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Abstract
API-driven chatbot systems are increasingly integral to software en-
gineering applications, yet their effectiveness hinges on accurately
generating and executing API calls. This is particularly challenging
in scenarios requiring multi-step interactions with complex param-
eterization and nested API dependencies. Addressing these chal-
lenges, this work contributes to the evaluation and assessment of
AI-based software development through three key advancements:
(1) the introduction of a novel dataset specifically designed for
benchmarking API function selection, parameter generation, and
nested API execution; (2) an empirical evaluation of state-of-the-
art language models, analyzing their performance across varying
task complexities in API function generation and parameter accu-
racy; and (3) a hybrid approach to API routing, combining general-
purpose large language models for API selection with fine-tuned
models and prompt engineering for parameter generation. These
innovations significantly improve API execution in chatbot systems,
offering practical methodologies for enhancing software design,
testing, and operational workflows in real-world software engineer-
ing contexts.

CCS Concepts
• Software and its engineering → Empirical software valida-
tion; Software design engineering; • Computing methodologies
→ Information extraction.
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1 Introduction
Modern conversational AI systems, such as chatbots, rely on accu-
rate API calling to enable effective user interactions, as shown in
Figure 1. Beyond generating simple API calls, models must handle
complex scenarios involving selecting the correct API from exten-
sive lists, orchestrating multiple sequential calls, and managing
nested API interactions. While progress has been made in gener-
ating syntactically correct single API calls, there is limited focus
on generating sequences of API calls with logical dependencies
in long description context, a crucial requirement for real-world
applications.

Large LanguageModels (LLMs), such as GPT-4 [2] and Llama [35],
have demonstrated impressive capabilities in various natural lan-
guage processing tasks. These models excel at generating coher-
ent and contextually relevant responses, but their ability to pro-
duce structured outputs, such as API calls, program code, or other
machine-readable formats, remains a challenging frontier. Struc-
tured output generation requires adherence to predefined syntactic
and semantic rules, making it more constrained than generating
free-form text[20].

Recent advancements have explored structured output gener-
ation in applications such as code generation [7], table comple-
tion [15], and multi-turn dialogue [6]. Tools like CodeX [7] and
AlphaCode [19] focus on generating functionally valid code, while
methods like chain-of-thought prompting [37] and tool-augmented
reasoning frameworks [28] enhance reasoning in complex tasks.
These methods highlight the potential of LLMs for tasks requiring
step-by-step reasoning and structured output generation.

Early studies, such as BotBase [41], explored translating natu-
ral language into API calls, laying the groundwork for automat-
ing tool use. More recent benchmarks, including API-Bank [18],
ToolEyes [40], and BFCL [38], evaluate LLMs on API execution.
However, these datasets often operate with small API candidate
pools or lack scenarios involving nested or interdependent API
calls. For example, API-Bank assesses tool-augmented models but
limits API candidates to fewer than five per task. Similarly, Tool-
Bench [21] and ToolEyes evaluate multi-tool scenarios but do not
support tasks requiring highly interdependent API calls.
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To address these gaps, we propose CallNavi, a novel benchmark
designed to evaluate LLMs on:

• Selecting APIs from an unfiltered list of over 100 candidates;
• Executing multiple sequential API calls;
• Handling nested API interactions.

CallNavi introduces real-world complexity by simulating unfil-
tered API selection and combining generation with routing tasks
in a long context input. It categorizes questions into easy, medium,
and hard levels, enabling a granular evaluation of model capabilities
across varying task complexities. Additionally, we propose newmet-
rics, including a stability score, to measure prediction consistency
across multiple runs.

We benchmark 18 LLMs, encompassing commercial, general-
purpose, and fine-tuned models, on CallNavi. Our findings provide
insights into the strengths and limitations of current models, laying
a foundation for advancing API selection and function calling.

AnswerQuestion RESTful Server

JSON Clean API CallLLM/AIParameters

Figure 1: Example of API Calling pipeline via LLM

2 Related Work
Generating and executing accurate API calls is crucial to integrat-
ing LLM into real-world conversation applications. Existing bench-
marks, such as API-Bank [18], ToolEyes [40], and ToolBench [21],
evaluate API selection and execution capabilities but often rely on
prefiltered API candidate pools, lack nested API tasks, or focus on
narrow domain coverage. In contrast, CallNavi introduces unfil-
tered API selection with over 100 candidates, multi-call tasks, and
nested API scenarios across 10 diverse domains. Table 1 highlights
these distinctions, demonstrating how CallNavi addresses limita-
tions in existing benchmarks by introducing realistic complexity
and structured difficulty levels.

Structured output generation, a critical capability for API func-
tion calling, has seen significant advancements. MetaGPT [16]
and CodeAgent [32] emphasize task decomposition and multi-step
reasoning, improving performance in complex workflows. Tech-
niques like constrained generation [5] and grammar-aware Seq2Seq
models [9] improve structured output reliability, aligning with
CallNavi’s focus on evaluating structured reasoning and accuracy.

Stability in LLM predictions is another vital area of research.
Although traditional metrics such as freq@topk assess prediction
reliability, they fail to capture consistency across multiple runs
fully. Inspired by prior stability-focused studies [10, 34], CallNavi
introduces a stability score to quantify prediction consistency, com-
plementing traditional metrics like AST match and exact match.

From a software engineering perspective, function-calling tasks
align with modularity and abstraction principles, emphasizing de-
composition into manageable sub-tasks. Early works, such as Bot-
Base [41], synthesized API calls from natural language, laying the
groundwork for modern tools like Gorilla [17], ToolLLM [28], and
ToolAlpaca [31]. Recent efforts like StableToolBench [13] and 𝜏-
bench [39] highlight challenges in tool learning and real-world
tool-agent-user interactions.

