total allocated capacity to all flows

in all beams at every cycle k cannot exceed the available satellite spectrum capacity. The

primary challenge in solving the problem arises from the stochastic nature of the formulas

in constraints 1 and 2, rendering it difficult to provide explicit solutions. Therefore, to solve

the problem, it is necessary to approximate the constraints with equivalent expressions.

A certain number n of newly arrived packets at time t is blocked if the total packets

comprising accumulated packets from the previous TS and newly arriving packets, minus

the processed packets (service rate), exceed the maximum QL. Hence, the number of flow f

packets blocked from accessing beam b at time t, denoted as nbf,Blk(t), is given by

nbf,Blk(t) = max
(
0, qbf (t− 1) + λbf (t)− µbf (t)− qmax

)
, (3.8)

where qbf (t − 1) is the QL in the previous TS for packets flow f tending to access beam b.

Similarly, the number of flow f of beam b packets with QoE requirements violated at time t,

denoted as nbf,QoE(t), is given by

nbf,QoE(t) = max
(
0, qbf (t− 1) + λbf (t)− µbf (t)− qfQoE

)
. (3.9)

For short periods, such as a single TS, nbf,QoE(t) and nbBlk(t) may not represent meaningful
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averages to calculate the probability of blocking and the probability of QoE violation. How-

ever, over a sufficiently large number of TSs, the problem constraints can be approximated

by their probabilities of occurrence as

φb
f,k = Num{qbf (t) ≥ qfQoE}/M ≤ P̄QoE,∀f, b, k, (3.10)

and

Θb
f (k) = Num{qbf (t) = qmax}/M ≤ P̄Blk, ∀f, b, k, (3.11)

where Num{.} indicates the number of occurrences the expression is true.

3.5 DRL for Optimal CA Planning

This section explores how DRL, specifically DQN, DDQN, and D3QN, can be applied to

develop a flexible CA approach for establishing optimal policies in proactive capacity planning

across multiple QoE-centric satellite services. In DRL, agents interact with the network

environment by taking actions based on the current state, aiming to maximize cumulative

rewards. Through repeated interactions and feedback, the agent learns an optimal policy

via trial and error. We explore two different multi-agent models: (1) one agent per flow,

resulting in a total of BF agents, and (2) one agent per beam, a total of B agents. The

choice of the number of agents involves a trade-off: Assigning BF agents (one agent per flow)

provide fine-grained control and smaller action spaces per agent but at the cost of significant

computational complexity. In contrast, using B agents (one agent per beam) strikes a balance

between granularity and complexity, offering moderate action spaces while potentially facing

challenges in fair resource allocation among flows within each beam. While a single centralized

agent could theoretically manage the entire system, this approach is not considered in our

work due to the high training complexity associated with the large action space, as discussed

in Section 3.5.1.

3.5.1 Elements of RL

Environment: The environment is the considered B-beam satellite system, as depicted

in Section 3.2, which imposes specific constraints on CA. The dynamics of the environment

encompass the evolution of the queue state in response to allocated capacity and external
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Figure 3.2: Training process in DQN and DDQN.

factors, including packet arrival rates and traffic patterns. These environmental dynamics

are critical for the RL model to adapt and optimize CA, thereby ensuring the target QoE

requirements.

Agent: In our context, an agent (whether an agent of a single flow or an agent of all

flows accessing a particular beam) refers to a CA manager and decision maker, co-located

at the GW. Its role is engaging with the environment to develop an optimal CA policy that

minimizes capacity consumption while satisfying users’ requirements on the QoE and BP.

State: The state is defined as the specific instance of congestion in the satellite environment,

which is determined by measuring the QL at the GW. In particular, the QL of flow f of beam

b at TS t (qbf (t)) can be calculated based on (3.3). However, the CA system is designed to

work per cycle. Therefore, we model the state of an agent managing the flow f accessing

beam b in cycle k, denoted as sbf,k as the mean QL of all time intervals within a cycle k, that

is, sbf,k ={q̄bf,k}. Similarly, the state of an agent that manages the CA of F flows accessing

beam b at cycle k is expressed as

sbk =
{
q̄b1,k, q̄

b
2,k, q̄

b
3,k, ..., q̄

b
F,k

}
∈ S, ∀(b, k), (3.12)

where S denotes the set of all possible states of the agent.

Action: Both the one agent per flow and one agent per beam models utilize the epsilon-

greedy strategy, a commonly employed action selection technique in RL. Under this approach,
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agents predominantly select the best action with the highest Q-value, optimizing the CA

decision based on accumulated knowledge, with a probability of 1 − ϵ, and introduce an

element of randomness by occasionally allocating a random capacity from the action space,

with a probability of ϵ as

a =


random action, with probability ϵ,

arg max
a

{Q(s, a)}, with probability 1− ϵ.

(3.13)

where Q(s, a) is the Q-value corresponding to the action a at state s. This approach

applies regardless of whether the model involves one agent per flow or one agent per beam.

This dual strategy effectively strikes a balance between exploiting the agent’s accumulated

experience to maximize immediate rewards and exploring the environment to enhance the

learning process over time.

Reward: After taking action, agents receive immediate rewards from the environment,

which evaluates how well the allocated capacity meets demand and QoE requirements across

all service types. These rewards are calculated based on episodes involving diverse traffic

demand scenarios across all service types for the agents to interact with. The goal is to

identify a policy that maximizes the expected future rewards based on feedback from these

simulated episodes. In the one agent per flow model, during an episode, when the combined

capacity needed by the BF flows exceeds the maximum beam capacity, the available capacity

is allocated based on service priority. This priority is quantified by a weight vector p =

(p1, p2, ..., pF ), indicating the reward penalties imposed on the RL agents. Consequently,

during congestion, we assume that the service with the highest tolerance (highest qfQoE) to

wait in a queue is assigned the highest penalty weight. The total reward is then given as

a sum of the two sub-rewards. The first sub-reward is expressed in terms of the allocated

capacity relative to the available capacity as follows:

rbf,k,1 =


0, if

∑
∀(b,f)W

b
f (t) ≤Wmax,

−100 ∗ pf∑f=F
f=1 pf

, otherwise.
(3.14)

This reward component penalizes agents if the total allocated capacity exceeds the maximum

available capacityWmax. The reward of −100 is used to discourage the agents from allocating
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capacity values that exceed the maximum available capacity for the flows. The penalty per

flow is proportional to the priority of the flows. The other sub-reward can be given as a

weighted sum of the mean QL and the inverse of allocated capacity depending on requirement

satisfaction as

rbf,k,2 =


ζq̄bf,k +

δ
W b

f,k

, if
φb
f,k

M ≤ P̄QoE ∧ Θb
f,k

M ≤ P̄Blk,

−q̄bf,k, otherwise.

(3.15)

This secondary reward component incentivizes the agent to allocate the minimal capacity

necessary to achieve and maintain low average QLs, q̄bf,k. Here, ζ and δ are weighting factors

that balance the effects of QL and allocated capacity on the reward. The total reward per

flow is then given as

Rb
f,k = rbf,k,1 + rbf,k,2. (3.16)

Similar to the one agent per flow case, the reward is calculated as a sum of two sub-rewards.

rbk,1 =


0, if

∑
∀(b,f)W

b
f (t) ≤Wmax,

−100, otherwise.

(3.17)

This reward component penalizes agents from making allocation decisions that violate the

global capacity constraint. Here, each agent takes a combined action for all flows resulting in

different QoE requirement violations and blocking probabilities for each service type. Hence,

the second sub-reward is the sum of the rewards from each flow as follows

rbk,2 =
∑
f∈F

(ζq̄bf,k +
δ

W b
f,k

)−
∑
f /∈F

q̄bf,k, (3.18)

where F =

{
f | φb

f,k

M ≤ P̄QoE ∧ Θb
f,k

M ≤ P̄Blk

}
. The total reward is then calculated by summing

the sub-rewards, given as

Rb
k = rbk,1 + rbk,2. (3.19)

In both the one agent per flow and one agent per beam cases, coordination among agents

primarily arises from the shared penalty mechanism and the global capacity constraint, re-

flecting characteristics of reward shaping and environmental interaction.
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3.5.2 Deep Q-Network

The DQN utilizes Deep Neural Networks (DNN) to approximate action-value functions for

dealing with high-dimensional state space problems, such as flexible CA with time-varying

demand, by utilizing the representational power of deep learning. In DQN, each agent creates

its own model with two DNNs: the online and the target networks. In each cycle, the agents

use the online network to approximate the Q-function Q(s, a;ω) and choose an action, where

ω is the weights of the agent’s online network. The target network, with weights ω̂, is used

to stabilize the learning process by copying ω after a set number of cycles.

During the training phase, the agent employs the experience replay strategy to enhance

convergence speed and solution quality by incorporating a wide range of experiences from

different regions of the state space, various actions, and corresponding rewards. By using

this method, its transition (s, a, r, s′) is stored in the experience replay memory. At each

iteration, a random batch of experiences is sampled from this memory to train the learning

model. In particular, the application of DQN to solve the problem (2.8) can be represented

as follows: In each learning step (cycle), the agent takes an action of bandwidth allocation

after observing its current state. Then it receives a reward from the environment and moves

to the next state. After that, its respective experience tuple of (s, a, r, s′) is stored in its

experience replay memory. A mini-batch of experiences is then sampled to train the online

network. Based on that, the parameters of the online network ω are updated to minimize

the loss function. The loss function for the one agent per flow configuration is defined as

L =
(
Q′ −Q(sbf,k, a

b
f,k;ω)

)2
, (3.20)

where Q′ is the target Q-value which is computed based on the Bellman optimality principle

by adding the reward to the maximum Q-value at the next state as follows:

Q′ = Rb
f,k + γmax

a′bf,k

Q(s′
b
f,k, a

′b
f,k; ω̂), (3.21)

where γ is the discount factor and ω̂ represent the combination of updated weights and biases

in the target network. The Q-value of the online network is updated using the following

equation:

Q(sbf,k, a
b
f,k;ω) = Q(sbf,k, a

b
f,k;ω) + α

(
Q′ −Q(sbf,k, a

b
f,k;ω)

)
, (3.22)



60 Chapter 3

where α is the learning rate, which controls the step size for the update. This equation adjusts

the predicted Q-value towards the target Q-value, scaled by the learning rate. Through this

iterative process, the parameters of the online network are updated to minimize the loss

function, and the online Q-values gradually converge to the optimal Q-values, improving the

agent’s decision-making ability.

Similarly, for the one agent per beam model, the parameters of the online model ωb are

updated to minimize the loss function as follows

Lb =
(
Q′

b −Qb(s
b
k, a

b
k;ωb)

)2
, (3.23)

where Q′
b is the target Q-value which is computed as follows:

Q′
b = Rb

k + γmax
a′bk

Qb(s
′b
k, a

′b
k; ω̂b), (3.24)

where ωb is the weight of agent b’s online network and ω̂b represents the combination of

updated weights and biases in the target network of the agent. By minimizing the loss

function, the DQN iteratively improves its policy, enabling it to effectively learn optimal

actions in complex, high-dimensional environments. After a given number of learning steps,

the target network parameters ω̂ and ω̂b are updated by copying the values of ω and ωb.

Training continues until convergence. The detailed implementation of the two models is

summarized in Algorithm 4.

Remark 3. Although DQN models have proven their efficiency and effectiveness for resource

allocation problems, they sometimes encounter overestimation problems, where the agent con-

sistently selects sub-optimal actions in a given state merely because these actions have the

highest Q-value estimates [35]. This overestimation occurs because the Q-values predicted by

the DQN may not accurately reflect the true expected rewards, leading the agent to make poor

decisions. This overestimation problem can be better addressed by using a DDQN.

3.5.3 Double Deep Q-Network

DDQN is an improved version of DQN that addresses the issue of Q-value overestimation

encountered in DQN by decoupling action selection and evaluation as shown in Fig. 3.2.

Unlike in DQN, where the target network is used for both action selection and evaluation,
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Algorithm 4 DQN-based CA Algorithm

1: Initialization:

• Initialize replay memory D, Db .

• Initialize the online network with random weights ω, ωb.

• Initialize the target network with weights ω̂, ω̂b.

2: for each episode ( i = 0 to max episode) do
3: Initialize the state sbf,k, s

b
k .

4: for each cycle (k = 0 to K) do
5: Choose an action from the action space using the epsilon-greedy method as in (3.13).

