
Just-in-Time Detection of Silent Security Patches
XUNZHU TANG, University of Luxembourg, Luxembourg
KISUB KIM, DGIST, Repulic of Korea
SAAD EZZINI, King Fahd University of Petroleum & Minerals , Saudi Arabia
YEWEI SONG, University of Luxembourg, Luxembourg
HAOYE TIAN∗, University of Melbourne, Australia
JACQUES KLEIN, University of Luxembourg, Luxembourg
TEGAWENDÉ F. BISSYANDÉ, University of Luxembourg, Luxembourg

Open-source code is pervasive. In this setting, embedded vulnerabilities are spreading to downstream software
at an alarming rate. Although such vulnerabilities are generally identified and addressed rapidly, inconsistent
maintenance policies can cause security patches to go unnoticed. Indeed, security patches can be silent, i.e.,
they do not always come with comprehensive advisories such as CVEs. This lack of transparency leaves
users oblivious to available security updates, providing ample opportunity for attackers to exploit unpatched
vulnerabilities. Consequently, identifying silent security patches just in time when they are released is
essential for preventing n-day attacks and for ensuring robust and secure maintenance practices. With llmda
we propose to (1) leverage large language models (LLMs) to augment patch information with generated
code change explanations, (2) design a representation learning approach that explores code-text alignment
methodologies for feature combination, (3) implement a label-wise training with labeled instructions for
guiding the embedding based on security relevance, and (4) rely on a probabilistic batch contrastive learning
mechanism for building a high-precision identifier of security patches. We evaluate llmda on the PatchDB
and SPI-DB literature datasets and show that our approach substantially improves over the state-of-the-art,
notably GraphSPD by 20% in terms of F-Measure on the SPI-DB benchmark.

CCS Concepts: • Security and privacy→ Software security engineering.

Additional Key Words and Phrases: security patch detection, in-context learning, self-instruct

ACM Reference Format:
Xunzhu Tang, Kisub Kim, Saad Ezzini, Yewei Song, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé.
2025. Just-in-Time Detection of Silent Security Patches. 1, 1 (August 2025), 33 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
According to a recent market report1, 96% of applications have at least one open-source component,
while open-source code comprises about 80% of a given modern application. These impressive
∗Corresponding author.
1https://gitnux.org/open-source-software-statistics/

Authors’ addresses: Xunzhu Tang, xunzhu.tang@uni.lu, University of Luxembourg, Luxembourg; Kisub Kim, falconlk00@
gmail.com, DGIST, Repulic of Korea; Saad Ezzini, s.ezzini@lancaster.ac.uk, King Fahd University of Petroleum & Minerals ,
Saudi Arabia; Yewei Song, yewei.song@uni.lu, University of Luxembourg, Luxembourg; Haoye Tian, haoye.tian@unimelb.
edu.au, University of Melbourne, Australia; Jacques Klein, jacques.klein@uni.lu, University of Luxembourg, Luxembourg;
Tegawendé F. Bissyandé, tegawende.bissyande@uni.lu, University of Luxembourg, Luxembourg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2025/8-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: August 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://gitnux.org/open-source-software-statistics/
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Xunzhu Tang, Kisub Kim, Saad Ezzini, Yewei Song, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé

statistics indicate that open-source software (OSS) is a key element whose engineering should be
closely monitored: vulnerabilities in OSS will spread to a broad range of downstream software
systems. Once discovered, they enable attackers to perform “n-day” attacks against unpatched
software systems.
Timely software patching remains the first defense against attacks exploiting OSS vulnerabili-

ties [19, 36]. Unfortunately, security patches can go unnoticed. On the one hand, the ever-increasing
number of submitted patches and security advisories can overwhelm reviewers and system admin-
istrators. On the other hand, the complexity of patch management processes and the inconsistency
of OSS maintenance policies can lead to the release of silent security patches. Such patches are
submitted to the OSS repository but no specific notice is provided for maintainers of downstream
software systems. Silent security patches lead to unfortunate delays in software updates [9].

Consider the example from the Linux kernel (shown in Listing 1), which illustrates the severity
of silent security patches. In this patch, a boundary check was added to mitigate a buffer over-
flow vulnerability in TCP options handling. However, the patch lacked proper documentation
or advisories, leading to the possibility that downstream maintainers might overlook it. Such
omissions exemplify the need for automated tools capable of detecting silent security patches, as
relying solely on manual reviews is insufficient for large-scale open-source ecosystems. In this
example, GraphSPD would focus only on the immediate code changes, such as the addition of a
boundary check, without considering how this update interacts with other functions or modules.
By contrast, llmda augments the patch with LLM-generated explanations, such as “This patch
prevents buffer overflow by validating input lengths,” which provide missing semantic context.
Additionally, PT-Former integrates this semantic information with the code structure, ensuring a
comprehensive understanding of how the patch mitigates vulnerabilities across the broader system.
Detecting silent security patches is a timely research challenge that has gained traction in the

literature. The prior approaches in the literature attempt to analyze code changes and commit logs
within patches in order to derive security relevance. However, on the one hand, the semantics of
code changes are challenging to precisely extract statically. Patches are more often non-atomic,
meaning that beyond a security-relevant code change, other cosmetic or non-security changes are
often involved. On the other hand, commit messages, which are supposed to describe precisely
the intention of the code changes, are often missing, mostly lacking sufficient information, and
sometimes misleading.

Recent literature has largely leveraged machine learning to improve the performance of security
patch detection systems. In general, the proposed approaches [43, 45, 48] rely on syntactic features,
while other methods [47, 60] have explored deep neural networks by treating patches as sequential
data. Wang et al. [44] recently introduced GraphSPD, which models semantics using graph-based
representations of source code. GraphSPD significantly advances the state of the art by capturing
localized context within patches, thereby outperforming prior syntactic and sequential approaches.
However, GraphSPD primarily focuses on local code segments and direct dependencies, limiting its
ability to capture global interactions between functions or modules. Unlike GraphSPD, llmda does
not aim to explicitly model inter-modular interactions. Instead, it focuses on enriching the semantic
understanding of patches through multi-modal inputs, including LLM-generated explanations,
commit descriptions, and task-specific instructions. These components enable llmda to capture
nuanced semantic and contextual information within patches, particularly when documentation is
limited or misleading. While llmda excels at integrating and aligning multi-modal representations
to improve classification accuracy, its design does not extend to modeling the broader context of
how functions or modules interact.

, Vol. 1, No. 1, Article . Publication date: August 2025.

Just-in-Time Detection of Silent Security Patches 3

To address these limitations, llmda leverages its multi-modal design to capture both local and
global contexts. First, LLM-generated explanations bridge the gap between code and intent, provid-
ing semantic insights that contextualize local changes within their broader functional and modular
implications. Second, PT-Former aligns and fuses multi-modal inputs—including code, descriptions,
and explanations—into a unified embedding, enabling the model to capture relationships beyond
local code structures. Finally, the stochastic batch contrastive learning (SBCL) mechanism refines
decision boundaries by leveraging both local and global contexts, improving the model’s robustness
in distinguishing complex security patches.
To cope with the aforementioned challenges, our intuition is threefold: ❶ First, the security

relevance of a patch could be better identified if a proper and detailed explanation of code changes
can be obtained. To that end, we look towards the current wave of Large Language Models (LLMs),
where various studies [21, 34, 35] have demonstrated their capabilities in effectively capturing
the essential context and tokens within source code for a variety of tasks. ❷ Second, the patch
representation must effectively learn to combine and align features from the code changes with
features of the change descriptions to maximally capture the relevant details for security relevance
identification. ❸ Third, a language-centric approach where natural language instructions are used
within the inputs to guide the learning could help exploit the power of existing general models as
shown in recent papers for various tasks [5, 7, 51].

This paper. We propose and implement llmda (read 𝜆), a novel framework for detecting silent
security patches in open-source software. llmda addresses the limitations of existing methods,
such as GraphSPD, by introducing the following components:
1). LLM-Generated Explanations: These explanations address the lack of detailed commit

messages by enriching patches with semantic context, enabling the model to understand the intent
behind code changes and their broader implications. 2). PT-Former Module: This module aligns
and fuses multi-modal inputs, resolving the problem of disjoint embeddings for code and text modal-
ities. PT-Former ensures that both local and global contexts are effectively captured. 3). Stochastic
Batch Contrastive Learning (SBCL): By refining classification boundaries through batch-wise
comparisons, SBCL enhances the model’s ability to distinguish between security-relevant and
non-relevant patches, particularly in edge cases. llmda leverages multi-modal inputs, including
code changes, developer-provided descriptions, and large language model (LLM)-generated expla-
nations, to enrich the context and improve detection accuracy. By augmenting incomplete or vague
commit messages with natural language explanations generated by LLMs, llmda bridges the gap
between code semantics and human-readable context. Furthermore, task-specific instructions are
incorporated to guide the model’s learning and ensure alignment with the security classification
objective. We conducted extensive ablation studies to demonstrate the individual contributions
of LLM-generated explanations, PT-Former, and SBCL. These studies show how each component
enhances llmda ’s capability to detect silent security patches with higher precision and robustness
compared to existing methods.

To integrate these diverse inputs, llmda introduces PT-Former, a specialized module for aligning
and fusing embeddings from code and text modalities. PT-Former employs self-attention and cross-
attention mechanisms to create a unified representation that captures both local and global contexts.
Once the embeddings are generated, a stochastic batch contrastive learning (SBCL) mechanism
is applied to refine the model’s decision boundaries by emphasizing inter-class distinctions and
intra-class consistency. This systematic combination of components allows llmda to achieve state-
of-the-art performance in detecting silent security patches across diverse datasets, addressing the
critical limitations of existing methods.

Our contributions are as follows:

, Vol. 1, No. 1, Article . Publication date: August 2025.

4 Xunzhu Tang, Kisub Kim, Saad Ezzini, Yewei Song, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé

LLM-Based Code
Representation LLM-Based Text Representation

Explanation Embedding Description Embedding Instruction EmbeddingPatch Embedding

diff --git a/base/gsdevice.c
b/base/gsdevice.c<nl>
index 0659220..e38086d 100644<nl>
--- a/base/gsdevice.c<nl>
+++ b/base/gsdevice.c<nl>
....
+ if (gs_currentdevice_inline(pgs) != NULL)<nl>
+ saveLockSafety = ...

preserve important parameters in
the null device

Description

Choose the correct option to the following
question: is the patch security related or not?
Choices: (0) security (1) non-security

Instruction

Concatenate & Align Representations (PT-Former)

......

if availablePatch

LLM

The git diff for
gsdevice.c shows added
lines to manage the
LockSafetyParams using
the saveLockSafety
variable in the
gs_nulldevice function.

Explanation

One Embedding Predict Security Relevance (SBCL) Fully Connected
Layer (FC)

Fig. 1. Overview of llmda

• We introduce llmda, a framework that overcomes the limitations of existing methods, such as
GraphSPD, by capturing both local and global contexts in patch analysis.

• We leverage LLM-generated explanations to provide semantic insights and augment patches
with missing context, bridging the gap between code and intent.

• We propose PT-Former, a novel alignment module that integrates multi-modal inputs, enabling
the model to capture inter-functional and inter-modular relationships effectively.

• We employ stochastic batch contrastive learning (SBCL) to refine classification boundaries,
improving robustness and precision in distinguishing complex patches.

• We achieve state-of-the-art performance on PatchDB and SPI-DB datasets, with up to 42%
improvement in F1-score over the incumbent GraphSPD model.

2 MOTIVATION
Open-source software (OSS) has become a cornerstone of modern software development, accounting
for a significant portion of both commercial and non-commercial applications. However, the
increasing reliance on OSS has exposed new challenges in maintaining its security, particularly in
the timely identification and application of security patches. The motivation for this work stems
from three major aspects: the risks posed by silent security patches, the limitations of existing
solutions, and the transformative potential of large language models (LLMs).

2.1 Silent Security Patches: A Critical Threat
Security vulnerabilities in OSS propagate rapidly to downstream software, potentially affecting a
vast number of applications. While vulnerabilities are often addressed through patches, a significant
portion of these patches are released silently, without clear advisories or documentation, such as
CVEs. These silent security patches leave users unaware of critical updates, creating opportunities
for attackers to exploit known vulnerabilities, known as n-day attacks.

Consider the following example:
1 diff --git a/net/ipv4/tcp_input.c b/net/ipv4/tcp_input.c
2 index c34fa2a..e4fb7a5 100644
3 --- a/net/ipv4/tcp_input.c
4 +++ b/net/ipv4/tcp_input.c
5 @@ -2342,7 +2342,8 @@ void tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
6
7 /* Fix potential buffer overflow in TCP options */
8 - memcpy(opt, skb->data + tcp_hdrlen, optlen);
9 + if (unlikely(optlen > TCP_MAX_OPT_LENGTH))
10 + return;
11 + memcpy(opt, skb->data + tcp_hdrlen, optlen);

, Vol. 1, No. 1, Article . Publication date: August 2025.

Just-in-Time Detection of Silent Security Patches 5

12 }

Listing 1. A silent security patch from the Linux kernel codebase.

In this example, the patch fixes a potential buffer overflow vulnerability in TCP options handling
by adding a safety check for the option length (‘optlen‘). Without explicit documentation or
advisory, this patch could be missed by downstream maintainers, leaving many systems exposed to
exploitation.

2.2 Limitations of Existing Approaches
Previous approaches to identifying security patches have significant limitations:

• Static Analysis and Rule-Based Tools: These methods rely on predefined patterns or static
analysis to detect security patches. However, they fail to capture the semantic intent of code
changes, resulting in high false-positive rates.

• Token and Graph-Based Models: Machine learning models, such as token-based neural
networks and graph-based representations like GraphSPD, show promise but often fail to
generalize across diverse projects and cannot effectively utilize broader context, such as
commit messages or developer intent.

• Commit Message Gaps: Commit messages often lack sufficient detail or are misleading,
further compounding the challenge of identifying security patches.

2.3 Opportunities with Large Language Models
LLMs have demonstrated exceptional capabilities in understanding and generating both natural
language and code. This work seeks to leverage these capabilities to:
(1) Bridge the Gap Between Code and Intent: By generating explanations for code changes,

LLMs can provide human-readable insights that align with the patch’s purpose.
(2) Enhance Multi-Modal Understanding: Combining code, commit messages, and natural

language instructions allows for a richer representation of patches.
(3) Enable Scalability: LLMs can process large-scale datasets and adapt to various OSS ecosys-

tems, ensuring a scalable and generalizable solution.

