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ABSTRACT

Entanglement distribution is essential for unlocking the potential of distributed quantum information processing. We consider
an N-partite network where entanglement is distributed via a central source over lossy channels, and network participants
cooperate to establish entanglement between any two chosen parties under local operations and classical communication
(LOCC). We develop a general mathematical framework to assess the average bipartite entanglement shared in a lossy
distribution, and introduce a tractable lower bound by optimizing over a subset of single-parameter LOCC transformations. Our
results show that probabilistically extracting Bell pairs from W states is more advantageous than deterministically extracting
them from GHZ-like states in lossy networks, with this advantage increasing with network size. We further extend our analysis
analytically, proving that W states remain more effective in large-scale networks. These findings offer valuable insights into
the practical deployment of near-term networks, and corroborate a trade-off relationship between the success conversion
probability of entanglement distribution protocols and their robustness to loss.

Introduction

Quantum entanglement is fundamental for realizing the potential of distributed quantum information processing (DQIP). In this
context, entanglement can be usefully pictured as a resource that is harnessed by physically separated parties, constrained by
local operations and classical communication (LOCC), to perform various informational tasks. In such LOCC transformations,
each party can measure their part of the system and broadcast the outcomes through a classical channel. This broadcasted
information subsequently informs updates in the measurements of other parties. Understanding the capabilities and limitations
of such operations is crucial, as many quantum information tasks, including teleportation, superdense coding', one-way quantum
computation, quantum secure direct communication® >, quantum conference key agreement, and entanglement distribution, rely
on the LOCC paradigm.

Random-party entanglement distillation (RED) is a critical problem in DQIP. It involves investigating protocols to transform
multipartite entangled states into a Bell pair shared among unspecified parties. The advantages of random-party over specified-
party entanglement distillation protocols were first highlighted in*°. In particular, it was shown that a W state can be reliably
converted into a Bell pair via a RED protocol with a probability of success asymptotically reaching the unity for infinitely
many rounds of LOCC operations* — and, contrary to multiple-copies settings’~?, such protocol does not resort to quantum
purification as it relies on a single copy of a W state. Although initially promising, subsequent findings demonstrated that
LOCC operations cannot achieve this limit', as they belong to a class of operations that is not topologically closed'!:!?. These
results have revealed the major role of LOCC round complexity analysis in RED protocols, a topic only recently scrutinized in
the specific case of W states'3. Altogether, the study of RED protocols has many subtleties and open questions.

W and Greenberger-Horne-Zeilinger (GHZ) states represent two distinct, nonequivalent entanglement classes for three-qubit
systems'® 13, As claimed in'®, their distinction lies in their entanglement structure: Although any bipartition of a GHZ state has
maximal entanglement (exactly one ebit), the bipartite entanglement content of a W state is strictly less than one ebit. This
structure results in two complementary aspects: while GHZ states can be deterministically converted into Bell pairs (e.g., with
a single qubit measurement in the Pauli-X basis) but are sensitive to loss (all the entanglement is gone if any of the qubits
are lost); W states can only be probabilistically converted into Bell pairs, yet are robust to loss (some entanglement can be
retrieved even if any of the qubits are lost). In this sense, for three-qubit systems, there is a clear tradeoff relationship between
the success probability of entanglement conversion protocols for a given resource and the resource’s robustness to losses. For
instance, a deterministic conversion comes at the expense of loss sensitivity, making each class preferable depending on the
distributed information-processing scenario.
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Figure 1. On the left, entanglement distribution, and LOCC processing in a lossy network. On the the right, the sequence of r;
global measurements ./, , namely (//ljr" , 1s detailed.

