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ABSTRACT

In this Supplementary Material, we begin by motivating and presenting the definition of graph states, including the ones utilized
in the paper. We then formalize the concept of resource advantage and demonstrate its use by comparing W and GHZ states.
Following this, we introduce the FSMC framework and provide proof that SP-LOCC transformations can be modeled by it.
Then, we introduce Fortescue and Lo’s entanglement distillation protocol, highlighting the similarities and differences with our
protocol. Finally, we present analytical expressions for our figure of merit.

1 Graph states
A graph is defined as a collection of vertices and a rule describing how they are connected by edges. They are often represented
pictorially as points (the vertices) on a plane connected by arcs (the edges). Formally, a finite and undirected graph is defined
by the pair

G = (V,E), (1)

where V = {1, ...,N} is the set of edges and E ⊂ [V ]2 is the set of edges and every element of E is a subset of V with two
elements1. In the following, we define graph states by providing physical meaning to vertices and edges — i.e., we seek
motivation for the concept of graph states in interaction patterns between quantum systems (alternatively, simple graphs can be
associated to quantum states in terms of their stabilizer, the stabilizer formalism). The content of this section is based on1, 2.

1.1 Definition: interaction pattern
In the interaction pattern description, graph states are defined by providing physical meaning to vertices and edges. Specifically,
vertices are associated with particles, whereas edges describe how those particles interact. For the particular case of qubits, a
graph state can be regarded as a two-step procedure where qubits are prepared in some initial pure state |ψ⟩ and are coupled
according to the underlying interaction pattern given by the edges of G. Formally, for each edge {a,b} ∈ E, connecting
qubits a and b, a local two-particle unitary Uab = e−iφabHab , where φab and Hab denote the coupling strength and the interaction
Hamiltonian, respectively. To comply with the structure of a simple and undirected graph G, these unitaries must satisfy the
following constraints:

1. they must commute, i.e.,

[Uab,Ubc] = 0 ∀a,b,c ∈ V ; (2)

2. they must be symmetric, i.e.,

Uab =Uba ∀a,b ∈ V, (3)

since G does not specify any ordering of the edges;

3. they must be the same for every pair of particles, i.e.,

Uab =U ∀a,b ∈ V, (4)

since the edges are not specified with different weights.



For qubit systems, the first condition is met by an Ising interaction pattern. For notation convenience, we adopt the
controlled phase gate

Uab(φab) = e−iφabHab with Hab := |1⟩⟨1|⊗ |1⟩⟨1| , (5)

as done in1, which is an Ising interaction up to rotations on the z-axis at each qubit — since we are interested in entanglement
properties of a graph state, we can neglect and omit these rotations (see also1 for the proof). Finally, since Ising interactions
are symmetric, we only need to define φ = φab∀a,b ∈ V to meet all the above constraints. As in1, we chose φ = π and
|ψ⟩=⊗a∈V |+⟩a so that the resulting state Uab |ψ⟩ is maximally entangled (any reduced state is maximally mixed). This choice
also ensures that the gate Uab acts on the corresponding graph creating and deleting the edge {a,b} depending if it is contained
or not in E. In short, we define a graph state as follows:

Definition 1. Let G = (V,E) be a graph. The corresponding graph state |G⟩ is given by the following pure state

|G⟩= ∏
{a,b}∈E

Uab |+⟩V , (6)

where

Uab =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (7)

i.e., a controlled σz on qubits a and b.

Physically, it can be pictured as a two-step preparation procedure in which the pure state |+⟩ is prepared at each vertex, and
a phase gate Uab is applied to all adjacent vertices a,b in G.

Next, we discuss the graph states used in this paper.

1.2 GHZ states
The N-qubit GHZ state

|GHZ⟩= |0⟩⊗N + |1⟩⊗N

√
2

(8)

is one of the standard examples of multiparty entangled states. As mentioned previously, these states maximally violate Bell
inequalities but are sensitive to loss, and losing any qubit implies destroying all the entanglement content.

The GHZ state corresponds to the star graph and the complete graph Supplementary Fig. S1. This can be seen by applying
Hadamard operations to 8 and local complementations to the star graph, which do not change the entanglement content. More
specifically, by applying Hadamard operations to all qubits but one (say a) in 8, one obtains a star-graph state with central qubit
a, which is equivalent to a complete graph up to local complementation.

