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Abstract—Mixture-of-Experts (MoE) architectures have
emerged as a promising approach for scaling large language
models while maintaining computational efficiency. However,
inference in these models remains challenging due to the substan-
tial GPU memory requirements of storing all expert parameters.
In this paper, we introduce ExpertCache, a novel two-phase
reinforcement learning framework that optimizes both which
experts to load into GPU memory and which loaded experts to
activate during inference. Our approach consists of a pre-loading
controller that selects a task-specific subset of experts to cache
in GPU memory, and a runtime controller that dynamically ac-
tivates the most relevant experts for each token. Both controllers
are optimized through reinforcement learning with carefully
designed reward functions that balance model quality, computa-
tional efficiency, and expert utilization. We evaluate ExpertCache
on Qwen3-235B-A22B using BigCodeBench, demonstrating
that our approach reduces GPU memory requirements by up
to 85% while achieving superior performance compared to
loading all experts. Our method enables deployment of large
MoE models on consumer-grade hardware and significantly
improves inference throughput in production environments.
ExpertCache outperforms current expert selection methods
on both memory efficiency and computational performance,
establishing a new state-of-the-art for efficient MoE inference.

Index Terms—Mixture-of-Experts, Reinforcement Learning,
Large Language Models, Memory Optimization, Expert
Selection

I. INTRODUCTION

The rapid advancement of large language models has led
to increasingly complex architectures that demand substantial
computational resources for both training and inference.
Mixture-of-Experts (MoE) models have emerged as a
compelling solution to this challenge, enabling the creation
of models with massive parameter counts while maintaining
manageable computational costs during inference [1], [2].
Despite their efficiency advantages over dense models, MoE
architectures still face significant deployment challenges,
particularly regarding GPU memory requirements and
inference optimization.

The fundamental challenge in MoE inference lies in the
trade-off between model capacity and resource constraints.
While MoE models achieve their efficiency by activating

only a subset of experts for each input token, the traditional
approach requires loading all expert parameters into GPU
memory, creating a bottleneck for deployment on resource-
constrained environments. This limitation has hindered the
widespread adoption of large MoE models, particularly in
scenarios where GPU memory is limited or expensive.

Recent work has explored various approaches to optimize
MoE inference, including expert pruning [3], dynamic
routing [4], and parameter sharing strategies [5]. However,
these approaches typically focus on either static optimization
or simple heuristic-based selection methods, failing to capture
the complex dependencies between task characteristics,
expert specialization, and dynamic inference requirements.

We propose ExpertCache, a novel reinforcement learning
framework that addresses the MoE inference optimization
problem through a two-phase approach. The first phase em-
ploys a pre-loading controller that intelligently selects which
subset of experts to load into GPU memory based on task
characteristics and hardware constraints. The second phase
utilizes a runtime controller that dynamically activates specific
experts from the pre-loaded set for each token during infer-
ence. Both controllers are trained using reinforcement learning
with reward functions that explicitly balance model quality,
computational efficiency, and expert utilization patterns.

Our approach makes several key contributions to the
field of efficient MoE inference. We formalize the expert
selection problem as a hierarchical decision-making process
and provide theoretical analysis of the optimization landscape.
We introduce novel reward mechanisms that do not require
ground truth labels, enabling self-supervised optimization of
expert selection policies. Through comprehensive evaluation
on the Qwen3-235B-A22B model using BigCodeBench,
we demonstrate significant improvements in both memory
efficiency and inference performance while maintaining high
model quality.

The remainder of this paper is organized as follows.
Section II provides background on MoE architectures and
establishes the theoretical foundation for our approach.
Section III details the ExpertCache framework and its



reinforcement learning components. Section IV presents
our experimental setup and evaluation results. Section VI
discusses related work, and Section VII concludes the paper.

II. PRELIMINARY STUDY

A. Mixture-of-Experts Architecture

Mixture-of-Experts models extend traditional transformer
architectures by replacing dense feed-forward networks with
a collection of specialized expert networks. Given an input
token representation x ∈ Rd, the MoE layer computes its
output as:

y=

N∑
i=1

G(x)i·Ei(x) (1)

where N is the total number of experts, G(x) ∈ RN

represents the gating function that determines expert weights,
and Ei(x) denotes the output of the i-th expert network. The
gating function typically employs a softmax operation over
learned parameters, ensuring that the expert weights sum to
unity.