API recommendation systems, such as those explored by Peng et
al. [27], provide insights into ranking and selecting APIs. These sys-
tems complement CallNavi, which emphasizes multi-step work-
flows requiring careful API selection. Similarly, abstract syntax
networks [29] and benchmarks like BigCodeBench [46] advance
structured code generation and semantic parsing, aligning with
CallNavi’s emphasis on reasoning and logical consistency in nested
tasks.

In summary, while prior work has laid a strong foundation for
API function calling, CallNavi advances the field by addressing
critical gaps such as unfiltered API selection, nested tasks, and sta-
bility evaluation. These contributions provide a robust framework
for benchmarking LLMs in realistic and complex scenarios.

Table 1: Comparison of CallNavi with existing API function-
calling benchmarks test set.

Benchmark Domains Questions Max API Multi-Call Nested
Candidates

CallNavi 10 729 115 Yes Yes
API-Bank 8 753 <5 Yes Yes
ToolEyes 41 382 <20 Yes No
ToolBench 8 795 32 Yes No
BFCL (API) N/A 70 <5 Yes No

t

3 Research Questions
• Benchmark Which LLMs have the best performance for
function calling in a real-world scenario?

• Evaluation Which is the best way to evaluate the API func-
tion calling ability of LLMs?

• Optimization How to enhance API function calling ability
for zero/few-shot LLM?

4 CallNavi Dataset
To create our dataset, we adopted a hybrid approach that combines
automated generation with manual validation and construction
to ensure high-quality and diverse data across different levels of
difficulty. The process consisted of the following steps:

Initial API Function Generation. Using GPT-4o, we generated API
function names, descriptions, parameters, and return values based
on a variety of scenario descriptions spanning multiple domains.
These domains were selected to reflect realistic use cases across 10
common chatbot application areas, as described in Table 2. This
ensures that the dataset evaluates CallNavi in scenarios requiring
advanced task routing, contextualization, and regulatory compli-
ance.

Validation and Refinement. All generated API functions were
manually reviewed for accuracy, consistency, and relevance. i.e.:
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• Parameters were checked to ensure they aligned with real-
world API design conventions.

• Ambiguities or redundancies in function descriptions were
resolved.

• Naming conventions for parameters and return values were
standardized to ensure consistency across the dataset.

Generation of Easy Questions. For the easy subset, we used GPT-
4o to generate questions related to API usage. These questions were
subsequently validated to ensure:

• Relevance to the provided APIs,
• Syntactic and semantic correctness, and
• Coverage of straightforward, single API usage scenarios.

Manual Construction of Medium and Hard Questions. Medium
and hard questions were manually crafted to reflect increasingly
complex API calling scenarios. The criteria and considerations for
these levels were as follows:

• Medium Questions: Focused on multi-step tasks requiring
the use of multiple APIs in sequence. These tasks test the
model’s ability to identify dependencies between API calls
while maintaining logical flow.

• Hard Questions: Designed to address edge cases, ambigu-
ous queries, and nested API calls requiring advanced rea-
soning. Scenarios simulate real-world challenges, such as
incomplete user inputs or conflicting requirements.

Quality Control. The dataset underwent a multi-stage quality
assurance process to ensure its reliability:

• Each generated instance was cross-checked by multiple an-
notators for correctness and consistency.

• For manually written instances, authors verified adherence
to the design criteria.

• Errors, ambiguities, and inconsistencies were flagged and
resolved iteratively.

Summary. The CallNavi dataset combines automation with hu-
man oversight, resulting in a benchmark that is both realistic and
challenging. By spanning easy, medium, and hard tasks across
diverse real-world domains, as outlined in Table 2, the dataset eval-
uates LLM capabilities in scenarios requiring robust task routing,
contextual understanding, and API management.

The first part of the metadata is a long JSON file with the API
name, description, and parameters in the following format.

{
"name": "getAccountBalance",
"parameters": ["accountID"],
"description": "Retrieves the current

balance for a specific account .",
"returnParameter": {

"Balance": "number"
}

},
...

We then format each question as shown in the example below,
which includes the user query, the ground truth API call in JSON
format, and the difficulty level:

{
"id": "ban01",
"question": [

{"role": "user",
"content": "What is the balance for the

account with ID 987654?"}],
"ground_truth": {

"API": ["getAccountBalance"],
"parameters":

{"accountID": "987654"}},
"difficulty": "easy"

},
...

Table 2: CallNavi dataset domains, questions and difficulties
statistics table.

Domain API
Functions Questions

Difficulty Max Input
TokensEasy Medium Hard

Banking 91 115 70 28 17 6517

Shopping 81 65 41 17 7 5195

Logistics 46 65 40 17 8 3434

Aviation 48 80 44 24 12 3461

Healthcare 20 47 31 10 6 1788

Public Services 82 85 50 27 8 6249

Human Resources 20 35 21 13 1 1863

Hotel Industry 49 65 40 19 6 3811

Insurance 42 60 40 11 9 3452

Telecommunications 100 112 79 22 11 6374

Overall 579 729 456 188 85 6517

4.1 Dataset
1 The CallNavi dataset evaluates LLMs’ task routing and API call-
ing capabilities across multiple domains. As shown in Table 2, it
contains 729 questions of varying difficulty and API interaction
complexity, along with 579 distinct API functions. Questions are
categorized into easy, medium, and hard levels:

• Easy(456 questions): Require a single API call to fulfill
task.
Example: A user checking their bank account balance with
one straightforward API call.

• Medium(188 questions): Involve multiple APIs within
the same question, with all parameters provided in the con-
text.
Example: A shopping query needing product details and
stock availability via two independent API calls.

• Hard(85 questions): Require multiple API calls where
some parameters depend on responses from previous
calls, adding complexity. 5 steps maximum of API.
Example: Updating delivery status by first retrieving a pack-
age ID, then using it to fetch the delivery status through
sequential API calls.