2.4 Research Objective
The overarching objective of this work is to develop a robust, scalable, and interpretable framework
for detecting silent security patches in OSS. By addressing the shortcomings of existing methods
and harnessing the potential of LLMs, this approach aims to:

• Identifying security patches promptly to minimize exposure to n-day attacks.
• Reducing false positives and improving detection accuracy.
• Generalizing across diverse OSS ecosystems and programming languages.

This motivation serves as the foundation for the design and implementation of LLMDA, a novel
framework that leverages LLMs, multi-modal learning, and contrastive techniques to redefine
security patch detection.

3 APPROACH
Figure 1 shows an overview of the different steps of our approach llmda. First, representations of
multi-modal inputs (code and texts) are obtained using LLMs. Then, the obtained representations
are aligned within a unique embedding space and fused into a single comprehensive representation
by the PT-Former module. Finally, a stochastic batch contrastive learning mechanism (SBCL) is
implemented to predict whether a given patch is a security patch or not.

, Vol. 1, No. 1, Article . Publication date: August 2025.

6 Xunzhu Tang, Kisub Kim, Saad Ezzini, Yewei Song, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé

3.1 Data augmentation with LLMs
The intention behind code changes is supposed to be provided in the patch description. This
information is then expected to be essential for the detection of security patches. Unfortunately,
commit messages, which are meant to convey patch descriptions, are often missing, mostly not
sufficiently detailed, and even sometimes misleading. In llmda, we explore the power of LLMs,
which have demonstrated remarkable capabilities on a broad spectrum of tasks [41], to explain
patches. As illustrated in Figure 1, each patch is used to prompt ChatGPT (gpt-3.5-turbo-16k-0613),
to produce a natural language explanation based on the following prompt instruction: “Could you
provide a concise summary of the specified patch?”2.
In transformer-based models, a classification token such as [CLS] is typically used to generate

a general representation for downstream tasks. However, in llmda, we incorporate task-specific
instruction as an additional input embedding to guide the model’s attention towards security-
related features. The instructions, as validated by recent work [6, 51], serve as a task alignment
mechanism that improves the contextual understanding of the model by explicitly framing the
classification objective. This is particularly crucial in security patch detection, where the subtleties
of code changes and textual descriptions require precise alignment between data modalities.

The specialized instruction “Choose the correct option to the following question: is the patch security
related or not? Choices: (0) security (1) non-security,” contextualizes the model’s representation
learning by explicitly associating each input with its classification objective. This process enables
llmda to consistently improve its focus on meaningful relationships between the code and its
natural language description, enhancing robustness and performance across diverse datasets.

3.2 Generation of Bimodal Input Embeddings
llmda operates with bimodal inputs: code in the form of program patches, and text in the form
of natural language descriptions of code changes and the instructions for label-wise training. We
generate embeddings for each input using an adapted deep representation learning model.
Patch Embeddings: We build on CodeT5+ to infer the representation of patches. This pre-trained
model is known to be one of the best-performing models for code representation learning3. Given a
code snippet, which is a sequence of tokens C = {c1, c2, . . . , c𝑛}, P ∈ R𝑛×𝑑in is the associated matrix
representation, where each row corresponds to the embedding of a token in 𝐶 , and 𝑑in is the input
embedding dimension of the model.
We then apply a linear transformation followed by a non-linear activation to yield the patch

embedding 𝐸𝑝 . Specifically, the transformation function 𝑓CodeT5+ is defined as:

𝐸𝑝 = 𝑓CodeT5+ (𝑃) = F (𝑃 ·𝑊𝑝 + 𝑏𝑝), (1)

where𝑊𝑝 ∈ R𝑑in×𝑑out is the weight matrix,𝑏𝑝 ∈ R𝑑out is a bias vector,𝑑out is the output embedding
dimension, and F denotes a non-linear activation function (e.g., ReLU). The bias vector 𝑏𝑝 is
broadcast across all rows of the matrix 𝑃 ·𝑊𝑝 to ensure dimensional compatibility.
Text Embeddings: We leverage LLaMa-7b for representing text input. This pre-trained large
language model (LLM) demonstrates robust generalization capabilities across diverse domains.
Similarly to the embedding process for patches, for a sequence of textual tokens, we represent the
input as T ∈ R𝑚×𝑑in , where𝑚 is the number of tokens in the sequence, and 𝑑in is the embedding
dimension.

The transformation function 𝑓LLaMa is applied to generate the text embedding 𝐸𝑡 :

2We have experimented with a variety of variations for this prompt and obtained similar outputs.
3https://huggingface.co/Salesforce/codet5p-220

, Vol. 1, No. 1, Article . Publication date: August 2025.

https://huggingface.co/Salesforce/codet5p-220

Just-in-Time Detection of Silent Security Patches 7

Self Attention

Cross Attention Feed Forward Feed Forward

...

Feed Forward

Explanation
Embedding

Description
Embedding

Instruction
Embeddings

+

Patch
Embedding

...

One Embedding

Fig. 2. Architecture of PT-Former.

𝐸𝑡 = 𝑓LLaMa (𝑇) = G(𝑇 ·𝑊𝑡 + 𝑏𝑡), (2)

where𝑊𝑡 ∈ R𝑑in×𝑑out is the weight matrix, 𝑏𝑡 ∈ R𝑑out is the bias vector, and G is a non-linear
activation function. Similar to the patch embeddings, the bias vector 𝑏𝑡 is broadcast along the rows
of 𝑇 ·𝑊𝑡 .
llmda is fed with three text inputs: generated code change explanations, developer-provided

patch descriptions, and the instruction. Using the aforementioned process, we produce embeddings
𝐸ex𝑡 , 𝐸desc𝑡 , and 𝐸inst𝑡 respectively for each input.
Dimensional Consistency: In Formulas (1) and (2), the dimensions of𝑊𝑝 and𝑊𝑡 are defined as
𝑑in×𝑑out, where 𝑑in is the input embedding dimension (e.g., 768 for CodeT5+ or LLaMa-7b), and 𝑑out
is the output embedding dimension. The bias vectors 𝑏𝑝 and 𝑏𝑡 are 1D vectors of size 𝑑out, ensuring
that the addition operation is valid by broadcasting 𝑏𝑝 and 𝑏𝑡 across all rows of their respective
matrices.

3.3 PT-Former: Embeddings alignment and Concatenation
As the given two embeddings 𝐸𝑝 and 𝐸𝑡 represent two different modalities, a patch and a text,
their feature spaces differ. In order to leverage pre-trained unimodal models for silent security
patch detection, it is key to facilitate cross-modal alignment. In this regard, existing methods (e.g.
BLIP2 [20], InstructBLIP [7]) resort to an image-text alignment, which we show is insufficient to
bridge the modality gap. There is thus a need to align the embedding spaces before concatenating
the relevant embeddings to produce a comprehensive representation of the input for the training
of the classification model.

Figure 2 overviews PT-Former, a new architecture that we have designed for aligning embedding
spaces and fusing the embeddings of llmda’s bi-modal inputs. With PT-Former, we employ a
self-attention mechanism to update all embeddings for a generated explanation, the human patch
description, and the devised instruction. We leverage a cross-attention module between the patch
embedding and the updated explanation module. Feed-forward layers are then used to align the
matrix size of all hidden states before concatenating all three embeddings into a single output
embedding.

, Vol. 1, No. 1, Article . Publication date: August 2025.

8 Xunzhu Tang, Kisub Kim, Saad Ezzini, Yewei Song, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé

Self-Attention Mechanism (SA). The self-attention mechanism is a fundamental component of
the transformer architecture, designed to model interactions between elements in a sequence, en-
hancing the representation of each element by aggregating information from all other elements [8].
Because attention allows for a dynamic weighting of the importance of inputs’ contribution to the
representation of others, exploiting it in llmda will enable it to understand contextual relationships
within the input data. In PT-Former, we implement a multi-head attention mechanism with h heads
to capture various aspects of these interactions, initializing each head’s query (Q), key (K), and
value (V) matrices with values drawn from a standard normal distribution:

𝑊𝑄𝑖 ,𝑊𝐾𝑖 ,𝑊𝑉𝑖 ∼ N(0, 1), 𝑖 = 1, ..., ℎ (3)

where Q, K, and V are respectively the query, key, and value for each embedding to be calculated
inside the self-attention.

Consider, for example, the weight matrix of the explanation 𝐸𝑒𝑥𝑡 . Our self-attention mechanism
over 𝐸𝑒𝑥𝑡 (simply noted 𝐸𝑒𝑥) is computed as:

𝐸𝑒𝑥 = SA(𝐸𝑒𝑥) = Softmax

(
𝐸𝑒𝑥𝑊𝑄𝑖 (𝐸𝑒𝑥𝑊𝐾𝑖)𝑇√

𝑑𝑖𝑚

)
𝐸𝑒𝑥𝑊𝑉𝑖 (4)

where dim represents the dimensionality of the embeddings. Similarly, the two other text embed-
dings (i.e., 𝐸𝑑𝑒𝑠𝑐𝑡 and 𝐸𝑖𝑛𝑠𝑡𝑡) are passed through the SA operation to obtain their updated embeddings,
we will obtain updated embeddings, 𝐸𝑑𝑒𝑠𝑐𝑡 and 𝐸𝑖𝑛𝑠𝑡𝑡 respectively.
Cross-Attention for Alignment (CA). Cross-attention mechanisms have proven to be very
effective in linking the semantic spaces between different types of data [49][52]. We employ CA
to align the embedding spaces of code changes (𝐸𝑝), yielded by CodeT5+, and explanations (𝐸𝑒𝑥𝑡),
yielded by LLaMa-7b. We focus on explanation, since it is the main text input that we associate
with the patch: description can be missing while instruction is always the same. However, it should
be noted that all text inputs are embedded with LLaMa-7b and are thus in the same embedding
space as an explanation. The key feature of cross-attention is its ability to selectively focus on and
integrate relevant information from both code and natural language explanations. This helps in
achieving a better understanding of the relationship between the syntactical structure of code and
its interpretation in natural language. The cross-attention computation therefore explicates the
interaction between code changes (𝐸𝑝) and their explanations (𝐸𝑒𝑥𝑡). CA starts by transforming
𝐸𝑝 and 𝐸𝑒𝑥𝑝𝑙𝑡 into query (𝑄𝑝𝑎), key (𝐾𝑒𝑥), and value (𝑉𝑒𝑥) matrices using learnable weights. The
attention mechanism then calculates how much focus each part of the code changes should give to
different parts of the explanations. This is done by computing attention scores, which determine
the output, effectively linking code changes to their explanations. The process is summarized as
follows:

𝑄𝑝𝑎 = 𝐸𝑝𝑎𝑊
𝑄 , 𝐾𝑒𝑥 = 𝐸𝑒𝑥𝑊

𝐾 , 𝑉𝑒𝑥 = 𝐸𝑒𝑥𝑊
𝑉 ,

𝐸𝑝𝑎−𝑒𝑥 = softmax

(
𝑄𝑝𝑎𝐾

𝑇
𝑒𝑥√

𝑑𝑖𝑚

)
𝑉𝑒𝑥

(5)

where 𝐸𝑒𝑥 = 𝐸
𝑒𝑥𝑝𝑙

𝑡 the updated embedding of explanation input through Self-Attention,𝑊𝑄 ,𝑊 𝐾 ,
and𝑊𝑉 are the weight matrices to be learned. 𝐸𝑝𝑎−𝑒𝑥 is the fused embedding of 𝐸𝑝𝑎 and 𝐸𝑒𝑥 .
Embedding Fusion and Non-linear Transformation.We then pass the updated embeddings
to feedforward layers. Each feedforward process involves two dense layers with ReLU activation.
We represent the feedforward process by the function 𝐹𝐹 (. . .). Then, 𝐸𝑝𝑎−𝑒𝑥 , 𝐸𝑑𝑒𝑠𝑐 , 𝐸𝑖𝑛𝑠𝑡 can be
updated as 𝐸𝑝𝑎−𝑒𝑥 = 𝐹𝐹 (𝐸𝑝𝑎−𝑒𝑥), 𝐸𝑑𝑒𝑠𝑐 = 𝐹𝐹 (𝐸𝑑𝑒𝑠𝑐), and 𝐸𝑖𝑛𝑠𝑡 = 𝐹𝐹 (𝐸𝑖𝑛𝑠𝑡).

, Vol. 1, No. 1, Article . Publication date: August 2025.

Just-in-Time Detection of Silent Security Patches 9

f += (I +)

f a= (I a)

f -= (I -)... ...

... ...

... ...

a: security-: non security +: security

distance functiondistance function

minimizemaxmize

Fully Connected

Response: 0 (securtity)
Stochastic Batch

Contrastive Learning

on
e

batc
h

Fig. 3. Overview of our SBCL layer.

After obtaining attention outputs from all heads, we concatenate them to generate one embedding:

𝐸 = 𝐸𝑝𝑎−𝑒𝑥 ⊕ 𝐸𝑑𝑒𝑠𝑐 ⊕ 𝐸𝑖𝑛𝑠𝑡 (6)

where ⊕ is the concatenation operation.
Label-wise Attention with Instruction. Inspired by the results of InstructionBLIP [7], we postu-
late that an instruction that combines a question with explicit labels can provide two advantages
in our security detection task: First, it can provide guidance to train models in the direction of
answering the security question. Second, since it can provide the opportunity to build a relation-
ship between inputs and the instruction labels through the calculation of their high-dimensional
embeddings, leading the model to leverage instructions in a label-wise manner. In conclusion, the
design of the instruction and its embedding within will help guide the model to focus on particular
aspects of the data, thereby improving the representational efficiency for our targeted downstream
task.

3.4 Stochastic Batch Contrastive Learning (SBCL)
Once PT-Former outputs a single embedding for each sample to be assessed, we must learn to
predict whether it is a security patch or not. At this point, the patch is represented along with its
LLM-generated explanation, developer description, and the labeled instruction in PT-Former. llmda
must therefore feed it into a binary classifier to predict security relevance (cf. Figure 1).