In practice, computational efficiency is achieved by
activating only the top-k experts with the highest gating
weights, leading to a sparse activation pattern. This sparsity-
based approach significantly reduces the computational
overhead compared to dense models while maintaining
model expressiveness through expert specialization.

B. Expert Selection Problem Formulation

The expert selection problem in MoE inference can be
formulated as a constrained optimization problem. Let
E = {E1,E2,...,EN} represent the set of all experts in the
model, and let M denote the available GPU memory capacity.
Each expert Ei requires memory mi when loaded into GPU
memory.

The optimal expert subset selection problem can be
expressed as:

E∗=argmax
S⊆E

Eτ [Q(τ,S)] subject to
∑
Ei∈S

mi≤M (2)

where Q(τ,S) represents the quality function for task τ
using expert subset S, and the expectation is taken over the
distribution of possible tasks.

This formulation reveals the inherent complexity of the ex-
pert selection problem. The search space grows exponentially
with the number of experts, making exhaustive search com-
putationally intractable for large MoE models. Furthermore,
the quality function Q(τ,S) is typically non-linear and task-
dependent, requiring sophisticated optimization approaches.

C. Theoretical Analysis of Expert Importance

To understand the theoretical foundations of expert
selection, we analyze the distribution of expert importance in
MoE models. Let Ii(τ) denote the importance of expert Ei

for task τ , measured by the performance degradation when
the expert is removed.

Our empirical analysis reveals that expert importance
follows a power-law distribution with additional complexity
due to expert interference effects:

P(Ii(τ)=x)∝x−α·exp(−β ·Nirrelevant) (3)

whereα is the power-law exponent andNirrelevant represents
the number of task-irrelevant experts present. The exponential
decay term captures the performance degradation caused
by expert interference, providing theoretical justification
for selective expert loading strategies that can achieve both
efficiency and performance improvements.

Furthermore, we establish that the expert selection problem
exhibits submodular properties under certain conditions.
Specifically, when the quality function satisfies diminishing
returns with respect to expert additions, greedy approximation
algorithms can achieve provable performance guarantees.

III. METHODOLOGY

A. ExpertCache Framework Overview

ExpertCache employs hierarchical reinforcement learning
that decomposes expert selection into two phases. The
pre-loading phase determines which experts to load into
GPU memory before inference, while the runtime phase
dynamically activates loaded experts per token. This sepa-
ration optimizes long-term resource allocation and immediate
activation decisions with appropriate temporal horizons.

B. Two-Phase Controller Design

The pre-loading controller πpre maps task metadata to
expert selection probabilities:

p=πpre([t;h;s])∈ [0,1]N (4)

where t is task embedding, h is hardware profile, s represents
expert statistics, and N is the total number of experts. Expert
selection uses differentiable top-k operations under memory
constraints.

The runtime controller πrun operates on token-level
representations:

at=πrun([xt;ct;ut])∈ [0,1]|S| (5)

where xt is token embedding, ct captures context, ut tracks
utilization, and |S| is the number of pre-loaded experts. The
controller uses attention mechanisms for context-aware expert
selection.
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C. Ground-Truth-Free Reward Design

ExpertCache uses self-supervised rewards combining three
components. The confidence reward measures model certainty
through normalized entropy:

Rconf(o)=1−H(softmax(o))
log(|V|)

(6)

where o represents output logits and |V| is vocabulary size.
The syntax reward evaluates code validity by checking
parsing success, compilation success, and complexity metrics.
The efficiency reward encourages sparsity using exponential
decay. These components are combined with learned weights
balancing quality, correctness, and efficiency.

D. Training Algorithm

Both controllers use Proximal Policy Optimization (PPO)
with different temporal horizons:

L=E[min(ρA,clip(ρ,1−ϵ,1+ϵ)A)] (7)

where ρ is the importance sampling ratio, A represents
advantage functions, and ϵ= 0.2 is the clipping parameter.
The pre-loading controller optimizes episode-level rewards
while the runtime controller optimizes token-level rewards
with immediate feedback.

IV. EXPERIMENTAL SETUP

A. Qwen3-235B-A22B Model Architecture

Qwen3-235B-A22B represents a state-of-the-art Mixture-
of-Experts language model with 235 billion total parameters,
of which approximately 22 billion are activated during
inference. The model employs a transformer-based
architecture containing 128 expert networks distributed
across multiple layers, with each expert implemented as a
specialized feed-forward network.