Although entanglement distillation has been widely studied in both random and specified scenarios, few works have
addressed these aspects in the context of near-term quantum networks'’?. Motivated by the tradeoff relationship between the
success probability of entanglement conversion protocols for a given resource and the resource’s robustness to losses present in
three-partite entangled states, we developed a theoretical framework to assess bipartite entanglement conversion of arbitrary
resources in a lossy network and employed it to compare W and GHZ-like states’ performance in different network settings.
This work examines the performance of single-copy, RED protocols in an N-partite centralized lossy network. Our primary
contributions include:

» Developing a comprehensive theoretical framework to compute the average bipartite entanglement shared among a pair
of parties within an N-partite centralized lossy network;

* Assessing single-parameter LOCC entanglement conversion performance for W and GHZ-like states by developing
computationally efficient lower bounds for the figure of merit;

* Demonstrating W state’s advantage over GHZ-like states numerically (and analytically for particular cases), corroborating
the extension of a tradeoff relationship between the success probability of entanglement conversion protocols for a given
resource and the resource’s robustness to losses to multi-party states.

The remainder of this paper is organized as follows. In Section 1, we define the general problem, mathematical model, and
notation, as well as our figure of merit and benchmark. In Section 2, we introduce a tractable lower bound for our figure of
merit and its simplifications for single-round, single-parameter (SP) LOCC transformations, applying it in Section 3 to compare
the performance of W and GHZ-like states in lossy entanglement distribution. We conclude our discussion and provide possible
future directions in Section 4.

1 Problem statement: entanglement distribution in a lossy network

We consider an N-partite network that is served by a centralized source that generates and then distributes an N-qubit state
(resource) Y to the network participants. The links from the source to each node are assumed to be lossy, i.e., a particle
generated at the source gets lost in the link with probability €. Losses in all links are considered to be independent and
identically distributed. The participants cooperate by measuring the received particles to generate entanglement between any
two participants A and B. Each node can perform r; > 1 rounds of measurement on its received particle and broadcast the
outcomes of each round to the network via a classical broadcast channel, i.e., the parties are constrained by LOCCs. Given this
entanglement distribution scenario, we want to:

1. Evaluate the amount of entanglement shared on average between two network participants as a function of &, for a given
parameter region (N,r;) and a resource state y;
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2. Compare W and GHZ-like states’ performance over different parameter regions, including asymptotic regimes (e.g.,
N — o0).

Next, we formalize the above concepts and goals.

1.1 Mathematical model and notations

We arbitrarily label the participants of interest by A and B and the helper participants by C with an index, i.e., C1,C3,...,C;, ...,Cny—_2
as depicted in Fig. 1. Labeling is arbitrary because in a RED protocol success is deemed whenever some entangled bipartite
state (not necessarily the maximally entangled one) is obtained between any two parties™ > 13, In the distribution phase, any of
the N particles can be lost, but if more than N — 2 are lost, nothing can be done locally to increase the entanglement. Then, the
probability that i € {0,1,--- ;N — 2} particles are lost is

N-2\ . ;
atv.e) = (V2 )elli ey 2 m
i
When exactly i particles are lost, the overall state of the system is

0 :==Trc, cp..c; W)W, @

or simply o; when the y’s dimension can be inferred from the context. For the particular case of W and GHZ states, the above
equation simplifies to

1 N _
o = < 10001+ (v =)o, )
and
Iv_:
ol = NN_’Z_ =y )

respectively, with Gév = |w)(y/|. These equations explicitly show the loss-robustness (-sensitivity) of W (GHZ) states: while
losing any number of particles from a GHZ state results in a maximally mixed state (4), with no bipartite entanglement; losing
up to N — 2 particles from a W state results in a noisy EPR pair, which can be seen by applying (3) recursively. The received
states and their corresponding probabilities form an ensemble

v — {qi, 0} 5)

After the distribution phase, all the remaining parties, C;1,Ciy2,...,Cy—2 = C', A, and B, take turns measuring their local
systems and broadcasting the results. Since each party holds a qubit, local measurements can be described by the 2 x 2 Kraus
operators {M: }x. We can assume, without loss of generality'3, that each M,f is in the upper triangular form

K __ \/CTk by
= ()

where K = (ag, by, i), ar,cx < 0, and the completion relation implies that Y, ay = 1 and Y5 ¢ > 1.
Each received state o; is processed by an ri-round LOCC transformation £, that converts it into a state p; ; with probability
pij- In other words, an r;-round LOCC transformation can be viewed as a map