To enhance the learning process by effectively leveraging the intrinsic patterns within the dataset,
we design a Stochastic Batch Contrastive Learning (SBCL) (see in Figure 3) mechanism for security
patch identification. SBCL is designed to operate on batches of data comprising fused embeddings
of security-related and non-security-related inputs (i.e., E in Eq. 6)
Given a batch of data B containing embeddings 𝐸 = {𝐸𝑝𝑎−𝑒𝑥 , 𝐸𝑑𝑒 , 𝐸𝑖𝑛} for each data point, we

employ a stochastic batch contrastive learning mechanism to discern between security and non-
security data points. For each batch, we randomly select an anchor data point related to security.
We then identify positive samples within the batch that are also related to security and negative
samples that are not. This forms a triplet for each anchor comprising the anchor, positive, and
negative samples.
Batch Sampling and Triplet Formation. In the context of SBCL, each batch B is carefully
constructed to include a balanced mix of security-related (security) and non-security-related (non-
security) examples. From each batch, we systematically form triplets for training. A triplet consists
of an anchor (𝑎), a positive example (𝑝), and a negative example (𝑛). The anchor and positive

, Vol. 1, No. 1, Article . Publication date: August 2025.

10 Xunzhu Tang, Kisub Kim, Saad Ezzini, Yewei Song, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé

examples are drawn from the security category, ensuring they share underlying security-relevant
features, whereas the negative example is selected from the non-security category.
Batch Mining of Positive and Negative Pairs. In the SBCL framework, a systematic approach
is used to select positive and negative pairs within each batch. This process utilizes embeddings
generated by PT-Former for all examples in a batch. The selection criterion for a positive example
is its reduced similarity to the anchor, aimed at maximizing intra-class variability. Conversely,
a negative example is deemed challenging on the basis of its increased similarity to the anchor,
designed to augment the model’s precision in distinguishing between closely associated examples
of different classes.

The selection of informative positive and negative pairs is facilitated by measuring the distances
between embeddings in the batch. The Euclidean distance formula is applied to determine the
distance 𝑑 (𝐸𝑎, 𝐸𝑏) between two embeddings 𝐸𝑎 and 𝐸𝑏 :

𝑑 (𝐸𝑎, 𝐸𝑏) =

√√√
𝑑𝑖𝑚∑︁
𝑖=1

(𝐸 (𝑖)
𝑎 − 𝐸 (𝑖)

𝑏
)2 (7)

This methodological approach ensures the identification and use of the most relevant examples to
enhance the discriminative capacity of the model.
Stochastic Batch Contrastive Loss. We design the stochastic batch contrastive loss to optimize
the embedding space in order to distinguish between security-related and non-security-related
examples effectively. This objective is achieved by minimizing the distance between embeddings of
anchor and positive pairs and maximizing the distance between the embeddings of anchor and
negative pairs within each batch. The loss for a given triplet (𝑎, 𝑝 , 𝑛) is mathematically defined as:

𝐿(𝑎, 𝑝, 𝑛) = max(0, 𝑑 (𝐸𝑎, 𝐸𝑝) − 𝑑 (𝐸𝑎, 𝐸𝑛) +margin) (8)

where 𝑑 (𝐸𝑥 , 𝐸𝑦) calculates the distance between two embeddings 𝐸𝑥 and 𝐸𝑦 , and margin is a
predefined margin that enforces a minimum distance between the anchor-positive and anchor-
negative pairs and its value is set as 0.1 here.

The batch loss is computed as the mean of the losses for all triplets within the batch:

𝐿SBCL =
1
|T |

∑︁
(𝑎,𝑝,𝑛) ∈T

𝐿(𝑎, 𝑝, 𝑛) (9)

where T denotes the set of all triplets in the batch. This formulation ensures the development of
an embedding space that accurately represents the distinctions between security and non-security
instances, facilitating effective classification.

3.5 Prediction and Training Layer for Security Patch Detection
The final component of llmda is a Training and Prediction Layer, specifically designed for security
patch detection. This layer is responsible for interpreting the fused embeddings produced by
PT-Former and making accurate predictions regarding the security relevance of each patch.
Training Procedure.Training themodel to accurately predict security patches involvesminimizing
a loss function that measures the discrepancy between the predicted probabilities and the ground-
truth labels. A commonly used loss function for binary classification tasks is the binary cross-entropy
loss, given by:

𝐿𝐵𝐶𝐸 = − 1
𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 log(𝑃𝑖) + (1 − 𝑦𝑖) log(1 − 𝑃𝑖)] (10)

, Vol. 1, No. 1, Article . Publication date: August 2025.

Just-in-Time Detection of Silent Security Patches 11

where 𝑁 is the number of examples in the training set, 𝑦𝑖 is the ground-truth label for the 𝑖-th
example (1 for security-related and 0 for non-security-related), and 𝑃𝑖 is the computed probability
for the 𝑖-th example to be security-related.
In an end-to-end training regime, both the contrastive loss from the previous sections and the

BCE loss are combined: 𝐿 = 𝐿𝐵𝐶𝐸 + 𝐿𝑆𝐵𝐶𝐿 . At the end of the training, a learned weight matrix is
available to drive inference.
Prediction Step. The prediction mechanism utilizes a fully connected (FC) neural network layer
that takes as input the fused embedding from PT-Former, representing the unified view of the patch,
its generated explanation, the developer description, and llmda instruction. The FC layer is defined
as follows:

𝑃 = 𝜎 (𝑊𝑝 · 𝐸 + 𝑏𝑝) (11)

where 𝐸 denotes the single fused embedding input,𝑊𝑝 is the learned weight matrix of the FC layer,
𝑏𝑝 is the bias term, and 𝜎 represents the activation function, typically a sigmoid function for binary
classification tasks such as security patch detection. The output 𝑃 signifies the probability that a
given patch is security-relevant.

4 EXPERIMENTAL SETUP
We discuss the research questions that we investigate before presenting the baselines and datasets
as well as the evaluation metrics.

4.1 ResearchQuestions
• RQ-1 How effective is llmda in identifying security patches?We assess llmda against well-known
literature benchmarks and compare the achieved performance against some strong baselines.

• RQ-2 How do key design decisions in llmda contribute to its performance?We perform an ablation
study where we investigate the added value of label-wise training, the generated explanations,
PT-Former and contrastive learning.

• RQ-3 To what extent the distribution of patch representations in llmda improves over the state
of the art?We visualize the learned representations from llmda and GraphSPD to observe the
differences in their potential discriminative power. Based on case studies, we also qualitatively
assess how llmda representation assigns scores to key tokens.

• RQ-4 Does the trained llmda model generalize beyond our study dataset? We evaluate the ro-
bustness of llmda by applying the model trained on a given dataset to samples from a different
dataset.

4.2 Datasets
We consider two datasets from the recent literature :
• PatchDB [46] is an extensive set of patches of C/C++ programs. It includes about 12K security-
relevant and about 24K non-security-relevant patches. The dataset was constructed by considering
patches referenced in the National Vulnerability Database (NVD) as well as patches extracted
from GitHub commits of 311 open-source projects (e.g., Linux kernel, MySQL, OpenSSL, etc.).

• SPI-DB [60] is another large dataset for security patch identification. The public version includes
patches from FFmpeg and QEMU, amounting to about 25k patches (10k security-relevant and
15k non-security-relevant).
We selected the aforementioned datasets because they collectively provide a significant variety

in the vulnerabilities as well as a spectrum of patches (with different styles, syntax and semantic
implementations). Thus, they are suitable for intra-project and cross-project assessment.

, Vol. 1, No. 1, Article . Publication date: August 2025.

12 Xunzhu Tang, Kisub Kim, Saad Ezzini, Yewei Song, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé

4.3 Evaluation Metrics
We consider common evaluation metrics from the literature:
• +Recall and -Recall. These metrics are borrowed from the field of patch correctness predic-
tion [42]. In this study, +Recall measures a model’s proficiency in predicting security patches,
whereas -Recall evaluates its capability to exclude non-security ones.

• AUC and F1-score [15]. The overall effectiveness of llmda is gauged using the AUC (Area
Under Curve) and F1-score metrics.

4.4 Baseline Methods
• GraphSPD: We consider the most recently published state-of-the-art GraphSPD [44], which, after
demonstrating that prior token-based approaches do not capture sufficient semantics, deploys a
cutting-edge graph neural network method for security patch detection. Indeed, it represents a
significant advancement by using graph representations of patches, allowing for richer semantics
compared to previous deep neural network methods relying on token sequences.

• TwinRNN: In our study, we opt for RNN-based solutions [47][60], which leverage a twin RNN
architecture to assess the security relevance of a given patch. This approach involves employing
two RNN modules, each equipped with shared weights, to analyze the code sequences before
and after the patch application.

• GPT: We consider LLMs as a relevant baseline given that we employ them as part of our pipeline
(to generate patch explanations). We opt for GPT (v3.5) [4], which is accessible. We prompt it
with the following instructions: “Given the following code change, determine if it is related to a
security vulnerability or not. Please respond with either ‘security’ or ‘non-security’ and you must
provide an answer. [Patch information]"

• CodeT5: Similarly to GPT, because the CodeT5 [50] encoder-decoder model is a core component
that is used as an initial embedder of patches in llmda, we consider it as a baseline approach for
classifying patches.

• VulFixMiner [57] builds on the CodeBERT transformer-based approach for representing patches
to train the security patch identification classifier. We reproduce it as a baseline.
Beyond these baselines, the literature in software engineering has recently proposed CoLe-

FunDa [56]. However, we do not directly compare against it in our work because it is closed-source
and is not readily reproducible.4
With CoLeFunDa, the authors propose to use the GumTree differencing tool to extract the

description of changes that are made. It considers syntactic descriptions of change operations (e.g.,
UPDATE invocation at IF) while our approach generates descriptions that provide step by step
reasoning. It should be noted that its major benefit is visible in terms of effort-based metrics. In the
original publication, the authors show that it improves over VulFixMiner by 1% in terms of AUC.

4.5 Implementation
llmda is implemented using the PyTorch library (version 11), and experiments are conducted
on two NVIDIA V100 GPUs (32GB) with CUDA 11. The datasets are partitioned with 80% of the
samples used for training and 20% for testing, ensuring a balanced evaluation setup. To ensure
statistical reliability, all experiments are repeated three times with different random seeds, and
the results are averaged. The AdamW optimizer [24] is employed for weight optimization, with a
learning rate of 1 × 10−5 and a decay rate of 0.01, ensuring convergence and regularization over 20

4We have requested access to the code. However, the authors have replied that they are not authorized to share it by their
employer.

, Vol. 1, No. 1, Article . Publication date: August 2025.

Just-in-Time Detection of Silent Security Patches 13

epochs. Batch sizes are set to 16 for training and 64 for testing to balance computational efficiency
and performance.

Key hyperparameters, including temperature and dropout, are configured to 0.1 and 0.5, respec-
tively. The temperature parameter is crucial in controlling the randomness of text generation
when using large language models like GPT-3.5 or GPT-4. Specifically, temperature, denoted as 𝑇 ,
scales the logits 𝑙𝑖 of the model outputs, modifying the probability distribution of generated tokens
as follows:

𝑝𝑖 =
exp(𝑙𝑖/𝑇)∑
𝑗 exp(𝑙 𝑗/𝑇)

. (12)

A lower temperature (𝑇 < 1) reduces randomness by flattening the probability distribution, em-
phasizing high-probability tokens and generating more deterministic outputs. Conversely, higher
temperatures (𝑇 > 1) encourage diversity by sharpening the distribution.

For this work, we set 𝑇 = 0.1 to prioritize accuracy and precision in the generated explanations,
minimizing randomness and hallucinations. This setting is particularly advantageous for tasks such
as technical code explanations and systematic predictions, where deterministic and reliable outputs
are essential. While reducing randomness limits creativity, it ensures consistency and relevance in
outputs, aligning with the high-stakes nature of security patch detection. Dropout is set to 0.5 to
balance regularization and generalization, further stabilizing model performance across training
iterations.

5 EXPERIMENT RESULTS
5.1 Overall performance of llmda
In this section, we evaluate the performance of llmda and compare against the selected baselines
across the PatchDB and SPI-DB datasets. Table 1 reports the performance measurements on different
metrics.

Table 1. Performance metrics (%) on security patch detection
Method Dataset AUC Accuracy F1 +Recall -Recall

TwinRNN
[47]

PatchDB 66.50 62.10 45.12 46.35 54.37
SPI-DB 55.10 57.40 47.25 48.00 52.10

GraphSPD
[44]

PatchDB 78.29 71.55 54.73 75.17 79.67
SPI-DB 63.04 64.20 48.42 60.29 65.33

GPT (v3.5) PatchDB 50.01 50.20 52.97 49.28 50.67
SPI-DB 49.83 48.15 42.19 44.70 55.20

Vulfixminer [57] PatchDB 71.39 69.40 64.55 55.72 77.03
SPI-DB 68.04 66.55 54.42 68.14 62.04

CodeT5 [50] PatchDB 71.00 68.85 63.73 54.98 76.18
SPI-DB 72.88 69.25 56.77 65.45 68.75

Fine-Tuned CodeT5+ [49] PatchDB 81.23 77.90 75.14 77.21 84.90
SPI-DB 66.45 68.05 55.78 68.10 75.12

Fine-Tuned LLaMa-7b 5 PatchDB 83.15 79.30 76.98 78.90 86.23
SPI-DB 68.20 70.10 57.02 70.34 78.21

LLMDA PatchDB 84.49 (± 0.51) 80.75 (± 0.45) 78.19 (± 0.37) 80.22 (± 0.21) 87.33 (± 0.24)
SPI-DB 68.98 (± 0.27) 71.25 (± 0.30) 58.13 (± 0.33) 70.94 (± 0.13) 80.62 (± 0.22)

llmda demonstrates consistent and robust performance in detecting security patches and dis-
tinguishing non-security patches. On the PatchDB dataset, llmda achieves +Recall and -Recall of
80% and 87%, respectively, reflecting its balanced ability to detect security patches and exclude
non-security ones. Although the performance on SPI-DB is lower, it remains consistent across both
classes, underscoring the model’s generalizability to different datasets.

, Vol. 1, No. 1, Article . Publication date: August 2025.