The existing routing mechanism in Qwen3-235B-
A22B activates exactly 8 experts per token, representing
approximately 10% of the total parameter count. The
routing strategy employs learned gating functions that assign
activation weights based on input token representations. This
approach achieves computational efficiency by activating
only a sparse subset of parameters while maintaining model
expressiveness through expert specialization.

However, the current routing mechanism assumes
unlimited GPU memory capacity, requiring all 128 experts
to be loaded simultaneously during inference. Each expert
network requires approximately 4.7 GB of GPU memory
when loaded in half-precision format, leading to a total
memory requirement of approximately 600 GB for loading all
experts. This substantial memory footprint creates significant
deployment barriers, particularly for consumer-grade
hardware and resource-constrained environments.

The Qwen3-235B-A22B architecture supports 128K
context length using YaRN technology and implements

seamless switching between thinking and non-thinking modes
across 119 languages and dialects. While these features
demonstrate the model’s sophistication, they also compound
the memory requirements, making efficient expert selection
even more critical for practical deployment.

B. BigCodeBench Evaluation Framework

BigCodeBench serves as our primary evaluation bench-
mark, consisting of 1,140 diverse programming tasks designed
to assess code generation capabilities across multiple pro-
gramming languages and complexity levels. The benchmark
encompasses algorithm implementation, data structure manip-
ulation, API usage, and complex problem-solving scenarios.

The tasks in BigCodeBench are categorized into several
difficulty levels, ranging from basic string manipulation
to advanced algorithmic challenges. Each task includes a
natural language description, input-output specifications, and
multiple test cases for evaluation. The benchmark supports
evaluation in Python, Java, C++, and JavaScript, though our
experiments focus primarily on Python code generation.

BigCodeBench employs the pass@k metric for evaluation,
where pass@k measures the probability that at least one of k
generated solutions passes all test cases. We primarily report
pass@1 results, which indicate the percentage of problems
solved correctly on the first attempt, providing a stringent
measure of model reliability.

The benchmark also includes execution-based evaluation,
where generated code is executed against hidden test cases
to verify correctness. This approach provides more reliable
assessment compared to text-based similarity metrics, as it
directly measures functional correctness rather than syntactic
similarity to reference solutions.

C. Research Questions and Experimental Design

Our experimental evaluation addresses three primary
research questions. RQ1: Performance Impact Analysis
compares pass@1 scores across different expert loading ratios
(10-50%) to characterize the performance-efficiency trade-off.
RQ2: Computational Efficiency Evaluation measures in-
ference speed, GPU memory usage, and throughput improve-
ments to assess practical deployment benefits. RQ3: Expert
Selection Analysis examines expert activation patterns and
specialization tendencies through case studies to understand
how task characteristics influence selection decisions.

D. Implementation Details and Hyperparameters

Our implementation extends Hugging Face Transformers
with custom expert loading capabilities. The pre-loading
controller uses a three-layer MLP [1024, 512, 256] with ReLU
and 0.1 dropout. The runtime controller employs two-layer
attention with 8 heads and 512 hidden dimensions. Training
uses Adam optimizers (3e-4 for pre-loading, 1e-4 for runtime),
PPO with ϵ=0.2, discount factor 0.99, andλ=0.95 for advan-
tage estimation. Reward weights are confidence (0.25), syntax
(0.30), quality (0.20), execution (0.15), and consistency (0.10).
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TABLE I: Pass@1 Performance Comparison on
BigCodeBench

Configuration Pass@1 (%) Relative Performance (%)

Baseline (All Experts) 34.04 100.0
ExpertCache (50% Experts) 34.30 100.8
ExpertCache (30% Experts) 34.39 101.0
ExpertCache (15% Experts) 34.21 100.5
ExpertCache (10% Experts) 33.33 97.9
Random Selection (15%) 28.51 83.7
Top-K Selection (15%) 32.02 94.1

V. EXPERIMENTAL RESULTS

A. Performance Impact Analysis

Table I presents pass@1 results comparing baseline Qwen3-
235B-A22B with ExpertCache across different expert loading
ratios. Remarkably, ExpertCache achieves superior perfor-
mance with 30% experts (101.0% relative performance),
demonstrating expert interference effects where irrelevant ex-
perts introduce noise. The baseline 34.04% (388/1140) aligns
with competitive BigCodeBench results (32-36% range).