6: Calculate the total reward according to (3.16), (3.19) and observe the next state s′
b
f,k, s

′b
k.

7: Store experiences (sbf,k, a
b
f,k, R

b
f,k, s

′b
f,k) in D

and (sbk, a
b
k, R

b
k, s

′b
k) in Db.

8: Take sample minibatch experiences (sbf,k, a
b
f,k, R

b
f,k, s

′b
f,k) from D and (sbk, a

b
k, R

b
k, s

′b
k) from Db.

9: Calculate the target Q value according to (3.21) and (3.24).
10: Calculate the loss using gradient descent as in (3.20) and (3.23).
11: Update online network parameters ω and ωb to minimize the loss function.
12: Update target network parameters after every k̂ (k̂ > 0) cycles: ω̂ ← ω and ω̂b ← ωb.
13: end for
14: end for

in DDQN, the online network selects the best action for the next state. In this subsection,

we focus exclusively on the one-agent-per-beam DDQN model to reduce the architectural

complexity associated with managing a separate agent for each flow. This approach simplifies

the overall framework while still leveraging the advanced capabilities of DDQN compared to

DQN. Hence, the best action selection is given as

a = argmax
a′bk

Q(s′
b
k, a

′b
k; θ), (3.25)

and the selected action is evaluated by the target network. The target Q-value is then

estimated as

Q′ = Rb
k + γQ(s′

b
k, a; θ

−). (3.26)

The gradient descent step can be used to calculate the loss as follows

L′ =
(
Q′ −Q(sbk, a

b
k; θ)

)2
(3.27)

The detailed implementation steps of the DDQN-based CA algorithm, which is developed to

address problem (2.8) are summarized in Algorithm 5.
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Algorithm 5 DDQN/D3QN-based CA Algorithm

1: Initialization:

• Initialize replay memory D′.

• Initialize the online network with random weights θ.

• Initialize the target network with weights θ−.

2: for each episode (i = 0 to max episode) do
3: Initialize the state (sbk) for all beams and flows.
4: for each cycle (k = 0 to K) do
5: Choose an action from the action space using the epsilon-greedy method as in (3.13).

6: Calculate the total reward according to(3.16), (3.19) and observe the next state s′
b
k.

7: Store experiences (sbk, a
b
k, R

b
k, s

′b
k) in D′ .

8: Sample random minibatch of experiences (sbk, a
b
k, R

b
k, s

′b
k) from D′.

9: Select the best action according to (3.25).
10: Calculate the target Q-value according to (3.26).
11: Perform a gradient descent step to calculate the loss according to (3.27), where the Q-value in the

D3QN model is calculated according to (3.28).
12: Update online network parameters θ to minimize the loss function.
13: Update the target network’s parameters after every k̂ (k̂ > 0) cycles: θ− ← θ.
14: end for
15: end for

3.5.4 Dueling Double Deep Q-Network

In scenarios where the value of being in a particular state is more significant than the specific

actions taken, DDQN may not be efficient due to its inability to estimate state values and

action advantages separately [36], [126]. By decoupling the state value and action advantage

estimations the D3QN model helps to reduce Q-value overestimation further and enhance the

stability of learning. The Q-value estimation comparison of DDQN and D3QN is shown in

Figure 3.3. Here, D3QN separates the state value V (sbk), i.e. the value to be in a particular

QL state regardless of the action taken and the action advantage function A(sbk, a
b
k), i.e. the

advantage of taking a specific action (such as CA) at that specific state for more precise and

stable value estimation. We estimate the Q-values by adding the outputs of the state value

and advantage values as follows [36], [126]

Q(sbk, a
b
k; θ, θ

S , θA) = V (sbk) +A(sbk, a
b
k)−

1

|An|
∑

abk∈An

A(sbk, a
b
k), (3.28)

where θS , θA are the parameters related to the state value function and action advantage

function, |An| is the number of available actions in the action space and 1
|An|

∑
abk∈An

A(sbk, a
b
k)

represents the mean advantage across all possible actions, which is subtracted to normalize

the advantage function. The detailed implementation of the CA algorithm is also given in
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(5), as the only difference with DDQN is in the Q-value estimation given in step 11 of the

algorithm.

Q(s,a)State

Input Layer Hidden Layers Output Layer

(a) DDQN.

V(s)

A(s,a)

Q(s,a)State

Input Layer Hidden Layers Output Layer

(b) D3QN.

Figure 3.3: Q-value estimation process in DDQN and D3QN as in [126].

3.5.5 Computational Complexity Analysis

While the overall complexity of the DRL architecture can be influenced by the design of its

input, hidden, and output layers, the primary factors are the sizes of the state and action

spaces. For the one agent per flow model, where the QL for packets of flow f ranges from

0 to qmax, and actions are selected from N discrete options, the complexity scales linearly

with the product of the number of beams, flows, and qmax. In contrast, for the one agent per

beam model, each agent takes actions for multiple flows simultaneously, resulting in a state

size of (qmax +1)F and an action space size of NF . The complexities of the two scenarios are

summarized in Table 3.1.

Scenario State Complexity Action Complexity

1 Agent per Beam B · (qmax + 1)F B ·NF

1 Agent per Flow B · F · (qmax + 1) B · F ·N

Table 3.1: Complexity analysis of the proposed method.

3.5.6 Benchmark Algorithm

This section modifies the algorithm developed in Section 2.4.2 to obtain a benchmark solution

for comparison purposes by assuming Poisson arrivals for all flows. This solution approach

utilizes the Lagrangian duality optimization method for CA. It consolidates packet arrivals

from all service types into a single queue, which is then served based on a first-come-first-

served scenario. However, it is worth noting that the CA results obtained by this optimization

approach are determined based on perfect knowledge of the arrival rates.
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To adapt this benchmark solution to our scheme, we use the predicted traffic demand of

an LSTM recurrent neural network as input, as outlined in [32]. To gain a comprehensive

understanding of future traffic demand beyond the immediate horizon and to capture longer-

term trends more effectively, we employed a multi-horizon LSTM network to predict the input

traffic demand of all the TSs of the next cycle for the optimization approach. This approach

optimizes forecasting accuracy by concurrently predicting traffic demand for multiple future

TSs, enhancing the effectiveness of CA strategies.

3.6 Performance Evaluation and Numerical Results

In this section, we outline the dataset preparation process, discuss the considered hyper-

parameter values, present the results obtained using the proposed techniques, conduct a

performance comparison, and assess the efficiency of the implemented algorithms.

3.6.1 Input Traffic and Traffic Distribution Models

To create diverse services, various distributions of packet arrival rates can be exploited accord-

ing to the specific services. Common arrival rate distributions encompass the Poisson distri-

bution [127], known for modeling random arrivals, and heavy-tailed distributions [128], [129]

which capture the variability and unpredictability often encountered in modern communica-

tion networks. We analyze three distinct traffic flows, each corresponding to a different set

of characteristics. For the considered 3 service types, Poisson, Pareto (heavy-tailed), and

Weibull (heavy-tailed) distributions for estimating the inter-arrival time of packets in the

flows. The inter-arrival time for the Poisson distribution denoted τPoi is calculated from the

CDF of the inter-arrival time given as

Prob{τPoi ≤ t} = 1− e−λτPoi , (3.29)

where τPoi is determined by taking the ratio of the negative natural logarithm of the com-

plement of a random value uniformly sampled between 0 and 1 to the arrival rate of the

Poisson-process based flow 1, which is given as

τPoi = − log(1−R1)/λ1(t). (3.30)
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The CDF of the inter-arrival time of Pareto distribution (τPa) is given as [130]

Prob{τPa ≤ t} = 1− (βpa/τPa)
η , (3.31)

hence, the inter-arrival time of flow 2’s packets assumed to follow Pareto distribution is given

by

τPa = [βpa/(1−R2)]
(1/η)/λ2(t). (3.32)

Similarly, the CDF of the inter-arrival time of the Weibull distribution (τWei) is expressed as

Prob{τWei ≤ t} = 1− e−βWeiτ
η1
Wei , (3.33)

then, the inter-arrival time of flow 3 packets assumed to followWeibull distribution is provided

by [131],

τWei = βWei

[
− log(1−R3)

1
η1

]
/λ3(t), (3.34)

where βpa and βWei are the scale parameters, η and η1 are the shape parameters and R1, R2,

R3 are random numbers between 0 and 1. Assuming that the traffic pattern evolves over 24

hours following the trend of the dataset in [132], we generated a random number of packets

per second for 10 beams, each supporting 3 distinct service types. The Probability Mass

Function (PMF) of the packet arrivals for the services is shown in Fig. 3.4, and the flow of

packets for the considered services varies over time as illustrated in Fig. 3.5.

For the benchmark algorithm, Lagrangian duality, the input traffic was forecasted from

historical traffic demand using an LSTM RNN model. The forecasting process is explained

in Section 4.3.1.

3.6.2 Numerical Results and Comparative Analysis

In this section, we analyze and compare the numerical outcomes of various approaches: DQN

with one agent per flow (referred to as DQN model 1), DQN with one agent per beam

(referred to as DQN model 2), DDQN with one agent per beam, D3QN with one agent

per beam and the benchmark optimization approach utilizing Lagrangian duality explained

in Section 2.4.2. For the DQN, DDQN, and D3QN models, the agent selects actions from

an action space comprising 12 equally spaced values between 0 and the maximum capacity

demand of the corresponding flows, generated using the NumPy linspace function. For DQN
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Figure 3.4: Probability mass function of the considered flows. Each value on the horizontal axis
reflects an arrival rate in a TS, and the corresponding vertical coordinate shows the probability of
observing that rate in that TS. The area under the function of each distribution type is 1 to indicate
the sum of all probabilities is 1.
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Figure 3.5: Example of time-varying traffic demand for the analyzed flows over a 24-hour period.

model 1, the epsilon decay rate (σ) value is 0.9995. If not explicitly specified, the remaining

parameter values default to those listed in Table 3.2.

Fig. 3.7 shows the CDF of the demand-to-allocated capacity ratio. Flow 1 has a higher

proportion of samples with lower ratios, indicating less congestion. This reflects its lower pri-

ority penalty weight compared to Flows 2 and 3, demonstrating that our CA model effectively

prioritizes more critical and delay-sensitive services.

Fig. 3.6 indicates the convergence of the simulated RL algorithms concerning QL, total
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Table 3.2: Considered parameter values.

Parameters Values

Activation function Relu, Linear

Cycle duration (M) 1 Hour [133]

Discount factor 0.1

Duration of 1 episode 1 day

Epsilon decay (σ) 0.9998

Loss function MSE

Experience-replay pool size 50000 [125]

Experience-replay mini-batch size 128

Learning rate 0.01

Maximum QL (qmax ) 2 Mbytes (30 packets) [83]

Maximum capacity (Wmax) 1 Gbps

Normalized packet length 65(KBytes) [82]

Optimizer Adam [35]

Priority weights [0.1, 0.3, 0.6]

Target update ratio 0.01

Target QoE violation probability (P̄QoE) 0.1 [115], [116]

Target QL (qQoE ) [15, 20, 25] packets

The minimal exploration probability 0.001

Target BP (P̄Blk) 0.05 [88]

TS duration (TTS) 1 Second

reward, probability of QoE violation, and total allocated capacity. Fig. 3.6a illustrates the

convergence of the mean QL over episodes for the three considered flows when using the

DDQN method. The figure indicates that the mean QL converges for all flows. Differences in

QL values among flows are attributable to the varying target QL requirements and priority

weights. Specifically, flow 1 has the lowest target QL and the highest priority weight. This

incurs the lowest reward penalty during congestion, leading to the lowest mean QL for this

flow. Similarly, Figs. 3.6b, 3.6c, and 3.6d indicate the reward, probability of QoE violation,

and total allocated capacity convergence, respectively. The plots reveal that both D3QN

and DDQN achieve similar performance and outperform both the DQN models 1 and 2.

This can be attributed to the ability of D3QN and DDQN to mitigate the overestimation

bias commonly encountered in DQN models. The plot also indicates that the DQN model 1

outperforms the DQN model 2 due to the use of individual agents for each flow within every

beam. This approach allows each agent to specialize in a specific flow and learn to select

the best action from the action space. In contrast, the DQN model 2 assigns one agent per

beam, which must manage a larger action space of 123 possible actions, making it harder to

coordinate multiple flows and resulting in lower performance.
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Figure 3.6: Convergence plots of the implemented DQN algorithms.
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(a) Capacity at different values of P̄QoE.
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(b) Capacity at different values of P̄Blk
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(c) Capacity at different values of qfQoE.
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(d) Capacity at different values of qmax

Figure 3.8: Total allocated capacity per cycle and total traffic demand over time.