1https://github.com/Etamin/CallNavi
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This dataset tests LLMs’ ability to perform function-calling rout-
ing and parameters generation across varying difficulties, assessing
both basic single-call handling and complex multi-step nested re-
quests. Zero-shot and few-shot models must infer correct API inter-
actions only from the question context from different difficulties.

5 Metrics and Evaluation
5.1 API Parameters AST Match
Our study utilizes Abstract Syntax Tree (AST) evaluation to assess
models’ ability to generate accurate JSON outputs for API calls.
The format of the output JSON and parameters follows a structure
similar to the BFCL dataset in Section 4 [38].We parse the generated
JSON string into an object and compare each component with the
ground truth, such as the API list and parameters.

In scenarios involving multi-step API calls where parameters
depend on previous steps or where text inputs may not have a
single definitive answer, placeholder tokens are used for parameters.
These tokens are positionally aligned with the ground truth, and
we exclude them from strict comparisons during evaluation.

Our AST evaluation process is based on three key criteria, exam-
ples in Figure 2:

• Syntax Validity: Whether the JSON string can be correctly
parsed into an object without syntax errors.

• Structural Accuracy: Whether the parsed API calls match
the ground truth and include the correct parameter names(keys).

• AST Exact Match: Whether the entire parsed object, in-
cluding its structure and content, is identical to the ground
truth.

{
"id":"ban01",
"question": ['context':'...']],
...
}

{
"id":"ban01",
"question": ['context':'...'],
"ground_truth": {'API':[...],
'parameter':{...}}, ...
}

{
"id":"ban01",
"question": ['context':'...'],
"ground_truth": {'API':['AAA'],
'parameters':{...}}, 
'difficulty':'easy'
}

Syntax 
Validity
Error!

Structural
Accuracy
Error!

AST Exact
Match
Error!

{
"id":"ban01",
"question": ['context':'...'],
"ground_truth": {'API':['BBB'],
'parameters':{...}}, 
'difficulty':'easy'
}

Ground
Truth/
Correct
Output

Figure 2: Example of Evaluation Pipeline
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Figure 3: Pipeline of AST Match Score

As Figure 3 shows, we begin by checking the syntax validity of the
generated JSON structure. If syntax errors are detected, we apply
a JSON fix prompt to repair the structure or convert alternative
formats (such as function-calling syntax) into valid JSON. Once the
structure is valid, we assess structural accuracy by comparing the
predicted JSON with the ground truth. A structural match is scored
as 1. Finally, we convert both the predicted and ground truth JSONs
into object trees, comparing each node and leaf. A perfect match
across all nodes results in a score of 1 for AST Exact Match.

This multistep evaluation ensures a thorough assessment of the
accuracy of API function calls and the structural integrity of the
parameters, allowing for a granular analysis of the performance.

5.2 LLM-as-a-Judge Evaluation
We also use GPT-4o language models to evaluate whether the gen-
erated JSON outputs correspond accurately to the ground truth [45].
This approach aims to observe if LLMs can perform such evalua-
tion tasks with high precision. Using an LLM for this purpose, we
assess its ability to compare and validate structured data, thereby
determining its effectiveness in automating the evaluation process.

5.3 Stability Score
In chatbot systems, consistent outputs for identical inputs are cru-
cial to ensure reliability and user trust, especially in professional
settings. Users expect the same accurate response each time they
ask the same question. Inconsistencies can cause confusion, erode
confidence, and lead to errors, particularly in critical fields like
finance or healthcare.
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We propose an Election Stability Score to evaluate the consis-
tency of API outputs across multiple runs for the same input. This
score mirrors an election process, selecting the majority output as
the final answer. To calculate the score, we define:

• 𝑁 : Total number of outputs (samples).
• 𝐹1: Maximum frequency among all unique outputs (count of
the most frequent output).

• 𝐹2: Second maximum frequency (count of the second most
frequent output).

The stability score is calculated as:

Stability Score =
𝐹1 − 𝐹2
𝑁 − 𝐹2

This quantifies the consistency of the model’s outputs: If there’s
a tie for the most frequent output (𝐹1 = 𝐹2), the stability score is set
to 0, indicating no consensus; If the most frequent output is unique
(𝐹1 > 𝐹2), the score ranges from 0 to 1, reflecting the dominance of
the most frequent output.

To ensure reliable comparisons and reduce errors, we prepro-
cess the outputs by removing unnecessary spaces, newlines, and
formatting inconsistencies, converting the text to lowercase, and
stripping extraneous characters that could cause mismatches.

While ‘freq@topk‘ is often used to evaluate the performance
of model stability, it does not capture the stability in LLM output.
For example, if a model produces the sequence "AABBC" across
multiple runs, ‘freq@topk‘ might assign a high score of 0.4 because
the most frequent token ("A") appears 40% of the time. However, this
sequence is unstable as no single output consistently dominates.
In contrast, our stability score focuses on the dominance of the most
frequent output, offering a better measure of a model’s reliability
in structured tasks.

To give a clear example of calculating the stability of the model’s
outputs, we analyze the frequency distribution of the results ob-
tained from 5 times runs. Let’s review the variable settings:

• 𝑁 be the total number of outputs (samples).
• 𝐹1 be the maximum frequency of any unique output (the
most frequent output).

• 𝐹2 be the second maximum frequency (the frequency of
the second most frequent output).

Explanation:
• Tie Situations (𝐹1 = 𝐹2): When the maximum frequency is
equal to the second maximum frequency, it indicates a tie
for the most frequent output. The stability score is set to 0
to reflect neither majority nor consensus in such cases.

• No Tie Situations (𝐹1 > 𝐹2): The numerator 𝐹1 − 𝐹2 mea-
sures the dominance of the most frequent output over the
second most frequent one. The denominator 𝑁 − 𝐹2 normal-
izes this difference relative to the total number of outputs
excluding those of the second most frequent output. The
resulting score ranges from 0 to 1; higher values indicate
greater stability.