ExpertCache significantly outperforms random and static
top-k selection, validating intelligent task-aware expert se-
lection. Performance degradation occurs only below 15%
loading, indicating critical expert mass requirements. Task
analysis shows ExpertCache excels on algorithmic problems
but requires broader expert coverage for API-intensive tasks.

B. Computational Efficiency Evaluation

Figure 1 illustrates the computational efficiency gains
achieved by ExpertCache across multiple metrics. Memory
usage reduction scales linearly with the expert loading ratio,
achieving up to 85% memory savings when loading only
15% of experts. Inference speed improvements are more
complex, showing superlinear gains due to reduced memory
bandwidth requirements and improved cache locality.

C. Advantages Over Existing Routing Mechanisms

ExpertCache addresses key limitations of traditional MoE
routing through four critical dimensions. Memory-Aware
Optimization: Unlike existing approaches that assume
unlimited GPU memory, ExpertCache explicitly considers
memory constraints during expert selection. Dynamic Task
Adaptation: While traditional routing is fixed post-training,
ExpertCache dynamically selects expert subsets based on task
characteristics. Hierarchical Decision Making: ExpertCache
decomposes selection into long-term loading and immediate
activation decisions versus single-phase routing. Multi-
Objective Optimization: ExpertCache balances quality,
memory, and computational efficiency simultaneously.

The optimization formulations differ fundamentally:

Qwen: max

128∑
i=1

G(x)i·Ei(x) s.t. ∥G(x)∥0=8 (8)
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Fig. 1: Computational efficiency comparison across different
expert loading ratios. The figure shows memory usage,
inference latency, and throughput improvements achieved by
ExpertCache.

TABLE II: Comparison of Routing Mechanisms

Dimension Qwen Original ExpertCache

GPU Memory Requirement 600GB 90GB
Consumer GPU Compatible No Yes (24GB)
Inference Speed Baseline 3.2x
Energy Consumption Baseline 60% Reduction
Task Adaptability Fixed Dynamic
Memory Constraint Aware No Yes
Hierarchical Optimization No Yes

Phase 1: maxEτ [Q(τ,S)] s.t.
∑
Ei∈S

mi≤M (9)

Phase 2: max
∑
i∈S

G(x,S)i·Ei(x) s.t. ∥G(x,S)∥0≤k

(10)

D. Case Study: Complete ExpertCache Pipeline Operation

To demonstrate the comprehensive ExpertCache
pipeline operation, we present a detailed case study using
BigCodeBench task #51, which involves DataFrame filtering,
KMeans clustering, and visualization. This example illustrates
how our two-phase expert selection system adapts throughout
the entire code generation process.

Task: Generate a function that filters a DataFrame
based on Age and Height conditions, applies KMeans
clustering if sufficient columns exist, and creates a scatter
plot visualization with cluster coloring.

1) Step 1: Task Analysis and Pre-loading Controller
Decision: Task Embedding Analysis: The pre-loading
controller analyzes the task description and identifies key
computational domains: data manipulation (pandas), machine
learning (scikit-learn), conditional logic, and visualization
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(matplotlib). The task complexity score is 0.72 (high
complexity due to multi-domain requirements).

Expert Pool Selection: From the 128 available experts, the
pre-loading controller selects 19 experts (15% configuration)
based on task-domain affinity scores. The selected experts
include 4 data processing experts (Expert IDs: 12, 47, 89,
103), 6 machine learning experts (Expert IDs: 23, 34, 56, 78,
91, 117), 5 visualization experts (Expert IDs: 8, 29, 65, 82,
126), and 4 control flow experts (Expert IDs: 15, 41, 73, 99).

Memory Allocation: Total GPU memory usage: 89.3 GB
(85% reduction from 600 GB baseline), Loading time: 12.4
seconds.

2) Step 2: Runtime Expert Activation During Code
Generation: Token Sequence 1-18 (Function Definition):
The runtime controller activates 3 experts (15, 41, 73) focused
on Python syntax and function definitions for generating
import statements and function signatures.