14 Xunzhu Tang, Kisub Kim, Saad Ezzini, Yewei Song, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé

The superior performance of llmda compared to baseline methods (cf. Table 1) can be attrib-
uted to its ability to capture semantic context through multi-modal inputs. For example, on the
PatchDB dataset, llmda significantly outperforms token-driven neural network approaches such
as VulfixMiner, TwinRNN, and GPT 3.5 across all metrics, with improvements ranging from ∼18%
to ∼24% in AUC. These gains highlight the effectiveness of leveraging LLM-generated explanations
and PT-Former for integrating code and textual inputs, enabling llmda to better capture the intent
and context of patches compared to token- or sequence-based methods that rely solely on syntactic
features.
Compared to the state-of-the-art GraphSPD, llmda achieves notable improvements on the

PatchDB dataset: 6, 9.2, 23, 5, and 8 percentage points in AUC, Accuracy, F1, +Recall, and -Recall,
respectively. These improvements stem from llmda ’s ability to address GraphSPD’s limitations,
such as its reliance on local code segment analysis. By incorporating LLM-generated explanations,
llmda bridges the gap between code changes and their broader semantic context, while PT-Former
aligns multi-modal embeddings to capture inter-functional and inter-modular dependencies. The
SBCL mechanism further enhances the model’s robustness by refining classification boundaries,
particularly for challenging edge cases.
However, certain metrics, such as AUC on SPI-DB, are slightly lower compared to baselines

like CodeT5. This discrepancy can be explained by the characteristics of SPI-DB, which contains
fewer descriptive commit messages and a higher prevalence of imbalanced features. CodeT5’s
reliance on token-level patterns provides a marginal advantage in such scenarios. Despite this,
llmda demonstrates substantial gains in other critical metrics such as F1 (+10%), +Recall (+10%),
and -Recall (+15%) on SPI-DB, indicating its superior ability to accurately identify security patches
while minimizing false positives and negatives. These trade-offs suggest that llmda prioritizes
real-world security concerns, where reducing false negatives is often more critical than optimizing
AUC alone.

To ensure a fair and robust evaluation, we compare llmda with fine-tuned versions of CodeT5+
and LLaMa-7b, as thesemodels represent stronger baselineswith comparable deployment costs. Both
models are fine-tuned on the PatchDB and SPI-DB datasets using the same training configuration
as llmda, including the AdamW optimizer, learning rate, and batch sizes.

The results indicate that llmda consistently outperforms both fine-tuned CodeT5+ and LLaMa-
7b across all metrics. The improvements are particularly evident in the F1 score and +Recall,
showcasing llmda’s superior ability to identify security patches. This can be attributed to llmda’s
unique design, which integrates multi-modal inputs (code, descriptions, and explanations) and
employs the PT-Former module for precise alignment and fusion of embeddings.
While fine-tuned LLaMa-7b demonstrates competitive performance, its reliance on a single

modality limits its ability to capture the nuanced interactions between code and textual descriptions.
Similarly, fine-tuned CodeT5+ struggles to generalize across datasets due to its less comprehensive
representation of multi-modal inputs.

[RQ-1] ☛ llmda is effective in detecting security patches. With an F1 score at 78.19%, llmda
demonstrates a well-balanced performance: our model can concurrently attain high precision and
high recall. Specifically, we achieved a new state-of-the-art performance in identifying both security
patches (+Recall) and recognizing non-security patches (-Recall). Comparison experiments further
confirm that llmda is superior to the baselines and is consistently high-performing across the datasets
and across the metrics.

, Vol. 1, No. 1, Article . Publication date: August 2025.

Just-in-Time Detection of Silent Security Patches 15

5.2 Contributions of key design decisions
In this section we investigate the impact of key design choices on the overall performance of llmda.
To that end, we perform an ablation study on :

• Inputs: Compared to prior works, llmda innovates by considering two additional inputs,
namely an LLM-generated explanation of the code changes as well as an instruction. What
performance gain do we achieve thanks to these inputs?

• Representations: A major contribution of the llmda design is the PT-Former module, which
enables to align and concatenate bimodal input representations belonging to different em-
bedding spaces. What performance gap is filled by PT-Former?

• Classifiers: llmda relies on stochastic batch contrastive learning to enhance its discriminative
power, in particular for samples that are close to the decision boundaries of security relevance.
To what extent does SBCL maximize llmda’s performance?

To answer the aforementioned sub-questions, we build variants of llmda where different compo-
nents are removed. We then compute the performance metrics of each variant and compare them
against the original llmda.

5.2.1 Impact of LLM-generated explanations. We build a variant llmda𝐸𝑋− by discarding the
explanation part like the following example, “patch [CLS] explanation [CLS] description [CLS]
instruction”. It allows us to investigate the impact of the explanation we generate by an LLM and
if the explanation encodes a unique or crucial context that could support the approach. Table 2
reports the performance results achieved in this ablation study.

Table 2. Performance (%) of llmda𝐸𝑋− (without the LLM-generated explanations)

Model Dataset AUC Accuracy F1 +Recall -Recall

llmda𝐸𝑋−
PatchDB 83.24 (↓ 1.25)∗ 79.80 (↓ 0.95)∗ 76.73 (↓ 1.46)∗ 79.01 86.09
SPI-DB 68.27 (↓ 0.71)∗ 70.55 (↓ 0.70)∗ 57.57 (↓ 0.56)∗ 70.23 80.07

* (↓ 𝑥 .𝑥𝑥) indicates the performance drop compared to llmda.

It is noticeable that the performance of llmda𝐸𝑋− is consistently lower across the various metrics
and across the datasets. These findings highlight the significance of LLM-generated explanations
in enhancing the model’s predictive capabilities.

5.2.2 Impact of instruction. We conduct an ablation study based on a variant, llmda𝐼𝑁− by
removing the instruction part from the original sequence like the following example, “patch [CLS]
explanation [CLS] description [CLS] instruction”. By doing so, we expect to confirm the
impact of our instruction. The performance of this variant on the PatchDB and SPI-DB datasets is
reported in Table 3.

Table 3. Performance (%) of llmda𝐼𝑁− (without the designed instruction)

Model Dataset AUC Accuracy F1 +Recall -Recall

llmda𝐼𝑁−
PatchDB 82.51 (↓ 1.98) 79.25 (↓ 1.50) 76.14 (↓ 2.05) 78.55 85.64
SPI-DB 67.93 (↓ 1.05) 70.30 (↓ 0.95) 57.25 (↓ 0.88) 69.90 79.62

Again, we note that the performance drops compared to llmda. It even appears that, without the
instruction, the performance drop is slightly more important than when the model does not include
the LLM-generated explanations. These findings underscore the importance of the label-wise design

, Vol. 1, No. 1, Article . Publication date: August 2025.

16 Xunzhu Tang, Kisub Kim, Saad Ezzini, Yewei Song, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé

decision based on explicitly adding an instruction among the inputs for embedding to enhance the
model’s performance for security patch detection.

5.2.3 Impact of PT-Former. To evaluate the significance of the PT-Former module, we designed
a variant, llmda𝑃𝑇− , in which the PT-Former space alignment and representation combination
module is removed. In this variant, a simpler approach is used to generate a unified embedding
space for all inputs. Specifically, we concatenate all input embeddings directly as follows:

𝐸 = 𝐸𝑝 ⊕ 𝐸𝑒𝑥𝑝𝑙 ⊕ 𝐸𝑑𝑒𝑠𝑐 ⊕ 𝐸𝑖𝑛𝑠𝑡 (13)

Here, 𝐸𝑝 , 𝐸𝑒𝑥𝑝𝑙 , 𝐸𝑑𝑒𝑠𝑐 , and 𝐸𝑖𝑛𝑠𝑡 represent the embeddings of the patch, explanation, description,
and instruction, respectively, and ⊕ denotes the concatenation operation.

Table 4. Performance (%) of llmda𝑃𝑇− (without the PT-Former module)

Model Dataset AUC Accuracy F1 +Recall -Recall

llmda𝑃𝑇−
PatchDB 81.45 (↓ 3.04) 77.60 (↓ 3.15) 73.56 (↓ 4.63) 75.12 84.34
SPI-DB 64.89 (↓ 4.09) 68.20 (↓ 3.05) 56.34 (↓ 1.79) 68.45 74.89

The performance results for llmda𝑃𝑇− are presented in Table 4. Compared to the original llmda,
llmda𝑃𝑇− demonstrates a consistent decline across all metrics. On PatchDB, the removal of PT-
Former results in a 3.04% drop in AUC and a 4.63% decrease in F1-score. While +Recall and -Recall
remain relatively stable, their marginal reductions indicate a diminished ability to correctly classify
both security-relevant and non-relevant patches. On SPI-DB, the impact of PT-Former’s removal is
more pronounced in AUC and F1, with a decline of 4.09% and 1.79%, respectively.
These results highlight the critical role of PT-Former in effectively aligning and integrating

multi-modal embeddings. By relying solely on concatenation, llmda𝑃𝑇− fails to capture the nu-
anced relationships between different input modalities, such as inter-modular and inter-functional
dependencies. PT-Former’s advanced attention mechanisms are essential for achieving state-of-the-
art performance, as they enhance the interaction between inputs and preserve crucial semantic
information. This experiment underscores the importance of PT-Former’s design in enabling llmda
to outperform its variants and existing baselines.

5.2.4 Impact of SBCL. In llmda we designed SBCL to optimize the model’s ability to discern
different patterns between positive (security patches) and negative (non-security patches) examples
more effectively. Figure 4 illustrates the ambition: after PT-Former learns the representations, the
embedding subspaces of security and non-security patches will certainly intersect on some “difficult”
samples. SBCL is designed to find the optimum decision boundary. To assess the importance of
SBCL, we design a variant, llmda𝑆𝐵𝐶𝐿− , where we directly feed the embeddings processed by
PT-Former into the fully connected layer (i.e., without the stochastic batch contrastive learning
step).
Table 5 presents the performance results of llmda𝑆𝐵𝐶𝐿− . Compared to the original llmda, the

performance drop is noticeable. Despite the relatively small proportion of the semantic space at the
intersection between the subspaces of security and non-security patches, SBCL enables achieving
1-3 percentage points improvement on the different metrics.

[RQ-2] ☛ The ablation study results reveal that each of the key design decisions contributes
noticeably to the performance of llmda. In particular, without the PT-Former module llmda would
lose about 8 percentage points in F1.

, Vol. 1, No. 1, Article . Publication date: August 2025.

Just-in-Time Detection of Silent Security Patches 17

Decision boundary

Embedding subspace of
security patches

Embedding subspace of
non-security patches

Intersection of
embedding spaces

non-security patches

security patches

Fig. 4. Illustration of embedding subspaces of security/non-security patches for contrastive learning

Table 5. Performance (%) of llmda𝑆𝐵𝐶𝐿− (without contrastive learning)

Model Dataset AUC Accuracy F1 +Recall -Recall

llmda𝑆𝐵𝐶𝐿−
PatchDB 82.93 (↓ 1.56) 79.85 (↓ 0.90) 76.45 (↓ 1.74) 78.72 85.81
SPI-DB 67.43 (↓ 1.55) 70.80 (↓ 0.45) 56.61 (↓ 1.52) 69.45 79.10

5.3 Discriminative power of llmda representations
In this section, we investigate to what extent the representations obtained with llmda are indeed
enabling a good separation of security and non-security patches in the embedding space. To that
end, we consider two separate evaluations: the first attempts to visualize the embedding space of
llmda and compares it against baselines, including GraphSPD (i.e., the state of the art), TwinRNN,
Vulfixminer, and CodeT5; the second qualitatively assesses two case studies.

5.3.1 Visualization of embedding spaces. We consider 1,000 random patches from our PatchDB
dataset. We then collect their associated embeddings from llmda and baselines (ie., GraphSPD,
TwinRNN, Vulfixminer, and codeT5) and apply principal component analysis (PCA) [33]. Given
the imbalance of the dataset, the drawn samples are largely non-security patches, while security
patches are fewer. Figure 5 presents the PCA visualizations of the representations.

In addition, we also provide virtualization (as shown in Fig. 6) of CodeT5 and llmda on the test
set to indicate the difference of these two models.
We observe from the distribution of data points that llmda can effectively separate the two

categories (i.e., security and non-security patches), in contrast to the incumbent state-of-the-art,
GraphSPD and other baselines (ie., TwinRNN, Vulfixminer, and codeT5 as shown in Figure 5). This
finding suggests that the representations of llmda are highly relevant for the task of security patch
detection.

5.3.2 Case studies. Table 6 presents 2 examples to illustrate the difference between llmda and
baselines (ie., GraphSPD, TwinRNN, Vulfixminer, and CodeT5) in terms of what the representations
can capture, and potentially explain the reason llmdawas successful on these cases while GraphSPD
(previously the state-of-the-art work) was not. For our classification task, we have two labels:
security (0) and non-security (1). For llmda, we can directly consider the label name in the
instruction. Thus, we compute the attention map between security and the tokens in the patch, the
explanation, and the description. For GraphSPD, however, since there is no real label name involved
in the training and inference phases, we compute the attention score between the words in the
patch and the number “0” or “1”. To simplify the analysis, we only highlight, in Table 6, tokens for
which the similarity score is higher than 0.5.

, Vol. 1, No. 1, Article . Publication date: August 2025.

18 Xunzhu Tang, Kisub Kim, Saad Ezzini, Yewei Song, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé

non-security
security

(a) Embeddings yielded by GraphSPD

non-security
security

(b) Embeddings yielded by TwinRNN
non-security
security

(c) Embeddings yielded by Vulfixminer

non-security
security

(d) Embeddings yielded by CodeT5

non-security
security

(e) Embeddings yielded by llmda
Fig. 5. PCA visualizations of security and non-security patch embeddings by baselines and llmda.

non-security
security

(a) Embeddings yielded by CodeT5

non-security
security

(b) Embeddings yielded by llmda
Fig. 6. PCA visualizations of security and non-security patch embeddings by CodeT5 and llmda on test set.

As shown in the examples, llmda generally assigns high similarity scores to security-related
aspects, suggesting a detection capability that nuances between tokens. For example, in the sgminer.c
patch, llmda gives high scores to realloc and mutex_init, indicating a finer sensitivity to potential
security implications within these code parts. Similarly, in the krb5/auth_context.c patch, the use
of memset for initializing authenticator memory is scored high in llmda, reflecting its more acute
recognition of security practices.
In contrast, since GraphSPD is graph-based, it focuses on the patch itself. For the same patch

cases, GraphSPD can even give very high attention scores for non-security labels. For example,
krb5_auth_con_init is given a 0.6 score for “non-security” and ALLOC is given a 0.67 attention
score towards non-security as well. These scores may justify many failures of GraphSPD in the
security patch detection task.
Apart from GraphSPD, we also compute the attention maps for TwinRNN, Vulfixminer, and

CodeT5. As shown in Table 6, Vulfixminer and CodeT5 exhibit similar behaviors, highlighting
tokens such as ‘mutex_init(&pool->pool_lock)’, ‘krb5_auth_con_init’, and ‘ALLOC’. TwinRNN,

, Vol. 1, No. 1, Article . Publication date: August 2025.