Examples:
• All Outputs Identical:
– Results: All outputs are the same (e.g., [′𝐴′,′𝐴′,′𝐴′,′𝐴′,′𝐴′]).
– 𝐹1 = 𝑁 , 𝐹2 = 0 (since there’s only one unique output).

– Stability Score:

Stability Score =
𝑁 − 0
𝑁 − 0

=
𝑁

𝑁
= 1

Indicates perfect stability.
• Tie Situation (e.g., 2 vs 2 vs 1):
– Results: Two outputs occur twice, and one occurs once
(e.g., [′𝐴′,′𝐴′,′ 𝐵′,′ 𝐵′,′𝐶′]).

– 𝐹1 = 2, 𝐹2 = 2 (tie between ’A’ and ’B’).
– Stability Score:

Stability Score = 0

Reflects the lack of consensus due to the tie.
• Minority Advantage (e.g., 2 vs 1 vs 1 vs 1):
– Results: One output occurs two times, another occurs
once each (e.g., [′𝐴′,′𝐴′,′ 𝐵′,′𝐶′,′ 𝐷′]).

– 𝐹1 = 2, 𝐹2 = 1.
– Stability Score:

Stability Score =
2 − 1
5 − 1

=
1
4
≈ 0.25

Indicates a little stability.
• Partial Agreement(Strong Opposition) (e.g., 3 vs 2):
– Results: One output occurs three times, another occurs
twice (e.g., [′𝐴′,′𝐴′,′𝐴′,′ 𝐵′,′ 𝐵′]).

– 𝐹1 = 3, 𝐹2 = 2.
– Stability Score:

Stability Score =
3 − 2
5 − 2

=
1
3
≈ 0.333

Indicates moderate stability.
• Partial Agreement(Weak Opposition) (e.g., 3 vs 1 vs 1):
– Results: One output occurs three times, another occurs
once each (e.g., [′𝐴′,′𝐴′,′𝐴′,′ 𝐵′,′𝐶′]).

– 𝐹1 = 3, 𝐹2 = 1.
– Stability Score:

Stability Score =
3 − 1
5 − 1

=
1
2
≈ 0.5

Indicates higher moderate stability.
• High Majority (e.g., 4 vs 1):
– Results: One output occurs four times, another occurs
once (e.g., [′𝐴′,′𝐴′,′𝐴′,′𝐴′,′ 𝐵′]).

– 𝐹1 = 4, 𝐹2 = 1.
– Stability Score:

Stability Score =
4 − 1
5 − 1

=
3
4
= 0.75

Indicates strong stability.
• All Outputs Unique:
– Results: All unique outputs (e.g., [′𝐴′,′ 𝐵′,′𝐶′,′ 𝐷′,′ 𝐸′]).
– 𝐹1 = 𝐹2 = 1.
– Stability Score:

Stability Score = 0

Complete instability due to a lack of consensus.
Interpretation:
• Stability Score of 1: Perfect stability; all outputs are same.
• Stability Score of 0: No stability; either all outputs are
unique, or there’s a tie for the most frequent output.
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• Stability Scores Between 0 and 1: Partial stability; higher
scores indicate greater agreement among outputs.

To further evaluate the stability of the model’s outputs, we calcu-
late the average Levenshtein distance between the first answer and
each subsequent output[43]. We normalize Levenshtein distance
using the following formula.

𝑆𝑐𝑜𝑟𝑒𝐿𝑒𝑣 =
1
𝑛

𝑛∑︁
𝑖=1

(1 − 𝑙𝑒𝑣 (𝑥0, 𝑥𝑖 )
𝑀𝑎𝑥 (𝑙𝑒𝑛(𝑥0), 𝑙𝑒𝑛(𝑥𝑖 ))

)

6 Experiments and Benchmark
6.1 Models
To evaluate the benchmark, we selected models based on their per-
formance, architecture, and relevance to function-calling tasks. The
selection criteria focused on general-purpose and fine-tunedmodels
optimized for function calling or JSON generation, ensuring a well-
rounded comparison between zero-shot and fine-tuned capabilities.
Models like BART and traditional retrieval-based approaches were
excluded as they lack the ability to select APIs from extensive lists,
which is critical for the complexity of this task.

Table 3 organizes the selected models into four groups: commer-
cial models, medium-large models (10B + parameters), small models
(5B-10B parameters) and light models (with parameters below 5B).

Model Name Origin Size Context Limits
GPT-4o OpenAI [2] N/A 128K
GPT-4o-mini OpenAI [2] N/A 128K
Gemini 1.5 Flash Google [30] N/A 1M
LLaMA 3.1 Meta AI [22] 70B 128K
Command-R Command AI [8] 35B 128K
Gemma2 Google [33] 27B 8K
Mistral-Small Mistral AI [3] 22B 128K
Phi3 Microsoft [1] 14B 128K
Mistral-Nemo Mistral AI [4] 12B 1M
Gemma2 Google [33] 9B 8K
LLaMA 3.1 Meta AI [22] 8B 128K
xLAM Salesforce [42] 7B 4K
DeepSeek R1 DeepSeek-AI [12] 7B 128K
NemoTron-Mini NVIDIA [26] 4B 4K
Phi3.5 Microsoft [36] 3B 128K
LLaMA 3.2 Meta AI [23] 3B 128K
NexusRaven Nexusflow.ai [24] 13B 16K
Gorilla Berkeley [25] 7B 4K

Table 3: Comparison of General Purpose LLMs.

We chose 2 fine-tuned Function Calling models for testing, which
have top performance on the BFCL leaderboard: NexusRaven and
Gorilla OpenFunctions v2. Then we found that some models cannot
input long lists, e.g. Firefunction v2 [11].

6.2 Environment
All our local models run with 4-bit Quantization, running on the
default Ollama platform settings without any optimization for JSON
generation. We do our experiments on NVIDIA-V100 GPU.