Lo = {pij,pijhs )
where
pis =T (4]") A, ®)
Trc/ '%J iGi ('%J i)
Pij= . (&)
Pij

In the above expression, ///jr,- represents a sequence of 7; global measurements given by the following composition rule

{4 =0} (10

J=Jrpdri=150J1

3/10



wherein every ./, is expressed as the tensor product of LOCCs over the remaining N — i subspaces, i.e.,

N—i prKm
{‘////* = On My, }j,,:k,-+1,k,~+2,. oy an
in which M K”’ has the form of (6), parameterized by k,, = (ax,,,bx,, ¢k, ). It is worth noting that, in general, the LOCCs
performed i in each node differ among the nodes K, # K,y and from round to round .#;, # ./;,. Likewise, each node can
perform its LOCCs a different number of times r; # r;. Later, in order to simplify our problem, we will consider a particular
class of transformations where the LOCCs are identical in every round, identical for every system and each node is constrained
by the same amount of rounds.

We are interested in quantifying the amount of bipartite entanglement shared on average among A and B after r; rounds
of LOCC transformations, i.e., the entanglement content of the reduced state p; . Since system labeling is arbitrary for RED
protocols, we can always choose AB as the bipartition with the maximum amount of entanglement and C’ as the remaining
partitions. This implies in equivalent states, i.e., reduced states with the same amount of bipartite entanglement. Next, we
present the figure of merit that takes this into account as well as its benchmark.

1.2 Figure of merit and benchmark
We propose the average bipartite entanglement optimally shared among the target parties through a lossy network in
r=(ro,r1,...,Fi,...,FN—2) rounds as the figure of merit, defined as follows

qu (N.€)E; 5., (12)

where

E} o :=sup Y pijE(pig), (13)
S

and E is some bipartite entanglement measure, e.g., the entanglement of formation or concurrence®'. We will adopt the latter in
our numerical evaluations.

The definitions above are averages of the shared bipartite entanglement over the lossy distribution (5) and the probabilistic
conversion (7) distributions. More specifically, whereas (13) is the average bipartite entanglement optimally achieved given a
received state o; via ,Zir" protocols; (12) is the average of (13) over the ensemble of received states. Therefore, our definitions
fully consider the statistical nature of the problem.

A similar definition to (13) is presented in'3 for a different entanglement distribution context. Applied to our distribution
scenario, this definition could be written as sup,. Efi_ci and interpreted as the optimal average bipartite entanglement given any
LOCC protocol, which includes protocols with an unbounded number of rounds. We adopted (13) to avoid unbounded LOCC
protocols and to distinguish the effect of the number of rounds in the figure of merit.

According to??, for finite-copy entanglement distillation, an entanglement measure is any nonnegative function E which is
monotonically nonincreasing under LOCC transformations. Despite the lack of consensus on the necessary conditions that an
entanglement measure must satisfy, monotonicity is often claimed as the essential property>2. In a quick inspection, we observe
that (13) is an entanglement measure by definition, while (12) is also an entanglement measure as it represents the average of
(13).

We benchmark W states against two-centered GHZ graph states. As detailed in the Appendix, two-centered GHZ graph
states have the property of being loss-robust. More precisely, it has been shown?? that if multiple qubits adjacent to the same
root are lost, the remaining state is always a GHZ state, and if qubits adjacent to both roots or the roots themselves are lost,
the remaining state is fully separable. Such an entanglement structure simplifies our analysis, as after the distribution phase
the received state is either a GHZ state, which can be deterministically converted to Bell pairs in a single round with a single
measurement, or is fully separable, having no distillable entanglement whatsoever. In both cases, (13) is trivially and exactly

computed — E¥ 5 = 1 if none of the qubits is lost and E;}G’, = 0 if any qubit is lost.