Supplementary Figure S1. Graph representations of the GHZ state: the star (left) and fully connected (right) graphs.

As observed in2 GHZ states are particularly sensitive (in terms of entanglement content) to loss because their corresponding
star graph contains only one central vertex (root). In particular, they showed that all the correlations vanish when a root vertex is
lost. This observation leads the Authors to consider redundant roots to build loss-robustness graph states as in the two-centered
GHZ graph state depicted in Supplementary Fig. S2 and detailed next.
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1.3 Two-centered GHZ graph states
As defined in2, a two-centered GHZ graph state Supplementary Fig. S2 is a graph state with two root vertices (the graph’s
centers) connected to one another, and several leaf vertices adjacent to both centers. Such states preserve their entanglement
content up to losing some of the qubits, i.e., the remaining graph state still violates a Bell inequality, as carefully assessed in2.
More precisely, it has been shown2 that if multiple qubits adjacent to the same root are lost, the remaining state is always a
GHZ state, and if qubits adjacent to both roots or the roots themselves are lost, the remaining state is (fully) separable.

Supplementary Figure S2. The loss-robustness of A two-centered GHZ graph state with 12 qubits. The figure depicts a
scenario of loss where the induced graph (obtained by removing the red vertices) is a GHZ state. If any of the two roots (blue
vertices) are lost, the induced state is fully separable.

2 Proof of W states’ advantage over GHZ in large networks
Here, we present two sufficient conditions so that the quantum state ψ always outperforms the quantum state φ in an arbitrarily
large lossy network, what we call ψ’s advantage over φ , and show that W and GHZ states satisfy them.

By exploring the monotonically decreasing behavior of

⟨E⟩r,ψ (ε) := ∑
i

qi(N,ε)Ē∗
ri,σi

, (9)

where

Ē∗
ri,σi

:= sup
L

ri
i

∑
j

pi,jE(ρi,j), (10)

and E is some bipartite entanglement measure, we propose a theorem to identify sufficient conditions in terms of ⟨E⟩
ψ
(ε) and

⟨E⟩
φ
(ε) so that the N dimensional quantum state ψ outperforms φ for any value of loss ε in large networks, i.e., sufficient

conditions so that their nontrivial intersection (the threshold), ε0 s.t. ⟨E⟩
ψ
(ε0) = ⟨E⟩

φ
(ε0) and ε0 ̸= 1, converges to zero when

N → ∞. The intuition behind this theorem comes from the following observations.

• If the functions ⟨E⟩
ψ
(ε) and ⟨E⟩

φ
(ε) have different initial values and both functions monotonically decrease to zero,

there must be a non-trivial intersection ε0 < 1; and

• if ⟨E⟩
ψ
(0)< ⟨E⟩

φ
(0) and the ⟨E⟩

ψ
(ε)’s derivative with respect to ε , ⟨E⟩′

ψ
(ε) :=

d⟨E⟩ψ (ε)

dε
, decrease faster than ⟨E⟩′

φ
(ε)

for small ε as N increases, then ε0 converges to zero when N → ∞.

Assuming the first, we formally state:

Theorem 1 (ψ’s advantage over φ in large lossy networks). Given two sequences of bounded and monotonically decreasing
functions {⟨E⟩

ψ
(ε)}N and {⟨E⟩

φ
(ε)}N if:

1. ⟨E⟩
ψ
(0)< ⟨E⟩

φ
(0) for all N; and
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2. {⟨E⟩′
φ
(ε)}N diverges faster than {⟨E⟩′

ψ
(ε)}N for small ε , e.g.,

lim
N→∞

[
⟨E⟩′

ψ
(ε)

⟨E⟩′
φ
(ε)

]
ε≪1

= 0 (11)

then ε0 goes to zero when N → ∞.

Here, we prove W’s advantage over GHZ states, i.e., we show that W and GHZ states, as ψ and φ respectively, satisfy the
above theorem.