6.3 Pipeline
Our evaluation pipeline begins with the creation of prompts based
on two templates. The first template focuses on retrieving the API
calling list, which corresponds to the "API" list in the ground truth.
This prompt instructs the model to identify which API calls should
be used and in what order. The second template is designed to
generate the full API calling JSON, including the parameters for
each call.

Once the prompts are generated, we run them through each
model to obtain predictions. In the first part of the evaluation,
where API calls are generated without parameters, we directly
calculate the exact match between the predicted API list and the
ground truth and make them called API Calling Routing. For the
second part, where full JSON outputs are provided, the results are
evaluated using the three AST-related scores outlined in Section 5.1:
Syntax Validity, Structural Accuracy, and AST Exact Match.

Finally, we employ an LLM-as-a-judge approach, using GPT-4o to
calculate a score for comparison, providing a final measure of how
well the model’s outputs align with the ground truth. This multi-
step process ensures comprehensive evaluation across various levels
of output complexity.

6.4 Benchmarks Results
The results presented in Table 4 highlight the performance of vari-
ous models in different aspects of API function calling, including
API calling routing accuracy, syntax validity, structural accuracy,
and API parameter match through AST evaluation. OpenAI’s mod-
els, GPT4o and GPT4o mini, consistently outperform the others,
particularly in syntax validity (0.993 and 0.994, respectively) and
overall GPT score (0.913 and 0.908). Both models also demonstrate
strong structural accuracy and API parameter AST match, espe-
cially in easier tasks. Gemini 1.5 Flash follows these metrics closely.

Among the large general-purpose open LLMs, LLAMA3.1 (70B)
performs well in API calling with an exact match score of 0.945 in
easy tasks, though its performance drops significantly in harder
cases (0.470). It also achieves the second-highest overall GPT score
(0.583), largely due to high syntax validity (0.967). However, its
structural accuracy and parameter AST match are weaker, with
significant drops in harder tasks. But middle-size LLMs show strong
potential ability, very close to the larger group performance such
as Gemma2(9B) and xLAM(7B).

The other models and fine-tuned models generally struggle
across all indicators. For example, CommandR (35B) shows rel-
atively strong performance in medium API calling tasks (0.877) but
performs poorly in structural accuracy (0.189) and API parameter
AST match (0.134). Similarly, Mistal models show moderate per-
formance, but the smaller models (e.g., Phi3, LLAMA3.2) display
particularly low overall GPT scores and poor performance in most
tasks.

Our analysis demonstrates that the Pearson correlation between
the "GPT Score" and the "All Avg." column in the "Parameter AST
Match" section is 0.934, with a p-value of 4.40e-08. This indicates a
very strong positive correlation, suggesting that higher GPT scores
are closely associated with better average AST match performance.
The results in our table are closely alignedwith those of the Berkeley
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Category Models
API Calling Routing

Exact Match Syntax
Validity

Structural
Accuracy

API Calling with Parameters
AST Match Overall

GPT Score
Easy Medium Hard All Easy Medium Hard All Avg. Macro Avg.

Commercial
Models

GPT4o 0.978 0.914 0.611 0.919 0.993 0.887 0.802 0.638 0.388 0.711 0.609 0.913

GPT4o mini 0.971 0.930 0.564 0.913 0.994 0.869 0.800 0.648 0.364 0.710 0.604 0.908

Gemini 1.5 Flash 0.973 0.904 0.564 0.908 0.945 0.806 0.728 0.462 0.258 0.604 0.483 0.876

Large
General
LLMs

LLAMA3.1 70B 0.945 0.835 0.470 0.861 0.967 0.299 0.296 0.191 0.094 0.245 0.194 0.583

CommandR 35B 0.789 0.877 0.529 0.781 0.969 0.189 0.167 0.095 0.047 0.134 0.103 0.400

Gemma2 27B 0.945 0.877 0.552 0.882 0.982 0.226 0.217 0.143 0.070 0.181 0.143 0.476

Mistral-Small 22B 0.885 0.819 0.494 0.823 0.986 0.196 0.201 0.106 0.059 0.160 0.122 0.417

Phi3 14B 0.050 0.032 0.011 0.041 0.283 0.021 0.019 0.010 0.0 0.015 0.010 0.082

Mistral-Nemo 12B 0.927 0.808 0.470 0.843 0.842 0.271 0.296 0.127 0.035 0.222 0.153 0.524

Middle
LLMs

Gemma2 9B 0.962 0.845 0.506 0.879 0.983 0.220 0.241 0.095 0.059 0.182 0.132 0.488

LLAMA3.1 8B 0.916 0.813 0.552 0.847 0.925 0.207 0.223 0.058 0.059 0.162 0.113 0.422

xLAM-fc 7B 0.642 0.377 0.188 0.521 0.990 0.271 0.307 0.117 0.058 0.229 0.161 0.554

DeepSeek R1 7B 0.250 0.271 0.082 0.235 0.902 0.117 0.129 0.042 0.047 0.097 0.073 0.289

Light
Models

nemotron-mini 4B 0.644 0.287 0.094 0.488 0.529 0.080 0.067 0.010 0.012 0.047 0.030 0.271

LLAMA3.2 3B 0.842 0.622 0.400 0.733 0.917 0.063 0.052 0.021 0.035 0.042 0.036 0.353

Phi3.5 3B 0.723 0.340 0.188 0.562 0.004 0.0 0.0 0.0 0.0 0.0 0.0 0.002

Fine-Tuned
NexusRaven 13B 0.210 0.148 0.082 0.179 N/A N/A 0.160 0.074 0.047 0.124 0.094 0.254

Gorilla v2 7B 0.616 0.005 0.0 0.387 N/A N/A 0.524 0.005 0.0 0.329 0.176 0.518

Table 4: Benchmark Results Table. Macro Avg. means the arithmetic mean of 3 difficulties.