Just-in-Time Detection of Silent Security Patches 19

Table 6. Attention scores for security and non-security labels by GraphSPD and llmda on two sample
patches

GraphSPD (failed cases) llmda (successful cases)

Patch (non-formatted token sequence) Developer Descrip-
tion Patch (non-formatted token sequence) Explanation Description

diff -git a/sgminer.c
b/sgminer.cindex a7dd3ab3..08697cd0
100644-- a/sgminer.c+++ b/sgminer.c@@

-518,7 +518,7 @@ struct pool

*add_pool(void)(non-security score =
0.65)sprintf(buf, "Pool %d",
pool->_no);pool->poolname =

strdup(buf);-\tpools = realloc(pools,
sizeof(struct pool *) (total_pools +

2));+\tpools = (struct **pool

**)realloc(pools, sizeof(struct pool

*) * (total_pools +
2));pools[total_pools++] =

pool;mutex_init(&pool->pool_lock);
if(unlikely(pthread_cond_init(&pool->cr_cond,

NULL)))

Fixed missing real-
loc removed by mis-
take

diff -git a/sgminer.c
b/sgminer.cindex a7dd3ab3..08697cd0
100644-- a/sgminer.c+++ b/sgminer.c@@

-518,7 +518,7 @@ struct pool

*add_pool(void)sprintf(buf, "Pool %d",
pool->_no);pool->poolname =

strdup(buf);-\tpools = realloc(pools,
sizeof(struct pool *) (total_pools +

2));+\tpools = (struct **pool
**)realloc(pools, sizeof(struct pool
*) * (total_pools + 2)); (security core =

0.57) pools[total_pools++] =
pool;mutex_init(security core =

0.50)(&pool->pool_lock);
if(unlikely(pthread_cond_init(&pool->cr_cond,

NULL)))

Modified sgminer.c,
adjusted realloc us-
age(security core
= 0.67) with ex-
plicit type cast-
ing(security core =
0.63)

Fixed missing real-
loc(security core =
0.63) removed by
mistake

diff -git a/lib/krb5/auth_context.c
b/lib/krb5/auth_context.c index
0edea5418..3cba484e1 100644 --
a/lib/krb5/auth_context.c +++

b/lib/krb5/auth_context.c @@ -53,6
+53,7 @@ krb5_auth_con_init(non-security

score = 0.60)(krb5_context context,
ALLOC(non-security score =

0.67)(p->authenticator, 1); if
(!p->authenticator) return ENOMEM; +

memset (p->authenticator, 0,
sizeof(*p->authenticator)); p->flags

= KRB5_AUTH_CONTEXT_DO_TIME;

zero authenticator

diff -git a/lib/krb5/auth_context.c
b/lib/krb5/auth_context.c index
0edea5418..3cba484e1 100644 --
a/lib/krb5/auth_context.c +++

b/lib/krb5/auth_context.c @@ -53,6
+53,7 @@

krb5_auth_con_init(krb5_context
context, ALLOC(p->authenticator, 1);
if (!p->authenticator) return ENOMEM;

+ memset (p->authenticator, 0,
sizeof(*p->authenticator));(security core

= 0.59) p->flags =
KRB5_AUTH_CONTEXT_DO_TIME;

Added memset to
initialize ‘authen-
ticator’ memory
in krb5_auth_
con_init func-
tion(security core
= 0.84).

zero authentica-
tor (security core
= 0.77)

TwinRNN (failed cases) Vulfixminer (failed cases) CodeT5 (failed cases)
Patch (non-formatted token sequence) Patch (non-formatted token sequence) Patch (non-formatted token sequence)

diff -git a/sgminer.c
b/sgminer.cindex a7dd3ab3..08697cd0
100644-- a/sgminer.c+++ b/sgminer.c@@

-518,7 +518,7 @@ struct pool

*add_pool(void) sprintf(buf, "Pool
%d", pool->_no);pool->poolname =

strdup(buf);-\tpools = realloc(pools,
sizeof(struct pool *) (total_pools +
2))(non-security score = 0.66);+\tpools =
(struct **pool **)realloc(pools,

sizeof(struct pool *) * (total_pools
+ 2));pools[total_pools++] =

pool;mutex_init(&pool->pool_lock)
(non-security score = 0.52);

if(unlikely(pthread_cond_init(&pool->cr_cond,
NULL)))

diff -git a/sgminer.c
b/sgminer.cindex a7dd3ab3..08697cd0

100644-- a/sgminer.c+++ b/sgminer.c@@
-518,7 +518,7 @@ struct pool

*add_pool(void) sprintf(buf, "Pool
%d", pool->_no);pool->poolname =

strdup(buf);-\tpools = realloc(pools,
sizeof(struct pool *) (total_pools +

2));+\tpools = (struct **pool

**)realloc(pools, sizeof(struct pool

*) * (total_pools +
2));pools[total_pools++] =

pool;mutex_init(&pool->pool_lock)
(non-security score = 0.59);

if(unlikely(pthread_cond_init(&pool->cr_cond,
NULL)))

diff -git a/sgminer.c
b/sgminer.cindex a7dd3ab3..08697cd0

100644-- a/sgminer.c+++ b/sgminer.c@@
-518,7 +518,7 @@ struct pool

*add_pool(void) sprintf(buf, "Pool
%d", pool->_no);pool->poolname =

strdup(buf);-\tpools = realloc(pools,
sizeof(struct pool *) (total_pools +

2));+\tpools = (struct **pool

**)realloc(pools, sizeof(struct pool

*) * (total_pools +
2));pools[total_pools++] =

pool;mutex_init(&pool->pool_lock)
(non-security score = 0.52);

if(unlikely(pthread_cond_init(&pool->cr_cond,
NULL)))

diff -git a/lib/krb5/auth_context.c
b/lib/krb5/auth_context.c index
0edea5418..3cba484e1 100644 --
a/lib/krb5/auth_context.c +++

b/lib/krb5/auth_context.c @@ -53,6
+53,7 @@ krb5_auth_con_init(non-security

score = 0.55)(krb5_context context,
ALLOC(non-security score =

0.63)(p->authenticator, 1); if
(!p->authenticator) return ENOMEM; +

memset (p->authenticator, 0,
sizeof(*p->authenticator)); p->flags

= KRB5_AUTH_CONTEXT_DO_TIME;

diff -git a/lib/krb5/auth_context.c
b/lib/krb5/auth_context.c index
0edea5418..3cba484e1 100644 --
a/lib/krb5/auth_context.c +++

b/lib/krb5/auth_context.c @@ -53,6
+53,7 @@ krb5_auth_con_init(non-security

score = 0.73)(krb5_context context,
ALLOC(non-security score =

0.56)(p->authenticator, 1); if
(!p->authenticator) return ENOMEM; +

memset (p->authenticator, 0,
sizeof(*p->authenticator)); p->flags

= KRB5_AUTH_CONTEXT_DO_TIME;

diff -git a/lib/krb5/auth_context.c
b/lib/krb5/auth_context.c index
0edea5418..3cba484e1 100644 --
a/lib/krb5/auth_context.c +++

b/lib/krb5/auth_context.c @@ -53,6
+53,7 @@ krb5_auth_con_init(non-security

score = 0.64)(krb5_context context,
ALLOC(p->authenticator, 1)(non-security

score = 0.68); if (!p->authenticator)
return ENOMEM; + memset
(p->authenticator, 0,

sizeof(*p->authenticator)); p->flags
= KRB5_AUTH_CONTEXT_DO_TIME;

on the other hand, demonstrates attention patterns more aligned with GraphSPD. These models
fail due to several reasons. TwinRNN, like GraphSPD, emphasizes structural relationships in the
patch but lacks semantic understanding, leading to poor differentiation of security-critical tokens.
For instance, it assigns high scores to ‘ALLOC’ in the ‘krb5_auth_con_init’ patch but overlooks
‘memset’, which has a clear security implication in ensuring memory safety. Similarly, Vulfixminer
and CodeT5 focus on surface-level patterns and overgeneralize their relevance, treating tokens
like ‘mutex_init’ as equally important in both security and non-security contexts. This results in a
failure to prioritize tokens with actual security implications, such as explicit casting in ‘realloc’
usage in the ‘sgminer.c’ patch or memory initialization with ‘memset’ in the ‘krb5_auth_con_init’
patch. Moreover, none of these models effectively integrates domain-specific knowledge to capture

, Vol. 1, No. 1, Article . Publication date: August 2025.

20 Xunzhu Tang, Kisub Kim, Saad Ezzini, Yewei Song, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé

the subtle semantics of secure coding practices, which limits their ability to identify security-
critical patches. In contrast, llmda excels in capturing these nuances by leveraging contextual and
domain-aware information, as reflected in its superior attention scores in Table 6.

[RQ-3] ☛ The design of llmda leads to patch representations that enable enhanced ability over
GraphSPD and other baselines (TwinRNN, Vulfixminer, CodeT5) in effectively differentiating between
security and non-security patches on the embedding spaces. Our analysis of sample cases shows that
llmda assigns high attention scores to tokens associated with security-related aspects, making it
effective for accurately identifying security patches.

5.4 Robustness of llmda
A model is accepted as robust if it performs strongly on datasets that differ from the training data.
For our study task, robustness should ensure reliable predictions on unseen patches. We assess
the robustness of llmda and baselines (ie., GraphSPD, TwinRNN, Vulfixminer, and CodeT5) by
training them against the PatchDB and testing against the samples from the FFmpeg dataset used to
construct the benchmark for Devign [59] vulnerability detector. This test data includes 13,962 data
points, consisting of 8,000 security-related and 5,962 non-security-related patches. The selection of
the FFmpeg dataset is motivated by its coverage of a wide range of vulnerabilities.

Table 7. Performance (%) of GraphSPD, llmda, and baselines on unseen patches from FFmpeg dataset [59].
Numbers in parentheses (↓X) denote performance drops relative to PatchDB cross-validation.

Method Accuracy Precision AUC Recall +Recall -Recall F1

TwinRNN 40.23 45.10 41.50 34.75 34.75 (↓42.85) 49.40 38.12 (↓13.50)
Vulfixminer 41.85 47.00 43.12 35.90 35.90 (↓41.90) 50.50 39.10 (↓12.80)
CodeT5 45.12 50.45 46.75 39.00 39.00 (↓38.45) 53.20 43.75 (↓11.59)

GraphSPD 43.65 51.15 44.81 36.88 36.88 (↓38.29) 52.75 42.86 (↓11.74)
llmda 66.78 72.70 66.69 67.30 67.30 (↓12.92) 66.09 69.89 (↓8.30)

* (↓ 𝑥 .𝑥𝑥) indicates performance drop compared to llmda’s cross-validation on PatchDB (cf.
Table 1).

Table 7 summarizes the performance results of llmda, GraphSPD, and additional baselines on
the unseen dataset. Overall, llmda demonstrates superior robustness compared to all baselines.
It achieves significantly higher scores across all metrics, with a notable advantage of about 20
percentage points in precision over GraphSPD and a greater performance gap with other baselines.
The results further highlight the performance drop when testing on unseen data compared to
cross-validation on PatchDB. For example, llmda loses approximately 13 percentage points in
+Recall, while GraphSPD shows a more substantial drop of 38 percentage points.

Moreover, the token-based and sequential baselines (TwinRNN, Vulfixminer, CodeT5) exhibit
the lowest robustness. These methods fail to capture cross-project and unseen patterns due to their
reliance on localized or syntactic features. By contrast, llmda effectively leverages multi-modal
inputs, semantic explanations, and alignment strategies to generalize to diverse datasets. These
findings underscore llmda’s ability to deliver reliable predictions on unseen patches, setting a new
standard for robustness in security patch detection.

[RQ-4] ☛ Experiments on unseen patches clearly demonstrate that llmda is more robust than
GraphSPD and prior baselines. In terms of identifying security patches, llmda’s performance drop is
about threefold smaller compared to the prior state-of-the-art GraphSPD under the same experimental
settings.

, Vol. 1, No. 1, Article . Publication date: August 2025.

Just-in-Time Detection of Silent Security Patches 21

5.5 Effect of Different Models and Different Instructions

Table 8. Performance metrics (%) on security patch detection with different instructions
Model Instruction Type Dataset AUC Accuracy F1 +Recall -Recall

llmda (Gemini 2.0 Flash) Task-Specific PatchDB 76.45 72.00 69.23 72.45 80.34
Detailed PatchDB 74.67 70.50 68.00 70.12 79.12
Concise PatchDB 73.12 69.00 66.34 69.00 77.89

Direct Explanation PatchDB 75.78 71.50 68.56 71.23 79.67
Task-Specific SPI-DB 64.56 66.50 55.67 65.34 72.12
Detailed SPI-DB 63.12 65.00 54.12 64.00 71.00
Concise SPI-DB 62.45 64.30 53.67 63.23 70.12

Direct Explanation SPI-DB 63.89 65.70 54.67 64.45 71.67
llmda (Claude 3.5 Sonnet) Task-Specific PatchDB 81.12 77.20 74.45 78.34 84.23

Detailed PatchDB 79.56 75.80 72.67 76.45 82.67
Concise PatchDB 77.89 74.10 71.12 75.00 81.12

Direct Explanation PatchDB 80.12 76.50 73.45 77.12 83.56
Task-Specific SPI-DB 67.34 69.80 57.34 68.89 76.45
Detailed SPI-DB 66.12 68.60 56.00 67.12 75.12
Concise SPI-DB 65.34 67.90 55.34 66.00 74.00

Direct Explanation SPI-DB 66.89 69.10 56.34 67.67 75.89
llmda (Mixtral 8x7B) Task-Specific PatchDB 76.45 72.40 68.34 72.10 79.67

Detailed PatchDB 74.78 71.00 67.12 70.45 78.34
Concise PatchDB 72.67 69.80 65.00 69.12 76.89

Direct Explanation PatchDB 75.23 71.80 67.89 71.34 78.90
Task-Specific SPI-DB 64.12 66.70 54.23 64.67 71.89
Detailed SPI-DB 63.34 65.90 53.45 63.89 70.78
Concise SPI-DB 62.00 64.50 52.67 63.00 70.00

Direct Explanation SPI-DB 63.45 65.40 53.89 64.12 71.34

LLMDA(gpt3.5-turbo)

Task-Specific PatchDB 84.49 (± 0.51) 80.75 (± 0.45) 78.19 (± 0.37) 80.22 (± 0.21) 87.33 (± 0.24)
Detailed PatchDB 82.34 (± 0.48) 79.50 (± 0.40) 75.89 (± 0.33) 78.34 (± 0.20) 85.67 (± 0.22)
Concise PatchDB 80.56 (± 0.45) 77.95 (± 0.38) 73.34 (± 0.30) 76.12 (± 0.18) 84.12 (± 0.21)

Direct Explanation PatchDB 81.78 (± 0.47) 78.60 (± 0.39) 74.45 (± 0.32) 77.45 (± 0.19) 84.89 (± 0.22)
Task-Specific SPI-DB 68.98 (± 0.27) 71.25 (± 0.30) 58.13 (± 0.33) 70.94 (± 0.13) 80.62 (± 0.22)
Detailed SPI-DB 67.89 (± 0.26) 70.80 (± 0.29) 56.78 (± 0.30) 68.45 (± 0.12) 79.45 (± 0.21)
Concise SPI-DB 66.45 (± 0.25) 69.40 (± 0.27) 55.23 (± 0.28) 67.12 (± 0.11) 78.67 (± 0.20)

Direct Explanation SPI-DB 67.12 (± 0.26) 70.00 (± 0.28) 56.00 (± 0.29) 68.00 (± 0.12) 79.00 (± 0.21)

Table 9. Comparison of Instruction Types for Explanation Generation
Instruction Type Example Instruction Characteristics
Task-Specific Choose the correct option to the following

question: Is the patch security related or
not? Choices: (0) security (1) non-security.