The plots in Fig. 3.8 indicate the total capacity allocated per cycle, along with the total

traffic demand for all the simulated models. To analyze scalability and system performance

under varying conditions, the total allocated capacity using the proposed DDQN model is

evaluated for different values of P̄QoE, P̄Blk, qQoE, and qmax, assuming all flows have the same

target QL requirement. The total allocated capacity using the DDQN model in Figs. 3.8a and

3.8b is given at different values of the target QoE violation (P̄QoE) and target BP (P̄Blk). The

plots demonstrate that the system requires allocating a higher capacity for stricter targets,

such as a lower QoE violation probability (0.05) compared to a higher value (0.1) and a

lower BP (0.01) compared to a higher value (0.05), consistent with the findings discussed

in Section 2.5.2. In addition, the DDQN model results in Figs. 3.8c and 3.8d show the

total allocated capacity per cycle at different values of target QL (qQoE) and qmax. The plots

indicate that a CA system intended for services with a higher tolerance for waiting in a
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Figure 3.9: Probability of blocking and probability of QoE violation.

queue (qQoE = 20) requires less capacity than a lower tolerance (qQoE = 15) and vice versa.

Similarly, a higher value of buffer size (qmax = 40) can satisfy the BP requirements with

a lower allocated capacity as compared to lower values (qmax = 30). This aligns with the

observations in Section 2.5.2, a larger buffer size can store more packets that would likely

be dropped with a smaller buffer size. However, admitted packets in a system with a large

buffer size do not necessarily meet QoE requirements and may lead to buffer bloating.

From the figures we can observe that the D3QN and the proposed multi-agent DDQN

demonstrate a superior performance in allocating less capacity that meets the target QoE

requirement compared to the other models. Typically, the Lagrangian duality optimization

approach is expected to outperform other methods. However, that approach assumes all ar-

rivals follow a Poisson distribution which fails to accurately capture the traffic flexibility of the

diverse traffic patterns of the considered flows. Furthermore, the Lagrangian duality method

applied theMt/Mt/1 queueing method which limits the traffic utilization (λbf (t)/µ
b
f (t)) value

to remain below 1 for all time intervals. This implies that the allocated capacity always ex-

ceeds the demand, regardless of the queue state. Such an assumption can lead to an inefficient

QL approximation and lower efficiency in CA, as it leaves unutilized capacity to handle any

spikes in demand that may exceed the optimal capacity. Consequently, when evaluating the

trade-offs between efficiency, adaptability, and scalability, deep learning approaches emerge

as promising solutions for QoE-aware dynamic CA in 5G networks.

Figs. 3.9a and 3.9b indicate the mean blocking and QoE requirement violation probability

per cycle, respectively. The plots demonstrate that all models achieve a value lower than
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Figure 3.10: CDF Plot of QoE Violation Probability: This plot shows the percentage of good or
better (%GoB) and poor or worse (%PoW) experiences based on the specified target QoE requirement
violation probability of 0.1 for good or better, and the worst 25% for poor or worse.

the target value of 0.05 for BP and 0.1 for QoE requirement, indicating their effectiveness.

Moreover, these figures, along with Fig. 3.8, demonstrate that the D3QN and DDQNmethods,

which exhibit nearly identical performance, outperform the other methods considered in terms

of meeting the target requirements with relatively lower allocated capacity.

We can also assess the efficiency of our model by comparing the obtained QoE violation

probability results with experimental metrics. These metrics are based on MoS measure-

ments, categorized as a percentage of good or better (%GoB) and poor or worse (%PoW),

as described in [115] and [116]. As we do not consider users in our work, we consider the

probability of QoE violation per cycle for different samples after the model is trained. As

shown in Figure 3.10, our model achieves a performance equivalent to the acceptability level

of a service with excellent quality, indicated by a MOS above 4.5.

Table 3.3 shows the total runtime of the simulated algorithms on a High Performance

Computer (HPC) system using Python 3.8.6 and GCCcore 10.2.0 with 28 CPU cores. From

the table, we can observe that the trained DDQN, D3QN and DQN models have faster infer-

ence time compared to the optimization approach, indicating their effectiveness in handling

time-varying demands with different arrival rate distributions. The total time and average

time per episode needed for DQN model 1 are higher than the other DRL models. This is

because model 1 assumes one agent per flow and requires a total of 30 agents, necessitating a

more complex DQN model architecture compared to DQN model 2, D3QN and DDQN, which

assume one agent per beam (10 agents in total). DDQN emerges as a balanced choice, offering

a reasonable average time per episode and total convergence time while achieving comparable
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performance to D3QN. While D3QN slightly outperforms DDQN, its higher time complexity

makes DDQN a more computationally efficient choice. The increased computational com-

plexity of DDQN compared to DQN model 1 and DQN model 2, is due to the separate action

selection and evaluation steps. Similarly, D3QN introduces higher complexity than DDQN by

decoupling the state value and action advantage when calculating Q-values, requiring addi-

tional computation to combine them. The scatter plot in Fig. 3.11 illustrates the relationship

between the mean QL and the probability of QoE violation probability, taking the capacity

values obtained using DDQN. The results reveal a clear trend: as the mean QL increases,

the likelihood of QoE violations also rises. This correlation underscores we can accurately

estimate the demand-capacity relationship, allowing for more effective CA strategies.

In summary, DDQN, D3QN, and DQNs demonstrate comparatively better efficiency in

handling various arrival distribution types, optimizing total allocated capacity, and exhibiting

inherent adaptability, making them invaluable for meeting the unpredictable demands of

dynamic environments as compared to the benchmark method. The main reason for this

efficiency is the assumption of different arrival distribution types for all flows in the proposed

method, in contrast to the optimization approach that assumes a Poisson process for all flows.

Selecting the optimal strategy among the models requires balancing computational resources,

system complexity, and the need for tailored decision-making. In our specific simulation, we

propose the DDQN model as it shows almost the same performance but lower complexity as

compared to D3QN, and better performance than DQN models 1 and 2.
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Table 3.3: Convergence time of the simulated algorithms.

Algorithm Average time per
episode (s)

Total convergence
time (s)

Episodes to con-
verge

DQN model 1 440.94 110235.755 250

DQN model 2 244.96 61242.086 250

DDQN 273.29 68324.367 250

D3QN 329.85 82463.45 250

Duality 1228.36 122836 100
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(a) Reward convergence.
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Figure 3.12: Convergence for different number of flows.

3.6.3 Impact of Increased Number of Flows on Convergence

Managing CA for thousands of service types with QoE-specific requirements poses significant

challenges, particularly when considering the computational burden of a large state and action

space. To address this, similar service types can be grouped based on QoE requirements,

traffic patterns, or priority levels, resulting in fewer traffic flows. The three traffic flow

distributions considered in this study, Poisson, Pareto and Weibull represent many existing

service types [127–129]. However, a substantial number of service groups may follow other

distribution types.

In this subsection, we extend our analysis to include additional traffic arrival patterns:

Normal, Exponential, and Gamma distributions. These distributions collectively capture a

wide range of packet arrival distributions observed in real-world service types. To evaluate

the impact of the number of flows, we simulate and compare scenarios with three, four,

five, and six flows using a DDQN-based model. Action masking is applied in scenarios with

four, five, and six flows to reduce the action space by removing action combinations that
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exceed the maximum capacity. The convergence results are presented in Figure 3.12. The

simulations indicate that models with fewer flows (three) converge faster than those with

more flows. This behavior can be attributed to the increased complexity of managing a

larger state and action space with additional flows, and the heightened traffic variability

resulting from greater variations in arrival distributions. Despite this, the convergence trends

are promising, showing an increasing trajectory in the reward and a decreasing trajectory in

the capacity convergence. These trends suggest that, although increased flows demand more

computational resources and training episodes to reach convergence, the model is capable of

achieving optimal performance with further training or the application of complexity-reducing

techniques. The results underscore the importance of balancing computational feasibility with

the accuracy of CA models in scenarios involving a larger number of traffic flows.

3.7 Conclusion

This chapter proposed a QoE-aware flexible CA mechanism, leveraging multi-agent DDQN,

that offers significant advancements in optimizing capacity utilization while prioritizing QoE

across multiple services. The mechanism exhibits resilience in dynamically adapting to fluctu-

ating traffic demand, ensuring consistent performance and user satisfaction. The simulation

results demonstrate that the proposed method enhances the overall capacity utilization effi-

ciency and QoE across various satellite services.
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Proactive Traffic Matching and

Load Balancing

4.1 Introduction

The drive for increased capacity in GEO SatCom systems has led to a growing interest in

the utilization of Extremely High Frequency (EHF) bands such as Ka, Q, and V bands,

where larger bandwidths are available. Leading operators such as SES, Eutelsat, Telesat,

and Viasat are exploring these bands to provide high capacity broadband services [41–43,

134]. While these bands offer expanded bandwidth, they introduce significant challenges:

unpredictable rain attenuation severely affects feeder link (FL) performance, and dynamic,

uneven traffic demand across multi-beam, multi-gateway (GW) networks creates congestion

and service degradation [135], [136], [137]. These uncertainties often lead to critical challenges

for managing resource allocation, traffic steering, and persistent GW load imbalances to serve

distributed users efficiently [138]. It is further complicated by the heterogeneous time-varying

traffic demand from various users. Moreover, satisfying QoE and BP requirements further

requires adaptive solutions that can predict network conditions and intelligently balance

traffic in real time [139].

In response to changing network conditions, it is essential to adopt dynamic B2G match-

ing strategies informed by accurate, real-time predictions not only of traffic demand but also

of the evolving effective capacity of each GW under current channel conditions. When cer-

tain GWs experience overload due to elevated demand or adverse weather, traffic must be

proactively redistributed to underutilized GWs to prevent congestion and maintain service

75
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continuity [140]. Furthermore, even during periods of low demand, keeping all GWs engaged

ensures the system can promptly accommodate sudden load surges without delays associ-

ated with reactivation. Such a capacity-aware, predictive management approach enables full

utilization of the existing infrastructure, enhances network resilience, and sustains consis-

tent, high-quality service under dynamic operating conditions. However, existing GW traffic

management solutions often rely on reactive mechanisms, leading to delayed responses to

congestion or rain attenuation [141]. These approaches lack real-time adaptability, resulting

in service outages and inefficient resource utilization. To address this, this paper leverages

a stacked multi-output, multi-horizon Long Short-Term Memory (LSTM) model to predict

per-beam traffic demand and per-GW rain attenuation. These forecasts are then used as in-

puts to an adaptive genetic algorithm that performs proactive, capacity-aware B2G matching

and load balancing (LB), aiming to maximize GW utilization and meet QoE and BP targets.

4.1.1 Related Works

Advanced artificial intelligence (AI) models, particularly deep neural networks (DNN), have

been widely applied to predict rain attenuation in satellite FLs. For example, [142, 143]

employed deep learning techniques to forecast rain-induced fading in the EHF bands, offering

valuable tools to mitigate weather-related impairments. Similarly, DNN-based models have

been used to forecast traffic demand for enhanced resource management [144,145]. However,

these two aspects, rain attenuation prediction and traffic forecasting, are typically treated

in isolation, without accounting for their joint impact on GW resource planning. Moreover,

the prior works rely on single-step forecasts, which provide only a short-term view and are

insufficient for proactive decision-making that requires foresight over multiple future intervals.

There remains a critical gap in integrating both aspects into a unified framework capable of

dynamically adapting to simultaneous weather fluctuations and traffic variations, enabling

more effective and resilient GW resource management.

Various techniques have been explored to enhance resource allocation under rain-fading

channels. Notably, machine learning-based adaptive modulation and coding, power control,

and rate adaptation are discussed in [146, 147]. However, such techniques are primarily

employed to mitigate minor rain attenuation and are not specifically designed to address

system-level traffic demand variations. Moreover, they are typically applied in the context

of a single FL (single GW). In addition to the above methods, satellite GW diversity (SGD)
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is an effective solution to reduce system outages by rerouting all the traffic from the fading

GWs to the unfading ones [141], [148], [149]. However, SGD has drawbacks regarding GW

redundancy and resource utilization (under-utilization). GW switching is another important

research well studied in the literature [150], [151]. However, these works are based on reactive

GW switching when rain events occur. Immediate switching in response to such events can

introduce latency and potentially lead to service interruptions. Furthermore, the aforemen-

tioned works fail to account for traffic demand variations in their GW-switching decisions.