2 Methodology

In this section, we establish a tractable lower bound for the figure of merit by optimizing (12) over the subset of single-parameter
LOCC (SP-LOCC) transformations. We then analyze the properties of single-round, SP-LOCC transformations to derive
explicit expressions for (9) and enhance computational efficiency in evaluating the lower bound.
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2.1 Lower Bound

In the general formulation of the problem, the local operations performed are different from one node to the other and have the
form (6) whose parameters ay, by, c; can change in every round of the protocol, as emphasized in 1.1. For simplicity, we will
restrict ourselves to the family of SP-LOCC transformations ,fir"(, where the measurements are

1. identical for every system, i.e., K, = K,y Vm,m' € [1,N — ]
2. identical in every round, i.e., .# = .#;,Vx and X' €[0,r]

3. single parameterized k,, = K, i.e., the Kraus operators have the simplified form

ws=(VIoE D) M= (0 0) (14)

where & € [0, 1] as proposed in*.

Moreover, we assume the same number of rounds for every received state, i.e., r; = rVi. These assumptions allow us to simplify
the set of Kraus operators (10) and (11) as follows
U = Ot M}y (15

J1

with

{ ), =2, ME )

Jx=kit Lki+2,. .k (16)
These assumptions are the same as presented in* to show the asymptotic optimality of converting a three-party W state in a Bell
pair. Here we extend them to any o; state, which includes mixed states ;.

By considering only the family of SP-LOCC transformations .i’j.""c, we define the following lower bound

(E),, (&)=Y ai(N,€)sup}_pijE(piy), a”n
i K

which is trivially upper bounded by (12) as the optimization runs over the subset of transformations. In the above, K is a
function of r, since bigger and smaller protocols have different optimal sets of LOCCs.

2.2 SP-LOCC transformations applied to W states
Finite-state Markovian chains (FSMCs) set the mathematical framework to compute p; ; and to keep track of p;j in a r-round
SP-LOCC transformations. More precisely, by associating every set {p; § }; to the sampled values of a random variable X, for
every r > 0, the process {X,},>0 can be interpreted as an FSMC process — i.e., its Markovian state space 2" is a finite set, and
its evolution only depends on the previous time step (see also the Appendix for the complete proof).

The corresponding Markovian state space and transitioning probabilities of a lossless r-round SP-LOCC transformations
£y are depicted in Fig. 2 with states given by

W; if j>3
po;=1 ¢ it j=2 (18)
0 it =1,

where j is the number of Os in the string j = j, = ki + 1,k +2,... ,ky, Wj is a j-qubit W state and ¢ is an EPR pair. This
protocol is an adaptation of Fortescue and Lo’s protocol* to a N-qubit W state (see also the Appendix). For the general case
i > 0 the Markovian state space increases polynomially with the number of rounds and number of nodes N and full pictorial
representation is not possible. In the following, we discuss the particular case of single-round SP-LOCC transformations. To
avoid notation clutter, we will omit » = 1 in the following sections.

2.2.1 Single-round SP-LOCC transformations applied to W states

Given the symmetry of 6; = Tr W, the form of (14) and the arbitrary discardment of C’, there will be reduced states with the
same amount of entanglement. These so-named equivalent states lead to redundancies in the evaluation of (17), the same term
in the second summation is computed and optimized repeatedly, which naturally slows the computation. To eliminate these
redundancies and speed up the numerical computations, as well as to obtain simpler analytical expressions, we focus on the
subset of non-equivalent states and their corresponding probabilities.
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Figure 2. Markovian chain representation of a lossless r-round LOCC protocol .Z]. Nodes and arrows represent the quantum
states of (18), and their corresponding probabilities, respectively. Further, end nodes (that terminate the protocol once reached)
are depicted in green and red, representing, respectively, Bell and separable states.

Therefore, we define the following non-equivallent ensemble {; ;,p; j}, where & ; is the probability of obtaining any
equivalent state p; ;. This restriction allows us to find the following explicit expressions

9= (NJ_ ’) R (19)
p,'j _ (NJ— l) TI'C/ .ﬁ]cl'%] (20)
2y

where j is the number of Os in the string j = j1 = ky,k2, ..., kp, ..., kn—;. The first simplification comes from observing that
permutations of k,, in j do not alter the number of Os and therefore correspond to the same state. The second is simply (9)
expressed in terms of 4; ;. These states and probabilities can be mapped to a single-trial FSMC as depicted in Fig. 3.