Function Calling Leaderboard2, which assesses LLMs’ performance
in API or function-calling tasks. In both evaluations, models like
OpenAI’s GPT4o stand out for their high syntax validity and over-
all accuracy, as reflected in our table where GPT4o scores above
0.9 in both categories. This matches the leaderboard’s top models,
which also excel in AST evaluations and execution accuracy. In
contrast, fine-tuned models such as FireFunction V2 in our results
show weaker performance in API calling accuracy and AST match-
ing, a trend similarly observed with fine-tuned models like Gorilla
OpenFunctions on the Berkeley leaderboard, particularly in more
complex API scenarios. Both evaluations emphasize the challenges
faced by fine-tuned models in handling complex function scenarios
or multi-step API calls, highlighting the need for improvement in
these areas.

Answer to RQ1: Based on the results of our benchmark, we
can still claim that OpenAI GPT models are the best solution
to solve this kind of challenge. But we can see if the test only
by calling the API name list, open-source models can have a
closer performance to the state-of-the-art.

6.4.1 Stability Test. In our stability experiments, we ran 5 times
referring to the previous study [34], and the stability results are in
Table 5. By these metrics results, we obtain a numerical comparison
that reflects the stability differences between outputs.

This stability score provides a quantitative measure of the con-
sistency of the model’s outputs across multiple runs. It accounts
for both the dominance of the most frequent output and the impact
of significant minority outputs, offering a nuanced assessment of
model stability.

As mentioned in Section 5.3, a higher Election Stability Score
indicates greater absolute consistency in the model’s outputs across
multiple runs. A high Levenshtein Stability Score means similar

2https://gorilla.cs.berkeley.edu/leaderboard.html

between the same input in text generation output. Commercial
models also perform better in Table 5 below.

Answer to RQ2: The best way to evaluate the API function
calling ability of LLMs is still AST evaluation with param-
eters. However, our Election Stability Score provides ad-
ditional insights into output stability, revealing differences
that traditional metrics may overlook.

Table 5: Stability Test Results

Model Size Election
Stability Score

Levenshtein
Stability Score

GPT4o N/A 0.674 0.972
GPT4o mini N/A 0.855 0.984
Gemini 1.5 Flash N/A 0.825 0.946
LLAMA3.1 70B 0.407 0.841
LLAMA3.1 8B 0.332 0.740
Mistral-Small 22B 0.208 0.719
Mistral-Nemo 12B 0.365 0.734
CommandR 35B 0.325 0.754
Gemma2 27B 0.609 0.890
Gemma2 9B 0.355 0.864
nemotron-mini 4B 0.013 0.527
LLAMA3.2 3B 0.085 0.613
Phi3.5 3B 0.909 0.637
xLAM-fc 7B 0.782 0.948
DeepSeek R1 7B 0.058 0.501

7 Zero Shot Improvement
7.1 Calling + Parameters 2 Steps Generation
We observed that most general-purpose LLMs perform better when
generating only API names(routing) rather than both names and
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A complex question
with 3 steps

List of API Functions

API descriptions

API Request 
Templates

API request in JSON format

Figure 4: 2-Steps Generation Pipeline

parameters simultaneously (see Table 4). The added complexity
of producing detailed parameters alongside API calls can nega-
tively impact overall performance. Additionally, fine-tuned models
struggle with long lists of APIs, limiting their effectiveness in sce-
narios requiring multiple API calls. To address these challenges,
we propose combining the strengths of general-purpose LLMs and
fine-tuned models shown in Figure4. Specifically, a general LLM
selects the relevant APIs based on the input prompt, leveraging its
superior understanding in identifying appropriate API calls. These
selected APIs are then provided to a fine-tuned/LAM model, which
focuses on generating the correct API calls along with the neces-
sary parameters. This sequential process allows the general LLM
to efficiently handle API selection, while the fine-tuned model con-
centrates on accurately producing API calls and parameters within
a more manageable context.

As demonstrated in Table 6, this combined approach with GPT-
4o routing significantly improves performance. Separating the
tasks of API selection and parameter generation enhances the mod-
els’ ability to handle complex API calling tasks more effectively.

Table 6: 2 Steps Generation results for LLMs

Models easy medium hard overall
Fine-Tuned
Model w/
GPT routing

NexusRaven13B 0.657 0.457 0.188 0.551
Gorilla v27B 0.682 0.005 0.000 0.427
xLAM-fc-7B 0.714 0.462 0.188 0.588

General
Large
Language
Models w/
GPT routing

Gemma2:27b 0.633 0.617 0.341 0.595
Gemma2 0.723 0.457 0.164 0.589
llama3.1 0.714 0.457 0.164 0.584
mistral-small 0.728 0.436 0.294 0.602
mistral-nemo 0.712 0.308 0.141 0.541
phi3:14b 0.019 0.005 0.011 0.015
command-r 0.633 0.547 0.223 0.563
llama3.2 0.462 0.297 0.082 0.375
nemotron-mini 0.208 0.01 0.000 0.133

LLM w/
itself as
as router

Gemma2:27b 0.598 0.59 0.341 0.566
Mistral-small 0.684 0.382 0.235 0.554
Command-r 0.621 0.505 0.247 0.547

7.2 Backward Inference Thinking
To optimize the API selection and calling process, we implement a
Backward Thinking approach, inspired by CauseJudger [14] and

Table 7: Backward Thinking performance in High difficulty
calling in GPT-4o and GPT-4o-mini.

Model API Calling Routing API Calling with Parameters

Original Backward
Thinking Original Backward

Thinking
GPT4o 0.611 0.894 0.388 0.729
GPT4o mini 0.564 0.847 0.364 0.482

Looking for the API can solve the final or last 
sub-question in the question

Searching for all dependency API

Keep searching 
dependency APIs

...

No

Yes

LLM

Is the API list fulfil the 
question requirement?

Question+API information

Figure 5: Backward Thinking Pipeline

Reverse Chain [44], as illustrated in Figure 5. This approach enables
the model to construct a sequence of API calls more systematically
by working backwards from the final goal rather than following a
purely forward selection strategy.