They also overlook the importance of LB among GWs, the QoE, and the BP requirements.

Efficient LB among satellite GWs is a topic discussed in the literature. The most common

techniques typically employ LB routing [152], LB traffic management [153], and QoS/QoE

aware LB [139]. However, the papers mentioned above assume that traffic demand and

environmental attenuation are well-known in advance. While not directly related to satellite

GW LB, various methods such as ant colony optimization [28] have been explored for user

association and LB. Additionally, LB approaches based on remaining capacity [154] and

weighted strategies [155] have been employed in the context of 5G cloud services.

4.1.2 Contributions

Despite notable progress in satellite GW resource management, a clear research gap remains in

integrating traffic demand forecasting, FL rain attenuation prediction, B2G traffic matching,

LB, and simultaneous fulfillment of QoE and BP requirements. This work addresses this gap

by developing an AI-driven proactive framework for beam traffic assignment and GW LB,

explicitly designed to maintain QoE and BP constraints. In contrast to previous reactive

GW-switching methods, our approach proactively optimizes traffic distribution based on

jointly forecasted rain attenuation and traffic demand, enabling dynamic and capacity-aware

resource management. To the best of our knowledge, no existing study has explored this

comprehensive, multi-faceted approach. Our primary contributions are as follows.

• We employ stacked multi-horizon multi-output LSTM models to forecast traffic demand

per beam and rain attenuation per GW. It offers accurate estimates of future traffic

and attenuation for multiple beams and GWs in various time intervals. This approach

provides a robust input for a comprehensive traffic management model that dynamically

adjusts to variations in demand and capacity.
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• Using predicted traffic demand and rain attenuation, we proactively determine B2G

matching and optimize the capacity needed to meet stochastic QoE and BP require-

ments.

• Developing a proactive and adaptive LB framework across GWs to prevent any sin-

gle GW from overloading while ensuring that the available capacity in other GWs is

properly utilized.

• We formulate a stochastic non-convex mixed-integer program, which is challenging to

directly solve due to the high search space. We then approximate it into a two-stage

problem and used a lower-complexity adaptive genetic algorithm for a near-optimal

solution.

4.2 System model and problem formulation

Consider a forward end-to-end SatCom system, where a GEO satellite (GEOSat) with a

bent-pipe (non-regenerative) payload connects to G GWs via FLs, generates B beams to

provide radio access service to multiple ground users, as depicted in Fig. 4.1. Here, the FL

communication between GWs and GEOSat is operated via the Q/V or Ka-bands, while the

user-link transmission is processed over the Ku bands. Each beam in this system (beam

b ∈ {1, ..., B}) covers a specific ground cell, where users are located and generate diverse

downlink service requests. We consider a total system operation period of T time slots (TS).

In each TS t, the traffic demand from all users in beam b is retrieved from the core network

and aggregated into a flow of L-bit packets arriving at a rate λb(t) modeled as a Poisson

process.

In this work, we assume that the channels connecting the GWs and GEOSat fluctuate

over time due to weather conditions. Denote the time-varying attenuation on the FL of GW

g at TS t as Ag(t) (dB). Assuming flat fading with respect to the FL carrier bandwidth and

no interference due to frequency orthogonalization or antenna directivity, the corresponding

channel gain can be calculated as

ag(t) = 10Ag(t)/10. (4.1)
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Then, the maximum available FL capacity of GW g can be written as

C fd,max
g (t) =W fd log

(
1 + P fdag(t)/σ

2
)
, (4.2)

where C fd,max
g is the maximum FL capacity of GW g,W fd and P fd represent the FL bandwidth

(Hz), GW transmit power (watts), and σ2 is the noise power (Watts).

4.2.1 B2G Matching and Data Traffic Steering at GWs

Regarding B2G matching and data traffic steering at GWs, we first introduce a binary variable

ϑg,b(t) that

ϑg,b(t) =


1, if data of beam b is steered

over FL of GW g in TS t,

0, otherwise.

(4.3)

In this work, the traffic demand of beam b is assumed to be handled by a single1 GW which

yields: ∑
g∈G

ϑg,b(t) = 1, ∀b, t, (4.4)

where ϑg,b(t) is a binary B2G matching variable and G stands for the set of all GWs. We

further denote fg,b(t) (bps) as the FL capacity of GW g allocated to serve the traffic flow of

beam b in TS t. To prevent packet drops, the traffic throughput transmitted through any

GW’s FL should not exceed its maximum capacity, which yields:

∑
b∈B

ϑg,b(t)fg,b(t) ≤ C fd,max
g (t), ∀g, (4.5)

where B represents the set of all beams. We note that fg,b(t) is always non-negative.

fg,b(t) ≥ 0, ∀g,∀b. (4.6)

1While current systems handling multiple services may support beam traffic assigned to multiple GWs, the
assumption of matching beam traffic to a single GW remains appropriate under aggregate traffic modeling.
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Figure 4.1: System model illustrating traffic management.

If we denote ℓg(t) ∈ [0, 1] as a load factor for each GW g, which measures the proportion of

its capacity used relative to its maximum available capacity, it is given by

ℓg(t) =
∑
b∈B

ϑg,b(t)fg,b(t)/C
fd,max
g (t). (4.7)

For practical operation, we assume that B2G traffic management and matching are cen-

trally coordinated by a network management center (NMC). Furthermore, ϑg,b(t) and fg,b(t)

remain fixed over a cycle of M TSs, after which they can be updated. As a result, the sys-

tem operates over K = T
M cycles, during which B2G matching and CA decisions are made2.

Hence, ∀t ∈ [(k − 1)M + 1, kM ], we have the following constraint,

fg,b(t) = fkg,b, ℓg(t) = ℓkg , ϑg,b(t) = ϑkg,b,

and C fd,max
g (t) = C fd,max

g (k), (4.8)

where ϑkg,b and f
k
g,b represent the B2G matching and FL capacity of GW g allocated to serve

beam b in cycle k, respectively.

4.2.2 Queue Length and QoE Requirement

Assume that there are B buffers assigned for B traffic flows corresponding to each beam

at the NMC. The queue length (QL) corresponding to the traffic of beam b at any time t

2Per-TS decisions incur high signaling and computation overhead; thus, the NMC performs centralized
B2G matching and allocation per cycle, whose duration M is defined based on operator system capabilities.
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is determined by the arrival rate λb(t) and service rate µb(t). The service rate represents

the transmission capacity (packets per second) the NMC allocates to the GW responsible

for handling packets associated with beam b during the specified cycle. Here, µb(t) given in

Equation 2.5 can be expressed as

µb(t) =
∑
g∈G

ϑg,b(t)fg,b(t)/L, (4.9)

Let fb(t) =
∑

g∈G ϑg,bfg,b(t). Then we have,

µb(t) = fb(t)/L. (4.10)

Let qb(t) denote the QL of data packets stored in the NMC buffer corresponding to beam

b at time t. The design in this work focuses on fulfilling QL requirements of the buffer

corresponding to beam b to satisfy the QoE and BP requirements given in Equations 2.6 and

2.7 over the window time of [0, T ]. The requirements are re-expressed as

1

T

∫ T

0
Pr{qb(t) ≥ qQoE}dt ≤ P̄QoE,∀b, (4.11)

and

Pr{qb(t) ≥ qmax} ≤ P̄Blk ∀(t, b). (4.12)

4.2.3 Problem Formulation

This paper considers a stochastic optimization problem for an optimal B2G matching, aiming

to achieve a balanced load distribution among the GWs. To ensure that no single GW

becomes a bottleneck, thereby promoting a more balanced and efficient load distribution, we

need to minimize the expected maximum load, which can be stated as

min
{fg,b(t)},{ϑg,b(t)}

max
g

ET [ℓg(t)] , (4.13a)

subject to:

(4.4), (4.5), (4.6), (4.8), (4.11), (4.12), (4.13b)

where ET [ℓg(t)] = 1
T

∑T
t=1 ℓg(t) and (4.5) indicates that the FL capacity connecting any

GW g and the satellite should be higher than the combined traffic throughput transmitted
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Figure 4.2: Proposed method.

through it; (4.6) indicates the FL capacity of GW g allocated to serve the traffic of beam b is

non-negative; while (4.11) and (4.12) indicate the QoE and BP requirements. Herein, (4.4),

(4.11), and (4.12) are non-convex; then, the problem is a non-convex mixed-integer program.

Therefore, a globally optimal solution for this problem cannot be achieved using the standard

convex optimization tools [26].

To solve this complicated problem, we first predict per-beam traffic demand and FL rain

attenuation for the upcoming cycle. Based on these predictions, we apply an optimization

approach to determine the optimal B2G matching and LB. An overview of the solution

methodology is summarized in Fig. 4.2.

4.3 Data-driven Traffic Demand and Rain Attenuation Pre-

diction

The methods for predicting traffic demand and rain attenuation are detailed in Sections 4.3.1

and 4.3.2 respectively.

4.3.1 Traffic Demand Prediction

Designing optimal B2G matching, LB, and CA with minimal service outage is challenging

without knowledge of the time-varying traffic demands. To address this, it is necessary to

predict incoming traffic for the next cycle. Fortunately, historical traffic data collected by

operators and satellite SPs [156] makes such prediction feasible. Among various forecasting
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techniques, the LSTM model has proven particularly effective due to its ability to capture

long-term dependencies and patterns in sequential time series data, outperforming alterna-

tives like RNN and GRU in prediction accuracy [157]. LSTM models have been successfully

applied to traffic forecasting in both terrestrial and satellite networks [144], making them

well-suited for optimizing modern communication systems. The following sections detail how

the LSTM model is employed in this study to predict traffic demand.

Data Set Preparation and Pre-processing

Obtaining a readily available traffic data set with a resolution per beam in multiple beams

is challenging. Initially, we modeled the hourly traffic demand over a single day for the first

3 beams by fitting the traffic trend available in [132], and for 2 additional beams based on

the traffic patterns reported in [156]. Given the limited availability of long-term historical

traffic data across all beams, and to avoid uniform peak and off-peak patterns across beams

and cycles, we applied scaling and time-shifting to the remaining 15 beams’ to achieve a

multi-beam dataset.

Since operator-collected datasets are typically aggregated at hourly, daily, weekly, or

monthly levels, they are not directly suitable for short-interval traffic prediction (e.g., seconds

or minutes). To address this, we used hourly traffic data to generate packet-level traffic flows

following IEEE standards [158], modeled using a Poisson arrival process. For each beam,

we generated minute-level traffic demand data spanning three months. To ensure uniform

scaling across samples, we applied Min-Max normalization to the dataset. Fig. 4.3 illustrates

the temporal variation in input traffic demand for three randomly selected beams.

Once the dataset is prepared, it is converted into a form that can be used for training and

prediction by preparing a sequence of inputs and outputs. As shown in Fig. 4.4, let S denote

the sequence length (i.e., the number of observed values used as input), H the prediction

horizon (i.e., the number of future steps to forecast), and Z the number of training sequences

per beam per cycle. Let {x(b)t }T̂t=1 denote the traffic demand time series for beam b, where

T̂ is the total number of time steps. The goal is to predict the next H future values of each

beam based on the past S observed values. For each beam, the training dataset is constructed

using a sliding window of size S+H, resulting in Z = T̂ −S−H +1 training samples. Here,
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Figure 4.4: Illustration of LSTM training sample sequence preparation.

each training sample consists of an input sequence given as

X(i,b) = [x
(b)
i , x

(b)
i+1, . . . , x

(b)
i+S−1] ∈ RS , (4.14)

and a target output sequence given as

Y(i,b) = [x
(b)
i+S , x

(b)
i+S+1, . . . , x

(b)
i+S+H−1] ∈ RH , (4.15)

which results in a training dataset given by

D(b) =
{(

X(i,b),Y(i,b)
)
| i = 1, . . . , Z

}
. (4.16)
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Figure 4.5: LSTM cell illustration.

LSTM Model Architecture

Among the well-known LSTM time series prediction techniques, such as vanilla, bidirectional,

stacked, and convolutional, stacked LSTMs offer an effective balance between model capacity

and training complexity, particularly for unidirectional, multi-step forecasting tasks [159].