Tailored to the classification task; gen-
erates explanations that directly address
the patch’s relevance to security, making
it highly actionable for the downstream
model.

Detailed Could you explain the purpose of this patch
and describe why the change was made?

Provides a detailed explanation of both the
intent and the functional impact of the code
change, offering comprehensive context for
the model to learn from.

Concise Summarize the purpose of this patch in one
sentence.

Generates brief and focused explanations;
while less detailed, these instructions are
efficient and provide essential insights into
the patch.

Direct Explanation Explain what happened inside the code
changes.

Focuses on describing the specific modi-
fications made in the patch; emphasizes
technical changes without necessarily link-
ing them to broader intent or security rele-
vance.

Table 8 and Table 9 indicates that the quality and effectiveness of explanations generated for
llmda are significantly influenced by both the choice of model and the type of instruction provided.

, Vol. 1, No. 1, Article . Publication date: August 2025.

22 Xunzhu Tang, Kisub Kim, Saad Ezzini, Yewei Song, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé

To evaluate these factors, we conducted a systematic ablation study using five different large
language models (LLMs) (Gemini 2.0 Flash [28], Claude 3.5 Sonnet [3], Mixtral 8x7B [10], Gemma
7B [18], and Llama3 70B [2]) and four types of instructions (Task-Specific, Detailed, Concise, Direct
Explanation). Below, we provide an intrinsic analysis of how these variations impact security patch
detection.

Effect of Different Instructions. The instruction type used to generate explanations significantly
affects their quality and relevance, which in turn impacts the downstream performance of llmda.
Task-Specific Instructions. For instance: "Choose the correct option to the following question:

Is the patch security related or not? Choices: (0) security (1) non-security." These instructions align
closely with the binary classification task, generating explanations that directly assess the security
relevance of patches. The tight alignment ensures better feature extraction and improved context
understanding, leading to superior metrics such as F1 and +Recall. Recent studies [5, 51] have
demonstrated the effectiveness of task-specific prompts in enhancing downstream performance.
Detailed Instructions. For example: "Could you explain the purpose of this patch and describe

why the change was made?" These prompts produce comprehensive explanations, offering both
the intent and functional impact of the code change. While informative, detailed instructions can
include extraneous information not directly relevant to the classification task, slightly diluting
performance compared to task-specific prompts. Nevertheless, the additional context is particularly
useful for datasets with sparse metadata, such as SPI-DB [60].
Concise Instructions. For instance: "Summarize the purpose of this patch in one sentence."

Concise instructions prioritize brevity, generating short explanations that provide essential insights.
While efficient, these instructions often lack the depth required to fully capture the intent and
implications of the patch, resulting in lower +Recall and F1 scores [4].

Direct Explanation Instructions. For example: "Explain what happened inside the code changes."
These prompts focus on describing the specific modifications made in the patch without linking
them to broader security implications. While useful for technical analysis, the lack of semantic
insights necessary for security classification results in comparatively lower performance, consistent
with findings in [35].

Effect of Different Models. The choice of LLM affects the quality of generated explanations, includ-
ing relevance, coherence, and semantic richness, which significantly impacts llmda ’s classification
performance.

Gemini 2.0 Flash and Claude 3.5 Sonnet. These models perform consistently well, with Claude
3.5 Sonnet achieving the strongest results when paired with task-specific or detailed instructions.
Their advanced contextual understanding enables them to generate high-quality explanations that
balance detail and relevance.
Mixtral 8x7B and Gemma 7B. These models exhibit moderate performance across all in-

structions. Their relatively smaller architectures limit their ability to generate nuanced semantic
explanations, leading to lower performance on complex datasets like SPI-DB.
Llama3 70B. Despite its size, Llama3 70B shows variability depending on the instruction type.

It performs well with task-specific instructions but struggles with concise prompts, likely due to
over-reliance on syntactic patterns.

LLMDA. As the proposed model, LLMDA consistently outperforms all other LLMs across instruc-
tions. Task-specific instructions paired with LLMDA yield the highest performance, demonstrating
its ability to leverage semantically aligned explanations and integrate them effectively into its
multi-modal architecture.

, Vol. 1, No. 1, Article . Publication date: August 2025.

Just-in-Time Detection of Silent Security Patches 23

Dataset-Specific Insights. PatchDB. The diversity of repositories in PatchDB highlights the
importance of high-quality explanations. Task-specific and detailed instructions enable llmda
to generalize effectively across various patch styles. SPI-DB. The sparse commit messages and
imbalanced features in SPI-DB pose challenges for all configurations. However, detailed instructions
mitigate these issues by providing additional context, while task-specific instructions remain the
most effective overall due to their alignment with the classification objective.

Conclusion The section discusses that both the choice of LLM and the instruction type significantly
influence the performance of llmda. Task-specific instructions paired with high-capability models
like Claude 3.5 Sonnet and Gemini 2.0 Flash yield superior results, highlighting the importance
of aligning explanations with the classification task. Detailed instructions improve robustness in
sparse datasets like SPI-DB, while concise and direct explanations underperform due to their lack
of contextual depth. These findings emphasize the critical role of prompt engineering and model
selection in enhancing explanation quality and downstream performance.

5.6 Extended Evaluation of Instruction
We evaluate the performance by conducting experiments on the following: Instruction Positions
and Importance of Instruction.

Importance of Instruction Positions. The position of the instruction within the input sequence
significantly affects the model’s ability to leverage task-specific guidance. As shown in Table 10,
placing the instruction at the end of the sequence yields the highest performance, with an AUC of
84.49% and an F1 score of 78.19%, outperforming configurations where the instruction is placed at
the beginning or middle. This result aligns with the transformer architecture’s tendency to assign
greater attention to later tokens, allowing the end-positioned instruction to better influence the
final embedding. Conversely, positioning the instruction at the beginning or middle may dilute its
significance as subsequent tokens are processed, leading to a slight decrease in performance. These
findings underscore the importance of aligning input design choices with the model’s architectural
characteristics to maximize the utility of task-specific instructions.

Table 10. Performance (%) with Different Instruction Positions

Configuration Dataset AUC Accuracy F1 +Recall -Recall
Instruction at Beginning PatchDB 82.45 78.60 76.12 78.45 85.89
Instruction at Middle PatchDB 83.23 79.30 77.00 79.23 86.34

Instruction at End (Original) PatchDB 84.49 80.75 78.19 80.22 87.33

Importance of Instruction. Furthermore, as shown in Table 11, we also evaluate the impact of
instruction by replacing the instruction with a sentence composed of random words generated from
a random sentenceWeb provider 6. Here, we take two random sentences as examples: Sentence𝐴: “He
stepped gingerly onto the bridge knowing that enchantment awaited on the other side.” Sentence𝐵 :
“When confronted with a rotary dial phone, the teenager was perplexed.”

The performance results for these configurations are presented in Table 10. As shown, using
random sentences as instructions leads to a noticeable performance drop compared to the original
task-specific instruction used in llmda. Specifically, both Sentence𝐴 and Sentence𝐵 achieve lower
AUC, Accuracy, F1, +Recall, and -Recall metrics than the original configuration.

The results indicate that replacing the task-specific instruction with random sentences introduces
noise and misleads the training process. Unlike task-specific instruction, which provides direct
6https://randomwordgenerator.com/sentence.php

, Vol. 1, No. 1, Article . Publication date: August 2025.

https://randomwordgenerator.com/sentence.php

24 Xunzhu Tang, Kisub Kim, Saad Ezzini, Yewei Song, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé

Table 11. Impact of Instruction

Configuration Dataset AUC Accuracy F1 +Recall -Recall
Sentence𝐴 PatchDB 75.34 71.50 70.12 71.45 78.90
Sentence𝐵 PatchDB 76.05 72.00 71.00 72.12 79.50

llmda (Original) PatchDB 84.49 80.75 78.19 80.22 87.33

guidance aligned with the classification objective (security-related or non-security-related patches),
random sentences lack semantic relevance and coherence in relation to the task. This misalignment
results in a reduced ability of the model to focus on meaningful features and relationships within
the data, leading to degraded performance across all metrics.
The experimental results highlight the importance of using instructions in llmda. Instruction

serves as a guiding mechanism, focusing the model’s attention on the critical aspects of the problem
and enhancing its ability to learn meaningful representations for classification. In contrast, random
sentences introduce irrelevant information, diluting the signal and adversely affecting the model’s
effectiveness. This underscores the necessity of carefully designed instructions to ensure optimal
training and robust model performance.

6 DISCUSSION
6.1 Threats to Validity
Internal validity. A first threat is the quality of the generated patch explanations. Since LLMs
may be factually wrong in their descriptions of the code changes or, in contrast, be vastly good
for our well-known study datasets, llmda performance evaluation may be biased. We mitigate
this threat by considering a state-of-the-art LLM and by rigorously analyzing the impact of the
generated LLM in an ablation study.
A second threat is the evolving performance of the hosted GPT models. It may prevent repro-

ducibility since this evolution introduces instability, potentially affecting the consistency of results
even with identical prompts or instructions.

A third threat lies in the constraint imposed by the input size limitation of 512 tokens. For long
patches, llmda performs truncation, resulting in the loss of essential information and potentially
affecting the accuracy and reliability of the model’s predictions.
External validity. A threat is that we rely on PatchDB and SPI-DB datasets, which may not
generalize our findings beyond their diverse samples. For example, SPI-DB contains patches from
only 2 projects. We mitigate this threat by relying on 2 distinct datasets, PatchDB having samples
from over 300 projects. Furthermore llmda is natural language-centric and thus our key design
choices are programming language-independent.
Another threat stems from the fact that we rely on pre-trained models (CodeT5 and LlaMa-7b)

as initial embedders of llmda’s inputs. These models may actually not be adapted for the task at
hand. To mitigate this threat our selection was based on the fact that they were demonstrated in
the literature as among the best performing models for related tasks.
Construct validity. A threat is that our experiments do not try various prompts in the Instruction
input. This may lead to an oversight in properly checking the potential contribution of instruction
on the model’s performance. We have mitigated this threat by performing an ablation study that
shows the impact of the current design. Better prompts may positively increase this impact.

, Vol. 1, No. 1, Article . Publication date: August 2025.

Just-in-Time Detection of Silent Security Patches 25

6.2 Limitation
One limitation of the current study is the use of GPT-3.5 (gpt-3.5-turbo-16k-0613) for generating
explanations of code changes within the llmda framework. While GPT-3.5 has demonstrated strong
performance in understanding and explaining code, the release of GPT-4.0 (gpt-4-0613) presents an
opportunity for further enhancement.
To illustrate this, consider the following patch (non-security) from the Linux kernel, which

modifies socket configurations to enable asynchronous I/O operations:
1 @@ -1950,6 +1950,7 @@ static int xs_local_finish_connecting(struct rpc_xprt *xprt,
2 sk->sk_user_data = xprt;
3 sk->sk_data_ready = xs_data_ready;
4 sk->sk_write_space = xs_udp_write_space;
5 + sock_set_flag(sk, SOCK_FASYNC);
6 sk->sk_error_report = xs_error_report;
7 sk->sk_allocation = GFP_NOIO;
8
9 @@ -2136,6 +2137,7 @@ static void xs_udp_finish_connecting(struct rpc_xprt *xprt, struct

socket *sock)
10 sk->sk_user_data = xprt;
11 sk->sk_data_ready = xs_data_ready;
12 sk->sk_write_space = xs_udp_write_space;
13 + sock_set_flag(sk, SOCK_FASYNC);
14 sk->sk_allocation = GFP_NOIO;
15
16 xprt_set_connected(xprt);
17
18 @@ -2237,6 +2239,7 @@ static int xs_tcp_finish_connecting(struct rpc_xprt *xprt, struct socket

*sock)
19 sk->sk_data_ready = xs_tcp_data_ready;
20 sk->sk_state_change = xs_tcp_state_change;
21 sk->sk_write_space = xs_tcp_write_space;
22 + sock_set_flag(sk, SOCK_FASYNC);
23 sk->sk_error_report = xs_error_report;
24 sk->sk_allocation = GFP_NOIO;

GPT-4.0 provides a more detailed and contextually rich explanation:
The provided code snippets modify socket configurations in three different functions
(xs_local_finish_connecting, xs_udp_finish_connecting, xs_tcp_finish_connecting).
They uniformly set the SOCK_FASYNCflag usingsock_set_flag(sk, SOCK_FASYNC);,
enabling asynchronous I/O operations on the sockets involved. This change likely aims
to enhance efficiency by allowing non-blocking handling of network events and data
reception across different types of connections (local, UDP, TCP).

In contrast, GPT-3.5’s explanation is more concise:
The changes in the code snippets add the sock_set_flag(sk, SOCK_FASYNC);
line to three different functions (xs_local_finish_connecting, xs_udp_finish_connecting,
and xs_tcp_finish_connecting). This modification enables asynchronous (signal-driven)
I/O on the sockets, allowing the program to receive signals when I/O events occur,
thereby improving network operations’ efficiency and responsiveness.