Figure 3. Markovian chain representation of a single-round LOCC protocol. Nodes and arrows represent the non-equivalent
ensemble given by (20). Further, end nodes (that terminate the protocol once reached) are depicted in green and red,
representing, respectively, Bell and separable states. Note that every line corresponds to an indepedent Markov chain, where the
first one represents the lossless single-round LOCC, a special case of Fig. 2

3 Application

In this section, we use the previously defined lower bound (17) to compare the performance of W and GHZ-like states in our
lossy entanglement distribution scenario 1. Our results demonstrate that, in a lossy network, extracting Bell pairs from W states
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is more advantageous than from GHZ-like states, even though the former is only achievable probabilistically, whereas the latter
can be done deterministically. Furthermore, we analytically extend these findings in the Appendix, proving that W states serve
as more effective resources in large networks.

3.1 W states’ advantage in lossy networks

We observed that probabilistically extracting Bell pairs from W states is more advantageous than doing it deterministically from
GHZ-like states in lossy networks. In Fig. 4 we compare our figure of merit for W and GHZ-like states for different network
sizes. It is clear that above a certain threshold in loss (when the curves intersect each other) more bipartite entanglement can be
obtained on average from W than from GHZ-like states in single-round transformations, showcasing some advantage in using
W states as initial resources. Moreover, such an advantage considerably increases when a higher number of rounds are allowed,
as can be noticed when comparing the single- with multiple-round LOCC transformation depicted in solid and dashed lines
in Fig. 4 respectively. We must stress that since we are comparing a lower bound of the average bipartite entanglement (17)
extracted from the W states against the exact average bipartite entanglement extracted from GHZ-like states, the real threshold
must be even lower than the one depicted in the plots. The plots also indicate that this threshold decreases as the network size
increases, as observed for network sizes of N = 4,6, 8.

3.1.1 W states’ advantage in large lossy networks

The numerical examples of Fig. 4 indicate an inverse proportionality between the network size and the value of the threshold,
as the network size increases from 4 to 8§ the threshold decreases (from approximately .2 to .1 when comparing the W and GHZ
states, for example). As we formally prove in Appendix this trend persists for any N, leading to the conclusion that, for large
lossy networks (N — o), extracting Bell pairs from W states is always more effective, according to our figure of merit, than
from GHZ-like states. As detailed in the Appendix, the proof derives from the loss-robustness of W states'> and the inexistence
of deterministic W-to-EPR state conversions!.

4 Conclusion

In this work, we explore RED in lossy networks, focusing on whether the loss robustness of the W states outweighs the
deterministic conversion of GHZ-like states into Bell pairs. We considered an N-partite network where entanglement is
distributed through a central source over lossy channels, and network participants cooperate to establish entanglement between
any two chosen parties. To analyze this scenario, we introduced a tractable lower bound for the expected shared entanglement by
optimizing our figure of merit (12) over the subset of SP-LOCC transformations. By leveraging the properties of single-round
SP-LOCC, we eliminated redundancies in the bound evaluation, improving general computational efficiency, and derived
explicit expressions for (9).

Our results demonstrate that probabilistically extracting Bell pairs from W states is more advantageous than doing it
deterministically from GHZ-like states in lossy networks. We further extended our analysis analytically, proving that W states
remain more effective in large-scale networks. This has direct implications for designing optimal entanglement distribution
policies — e.g., while GHZ-like states are preferable in small, low-loss networks, W states emerge as better options in large
and high-loss settings. These findings provide valuable insights into the practical deployment of lossy quantum networks,
highlighting the fundamental trade-offs between probabilistic and deterministic entanglement distribution protocols.

Future endeavors include finding better bounds for the figure of merit by considering the general optimization problem in
(12), whose LOCC measurements are multi-parameterized and can be adjusted from round to round. Alternatively, diversity
and multiplexing schemes>*2> could be exploited to improve RED, as entanglement distribution over a centralized QN can be

framed as a multi-mode communication system?S.
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