By processing data through multiple layers of memory cells, stacked LSTMs can capture

more intricate temporal patterns. Additionally, predicting each short-interval time slot in-

dependently would require running the model repeatedly, increasing computational load. To

address this, we adopt a multi-horizon prediction approach, forecasting all time slots within

the next cycle in a single run, as demonstrated in [160]. Accordingly, each beam is mod-

eled with a dedicated two-layer stacked LSTM, designed to forecast traffic demand across all

upcoming time slots efficiently.

The LSTM cell, along with its components—the input gate, forget gate, output gate,

hidden state, and cell state of the LSTM model is crucial for regulating information flow and

maintaining long-term dependencies during the prediction process. The cell state (ct) serves

as the long-term memory, updated by the input (it), forget (ft), and output (ot) gates. The

hidden state (ht) represents the short-term memory used for predictions at each time step,

influenced by the cell state and output gate. An illustration of the LSTM components is

provided in Fig. 4.5. Since we have B models, the gates and the states for any beam b are
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updated as

ibt = σ(Wb
ixx

b
t +Wb

ihh
b
t−1 + bb

i) (4.17a)

f bt = σ(Wb
fxx

b
t +Wb

fhh
b
t−1 + bb

f ) (4.17b)

obt = σ(Wb
oxx

b
t +Wb

ohh
b
t−1 + bb

o) (4.17c)

c̃bt = tanh(Wb
cxx

b
t +Wb

chh
b
t−1 + bb

c) (4.17d)

cbt = f bt ⊙ cbt−1 + ibt ⊙ c̃bt (4.17e)

hb
t = obt ⊙ tanh(cbt), (4.17f)

where Wb’s represent the weights, bb’s are the biases, c̃bt ’s are the candidate cell state and

cbt ’s are the final cell states. Once the LSTM processes the sequence and produces h
(b)
t , we use

the dense layer to map it to the desired prediction. Since our LSTM model is multi-horizon

it outputs all future steps at once as follows:

ŷ
(b)
t+1:t+H = W(b)

y h
(b)
t + b(b)

y . (4.18)

Training Process

Our training process spans 100 epochs, during which the LSTM processes the entire training

dataset and adjusts its weights through forward and backward propagation through time.

To optimize memory usage and computational efficiency, appropriate batch sizes of 256 is

considered. Additionally, to prevent the model from becoming too reliant on specific neurons

and to avoid overfitting, a dropout rate of 0.2 is applied. The dropout technique involves

randomly deactivating a fraction of input units, effectively regularizing the model and min-

imizing the risk of overfitting. Our model is trained utilizing traffic demand data spanning

over 89 days.

Model Evaluation

Following the training phase, we must ensure the model generalizes to unseen data. Hence,

after training our model, we evaluated the performance using data from the subsequent (90th)

day. This evaluation was conducted over 96 cycles, each with a duration of 15 minutes.

The prediction loss per beam, considered as a performance metric, is calculated using mean
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squared error (MSE) as follows:

L(b) =
1

ZH

Z∑
i=1

H∑
h=1

(
x̂
(b)
i+S+h−1 − x

(b)
i+S+h−1

)2
, (4.19)

where x̂
(b)
i+S+h−1 is the models prediction of the next value and x

(b)
i+S+h−1 is the ground true

next value.

4.3.2 Rain Attenuation Prediction

Accurate prediction of rain attenuation events is essential because weather conditions, par-

ticularly rain, significantly impact signal quality and FL capacity. In the following sections,

we explain the dataset preparation, the model architecture, the training method, and the

validation process.

Data Set Preparation and Preprocessing

To facilitate accurate LSTM predictions, we first need to gather and prepare the necessary

data. Accordingly, we considered 3 years (1.1.2022–1.1.2025) of historical rain rate (R) data

for the SES GEO GWs in Luxembourg, Munich (Germany), and Stockley (UK), obtained

from [161] on a daily granularity. Using the collected rain rate data, we apply ITU model

standards to convert these rain rates (precipitation levels) into attenuation values [162–164] at

the receiver end. Given the meteorological rain rate R(t), the corresponding rain attenuation

of the FL connecting GW g to the satellite is calculated based on the ITU-R P.838-3 standard

for rain attenuation modeling as follows:

Ag(t) = KRα
g (t) ∗ d, (4.20)

where K and α are frequency and polarization-dependent constants given in a tabular format

as in [165], d is the path length over which the signal travels with rain, and Rg(t) is the

rain rate at time t. The FL attenuation values per cycle are synthesized using a log-normal

distribution3. The corresponding time-varying FL capacity is given as in Equation 4.2 with

3Although the log-normal distribution provides a good approximation of the daily rain distribution at the
cycle level, satellite operators need to collect rain events at a granularity matching the cycle duration or
smaller time intervals for practical rain attenuation prediction.
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the Signal to Noise Ratio (SNR) obtained as

SNRg(t) = P fdag(t)/σ
2. (4.21)

To assess the independence of rain attenuation across the three GW locations, we com-

puted Pearson correlation coefficients [166] on rain rate data over the study period. The

results showed weak correlations, indicating that rain events at different GWs are largely

independent; Fig. 4.6 presents the correlation matrix supporting this observation.

Following a similar notation as in the traffic prediction case, let {x(g)t }T ′
t=1 denote time

series rain attenuation for the FL of GW g, where T ′ is the total number of time steps. The

goal is to predict the next time step based on the preceding S′ time steps. The training dataset

is constructed for each GW using a sliding window of size S′ + 1, resulting in Z ′ = T ′ − S′

training samples. Here, the input sequence of each training sample is given as

X(i,g) = [x
(g)
i , x

(g)
i+1, . . . , x

(g)
i+S′−1] ∈ RS′

, (4.22)

and the target output sequence is defined as

Y(i,g) = [x
(g)
i+S′ ] ∈ R1, (4.23)

to provide a training dataset of:

D(g) =
{(

X(i,g),Y(i,g)
)
| i = 1, . . . , Z ′

}
. (4.24)

LSTM Model Architecture

Similar to the traffic demand prediction, the rain attenuation prediction applies the stacked

multi-input, multi-output LSTM architecture with dropout. Here, the LSTM model predicts

attenuation for multiple FLs, each corresponding to a ground GW susceptible to rain fading.

The independence in rain attenuation between GWs is preserved by training separate models,

allowing for parallel and decoupled learning without requiring inter-GW dependencies. Sim-

ilar to traffic prediction, each GW is modeled using a dedicated stacked LSTM. The LSTM
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Figure 4.6: Correlation matrix of rain data.

components are updated as

igt = σ(Wg
ixx

g
t +Wg

ihh
g
t−1 + bg

i ) (4.25a)

fgt = σ(Wg
fxx

g
t +Wg

fhh
g
t−1 + bg

f ) (4.25b)

ogt = σ(Wg
oxx

g
t +Wg

ohh
g
t−1 + bg

o) (4.25c)

c̃gt = tanh(Wg
cxx

g
t +Wg

chh
g
t−1 + bg

c) (4.25d)

cgt = fgt ⊙ cgt−1 + igt ⊙ c̃gt (4.25e)

hg
t = ogt ⊙ tanh(cgt ), (4.25f)

where Wg’s represent the weights, bg’s are the biases, c̃gt ’s are the candidate cell state and

cgt ’s are the final cell states. The final predicted output is then given as

ŷ
(g)
t+1 = W(g)

y h
(g)
t + b(g)

y . (4.26)

Training Process

Similar to the traffic prediction, the training process spans 100 epochs, during which the

neural network processes the entire training dataset and adjusts its weights. To optimize

memory usage and computational efficiency, a batch size of 128 is considered. Additionally,

to prevent the model from becoming too reliant on specific neurons and to avoid overfitting,

a dropout rate of 0.2 is applied.
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Figure 4.7: LSTM Architecture.

Model Evaluation

The performance of the rain attenuation prediction is assessed using new, previously unseen

data of the next day following the model’s training with the collected data. Each GW’s model

is tested individually on its respective dataset, and the prediction error is quantified using

MSE as the evaluation metric as follows:

L(g) =
1

Z ′

Z′∑
i=1

(
x̂
(g)
i+S′ − x

(g)
i+S′

)2
, (4.27)

where x̂
(g)
i+S′ is the models prediction of the next value and x

(g)
i+S′ is the ground true next

value.

Both LSTM architectures for traffic and rain attenuation can be described by Fig. 4.7.

Although the underlying LSTM structure remains similar for both models, the input-output

granularity, and the number of time steps to predict as given in (4.18) and (4.26) are different.

The difference in input-output granularity between the two LSTM models arises from the

nature of the data. Specifically, for traffic demand prediction, it is possible to capture the

fine-grained temporal patterns inherent in the Poisson process, allowing for accurate traffic

estimation. In contrast, rain attenuation prediction relies on the ITU model’s capability,

which is more suited for coarser time granularity [167].
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4.4 Proposed B2G Matching and Load Balancing Approaches

4.4.1 Problem Approximation

Given that the packet arrivals follow a Poisson process, and following the steps presented in

Section 2.3, Equations (4.11) and (4.12) can be re-expressed as

1

M

∫ kM

(k−1)M

qQoE∑
n=0

gn,b(f
k
b , t) dt ≥ 1− P̄QoE, (4.28)

and
qmax∑
n=0

gn,b(f
k
b , t) ≥ 1− p̄Blk, ∀k, t ∈ Ωk. (4.29)

Equation (4.28) can be transferred to:

zk(f
k
b ) ≥ 1− P̄QoE, (4.30)

where zk(x) = 1 − ϕb
k(

MxqQoE+1
) and ϕbk = (L

∑
t∈Ωk

λb(t))q
QoE+1. As presented in proposition

1, Equations (4.6), (2.13) and (4.29) can be merged into a single convex constraint as

fkb ≥ ζbk = max
(
0, ζbk,1, ζ

b
k,2

)
,∀k, ∀b. (4.31)

which is equivalent to: ∑
∀g

ϑkg,bf
k
g,b ≥ ζbk, (4.32)

where ζbk,1 = max
t∈Ωk

Lλb(t), ζbk,2 = max
t∈Ωk

Lx−1
qmax(1− P̄Blk, t), and x

−1
qmax(P̄Blk, t) is the inverse func-

tion of
∑qmax

n=0 gn,b(f
k
b , t).

In addition, we introduce an auxiliary variable υk = max ℓkg and add a constraint υk ≥ ℓkg

to ensure that the min-max load always exceeds other GWs’ loads. Hence, problem (4.13)

can be modified as

min
fk
g,b,ϑ

k
g,b

υk (4.33a)

subject to: (4.4), (4.5), (4.30), (4.32),

υk ≥ ℓkg , ∀g, k. (4.33b)
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Remark 4. Problem (4.33) remains a non-convex mixed-integer linear program (MILP) due

to the binary B2G matching variable. Since the problem is non-convex, directly finding the

optimal solution is challenging. Below we divide (4.33) into a two-stage optimization problem

to efficiently solve it.

• Stage One: Optimizing the capacity (fkb ) required to meet the QoE and BP require-

ments of traffic flows in each beam. The optimal capacity identified in this stage rep-

resents the necessary allocation that must be assigned to the beams from any GWs to

facilitate the packet flows.

• Stage Two: Optimizing the B2G matching (ϑkg,b) to ensure efficient GW load balanc-

ing, thus meeting the capacity demands of the beams identified in Stage One.

4.4.2 Stage One - Capacity Optimization

To optimize the capacity utilization, we find the minimum capacity fkb required from GW g

to satisfy the BP and QoE requirements without taking the rain fading into account. The

problem is given as

min
fk
b

fkb subject to (4.30), (4.32). (4.34)

This is a linear convex optimization problem and can therefore be solved optimally using

standard optimization techniques. The optimal solution is presented in the following propo-

sition.

Following proposition 2, the optimal solution of (4.34) is given as

f̂kb = max(0, ζbk,X ⋆), (4.35)

where X ⋆ is given as

X ⋆ =
[
ϕbk/(MP̄QoE)

] 1

qQoE+1 . (4.36)
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Algorithm 6 Weighted load balancing algorithm

1: for k = 1 to K do
2: Solve the convex problem in (4.34) as in (4.35) and (4.36) to get f̂k

b .
3: Sort f̂k

b in descending Order.
4: Sort C fd,max

g in descending Order.
5: for b = 1 to B do
6: Check if C fd,max

g ≥ f̂k
b .