Proof. Following the above theorem, we need to show that:

1.
〈
Ê
〉

W (0)< ⟨E⟩GHZ (0) for all N; and

2. {⟨E⟩′GHZ (ε)}N diverges faster than {
〈
Ê
〉′

W (ε)}N for small ε , e.g.,

lim
N→∞

[ 〈
Ê
〉′

W (ε)

⟨E⟩′GHZ (ε)

]
ε=0

= 0 (12)

We first show the first condition is met. From

qi (N,ε) =

(
N −2

i

)
ε

i(1− ε)N−2−i, (13)

we have that q0(0,N) = 1 and qi(0,N) = 0∀i > 0, therefore:〈
Ê
〉

W (0) = Ē∗
σ0

< 1 (14)

and

⟨E⟩GHZ (0) = Ē∗
GHZ = 1, (15)

which follows respectively from the fact that W (GHZ) states are probabilistically (deterministically) transformed in a Bell
pair3. Combining the above equations we find〈

Ê
〉

W (0)< ⟨E⟩GHZ (0), (16)

as we wanted to prove.
The second condition follows from the loss-robustness of W states4, i.e.,

lim
N→∞

F(σN−1
0 ,σN

1 ) = 0, (17)

where F is the fidelity. Since only qi depends on ε , we have〈
Ê
〉′

W (0) = q′0(N,0)Ē∗
σN

0
+q′1(N,0)Ē∗

σN
1

(18)

=−(N −2)
[
Ē∗

σN
0
− Ē∗

σN
1

]
=−(N −2)

[
sup
L 1

i

℘0NE(σN
0 )+ Ē∗

σ
N−1
0

− Ē∗
σN

1

]
, (19)

where we have used (10) to expand the first term in the second line. Similarly,

⟨E⟩′GHZ (0) =−(N −2) (20)

since Ē∗
σN

0
= 1 and Ē∗

σN
i
= 0∀i > 0 in this case. The ratio

〈
Ê
〉′

W (ε)/⟨E⟩′GHZ (ε) simplifies to

sup
L 1

i

℘0NE(σN
0 )+ Ē∗

σ
N−1
0

− Ē∗
σN

1
. (21)

which goes to zero when N → ∞ since ℘0N decreases with N (see Section 2.2.1 in the manuscript) while E(σN
0 ) ∈ [0,1], and

σ
N−1
0 → σN

1 when N → ∞ as assumed in (17).
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3 Discrete-time finite-state Markov chains
A Markov chain (MC) is a stochastic process defined at integer values of time r = 0,1,2, ..., that is, for every r ≥ 0, there is a
random variable Xr, the chain state at time r (see also5).

Definition 2 (Markov chain process). The evolution of a MC is defined by {Xr}r≥0, where:

1. the collection of all possible values of all the Xr, the Markovian state space X , is a countable set;

2. the sampled values of each Xr depends only on the most recent (chain) state Xr−1. More specifically, for all positive r,

P[Xr | Xr−1,Xr−2, ...,X0] = P[Xr | Xr−1], (22)

where the initial (chain) state X0 has an arbitrary distribution.

In such an MC process it is often useful to compute the probability of going to state j in r steps starting in the state i, i.e.,
P[Xr = j | X0 = i]. From the Chapman-Kolmogorov equation, we have that

P[Xr = j | X0 = i] = (Pr)i j, (23)

where P is the transition probability matrix, whose elements are Pi j = P[X1 = j | X0 = i]. That is, P[Xr = j | X0 = i] equals the
i, j element of the rth power of matrix P. A finite-state MC is an MC whose Markovian state space is finite. This evolution is
often pictorially depicted by nodes (the states) connected by arrows (the transition probabilities).

FSMCs set the mathematical framework to compute pi,j and to keep track of ρi,j in a r-round LOCC transformations L r
i .

More precisely, by associating every set {ρr
i,j}j to the sampled values of a random variable Xr for every r ≥ 0, the process

{Xr}r≥0 can be interpreted as an FSMC process — that is, its Markovian state space X is a finite set, and its evolution depends
only on the previous time step.

Proof. The first condition follows directly from the definition

pi,j = Tr
(
M ri

j

)†
M ri

j σi, (24)

ρi,j =
TrC′ M ri

j σi

(
M ri

j

)†

pi,j
, (25)

i.e., {ρr
i,j} corresponds to a finite set of LOCC operations, indexed by j. The second condition is satisfied by definition, i.e., for

all ρi,m and ρi,l ∈ X we define the probability of going to state ρi,m, starting from ρi,l, as

P[Xr = ρi,m | Xr−1 = ρi,l] := TrM 1
mM 1

mρi,l, (26)

where M 1
m is a single-round global measurement given by{

M ri
j =⃝ri

x=1M jx

}
j= jri , jri−1,..., j1

. (27)

In other words, (26) corresponds to the probabilities of a single-round LOCC transformation acting on ρil .