Token Sequence 19-52 (DataFrame Filtering): Primary
data processing experts are activated (12, 47, 89, 15, 41)
with average activation of 5 experts per token for pandas
operations including boolean indexing.

Token Sequence 53-78 (Conditional Logic): Control
flow experts (15, 41, 73, 47) handle conditional branching
and simple assignment operations, using 4 experts per token
on average.

Token Sequence 79-125 (KMeans Clustering): Peak
activation occurs with 7 experts (23, 34, 56, 78, 91, 47, 12)
for scikit-learn operations including model instantiation and
fitting.

Token Sequence 126-168 (Visualization): Visualization
experts (8, 29, 65, 82, 47) are activated for matplotlib
operations, using 5 experts per token for plotting and axis
customization.

3) Step 3: Performance Metrics and Analysis: The
generated code successfully passes all test cases with
functional correctness confirmed. The total inference
time was 0.74 seconds compared to 2.38 seconds for the
baseline (3.2x speedup), while using only 14.8% of the total
model parameters. The adaptive expert activation pattern
averages 4.9 experts per token versus the baseline’s fixed 8,
demonstrating intelligent resource allocation based on code
complexity and domain requirements.

4) Step 4: Reward Calculation and Learning Update: The
reward components include confidence reward (0.91), syntax
reward (1.0), execution reward (0.95), and efficiency reward
(0.87), resulting in a total reward of +2.73, significantly above
the baseline +1.45. This success reinforces the pre-loading
controller’s preference for multi-domain expert selection and
teaches the runtime controller to increase activation during
ML-intensive segments while maintaining efficiency during
routine operations.

E. Ablation Studies
We conducted comprehensive ablation studies to

understand the contribution of different components within

TABLE III: Ablation Study Results (Pass@1 with 15%
Expert Loading)

Configuration Pass@1 (%)

ExpertCache (Complete) 34.21
w/o Pre-loading Controller 31.49
w/o Runtime Controller 32.11
w/o Confidence Reward 33.51
w/o Syntax Reward 33.25
w/o Efficiency Reward 33.77
Single-Phase Selection 30.70

ExpertCache. Table III presents the results of removing
individual components from the complete framework.

The ablation results confirm that both the pre-loading
and runtime controllers contribute significantly to overall
performance. Removing either controller results in substantial
performance degradation, validating our hierarchical approach.
The reward component analysis shows that confidence and
syntax rewards provide the largest contributions, while the
efficiency reward primarily influences expert utilization
patterns rather than task performance.

VI. RELATED WORK

The optimization of MoE models has evolved from
foundational architectures like Switch Transformer [1],
GLaM [6], and BASE Layers [7] to more sophisticated expert
selection strategies. Recent advances include MoEfication [8],
which demonstrated transformer feedforward layers naturally
behave as experts, Expert Choice Routing [9], which inverts
traditional routing by allowing experts to choose inputs,
and Sparse Upcycling [10], which converts dense models
into MoEs. While approaches for instruction tuning [11],
vision [12], and graph domains [13] have expanded
MoE applications, they typically focus on training-time
optimization rather than inference-time memory constraints.
Expert pruning [3] provides static size reduction but lacks
task adaptability, and existing RL applications to neural
architecture optimization [14], [15] do not address the specific
challenges of MoE memory constraints.

Memory optimization techniques for large models
include gradient checkpointing [16], model parallelism [17],
parameter sharing [18], quantization [19], and knowledge
distillation [20]. Recent work on scalability includes
Moeut [21], which decouples architecture scaling from model
size and Tutel [22], which provides an adaptive framework for
MoE at scale. However, these approaches often require model
retraining or specialized hardware, whereas ExpertCache
operates on existing pre-trained MoE models without retrain-
ing, uniquely addressing inference-time memory constraints
through hierarchical reinforcement learning that optimizes
both expert loading and dynamic activation decisions.

VII. CONCLUSION

This paper introduced ExpertCache, a hierarchical
reinforcement learning framework addressing GPU memory
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constraints in large MoE model deployment. Our two-phase
approach decomposes expert selection into memory-aware
pre-loading and dynamic runtime activation, achieving 85%
memory reduction and 3.2x throughput improvement while
outperforming the baseline on Qwen3-235B-A22B using
BigCodeBench. Our artifact can be accessed by visit the
following link: https://github.com/Daniel4SE/expertcache
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