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This study evaluates the Weather Research and Forecasting (WRF) model, with and without WRFDA 3D-VAR data as-
similation, for precipitation and temperature forecasts in Luxembourg and the Greater Region during June—July 2021,
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a period marked by severe flooding. Conventional meteorological observations and Global Navigation Satellite Sys-
tem(GNSS) Zenith Total Delay (ZTD) data were assimilated into WRF, using Global Forecast System (GFS) data for in- E R T H R W el 80
.y .y . ey . : : : : : 50°N <o £z g 50°N o 7z
itial conditions. Precipitation forecasts were validated against NASA's GPM IMERG, RADAR data and against regional Lo ‘uembourg Germany b furemoourg Germany
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station measurements. Results demonstrate that data assimilation enhances the WRF model’s ability to replicate the = 4
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spatial distribution and intensity of precipitation, with visual comparisons (e.g., July 14, 2021) showing improved align-
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ment with satellite and RADARobservations post-assimilation. Quantitatively, data assimilation reduces bias in precipi- raon - .
tation and temperature forecasts at most stations, with mean absolute error (MAE) and symmetric mean absolute per- 3°E 4°E > ) DWD RADAR 7°E 8°E 3°E 4°E S WRF Beferepa | E B°E 50 <
centage error (SMAPE) often improving, though root mean square error (RMSE) exhibits mixed outcomes. g
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Flash floods differ from alluvial floods in terms of their rapid onset and little warning, making them challenging to pre- . D | . )l
dict [1]. Predicting flash floods requires accurate forecasts of extreme precipitation events and a precise understand-
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ing of local hydrological conditions [2]. Improvements in short-term weather forecasting and knowledge of hydrologi- - o e o o prs e E o e o e
cal conditions are crucial for better prediction and management of flash flood risks [3]. (c) WRF After DA CYS (@) WRE After DA CV>
Flood events with major damage, in Luxembourg, are known from January 1993, December 1993, January 1995, °
January 2003, January 2011, June 2018 and July 2021 [4]. Figure 7. WRF Forecast vs. DWD RADAR- 14 Jul 2021, 18:00
We will developing an NWP model for nowcasting, integrating ZTD data, static information, and meteorological data.
As a part of our research, we conducted a case study for the July 2021 event.The WRF model was deployed on an 90
HPC environment through containerization, though this specific instance was evaluated on a local machine.
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The study investigates Luxembourg’s diverse landscapes and oceanic climate, with 700—1,200 mm annual rainfall 50°N — 50°N A b
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and 8—-12°C temperatures|[5], using a 12 km WRF model initialized with GFS, GNSS ZTD, SYNOP, radiosonde, so.5on 4o.50N R 2o
and Tropospheric Airborne Meteorological Data Reporting (TAMDAR) data. AR R
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Figure 1 illustrates the NWP model domain, while Figure 2 shows WREF flow chart and Table 1 outlines its key con-
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Figure 1. WRF Domain Location

The study employs the WRF model with WRFDA 3D-VAR to assimilate GNSS ZTD, SYNOP, radiosonde (TEMP),
and TAMDAR data, using GFS for initial and boundary conditions, over the Greater Region. It extracts meteorologi-
cal variables using Python, interpolating data to match station locations. Precipitation forecasts are compared with
NASA GPM IMERG (0.1 deg), RADAR and regional station data, while temperature forecasts are validated against
station observations, using metrics like MAE, RMSE, SMAPE, and bias. Regional data in Luxembourg were collect-
ed from Administration des Services Techniques de 'Agriculture (ASTA) and outside luxembourg this data was col-
lected from National Oceanic and Atmospheric Administration (NOAA).
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