7: Assign beam b to GW g.
8: Calculate the remaining GW capacity.
9: end for
10: end for
11: Return ϑk

g,b.

4.4.3 Stage Two - B2G Matching

Once f̂kb ’s are defined in Stage One, ϑkg,b can be optimized by considering the following

problem,

min
{ϑk

g,b}
υk (4.37a)

subject to:
∑
g∈G

ϑg,b(t) = 1, ∀b, k (4.37b)

υk ≥
∑
b∈B

ϑkg,bf̂
k
g,b/C

fd,max
g (k), ∀g, k, (4.37c)

υk ≤ 1. (4.37d)

Here, constraint (4.5) is changed to its equivalent constraint (4.37d). Problem (4.37) is a linear

integer program that can be effectively solved using established optimization techniques, such

as B&B [168]. However, the B&B algorithm generally exhibits exponential complexity. In

the following, we discuss four low complexity methods for B2G matching design.

Weighted Load Balancing Method (WLB)

Traffic matching based on the available capacity of GWs is a well-established method [154],

[155]. The WLB B2G matching relies on GW capacity, which varies due to SNR fluctuations

across all GWs. Allocation is performed on iterations over all beams based on the remaining

capacity of the GWs. However, this approach can result in significant load imbalances,

particularly when certain GWs consistently have higher remaining capacities over iterations

compared to others, causing traffic to be matched predominantly to the GWs with higher

capacity. The WLB method is summarized in Algorithm 6.
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Ant Colony Optimization (ACO)

ACO is a metaheuristic algorithm in which a colony of artificial ants cooperates to find the

best solutions to complex optimization problems [28], [169], such as B2G matching. Ants use

pheromone trails to communicate, make probabilistic decisions based on pheromone levels,

and collectively improve solutions through cooperation.

To adapt the algorithm to our problem, we assume each ant explores the possible solutions

of assigning one beam to a GW sequentially until all beams are assigned to a suitable GW.

Hence, an ant represents a full solution of B2G matching. These ants calculate the desirability

for each beam to be assigned to a specific GW based on the pheromone levels and heuristic

desirability, which mainly depends on the beam traffic and GW capacity. To match the

approach to solve our problem, the pheromone level τb,g associated with assigning beam b to

GW g is designed in a way that minimizes the maximum load and balances the load among

GWs as follows:

τb,g = 1/max ℓkg . (4.38)

In addition, the probability of assigning beam b to GW g is given as

Prb,g =
[τb,g]

ωp · [ηb,g]βh∑
g∈G[τb,g]

ωp · [ηb,g]βh
, (4.39)

where ηb,g is the heuristic desirability of assigning beam b to GW g, ωp and βh are parameters

that control the relative importance of pheromone level and heuristic information, respec-

tively. Furthermore, the heuristic desirability of beam b to be assigned to GW g can be

represented as

ηb,g = max

(
0,
C fd,max
g −

∑
t∈Ωk

λb(t)

C fd,max
g

)
. (4.40)

To balance exploration and exploitation over I iterations, the ωp and βh parameters are

updated at every iteration i as follows:

ωp,i = ωp,start + (ωp,final − ωp,start)i/I
2
Aco, (4.41)

and

βh,i = βh,start · e−βh,i . (4.42)

These equations ensure that ω increases progressively to exploit the learned pheromone trails,
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Algorithm 7 ACO Algorithm

1: Input:

• Initialize iterations IAco, number of ants J , parameters ωp, βh, ψphe.

• Initialize the minimum of the maximum load υ∗
k =∞ and the best solution X∗.

2: for k = 1 to K do
3: Solve the convex problem in (4.34) as in (4.35) and (4.36) to get f̂k

b .
4: Compute heuristic desirability as in (4.40).
5: Initialize pheromone matrix τb,g = 1,∀b ∈ B, g ∈ G.
6: for i = 1 to IAco do
7: Update the pheromone influence and heuristic influence as in (4.41) and (4.42).
8: for j = 1 to J do
9: Each ant constructs a B2G matching solution X(j):
10: Compute beam b to GW g matching probability as in (4.39).
11: Assign all the beams to corresponding GWs.
12: Compute the minimum of the max load min υk.
13: if υ

(j)
k < υ∗

k then

14: Update best solution: X∗ ← X(j), υ∗
k ← υ

(j)
k .

15: end if
16: Pheromone evaporation: τb,g ← (1− ψphe)τb,g.
17: for each solution X(j) do
18: Update pheromone levels as in (4.43).
19: end for
20: end for
21: end for
22: end for
23: Return ϑk

g,b ← X∗.

while β decreases exponentially to reduce the impact of heuristics. This dynamic adjustment

helps balance exploration and exploitation, enhancing the overall performance of the ACO

algorithm. The pheromone level is updated over iterations as follows:

τb,g = (1− ψphe)τb,g +∆τb,g, (4.43)

where ∆τb,g is the total residual amount of pheromone deposited during the global updating

phase. The whole process of the ACO method is summarized in Algorithm 7.

Genetic Algorithm (GA)

GAs are an evolutionary optimization techniques inspired by natural selection. It iteratively

refines a population of candidate solutions (chromosomes) through selection, crossover, and

mutation, guided by a fitness function to converge toward an optimal solution. GAs are

widely recognized for their robust optimization capabilities and adaptability in dynamic en-

vironments [170], [27]. The GAs generally have the following components or operators that

work together to optimize the solution.
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Chromosomes Representation Each chromosome represents a potential solution for the

B2G matching. It is defined as an array of length B, where each element denotes the GW g

to which the traffic of beam b is assigned. Since a beam’s traffic needs to be assigned to only

one GW, the elements of each chromosome array hold an integer value between zero and G.

Hence, the chromosome is represented by

C = [c1, c2, . . . , cB], cb ∈ {1, 2, . . . , G}, ∀b, (4.44)

where C denotes the chromosome, and the gene cb represents the GW assigned to beam b.

Initial Population A population refers to a collection of individual chromosomes that

represent a possible B2G matching solution to our problem. The population is often randomly

initialized, and its size is a crucial parameter that influences the algorithm’s performance by

balancing exploration and computational complexity. For a population P of size Y , we

represent the initial population as a matrix of Y rows and B columns.

Fitness Calculation Each chromosome in the population is evaluated by the fitness value

to test how well it fits to solve the B2G matching problem. To achieve the objective, we

define a fitness function based on the distribution of traffic loads across GWs. Hence, the

fitness function of the chromosome C can be defined as

F (C) = 1/max
g
ℓg. (4.45)

The fitness function, 1
maxg ℓg

, penalizes solutions with high load factors. This approach di-

rectly addresses the capacity constraint by discouraging overloaded GWs and minimizing the

variation in load distribution among GWs, thereby promoting a more balanced allocation of

resources.

Selection The selection process is crucial for improving the population’s fitness over gen-

erations by favoring chromosomes with higher fitness values. This is essential for effectively

assigning beams to GWs. There are several types of selection methods, with Roulette Wheel

Selection being the most common [171]. If the fitness of the chromosome Cy is given as F (Cy),

then the probability of selecting the parent y using the Roulette Wheel Selection is expressed
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as

Pr(Cy) =
F (Cy)∑

y∈Y
F (Cy)

. (4.46)

Crossover Crossover is a fundamental operator that facilitates the exchange of genetic

material between parent chromosomes (solutions) to create offspring with potentially better

fitness. For efficient performance of the GA, it is crucial to set the crossover rate parameter

properly.

Mutation Mutation is a small, random tweak in the chromosome used to maintain and

introduce diversity in the genetic population, potentially leading to new and better solutions.

To ensure efficient performance of the GA, it is essential to correctly set the mutation rate

parameter.

The basic GA method can be summarized in Algorithm 8, excluding the rc and rm update

in step 7.

Proposed Adaptive Genetic Algorithms

The basic GA operates over a fixed value of parameters such as mutation rate, and crossover

rate throughout the process. This makes the exploration and exploitation process of the

algorithm remain unchanged over time which may lead to early convergence of local optimal

solutions [171]. Hence, the basic GA may be inefficient for a problem with a large search space,

such as B2G with exponential complexity. Therefore, we propose an adaptive GA (AGA)

that explores more at the early generations and exploits more at the latter generations.

Adaptive Crossover Adaptive crossover involves modifying the crossover rate over gen-

erations. For example, the crossover rate might be higher in the early generations to explore

diverse solutions and traverse different beams-GW matching. As the generations progress,

the crossover rate is adjusted to favor the production of fitter offspring, thereby exploiting the

best B2G matching found so far. This dynamic adjustment ensures that the GA maintains an

acceptable exploration and exploitation balance throughout the evolutionary process. How-

ever, maintaining a tolerable minimum crossover rate rcmin even in the latter stages of the

GA is crucial to prevent stagnation. The crossover rate rc is updated over I generations as
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Algorithm 8 GA for B2G matching

1: Initialization:

• Initialize a population P of size Y with random B2G matching as in (4.44).

• Set initial cross over rate rc, initial mutation rate rm, and maximum number of generations Imax.

• Initialize generation counter i = 0.

2: for k = 1 to K do
3: Solve the convex problem in (4.34) as in (4.35) and (4.36) to get f̂k

b .
4: while i < Imax do
5: Set an empty population P ′ for the next generation.
6: Evaluate the fitness of each chromosome in P as in (4.45).
7: Update rc and rm as in (4.47) and (4.48). {Only for adaptive GA method.}
8: Select the chromosome with the highest fitness from P and add it to P ′.
9: while |P ′| < W do
10: Select 2 parents from P for the next generation using roulette wheel selection.
11: Perform crossover on selected parents with a cross over rate of rc.
12: Apply mutation to offspring with probability rm.
13: Insert the offspring to P ′

14: end while
15: Replace old population P ← P ′.
16: Update i := i+ 1.
17: end while
18: end for
19: Return ϑk

g,b.

follows:

rc(i+ 1) = rc(i)−
[rc(i)− rcmin] · i

I
(4.47)

Adaptive Mutation Adaptive mutation involves modifying the mutation rate over genera-

tions. Early in the evolutionary process, a higher mutation rate introduces greater variability,

helping the algorithm explore diverse matching configurations and escape local optima. As

the algorithm progresses over generations, the mutation rate can be reduced to exploit the

best matching and avoid disrupting the best configurations due to mutation. The mutation

rate rm is updated as

rm(i+ 1) = rm(i)− [rm(i)− rmmin] i/I. (4.48)

The entire process of the AGA for determining B2G matching and LB can be summarized

in Algorithm 8, which includes step 7 that is not present in the basic GA.

4.4.4 Solution Approach Summary and Complexity Analysis

Overall Solution Design

As detailed in Section 4.3, our methodology encompasses traffic demand and rain attenuation

prediction followed by optimization. Consequently, the comprehensive solution approach of
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Algorithm 9 Proposed Solution Approach

1: Initialization: Define W fd, C fd, QQoE, P̄Blk, P̄QoE and Qmax.
2: for k = 1 to K do
3: Use multi-horizon data-driven prediction to estimate the traffic demand for all time slots in t ∈ Ωk and

the rain attenuation for the same period.
4: Solve stage one of the problem in (4.34) as in (4.35) and (4.36).
5: Having the solution from stage one,solve stage two of the problem to find the optimal B2G matching

ϑk
g,b.

6: end for
7: Return fk

g,b and ϑk
g,b.

the proposed method is summarized in Algorithm 9.

Complexity Analysis

The complexity of the LSTM model depends on the number of stacked LSTM layers (L′),

the number of units per layer (U), the sequence length (S), and the number of beams (for

traffic prediction) or GWs (for rain attenuation prediction). The complexity per LSTM unit

is O
(
U2
)
. Hence, the overall complexity of implementing the LSTM method per cycle is

given as

XLSTM = O
(
L′SBU3

)
. (4.49)

Next, the complexity of the GA over I generations and an initial population of size Y is

related to the population generation O (Y B), fitness evaluation O (Y B), selection O (Y ),

cross over & mutation O (Y B), and generation replacement O (I). Since these steps repeat

over I generations (iterations) per cycle, and over K cycles, the overall complexity of GA is

given as

XGA = K(XLSTM +O (IY B)). (4.50)

On top of the complexity of GA, our proposed AGAmethod introduces adaptation complexity

at each generation, which is linear as described in equations (4.47) and (4.48). Consequently,

the overall complexity of the AGA is given by

XAGA = K(XLSTM +O (IY B + IΘ)), (4.51)

where IΘ represents the cumulative adaptation overhead across all generations. Conse-

quently, both the GA and AGA algorithms have polynomial time complexity.