The process follows these steps:

(1) Identifying the Final API Call: The model first determines
the ultimate API needed to answer the user’s query. This
API must provide the final required information or action.

(2) Checking Parameter Completeness: The model verifies
whether all required parameters for the final API are avail-
able. If any essential information is missing, the model does
not proceed with execution but instead considers the neces-
sary steps to obtain the missing data.

(3) Determining SupportingAPI Calls: If missing parameters
are identified, the model searches for additional APIs that
can retrieve the necessary data. These supporting API calls
are planned in reverse order, ensuring that the final API call
has all the required inputs.

(4) Iterative Refinement: This process continues iteratively.
Each newly identified API is analyzed for its own dependen-
cies, ensuring that all required information is recursively
retrieved before execution.

By breaking the task into smaller, dependency-aware steps, this
method allows the model to effectively plan and execute multi-step
API calls, improving accuracy in complex scenarios. As shown in
Table 7, this approach yields a 30% improvement in hard-level API
calling tasks. The backward inference mechanism significantly en-
hances the model’s ability to handle intricate, real-world API calling
scenarios, reducing failure cases caused by missing or misordered
API dependencies.



CallNavi, A Challenge and Empirical Study on LLM Function Calling and Routing EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

Answer to RQ3: We have tested 2 different ways to en-
hance the performance of function calling in our test, both
can significantly increase performance in function calling
routing and JSON generation.

8 Case Study
8.1 Insufficient Context Limit
We observe that models like xLAM and NemoTron-Mini, which
have a 4K context limit, struggle with longer API calls in Call-
Navi, where some inputs exceed 6K tokens. This limitation leads to
truncated inputs, causing incorrect API selection and missing pa-
rameters in multi-call sequences. While models with higher context
limits generally perform better, we also find that context length
alone does not guarantee success—models must still effectively
manage dependencies and navigate complex API workflows. These
findings highlight the need for both expanded context windows
and improved structured reasoning in function-calling tasks.

8.2 Hallucination
In one of our test cases, the Phi3:14b model produced an incorrect
API function call in response to a baggage tracking scenario. The
predicted output was as follows:

{
"API": ["getLostBaggageReport", "

updateBaggageStatus"],
"parameters": [{"baggageId": "BAG123"},

{}]
}

However, the ground truth was:

{
"API": ["getBaggageStatus"],
"parameters": [{"baggageId": "BAG123"}]

}

In this case, the model hallucinated two API calls, "getLost-
BaggageReport" and "updateBaggageStatus", which were not
part of the provided API list. This hallucination led the model to
predict incorrect API calls, deviating from the expected function
"getBaggageStatus". Although the model correctly captured the
parameter baggageId: "BAG123", it introduced an unnecessary
second parameter block as an empty dictionary, further reducing
the accuracy of the output.

This example highlights a common issue with current large
language models in complex tasks: their tendency to hallucinate
irrelevant API calls when uncertain. Such behavior emphasizes
the need for improved mechanisms to ensure more accurate API
function routing and parameter generation in these models.

8.3 JSON Generation
In another example, the Mistral-Nemo model generated an incor-
rect output, which included unwanted notes in the result, rendering
it invalid as a JSON. The predicted output was:

{
"API": ["getCustomerCreditCards"],

"parameters": [{"customerID": "123456"}]
}
#( Assuming that ATM cards are considered

credit cards for this specific API)

The ground truth, however, was:

{
"API": ["getATMCardList"],
"parameters": [{"accountID": "123456"}]

}

In this case, the model incorrectly generated an API call for
"getCustomerCreditCards" instead of the correct API "getATM-
CardList". Additionally, the model included an unwanted note—
"(Assuming that ATM cards are considered credit cards for
this specific API)"—which made the output non-compliant with
JSON formatting, as this additional text was outside the structure
of the JSON object.

This example illustrates the challenge of maintaining output
fidelity in models when they generate explanations or assump-
tions within the response, which should be avoided in strict JSON-
formatted outputs. Such behavior disrupts the automation of API
calls and highlights the need for better prompt engineering to en-
sure models only return valid JSON results without extraneous
content.

8.4 Logical Errors in Hard Questions
Logical errors are particularly prevalent in hard questions, where
the task involvesmultiple dependent API calls or complex reasoning.
These errors include incorrect sequencing of API calls, failure to
propagate parameters correctly, or omitting necessary steps. e.g.:

• Example: When asked to retrieve a user’s transaction his-
tory and compute their monthly spending, the model re-
trieves the transactions but fails to invoke an API for com-
putation, leaving the task incomplete.

• Impact: Logical errors highlight the limitations of current
models in handling multistep tasks’ dependency reasoning.

8.5 Impact of JSON and YAML on Model
Performance

To analyze the influence of input and output formats on model
performance, we conducted experiments using JSON and YAML,
two widely used structured data formats. These formats differ sig-
nificantly in syntax and structure, which could affect the ability of
models to interpret, process, and generate outputs accurately. We
tested four configurations:

• YAML to YAML: Both input and output are YAML.
• JSON to JSON: Both input and output are JSON.
• YAML to JSON: Input data is formatted in YAML, and output
data is in JSON.

• JSON to YAML: Input data is formatted in JSON, and output
data is in YAML.

The results of these experiments are shown in Table 8.
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Table 8: Compare JSON or YAML as input/output perfor-
mance differences.