With this definition,

pr
i,j ≡ P[Xr = ρ0j | X0 = σi] = (Pr)ij, (28)

where the last equality follows from (23).

4 Fortescue and Lo’s protocol

In6 Fortescue and Lo present a probabilistic entanglement distillation protocol able to distill Bell pairs from a three-qubit W
state. In this protocol, the three parties measure their share of the entangled state, using the set of Kraus operators

Mκ
0 =

(√
1−κ 0
0 1

)
, Mκ

1 =

(√
κ 0

0 0

)
, (29)

if:
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1. all parties get outcome 0, they will share the same W state and repeat the protocol;

2. two of the three parties get outcome 0, they will share a Bell pair and successfully terminate the protocol;

3. only one the three parties get outcome 0, they will share a separable state |0⟩ |0⟩ |0⟩ and unsuccessfully terminate the
protocol.

These events correspond to repeat, success, and failure events and occur with probability (1−κ)2, 2κ2(1−κ2) and κ2. They
found that after r executions of the protocol, the maximum average entanglement shared among an unspecified pair of parties is

r
1+r .

Our protocol is very similar. All parties measure their systems with the same set of Kraus operators (29), but success is
deemed not only to Bell states but to any final entangled state, which includes the bipartitions of W states. Moreover, we also
apply them to lossy N-party W states σi̸=0.

5 Analytical Expressions for Average Bipartite Entanglement in GHZ, Two-Centered GHZ
Graph, and W States

In this section, we provide analytical expressions for our figure of merit (9), for GHZ, two-centered GHZ graph, and W states.
We show how to compute (10) and qi by analyzing the states’ resilience to losses.

The received states σi of a GHZ transmission are either a GHZ or a completely mixed state, given that none or more than
one particle is lost, respectively. In the first case, the optimal LOCC protocol converts a GHZ state into an EPR pair with
probability one in a single round, i.e., Ē∗

r0=1,σ0=GHZ = 1. In the second case, since σi>0 = πN−i, a classical statistical mixture
with no bipartite entanglement, it is impossible to extract any bipartite entanglement from it, and Ē∗

ri,σi>0=πN−i
= 0. With these

results in hand, only the first term in (9) will contribute, i.e.,

⟨E⟩r,GHZ (ε) = ⟨E⟩1,GHZ = q0(N,ε) = (1− ε)N−2. (30)

A similar approach applies for two-centered GHZ graph states, i.e., the optimal LOCC protocols converting the lossy states
σi are deterministic and known. As before, the received states of a two-centered GHZ graph state transmission are either a
GHZ or a completely mixed state, but now with better probabilities; a completely mixed state is only obtained whenever a root
qubit is lost (see Section 1 of appendix for further details). Conversely, a GHZ state is obtained with probability

q′(N,ε) = (1− ε)N +2
im

∑
i=1

(
im
i

)
ε

i(1− ε)N−i, (31)

where the maximum number of particles that can be lost (still resulting in a GHZ state) is im = N−2
2 , and is deterministically

converted to an EPR pair, i.e., Ē∗
ri=1,σi=GHZ = 1. As before, no bipartite entanglement can be extracted from completely mixed

states, Ē∗
ri,σi=πN−i

= 0. Therefore, (9) simplifies to

⟨E⟩r,GHZ (ε) = ⟨E⟩1,GHZ = (1− ε)N +2
im

∑
i=1

(
im
i

)
ε

i(1− ε)N−i. (32)

For W states, the situation changes dramatically: since optimal LOCC protocols are unknown, there are no closed analytical
expressions for (9). As discussed previously, this can be alleviated by assuming the lower bound〈

Ê
〉

r,ψ (ε) := ∑
i

qi(N,ε)sup
κ

∑
j

pi,jE(ρi,j), (33)

which could, in principle, be further manipulated to result in a closed analytical expression. In this work, we have not done this.
Instead, we sought for supκ ∑j pi,jE(ρi,j) by numerically maximizing pi,jE(ρi,j) over a range of values of κ .
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