While both explanations are accurate, GPT-4.0’s explanation offers amore nuanced understanding
of the code changes’ implications, which could be crucial for determining the security relevance
of a patch. In this case, the patch is likely non-security-related, as it focuses on improving I/O
efficiency rather than addressing a security vulnerability.
Future work could explore the integration of GPT-4.0 or other advanced language models to

enhance the llmda framework’s ability to generate detailed explanations and improve the prediction

, Vol. 1, No. 1, Article . Publication date: August 2025.

26 Xunzhu Tang, Kisub Kim, Saad Ezzini, Yewei Song, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé

Self Attention

Cross Attention
Feed Forward

...

Feed Forward

Explanation
Embedding

Description
Embedding

Instruction
Embeddings

+

Patch
Embedding

...

One Embedding

Feed Forward

Cross Attention

Fig. 7. Cross-Attention Between Patch and Description version of PT-Former

of security patches. This could lead to more accurate and timely detection of silent security patches,
thereby enhancing the overall security posture of open-source software systems.

6.3 Leveraging Patch Descriptions for Enhanced Cross-Attention
While the original architecture of llmda effectively models the relationships between the code
patch and the LLM-generated explanation (𝐸𝑒𝑥𝑝𝑙), it does not fully utilize the potential insights
provided by patch descriptions (𝐸𝑑𝑒𝑠𝑐) when they are available. To address this limitation, we
enhance the architecture by introducing an additional cross-attention mechanism between the
patch embedding (𝐸𝑝) and the description embedding (𝐸𝑑𝑒𝑠𝑐).

Figure 7 illustrates the updated architecture of the PT-Former module, which now includes cross-
attention layers for both the explanation and the description. The updated PT-Former processes
the input embeddings as follows: 1) Cross-Attention Between Patch and Explanation (𝐸𝑝 ↔ 𝐸𝑒𝑥𝑝𝑙):
This captures the semantic relationship between the code patch and its generated explanation. 2)
Cross-Attention Between Patch and Description (𝐸𝑝 ↔ 𝐸𝑑𝑒𝑠𝑐): This models the contextual relevance
of the patch description to the code changes. 3) Aggregation: The outputs of the two cross-attention
layers are concatenated and passed through feed-forward layers to generate a unified representation
of the patch.
In cases where the description (𝐸𝑑𝑒𝑠𝑐) is missing, a masking mechanism is employed to ensure

that the model seamlessly defaults to using only 𝐸𝑝 and 𝐸𝑒𝑥𝑝𝑙 , maintaining the robustness of the
system.

Table 12. Performance (%) with Enhanced Cross-Attention

Model Dataset AUC F1 +Recall -Recall
Original PT-Former PatchDB 84.49 78.19 80.22 87.33
Enhanced PT-Former PatchDB 85.25 79.34 81.45 88.12
Original PT-Former SPI-DB 68.98 58.13 70.94 80.62
Enhanced PT-Former SPI-DB 70.12 59.45 72.18 81.87

, Vol. 1, No. 1, Article . Publication date: August 2025.

Just-in-Time Detection of Silent Security Patches 27

6.3.1 Experimental Results. Table 12 summarizes the performance of the enhanced PT-Former
architecture compared to the original design. On the PatchDB dataset, the enhanced architecture
achieves a 0.76% improvement in AUC and a 1.15% increase in F1, reflecting its ability to leverage
additional context from patch descriptions. Similarly, on the SPI-DB dataset, the AUC and F1 scores
improve by 1.14% and 1.32%, respectively.
The results demonstrate that incorporating cross-attention between the patch and description

embeddings significantly enhances the model’s ability to capture the broader context and improve
its decision-making process. Importantly, the fallback mechanism ensures that the enhanced
architecture remains robust even when descriptions are missing.

Conclusion☛ These results highlight the effectiveness of leveraging patch descriptions through
cross-attention. By incorporating this additional layer, llmda achieves improved performance across
all metrics, demonstrating its adaptability to varying input configurations.

6.4 Limitations of PT-Former: Dependency on Embedding Models
One notable limitation of PT-Former lies in its dependence on the quality of the underlying code
and text embedding models, such as CodeT5+ for code and LLaMA for text. These embeddings
form the foundation of PT-Former’s input representation, and any inadequacies in the pre-trained
models can propagate through the network, impacting the final performance.

Impact of Embedding Quality. The effectiveness of PT-Former in aligning and fusing multi-modal
inputs heavily relies on the richness and accuracy of the embeddings generated by these models.
If the embeddings fail to capture nuanced semantic or structural information, the subsequent
alignment and fusion processes may be constrained. For example:

• Code Embeddings: If the pre-trained CodeT5+ model struggles to represent certain program-
ming constructs or interactions, PT-Former’s ability to capture inter-functional and inter-modular
relationships could be limited.

• Text Embeddings: Similarly, LLaMA-generated embeddingsmightmiss critical contextual details
or nuances in patch descriptions, reducing the model’s overall interpretability and precision.

Generalization Across Domains. Another challenge arises from the generalization capability of
the pre-trained models. CodeT5+ and LLaMA are typically fine-tuned on specific datasets, which
may not comprehensively cover the diversity of codebases or patch descriptions encountered in
real-world scenarios. As a result:

• PT-Former’s performance might degrade on unseen or cross-project datasets, where the embed-
ding models fail to generalize effectively.

• The reliance on static embeddings limits PT-Former’s ability to dynamically adapt to varying
code styles, programming languages, or textual nuances across domains.

6.5 Comparison with CoLeFunDa
While both CoLeFunDa [56] and our approach leverage contrastive learning for silent vulnerability
fix identification, the methodologies and contributions differ significantly.

First, CoLeFunDa emphasizes function-level code representation, focusing on CWE classification
and exploitability rating alongside vulnerability fix detection. In contrast, our approach targets
security patch detection by integrating multi-modal inputs, including code changes, developer-
provided descriptions, and LLM-generated explanations. This integration allows llmda to capture
both syntactic and semantic contexts, addressing limitations of function-level analysis.

, Vol. 1, No. 1, Article . Publication date: August 2025.

28 Xunzhu Tang, Kisub Kim, Saad Ezzini, Yewei Song, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé

Second, CoLeFunDa relies on a contrastive learning framework applied to augmented function
slices, without leveraging natural language guidance. Our work innovates by introducing task-
specific natural language instructions, which act as guiding mechanisms for contextualizing the
data and aligning the model’s focus with the security detection task.
Finally, the architectural designs are distinct. CoLeFunDa employs a function change encoder

(FCBERT) for its representations, whereas llmda utilizes the PT-Former module. PT-Former aligns
and fuses multi-modal inputs through cross-attention and self-attention mechanisms, enabling a
unified embedding space that enhances generalization across diverse datasets.

These distinctions underscore the unique contributions and novelty of our work, particularly in
addressing limitations in prior methods, including CoLeFunDa.

6.6 Model Selection for Initial Embeddings
We utilized CodeT5+ and LLaMa-7b as they can function as an encoder-only model while other
models like CodeLlama are not inherently designed to function as an encoder-only model, as they
are primarily a decoder-only transformer based on the LLaMA. Embedding models often use this
configuration to generate dense vector representations of input text or code.

Furthermore, we conducted additional experiments using CodeLLaMA-13B as a unified embed-
ding model for both code and natural language (NL) inputs. Unlike the original llmda, which
employs CodeT5+ for code and LLaMa-7b for NL, this setup generates all embeddings from a single
model, simplifying the alignment process in PT-Former.

The results, presented in Table 13, show that CodeLLaMA-13B achieves competitive performance
but falls slightly short of the original llmda setup. Specifically, llmda with CodeLLaMA-13B
demonstrates a small drop in AUC and F1 across both datasets. Additionally, the training process
required more epochs to converge, likely due to the lack of task-specific optimization for code and
NL modalities in a unified model.

These findings reinforce the advantages of using specialized models for multi-modal tasks. While
CodeLLaMA-13B provides a simpler deployment setup, the combination of CodeT5+ and LLaMa-7b
offers better task-specific performance and faster convergence. Future research could explore
fine-tuning unified models like CodeLLaMA for enhanced performance in security patch detection.

Table 13. Performance (%) and Training Efficiency Comparison: Original llmda vs. CodeLLaMA-13B
Model Dataset AUC F1 +Recall -Recall Epochs Training Time

llmda 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 PatchDB 84.49 78.19 80.22 87.33 20 12.5h
llmda 𝐶𝑜𝑑𝑒𝐿𝐿𝑎𝑀𝐴−13𝐵 PatchDB 83.12 (↓ 1.37) 76.78 (↓ 1.41) 78.45 85.67 30

llmda 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 SPI-DB 68.98 58.13 70.94 80.62 20
llmda 𝐶𝑜𝑑𝑒𝐿𝐿𝑎𝑀𝐴−13𝐵 SPI-DB 67.51 (↓ 1.47) 56.45 (↓ 1.68) 69.01 78.54 30 18h
“llmda 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 " means llmda with CodeT5+ to embed codes and LLaMa-7b to embed texts.
“llmda 𝐶𝑜𝑑𝑒𝐿𝐿𝑎𝑀𝐴−13𝐵 " means llmda with llmda to embed codes and texts.

6.7 Extended Case Studies on the Impact of Explanations and Instructions
To further illustrate the importance of explanations and instructions in llmda, we present two
additional case studies involving security patches. These cases highlight how the inclusion of
natural language explanations and task-specific instructions contributes to accurate predictions,
particularly in challenging scenarios.

6.7.1 Case Study 1: Complex Code Changes with Minimal Documentation. Patch:
1 diff --git a/net/ipv4/tcp_input.c b/net/ipv4/tcp_input.c
2 index c34fa2a..e4fb7a5 100644
3 --- a/net/ipv4/tcp_input.c

, Vol. 1, No. 1, Article . Publication date: August 2025.

Just-in-Time Detection of Silent Security Patches 29

4 +++ b/net/ipv4/tcp_input.c
5 @@ -2342,7 +2342,8 @@ void tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
6
7 /* Fix potential buffer overflow in TCP options */
8 - memcpy(opt, skb->data + tcp_hdrlen, optlen);
9 + if (unlikely(optlen > TCP_MAX_OPT_LENGTH))
10 + return;
11 + memcpy(opt, skb->data + tcp_hdrlen, optlen);
12 }

Listing 2. A complex security patch with minimal documentation.

Baseline Prediction (GraphSPD): Non-Security
llmda Prediction: Security
Reason: The patch adds a boundary check to prevent buffer overflows, a critical vulnerability.
GraphSPD fails to detect the intent due to the absence of a detailed commit message. However,
llmda uses an LLM-generated explanation (e.g., “This patch mitigates buffer overflow by adding a
boundary check”) to capture the semantic significance of the changes. The task-specific instruction
further directs the model to prioritize security-related aspects of the patch.

6.7.2 Case Study 2: Misleading Commit Message. Patch:

1 diff --git a/src/http.c b/src/http.c
2 index abcd123..dcba321 100644
3 --- a/src/http.c
4 +++ b/src/http.c
5 @@ -567,7 +567,8 @@ int validate_http_request(request *req) {
6 /* Sanitize user inputs to prevent injection */
7 - strcpy(buffer, req->input);
8 + if (strlen(req->input) < MAX_LEN) {
9 + strncpy(buffer, req->input, MAX_LEN);
10 + }
11 return validate_buffer(buffer);
12 }

Listing 3. A patch with a misleading commit message.

Commit Message: "Minor refactor of input validation code."
Baseline Prediction (CodeT5+): Non-Security
llmda Prediction: Security
Reason: The misleading commit message downplays the significance of the patch, causing CodeT5+
to miss its security implications. llmda relies on LLM-generated explanations to identify that the
patch introduces input length checks to prevent buffer overflows, a critical security improvement.
The instruction guides the model to focus on identifying security-relevant changes.

6.7.3 Analysis of Findings. In both cases, llmda successfully identifies the security relevance
of the patches, while baselines fail. The key differentiators are:
• Explanations: LLM-generated explanations bridge the gap between code semantics and human-
readable context, enabling the model to understand the intent behind code changes.

• Instructions:Task-specific instructions provide explicit guidance for identifying security patches,
enhancing the model’s decision-making process.

7 RELATEDWORK
Our work is related to various research directions in the literature. We discuss three main categories
in this section.

, Vol. 1, No. 1, Article . Publication date: August 2025.

30 Xunzhu Tang, Kisub Kim, Saad Ezzini, Yewei Song, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé

7.1 Security Patch Analysis
Patch analysis, after being addressed in the literature of empirical studies and static analysis research,
has been increasingly a key application area of machine learning for software engineering [19,
29, 44, 48]. In terms of security patches, Li et al. [19] provided foundational empirical insights
into the unique attributes of such patches. Rule-based approaches [16, 53] were then pivotal in
demonstrating that the identification of security patches is feasible using common patterns [54, 54].
Afterwards, Wang et al. [48] proceeded to data-driven methodologies with statistical machine
learning. RNN-based approaches such as PatchRNN [47] and SPI [60] then revealed that neural
networks were key enablers in understanding patches. With ColeFunda [56], researchers proposed
to summarize the semantics of patches using git differencing tools. Most recently, GraphSPD [44]
achieved state-of-the-art performance by implementing a graph-based approach that focuses on
ensuring that the semantics in the code change are effectively captured. In this work, our llmda
approach employs Large Language Models for semantic analysis of code changes and introduces a
multi-modal alignment method to improve the accuracy of security patch detection.

7.2 Deep Learning in Vulnerability Detection and Bug Repair
Deep learning has enabled software engineering research to advance in the automation of the
detection of vulnerable code [13, 22, 32]. Most recently, Fu et al. advanced software vulnerabil-
ity detection by proposing VulExplainer [12] for the classification of vulnerability types using
Transformer-based hierarchical distillation. In another direction, Nguyen et al. contributed by
identifying vulnerability-relevant code statements through deep learning and clustered contrastive
learning [26] and by creating ReGVD [27], a graph neural network model for vulnerability detection.
In the era of LLM, CodeAgent [37] was proposed as a multi-agent LLM system for automating code
review, addressing tasks such as detecting inconsistencies, identifying vulnerabilities, validating
code style, and suggesting revisions. In the area of bug detection and repair, Tang et al. [39] proposed
a collaborative bug-finding approach driven by app reviews, utilizing user feedback to identify
and address software defects more efficiently. Luo et al. [25] explored the integration of federated
learning to ensure data privacy in LLM-based program repair. Pian et al. [30] introduced jLED, a
joint learning framework that localizes and edits source code, thereby enhancing the repair process.
Yang et al. [55] presented MORepair, a multi-objective fine-tuning method that trains LLMs to
repair code more effectively, improving both the quality and efficiency of the repair process.