Input/
Output Model Syntax Acc Structure Acc Easy Medium Hard Overall GPT-Score

YAML
to
YAML

LLAMA3.1 0.525 0.076 0.081 0.042 0.011 0.063 0.183
mistral-small 0 0.183 0.23 0.047 0.035 0.16 0.241
Gemma2:27b 0.938 0.097 0.12 0.037 0 0.085 0.238
command-r 0.883 0.096 0.105 0.042 0.011 0.078 0.241

JSON
to
JSON

LLAMA3.1 0.925 0.207 0.223 0.058 0.059 0.162 0.422
mistral-small 0.986 0.196 0.201 0.106 0.059 0.16 0.417
Gemma2:27b 0.982 0.226 0.217 0.143 0.07 0.181 0.476
command-r 0.969 0.189 0.167 0.095 0.047 0.134 0.4

YAML
to
JSON

LLAMA3.1 0.88 0.194 0.208 0.106 0.023 0.16 0.347
mistral-small 0.995 0.179 0.173 0.112 0.058 0.144 0.333
Gemma2:27b 0.984 0.212 0.195 0.159 0.082 0.172 0.414
command-r 0.967 0.198 0.168 0.122 0.071 0.145 0.322

JSON
to
YAML

LLAMA3.1 0.598 0.104 0.14 0.026 0 0.094 0.32
mistral-small 0 0.218 0.263 0.079 0 0.185 0.332
Gemma2:27b 0.931 0.128 0.153 0.026 0 0.103 0.419
command-r 0.853 0.091 0.123 0.011 0 0.079 0.363

Analysis of Results. 1. JSON Outperforms YAML. Across all con-
figurations, models achieved higher syntax, structure, and task-
specific accuracies with JSON as both the input and output for-
mat. For example, the JSON to JSON configuration resulted in the
highest Syntax Accuracy (e.g., 0.986 for Mistral-Small) and Struc-
ture Accuracy (e.g., 0.226 for Gemma2:27B), highlighting JSON’s
straightforward syntax and reduced ambiguity.

2. YAMLChallenges.Models struggled significantlywith YAML,
particularly in the YAML to YAML configuration, which had
the lowest performance across metrics. For instance, LLAMA 3.1
achieved a Syntax Accuracy of 0.525, and Structure Accuracy re-
mained poor across models. YAML’s indentation-sensitive syntax
and verbosity likely contribute to these challenges.

3. Mixed Configurations Mitigate Errors. Configurations
with mixed input and output formats (e.g., YAML to JSON) per-
formed better than pure YAML setups. JSON as an output format
simplified generation tasks, as evidenced by improved metrics com-
pared to YAML outputs.

4. JSON to YAML is Challenging. The JSON to YAML configu-
ration showed decreased performance compared to JSON to JSON,
particularly in Syntax Accuracy (e.g., 0.598 for LLAMA 3.1). This
indicates that YAML’s complexity as an output format negatively
affects model performance.

9 Discussion and Conclusion
9.1 Discussion
Our dataset introduces significant challenges, particularly inmedium
and hard questions, where models must select APIs from a large
pool and generate parameters in multi-step and nested contexts.
This complexity highlights the limitations of fine-tuned models
trained on smaller API sets and underscores the need for more
diverse and robust training paradigms.

We observe distinct model behaviours in API routing and pa-
rameter JSON generation. GPT-4o excels in both tasks, while mod-
els like LLaMA 3.1 and Gemma2 perform well in API routing
but struggle with parameter generation, making them suitable for
routing-centric applications. In contrast, smaller models (<10B pa-
rameters) exhibit instability, often producing inconsistent or incom-
plete outputs, limiting their effectiveness in complex, multi-step
scenarios.

Long-context processing remains a significant bottleneck. Al-
though models with larger context windows better handle struc-
tured inputs, they still struggle with simultaneous logical inference
and structured JSON generation. Our findings suggest that merely
increasing context size does not fully resolve multi-step reasoning
challenges, emphasizing the need for improved architectures and
reasoning strategies such as Chain of Thought.

Despite advancements, no model, includingGPT-4o, fully solves
intricate API calling tasks, reinforcing the need for further research
in LLM-driven function calling.

9.2 Conclusion
This work introduces CallNavi, a benchmark evaluating API func-
tion calling in LLMs across 500 APIs and 700 questions. We assess
general-purpose and fine-tuned models, revealing key limitations
in API selection, parameter generation, and multi-step rea-
soning.

To improve function calling accuracy, we propose 2-steps gen-
eration and backward inference, enhancing structured API se-
lection. While larger models like GPT-4o perform well, they still
struggle with long-context input processing, particularly in tasks
requiring both logical inference and structured JSON genera-
tion. Models with <6K token limits often truncate inputs, leading
to incomplete API calls and degraded performance.

Our findings contribute to the broader field of software engi-
neering evaluation and assessment, particularly in automated
API function that calls for AI-based software design, stability eval-
uation and structured reasoning. Future work should focus on
improving LLM robustness in real-world deployments, integrat-
ing retrieval-augmented techniques, and expanding function-
calling benchmarks to incorporate real-time constraints such as
error handling, authentication, and API versioning.

Threats To Validity
Internal Validity. One key limitation is context length constraints,

where models like xLAM and NemoTron(4K) struggle with inputs
exceeding 6K tokens in CallNavi, leading to truncation and incom-
plete API calls. While models with longer context windows perform
better, our results suggest that context size alone is insufficient with-
out strong reasoning and structured generation capabilities.

The complexity and variability of CallNavi, particularly in multi-
step and nested API tasks, pose additional challenges. Fine-tuned
models, often trained on smaller API sets, may struggle to generalize.
Additionally, LLM-as-a-judge introduces potential subjectivity in
evaluation. Our optimization strategies like 2-steps generation and
backward inference—improve multi-step API selection, but their
effectiveness may vary across different architectures.

External Validity. While CallNavi spans 500+ APIs and 700+ ques-
tions across 10 domains, it does not cover all real-world constraints,
such as authentication, error handling, or evolving API versions.
Future LLMS with longer context, hybrid architectures, etc., may
demonstrate different performance trends.

Additionally, real-world API integration involves challenges be-
yond our benchmark, such as network failures, rate limits, and
dynamic tool adaptation. While our evaluation covers syntax va-
lidity, AST match, and stability, future extensions should explore
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live production-level testing to better assess real-world deployment
challenges.
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