Denote J as the number of ants. The complexity of the ACO algorithm is related to the

path construction, that is visiting a beam and making a matching decision O (JBG), local
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Table 4.1: Considered LSTM hyper-parameter values.

Parameters Values

Activation function tanh

Batch size traffic prediction 256

Batch size attenuation prediction 128

Dropout rate 0.2

Epochs 100

Horizon size traffic prediction 15

Learning rate 0.001

Loss function MSE

LSTM units per layer 50

Normalization MinMax scaling

Number of layers 2

Optimizer Adam

Output Layer Fully connected dense layer

Sequence length traffic prediction 100

Sequence length attenuation prediction 50

and global pheromone update O (JB +BG), probabilistic selection O (JB), and the number

of iterations O (I). Consequently, the overall complexity of the ACO algorithm is given as

XACO = K(XLSTM +O (IJBG)). (4.52)

Hence, the complexity of ACO can be easily solved in polynomial time. The complexity of

the WLB method is a linear function of the number of beams given as

XWLB = K(XLSTM +O (B)). (4.53)

4.5 Numerical results and Analysis

This section details the preparation of the data set, presents numerical results, and analyzes

the performance of our methods compared to benchmark algorithms.

4.5.1 Traffic Demand and Rain Attenuation Prediction Results

In this section, we evaluate the effectiveness of the proposed models for forecasting rain

attenuation and traffic demand. The parameters of the LSTM models are given in Table 4.1.

Fig. 4.8 illustrates actual versus predicted traffic for two randomly selected beams. The

figure shows that the LSTM model with multiple outputs and multiple horizons accurately
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Figure 4.8: Predicted traffic demand for randomly selected beams.
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Figure 4.9: Traffic demand prediction loss for randomly selected two beams.

predicts the traffic trends that vary over time, indicating its robustness and reliability. The

prediction efficiency of our model is further demonstrated by the lower values of loss of training

and testing (validation) in Fig. 4.9. Training loss measures how effectively the model learns

from training data, while testing loss evaluates the model’s generalization to unseen data.

Similarly, Fig. 4.10 presents the performance of our rain attenuation prediction model,

depicting both training and testing loss over the epochs. The plot reveals a consistent decrease

in training and testing loss throughout the training process. The small gap between training

and testing loss indicates good generalization to new data and no overfitting. The low final

loss values further confirm the efficiency and robustness of the proposed model. The relatively
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Figure 4.10: Feeder link SNR prediction training and testing loss.
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Figure 4.11: Predicted SNR for 1 day with 96 cycles.
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Figure 4.12: Maximum available capacity, assigned traffic, and maximum load factor.
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Table 4.2: Considered parameter values.

Parameters Values

Maximum bandwidth W fd 500 MHz

Number of beams 20

Number of GWs 3

Packet length 15000 (Bytes)

Population size GA & AGA 500 individuals

Period (T) 1 day

P fd 100 Watts

qmax 130 (2 MBytes)

qQoE 80 (Packets)

Target BP 0.05

Target QoE violation probability 0.1

Termination criteria Maximum number of generations

Cycle duration 15 minutes

[K, α] [0.05, 1.2]

σ2 0.01 Watts

higher loss for rain attenuation prediction, compared to traffic prediction, is due to the rare

extreme points in rain events, which are harder to predict accurately than the fluctuations

in traffic data.

Fig. 4.11 illustrates the predicted SNR due to rain attenuation for the FLs connecting the

three GWs to a multi-beam satellite over a day, segmented into 96 cycles of 15 minutes each.

GWs 1 and 1 show sporadic SNR degradations throughout the day, indicating intermittent

weather disturbances. In contrast, GW 3 maintains relatively stable SNR values, indicating

reduced atmospheric impact. These observations underscore the importance of adaptive B2G

matching.

4.5.2 Numerical Results

In this section, we analyze the running time and the numerical results of our approach and

the GA, ACO, and WLB methods. The design parameters for this simulation are given in

Table 4.2. For the basic GA, all the parameters are the same as for the AGA except that

the mutation rate (rm = 0.1) and the crossover rate rc = 0.5 are kept constant. For the ACO

algorithm, 500 ants over 100 iterations, βdecay = 0.005, and a pheromone evaporation rate of

0.1 are considered.

Fig. 4.12 illustrates the maximum per-cycle capacity of each GW after SNR prediction, the

total assigned traffic to each GW (i.e.,
∑
b∈B

fkg,b) after solving stages 1 and 2 of the problem,
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Figure 4.13: Convergence of the maximum load factor max ℓkg .

and the resulting load factor ℓkg across 96 cycles over one day using the proposed AGA

method. The results reveal that the matched traffic dynamically adjusts according to the

varying capacities of the GWs. Notably, the nearly identical load factors observed across the

three GWs demonstrate the model’s LB efficiency. This consistency indicates that the system

can not only mitigate the impact of capacity fluctuations (e.g., due to weather conditions)

but also optimally distribute traffic demands across the network, ensuring stable operation

and improving overall resource utilization. These findings underscore the robustness of the

proposed approach in managing multi-GW satellite systems under dynamic and uncertain

conditions.

Fig. 4.13 illustrates the convergence of the maximum load factor towards the minimum

(minmax ℓkg) for a randomly selected cycle, achieved by the proposed AGA, compared to

the benchmark algorithms over generations and iterations. The results indicate that the

proposed method outperforms the benchmark algorithms in terms of convergence speed and

minimizing the maximum load, which indicates a better load balance. This is attributed to

the capability of AGA to dynamically adjust crossover and mutation rates, which enhances the

balance between exploration and exploitation, leading to more efficient LB. This adaptability

allows the algorithm to quickly converge to optimal solutions, minimizing the maximum load

among GWs compared to the benchmark algorithms. The maximum load factor difference

between the first and last iterations in the AGA, GA, and ACO algorithms decreases slightly

from 0.945 to 0.928. This is because we start with a large initial population (500 for AGA and



Proactive Traffic Matching and Load Balancing 105

WLB GA ACO AGA
60

70

80

90

100

Figure 4.14: Data transmission performance.

GA, and 500 ants for ACO). This large population size allows us to explore a wide range of

solutions from the very first iteration. Despite the small numerical difference, this reduction

is practically significant for satellite EHF band FLs, which carry tens or even hundreds of

gigabits of data. Therefore, going through all iterations until convergence is essential to

achieve the best possible solution and to ensure the robustness of the system.

It is important to note that at the cycles where the traffic demand is small and the GWs

have sufficient capacity, the QoE requirements of the traffic flows using all the considered

B2G matching techniques are almost the same or even the same. This is because all beams

receive the minimum capacity needed to satisfy the target QoE requirement, regardless of

which GW provides the capacity. The performance difference between the proposed and

benchmark algorithms becomes apparent at cycles with peak traffic where the traffic demand

begins to approach or exceed the maximum capacity of the GWs. At this point, the efficiency

of B2G matching is crucial for reducing packet dropping and optimizing the available capacity

of the GWs.

Fig. 4.14 illustrates the total available capacity of the GWs (
∑

g∈G C
fd,maxg(k)), the min-

imum capacity required to satisfy the QoE and BP requirements (
∑

b∈B f̂ b(k)), the total

offered traffic (
∑

b∈B λ
b
k), and the total throughput (

∑
g∈G

∑
b∈B ϑ

k
g,bf

k
g,b) of the FLs for a

randomly selected cycle with peak traffic demand using different B2G matching techniques.

The plot indicates that although the total available capacity is sufficient to meet the minimum

required capacity to fulfill the QoE and BP requirements, the simulated algorithms perform

differently in terms of utilizing the capacity and the transmission throughput of the FLs.

The gap between the offered traffic and the total throughput, indicated with double arrows,

shows the amount of blocked data. The proposed AGA method outperforms the benchmark
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methods by efficiently transmitting more data, thereby reducing blocked (lost) packets.

Fig. 4.15 shows the CDF of the mean QoE violation probability for traffic flows to all

beams, using the proposed and benchmark methods over 96 cycles in one day, experiencing

different levels of GW capacity and traffic demand. The results show that the QoE violation

probability of the traffic flow with AGA-based B2G matching is generally lower than that of

the B2G matching using other benchmark methods. This is because the AGA dynamically

adjusts its parameters, leading to more efficient optimization and superior QoE compared to

static benchmark methods.

Method
Prediction model training

AGA GA ACO WLB
SNR Traffic

Total
running
Time (s)

11211 78478 2240.64 2065.92 2395.2 768

Average
running
time per
cycle (s)

116.78 817.5 23.34 21.52 24.95 8.05

Table 4.3: Running time of simulated models.

Table 4.3 summarizes the running times associated with the training of SNR and traffic

prediction models, as well as the running time for the simulated AGA, GA, ACO, and WLB

methods, including the testing phase of the prediction models. While the WLB and GA
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algorithms exhibit shorter execution times compared to AGA and ACO, the AGA algorithm

demonstrates a reasonable and acceptable running time. Given its superior performance

in terms of load balancing (LB), BP, and QoE given in Figs 4.13, 4.14, and 4.15, AGA is

recommended as the preferred solution.

4.6 Conclusion

This chapter addresses the challenge of optimal beam traffic to GW matching with LB among

ground GWs, accounting for previously unknown, time-varying rain attenuation and fluctu-

ating traffic demand. The system model integrates QoE and BP requirements. To capture

dynamic environmental and traffic conditions, stacked multi-output multi-horizon LSTM Re-

current Neural Network (RNN) is used for traffic demand and rain attenuation prediction.

The optimization problem is solved using a low-complexity AGA, enabling efficient resource

allocation while meeting service constraints.



Chapter 5

Conclusions and Future Work

5.1 Conclusion

With the rapid advancement of 5G networks, user access to diverse 5G services and the

associated traffic demand are evolving dynamically in both volume and QoE expectations.

Concurrently, the 5G market is witnessing intensified competition among satellite operators

and SPs, leading to increased pressure on satellite operators to efficiently manage resources

and meet user demands. In this context, satellite operators must strategically allocate their

limited capacity to balance three critical objectives: maximizing revenue, minimizing rental

costs of SPs, and satisfying diverse QoE requirements across service types. In Chapter 2

of the thesis, an optimization algorithm for an optimal trade-off among allocated capacity,

rental cost, and performance is discussed. This directly addresses Question 1 presented in

Chapter 1.

Achieving the optimal balance is increasingly difficult, as traffic demand patterns of multi-

ple services are uncertain and vary significantly in real-time, making traditional optimization

methods inadequate. For better adaptability and flexibility in resource allocation, AI and ML

techniques offer promising solutions. These models can successfully learn to prioritize services

based on QoE sensitivity and traffic characteristics, adapting to dynamic traffic patterns in

real time. Chapter 3 of the thesis explored the use of DQN, DDQN, and D3QN techniques to

learn the sequence of traffic demand and allocated capacity over time to provide an optimal

CA policy to address Question 2.

Furthermore, leveraging EHF bands can provide the additional capacity needed to sup-

port growing demand. However, EHF deployment introduces its own challenges, including
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severe rain attenuation, variable traffic loads, and link imbalances across feeder links. To

mitigate these issues, the development of predictive models is crucial. These models must

be capable of accurately forecasting both traffic demand and atmospheric conditions (e.g.,

rain attenuation), thereby enabling proactive resource management. Additionally, intelligent

B2G matching and load balancing mechanisms are essential to maintain service continuity

and ensure optimal system performance. This approach not only enhances QoE and system

efficiency but also ensures resilient and adaptive service delivery in the face of environmental

and demand uncertainties. These methods are explored in detail in Chapter 4 to address

Question 3.

5.2 Future Work

This section outlines potential directions for extending the research presented in this thesis.

These extensions are motivated by both the limitations of the current modeling framework

and the evolving landscape of SatCom technologies. The proposed areas reflect key challenges

in next-generation satellite systems and align with emerging trends in QoE-centric network

design.

1. Multi-Dimensional QoE Modeling and Optimization: The current work models QoE

primarily as a function of queuing delay. In practical scenarios, however, user experience

is shaped by multiple performance metrics—such as latency, throughput, jitter, and

packet loss. A promising direction for future work is to develop multi-dimensional QoE

models that jointly consider these metrics and to investigate dynamic resource allocation

strategies that satisfy QoE requirements holistically. This may involve formulating

multi-objective optimization frameworks and real-time scheduling algorithms capable

of balancing trade-offs among competing QoE indicators.

2. User-Centric Traffic and QoE Modeling: The current work models traffic and QoE

at the flow level, aggregating data across multiple users and services for queuing and

CA purposes. It assumes uniform QoE requirements among users accessing the same

service, which simplifies scheduling decisions. However, in practice, users often have

heterogeneous QoE expectations, and satellite systems allocate resources at the indi-

vidual user level. Capturing this variability requires more fine-grained modeling of user

behavior, service preferences, and perceived quality. Future research should explore
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dynamic, user-level resource allocation mechanisms that explicitly account for individ-

ualized QoE requirements. This becomes even more promising research direction in

light of the emerging trend of Direct-to-Device (D2D) SatCom, such as 5G/6G NTN

directly serving smartphones and IoT devices.

3. Extension to NGSO Satellite Constellations (MEO/LEO/VLEO/UAV/HAPS): Non-

GEO satellite constellations introduce dynamic topologies and frequent handovers, com-

plicating CA and GW assignments. In these networks, the visibility windows between

satellites and user terminals or GWs change rapidly, necessitating continuous reassess-

ment of link availability and QoE. Future research should investigate mobility-aware

CA frameworks that adapt to changing satellite visibility windows and leverage Inter-

Satellite Links (ISLs) for end-to-end traffic coordination.

4. Multi-Orbit Satellite Resource Coordination and Traffic Steering: The future of Sat-

Com lies in heterogeneous orbital architectures, where LEO, MEO, GEO, and VLEO

satellites are jointly used to provide global, reliable, and low-latency coverage. Each

orbit has distinct characteristics in terms of latency, coverage footprint, link stability,

and resource availability. A key research challenge is to design orbit-aware resource

allocation strategies that maximize system utility while meeting service-specific QoE

constraints.

5. Multi-tenant Resource Orchestration: The current work considered a single satellite

service provider offering multiple services. However, real-world scenarios often involve

multiple SPs (tenants), each with distinct traffic demands and SLA requirements. In

such multi-tenant environments, ensuring QoE becomes considerably more challenging

due to competing resource demands, SLA enforcement, and the need for fair resource

allocation. Balancing inter-tenant fairness with intra-tenant QoE-aware service dif-

ferentiation, while adapting to time-varying traffic patterns and capacity constraints,

remains a complex task. As a future direction, QoE-aware orchestration frameworks

that support dynamic, efficient CA across services and tenants should be explored.



Appendix A

Proof of Proposition 1

Denote µb(t) = µbk in cycle k-th. We also have ρb(t) = λb(t)/µbk, ∀t ∈ Ωk and µb(t) = W b(t)TTS

L .

Then, constraint (2.16d) can be transferred into the following requirement

W b
k ≥ αb

k,1 = max
t∈Ωk

Lλb(t)/TTS. (1)

Similarly, the constraint (2.16b) will be equivalent to

W b
k ≥ αb

k,2 = max
t∈Ωk

Lg−1
qmax

(1− P̄Blk, t)/TTS. (2)

The results given in (1) and (2) yield the lower bound of W b
k as αb

k = max
(
αb
k,1, α

b
k,2

)
,

which has completed the proof of Proposition 1.
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Proof of Theorem 1

Let yqQoE
(W b

k , t) =
∑QQoE

n=0 gn,b(W
b
k , t). Taking Y

b(t) = Lλb(t)/TTS, one can express yqQoE
(W b

k , t)

as,

yqQoE
(W b

k , t) = 1−
(
Y b(t)/W b

k

)QQoE+1
. (3)

Hence, we can see that yqQoE
(Wk, t) is a concave function with respect to Wk for any

value of λb(t) that satisfies λb(t)/µbk < 1. Using notation yqQoE
(Wk, t), we further denote

zk(x) =
1

T

∫ (k+1)M
kM yqQoE

(x, t)dt. Again taking the integral with respect to t, we have

zk(W
b
k) =MTTS/T −Ab

k/
(
T (W b

k)
qQoE+1

)
, (4)

where

Ab
k =

∫ kM

(k−1)M
Y b(t)qQoE+1dt. (5)

Similar to yqQoE
(W b

k , t), zk(W
b
k) is also a concave function of Wk. Then, constraint (2.16c)

can be rewritten as
∑

∀k zk(W
b
k) ≥ 1 − P̄QoE, since it is in the form of a concave function

greater than a constant, it must be convex. Constraints (2.16b) and (2.16d) that are merged

to (2.17) and equation (2.2) are also linear constraints. Hence, problem (2.16) must be

convex.
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Proof of Proposition 2

As can be observed, the minimum value of L(W,β, ζ) can be defined by equating the partial

derivative of L(W,β, ζ) with respect to W b
k to zero, i.e.,

∂L(W,β, ζ)

∂W b
k

=MTp −
βbAb

k(qQoE + 1)

T (W b
k)

qQoE+2
+
∑
∀c
ζcUc,b = 0. (6)

The solution of this equation can be described as

Ŵ b
k =

{
βbAb

k(qQoE + 1)/

[(
MTp +

C∑
c=1

ζcUc,b

)
T

]}1/(qQoE+2)

. (7)

Then, by considering constraint (2.17), the optimal value of W b
k can be expressed as in

(2.25), which completes the proof of Proposition 2.
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[48] M. Höyhtyä, S. Boumard, A. Yastrebova, P. Järvensivu, M. Kiviranta, and A. Anttonen,

“Sustainable satellite communications in the 6g era: A european view for multilayer

systems and space safety,” IEEE Access, vol. 10, pp. 99 973–100 005, 2022.

[49] H. Du, J. Liu, D. Niyato, J. Kang, Z. Xiong, J. Zhang, and D. I. Kim, “Attention-aware

resource allocation and qoe analysis for metaverse xurllc services,” IEEE Journal on

Selected Areas in Communications, 2023.

[50] Y. Xu, F. Yin, W. Xu, J. Lin, and S. Cui, “Wireless traffic prediction with scalable

gaussian process: Framework, algorithms, and verification,” IEEE Journal on Selected

Areas in Communications, vol. 37, no. 6, pp. 1291–1306, 2019.

[51] N. Mazzali, M. R. Bhavani Shankar, and B. Ottersten, “On-board signal predistortion

for digital transparent satellites,” in 2015 IEEE 16th International Workshop on Signal

Processing Advances in Wireless Communications (SPAWC), 2015, pp. 535–539.

[52] M. Vincenzi, E. Lopez-Aguilera, and E. Garcia-Villegas, “Maximizing infrastructure

providers’ revenue through network slicing in 5g,” IEEE Access, vol. 7, pp. 128 283–

128 297, 2019.

[53] V. N. Ha and L. B. Le, “End-to-end network slicing in virtualized ofdma-based cloud

radio access networks,” IEEE Access, vol. 5, pp. 18 675–18 691, 2017.

[54] C. L. G. Batista, F. Mattiello-Francisco, and A. Pataricza, “Heterogeneous federated

cubesat system: problems, constraints and capabilities,” 2022. [Online]. Available:

https://arxiv.org/abs/2203.14721

[55] I. Sousa, M. P. Queluz, and A. Rodrigues, “A survey on qoe-oriented wireless resources

scheduling,” Journal of Network and Computer Applications, vol. 158, p. 102594, 2020.

https://arxiv.org/abs/2203.14721


120 Bibliography

[56] A. A. Bisu, A. Purvis, K. Brigham, and H. Sun, “A framework for end-to-end latency

measurements in a satellite network environment,” in 2018 IEEE International Con-

ference on Communications (ICC), 2018, pp. 1–6.

[57] J. Shi, H. Yang, C. Pan, X. Chen, Q. Sun, Z. Yang, and W. Xu, “Low-latency design for

satellite assisted wireless vr networks,” IEEE Communications Letters, vol. 27, no. 6,

pp. 1555–1559, 2023.

[58] H. Nguyen-Kha, V. N. Ha, E. Lagunas, S. Chatzinotas, and J. Grotz, “Leo-to-user

assignment and resource allocation for uplink transmit power minimization,” in WSA &

SCC 2023; 26th International ITG Workshop on Smart Antennas and 13th Conference

on Systems, Communications, and Coding, 2023, pp. 1–6.

[59] L. Chen, V. N. Ha, E. Lagunas, L. Wu, S. Chatzinotas, and B. Ottersten, “The next

generation of beam hopping satellite systems: Dynamic beam illumination with selec-

tive precoding,” IEEE Transactions on Wireless Communications, 2022.

[60] V. N. Ha, Z. Abdullah, G. Eappen, J. C. M. Duncan, R. Palisetty, J. L. G. Rios,

W. A. Martins, H.-F. Chou, J. A. Vasquez, L. M. Garces-Socarras, H. Chaker, and

S. Chatzinotas, “Joint linear precoding and dft beamforming design for massive mimo

satellite communication,” in 2022 IEEE Globecom Workshops (GC Wkshps), 2022, pp.

1121–1126.

[61] Y. Guo, Q. Yang, F. Fu, and K. S. Kwak, “Quality-oriented rate control and resource

allocation in dynamic ofdma networks,” in 2015 IEEE Global Communications Con-

ference (GLOBECOM), 2015, pp. 1–6.

[62] Y. Guo, Q. Yang, and K. S. Kwak, “Quality-oriented rate control and resource allo-

cation in time-varying ofdma networks,” IEEE Transactions on Vehicular Technology,

vol. 66, pp. 2324–2338, 2017.

[63] M. Guerster, J. Grotz, P. Belobaba, E. Crawley, and B. Cameron, “Revenue manage-

ment for communication satellite operators - opportunities and challenges,” in 2020

IEEE Aerospace Conference, 2020, pp. 1–15.



Bibliography 121

[64] Y. Zhu, M. Sheng, J. Li, and R. Liu, “Performance analysis of intermittent satellite

links with time-limited queuing model,” IEEE Communications Letters, vol. 22, no. 11,

pp. 2282–2285, 2018.

[65] P. Schulz, “Queueing-theoretic end-to-end latency modeling of future wireless net-

works,” Ph.D. dissertation, Faculty of Electrical Engineering and Information Tech-

nology, Technische Universität Dresden, Germany, 2020.

[66] P. Schulz, L. Ong, P. Littlewood, B. Abdullah, M. Simsek, and G. Fettweis, “End-to-

end latency analysis in wireless networks with queuing models for general prioritized

traffic,” in 2019 IEEE International Conference on Communications Workshops (ICC

Workshops). IEEE, 2019, pp. 1–6.

[67] N. J. H. Marcano, L. Diez, R. A. Calvo, and R. H. Jacobsen, “On the queuing delay of

time-varying channels in low earth orbit satellite constellations,” IEEE Access, vol. 9,

pp. 87 378–87 390, 2021.

[68] M. Irazabal, E. Lopez-Aguilera, I. Demirkol, and N. Nikaein, “Dynamic buffer siz-

ing and pacing as enablers of 5g low-latency services,” IEEE Transactions on Mobile

Computing, vol. 21, no. 3, pp. 926–939, 2022.

[69] Y. Zhu, M. Sheng, J. Li, D. Zhou, and Z. Han, “Modeling and performance analysis for

satellite data relay networks using two-dimensional markov-modulated process,” IEEE

Transactions on Wireless Communications, vol. 19, no. 6, pp. 3894–3907, 2020.

[70] A. Anand and G. de Veciana, “Resource allocation and harq optimization for urllc

traffic in 5g wireless networks,” IEEE Journal on Selected Areas in Communications,

vol. 36, no. 11, pp. 2411–2421, 2018.

[71] W. Whitt, “Time-varying queues,” Queueing models and service management, vol. 1,

no. 2, 2018.

[72] M. Defraeye and I. Van Nieuwenhuyse, “Controlling excessive waiting times in small

service systems with time-varying demand: An extension of the isa algorithm,”

Decision Support Systems, vol. 54, no. 4, pp. 1558–1567, 2013, rapid Modeling for

Sustainability. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0167923612001790

https://www.sciencedirect.com/science/article/pii/S0167923612001790
https://www.sciencedirect.com/science/article/pii/S0167923612001790


122 Bibliography

[73] Z. Feldman, A. Mandelbaum, W. A. Massey, and W. Whitt, “Staffing of time-varying

queues to achieve time-stable performance,” Management Science, vol. 54, no. 2, pp.

324–338, 2008.
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