7.3 Patch representation learning
Reasoning about patches using deep neural networks has attracted significant interest in recent
years [11, 23, 31, 38, 40, 50]. Although initial work directly used generic code representation models
such as CodeBERT [11], CodeT5 [50], GraphCodeBERT [14] or PLBART [1]. Some recent works,
such as CCRep [23], ReconPatch [17], and CCBERT [58] have explored specialized approaches
to better capture the semantics of code changes. With llmda, our approach attempts to learn
specific representations for the task of security patch detection. Our approach, llmda, builds on
the foundation of leveraging deep neural networks for patch representation, advancing beyond
generic models like CodeBERT and CodeT5 by focusing on specialized representation learning
tailored specifically for detecting security patches.

8 CONCLUSION
In this work, we proposed a framework, llmda, for security patch detection. It implements a
language-centric approach to the overall problem of learning to identify silent security patches. First,
llmda augments patch information with LLM-generated explanations. Then, it builds an embedding

, Vol. 1, No. 1, Article . Publication date: August 2025.

Just-in-Time Detection of Silent Security Patches 31

where multi-modal patch information is concatenated with a natural language instruction after
the alignment of embedding spaces. Finally, using contrastive learning, it ensures that challenging
cases are the decision boundaries are well discriminated. Experimental assessments of llmda over
two literature datasets demonstrate how llmda achieves a new state of performance on the target
task. Further ablation studies confirm the contribution of the key design choices as well as the
robustness of the trained model.
Open Science: All code, data and results are publicly available in our artifact repository: https:
//llmda.github.io

9 ACKNOWLEDGMENTS
This work is supported by the NATURAL project, which has received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant No. 949014).

REFERENCES
[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Unified pre-training for program

understanding and generation. arXiv preprint arXiv:2103.06333 (2021).
[2] Meta AI. 2023. Llama3 70B: Large Language Model for Multimodal Applications. https://ai.meta.com/llama3-70b.
[3] Anthropic. 2023. Claude 3.5 Sonnet: High-Performance Language Model for Complex Tasks. https://www.anthropic.

com/claude-3-5-sonnet.
[4] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,

Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[5] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa De-
hghani, Siddhartha Brahma, et al. 2022. Scaling instruction-finetuned language models. arXiv preprint arXiv:2210.11416
(2022).

[6] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa
Dehghani, Siddhartha Brahma, et al. 2024. Scaling instruction-finetuned language models. Journal of Machine Learning
Research 25, 70 (2024), 1–53.

[7] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale
Fung, and Steven Hoi. 2023. InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning.
arXiv:2305.06500 [cs.CV]

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).

[9] Nesara Dissanayake, Mansooreh Zahedi, Asangi Jayatilaka, and Muhammad Ali Babar. 2022. Why, How and Where of
Delays in Software Security Patch Management: An Empirical Investigation in the Healthcare Sector. Proceedings of
the ACM on Human-Computer Interaction 6, CSCW2 (2022), 1–29.

[10] Hugging Face. 2023. Mixtral 8x7B: Multi-Domain Pre-trained Model for Code and Text. https://huggingface.co/mixtral-
8x7b.

[11] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu,
Daxin Jiang, et al. 2020. Codebert: A pre-trained model for programming and natural languages. arXiv preprint
arXiv:2002.08155 (2020).

[12] Michael Fu, Van Nguyen, Chakkrit Kla Tantithamthavorn, Trung Le, and Dinh Phung. 2023. VulExplainer: A
Transformer-based Hierarchical Distillation for Explaining Vulnerability Types. IEEE Transactions on Software Engi-
neering (2023).

[13] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Yuki Kume, Van Nguyen, Dinh Phung, and John Grundy. 2024.
Aibughunter: A practical tool for predicting, classifying and repairing software vulnerabilities. Empirical Software
Engineering 29, 1 (2024), 4.

[14] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy,
Shengyu Fu, et al. 2020. Graphcodebert: Pre-training code representations with data flow. arXiv preprint arXiv:2009.08366
(2020).

[15] Mohammad Hossin and Md Nasir Sulaiman. 2015. A review on evaluation metrics for data classification evaluations.
International journal of data mining & knowledge management process 5, 2 (2015), 1.

, Vol. 1, No. 1, Article . Publication date: August 2025.

https://llmda.github.io
https://llmda.github.io
https://ai.meta.com/llama3-70b
https://www.anthropic.com/claude-3-5-sonnet
https://www.anthropic.com/claude-3-5-sonnet
https://arxiv.org/abs/2305.06500
https://huggingface.co/mixtral-8x7b
https://huggingface.co/mixtral-8x7b

32 Xunzhu Tang, Kisub Kim, Saad Ezzini, Yewei Song, Haoye Tian, Jacques Klein, and Tegawendé F. Bissyandé

[16] Zhen Huang, David Lie, Gang Tan, and Trent Jaeger. 2019. Using safety properties to generate vulnerability patches.
In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 539–554.

[17] Jeeho Hyun, Sangyun Kim, Giyoung Jeon, Seung Hwan Kim, Kyunghoon Bae, and Byung Jun Kang. 2024. ReConPatch:
Contrastive patch representation learning for industrial anomaly detection. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision. 2052–2061.

[18] Gemma AI Labs. 2023. Gemma 7B: Lightweight Model for Language and Code Tasks. https://gemmalabs.ai/models/7b.
[19] Frank Li and Vern Paxson. 2017. A large-scale empirical study of security patches. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security. 2201–2215.
[20] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 2023. Blip-2: Bootstrapping language-image pre-training with

frozen image encoders and large language models. In International conference on machine learning. PMLR, 19730–19742.
[21] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone,

Christopher Akiki, Jia Li, Jenny Chim, et al. 2023. StarCoder: may the source be with you! arXiv preprint arXiv:2305.06161
(2023).

[22] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. 2021. Sysevr: A framework for using
deep learning to detect software vulnerabilities. IEEE Transactions on Dependable and Secure Computing 19, 4 (2021),
2244–2258.

[23] Zhongxin Liu, Zhijie Tang, Xin Xia, and Xiaohu Yang. 2023. Ccrep: Learning code change representations via pre-
trained code model and query back. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
IEEE, 17–29.

[24] Ilya Loshchilov and Frank Hutter. 2018. Fixing weight decay regularization in adam. (2018).
[25] Wenqiang Luo, Jacky Wai Keung, Boyang Yang, He Ye, Claire Le Goues, Tegawende F. Bissyande, Haoye Tian, and

Bach Le. 2024. When Fine-Tuning LLMs Meets Data Privacy: An Empirical Study of Federated Learning in LLM-Based
Program Repair. arXiv:2412.01072 [cs.SE] https://arxiv.org/abs/2412.01072

[26] Van Nguyen, Trung Le, Chakkrit Tantithamthavorn, John Grundy, Hung Nguyen, Seyit Camtepe, Paul Quirk, and Dinh
Phung. 2022. An Information-Theoretic and Contrastive Learning-based Approach for Identifying Code Statements
Causing Software Vulnerability. arXiv preprint arXiv:2209.10414 (2022).

[27] Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen, Trung Le, Quan Hung Tran, and Dinh Phung. 2022. ReGVD:
Revisiting graph neural networks for vulnerability detection. In Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: Companion Proceedings. 178–182.

[28] OpenAI. 2023. Gemini 2.0 Flash: Advanced Language Model for Code and Text Understanding. https://www.openai.
com/gemini-2-flash.

[29] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi, Konrad Rieck, Sascha Fahl, and Yasemin
Acar. 2015. Vccfinder: Finding potential vulnerabilities in open-source projects to assist code audits. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security. 426–437.

[30] Weiguo Pian, Yinghua Li, Haoye Tian, Tiezhu Sun, Yewei Song, Xunzhu Tang, Andrew Habib, Jacques Klein, and
Tegawendé F Bissyandé. 2025. You Don’t Have to Say Where to Edit! jLED–Joint Learning to Localize and Edit Source
Code. ACM Transactions on Software Engineering and Methodology (2025).

[31] Weiguo Pian, Hanyu Peng, Xunzhu Tang, Tiezhu Sun, Haoye Tian, Andrew Habib, Jacques Klein, and Tegawendé F
Bissyandé. 2023. MetaTPTrans: A meta learning approach for multilingual code representation learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 37. 5239–5247.

[32] Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur Ozdemir, Paul Ellingwood, and Marc
McConley. 2018. Automated vulnerability detection in source code using deep representation learning. In 2018 17th
IEEE international conference on machine learning and applications (ICMLA). IEEE, 757–762.

[33] Lindsay I Smith. 2002. A tutorial on principal components analysis. (2002).
[34] Chia-Yi Su and Collin McMillan. 2023. Semantic Similarity Loss for Neural Source Code Summarization. arXiv preprint

arXiv:2308.07429 (2023).
[35] Weisong Sun, Chunrong Fang, Yudu You, Yun Miao, Yi Liu, Yuekang Li, Gelei Deng, Shenghan Huang, Yuchen

Chen, Quanjun Zhang, et al. 2023. Automatic Code Summarization via ChatGPT: How Far Are We? arXiv preprint
arXiv:2305.12865 (2023).

[36] Xin Tan, Yuan Zhang, Chenyuan Mi, Jiajun Cao, Kun Sun, Yifan Lin, and Min Yang. 2021. Locating the security patches
for disclosed oss vulnerabilities with vulnerability-commit correlation ranking. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. 3282–3299.

[37] Xunzhu Tang, Kisub Kim, Yewei Song, Cedric Lothritz, Bei Li, Saad Ezzini, Haoye Tian, Jacques Klein, and Tegawendé
Bissyandé. 2024. CodeAgent: Autonomous Communicative Agents for Code Review. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing. 11279–11313.

[38] Xunzhu Tang, Haoye Tian, Zhenghan Chen, Weiguo Pian, Saad Ezzini, Abdoul Kader Kaboré, Andrew Habib, Jacques
Klein, and Tegawende F Bissyande. 2024. Learning to represent patches. In Proceedings of the 2024 IEEE/ACM 46th

, Vol. 1, No. 1, Article . Publication date: August 2025.

https://gemmalabs.ai/models/7b
https://arxiv.org/abs/2412.01072
https://arxiv.org/abs/2412.01072
https://www.openai.com/gemini-2-flash
https://www.openai.com/gemini-2-flash

Just-in-Time Detection of Silent Security Patches 33

International Conference on Software Engineering: Companion Proceedings. 396–397.
[39] Xunzhu Tang, Haoye Tian, Pingfan Kong, Saad Ezzini, Kui Liu, Xin Xia, Jacques Klein, and Tegawendé F Bissyandé.

2024. App review driven collaborative bug finding. Empirical Software Engineering 29, 5 (2024), 124.
[40] Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques Klein, and Tegawendé F Bissyandé. 2020.

Evaluating representation learning of code changes for predicting patch correctness in program repair. In Proceedings
of the 35th IEEE/ACM International Conference on Automated Software Engineering. 981–992.

[41] Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques Klein, and Tegawendé F Bissyandé. 2023.
Is ChatGPT the Ultimate Programming Assistant–How far is it? arXiv preprint arXiv:2304.11938 (2023).

[42] Haoye Tian, Xunzhu Tang, Andrew Habib, Shangwen Wang, Kui Liu, Xin Xia, Jacques Klein, and Tegawendé F
Bissyandé. 2022. Is this Change the Answer to that Problem? Correlating Descriptions of Bug and Code Changes for
Evaluating Patch Correctness. arXiv preprint arXiv:2208.04125 (2022).

[43] Yuan Tian, Julia Lawall, and David Lo. 2012. Identifying linux bug fixing patches. In 2012 34th international conference
on software engineering (ICSE). IEEE, 386–396.

[44] Shu Wang, Xinda Wang, Kun Sun, Sushil Jajodia, Haining Wang, and Qi Li. 2023. GraphSPD: Graph-based security
patch detection with enriched code semantics. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2409–2426.

[45] Xinda Wang, Kun Sun, Archer Batcheller, and Sushil Jajodia. 2019. Detecting" 0-day" vulnerability: An empirical study
of secret security patch in OSS. In 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 485–492.

[46] Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, and Sushil Jajodia. 2021. Patchdb: A large-scale security patch dataset.
In 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, 149–160.

[47] Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, Sushil Jajodia, Sanae Benchaaboun, and Frank Geck. 2021. Patchrnn:
A deep learning-based system for security patch identification. In MILCOM 2021-2021 IEEE Military Communications
Conference (MILCOM). IEEE, 595–600.

[48] Xinda Wang, Shu Wang, Kun Sun, Archer Batcheller, and Sushil Jajodia. 2020. A machine learning approach to classify
security patches into vulnerability types. In 2020 IEEE Conference on Communications and Network Security (CNS).
IEEE, 1–9.

[49] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023. Codet5+: Open
code large language models for code understanding and generation. arXiv preprint arXiv:2305.07922 (2023).

[50] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5: Identifier-aware unified pre-trained encoder-
decoder models for code understanding and generation. arXiv preprint arXiv:2109.00859 (2021).

[51] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and
Quoc V Le. 2021. Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652 (2021).

[52] Xi Wei, Tianzhu Zhang, Yan Li, Yongdong Zhang, and Feng Wu. 2020. Multi-modality cross attention network for
image and sentence matching. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
10941–10950.

[53] Qiushi Wu, Yang He, Stephen McCamant, and Kangjie Lu. 2020. Precisely characterizing security impact in a flood
of patches via symbolic rule comparison. In The 2020 Annual Network and Distributed System Security Symposium
(NDSS’20).

[54] Zhengzi Xu, Yulong Zhang, Longri Zheng, Liangzhao Xia, Chenfu Bao, Zhi Wang, and Yang Liu. 2020. Automatic hot
patch generation for android kernels. In 29th USENIX Security Symposium (USENIX Security 20). 2397–2414.

[55] Boyang Yang, Haoye Tian, Jiadong Ren, Hongyu Zhang, Jacques Klein, Tegawende Bissyande, Claire Le Goues, and
Shunfu Jin. 2025. MORepair: Teaching LLMs to Repair Code via Multi-Objective Fine-Tuning. ACM Transactions on
Software Engineering and Methodology (2025).

[56] Jiayuan Zhou, Michael Pacheco, Jinfu Chen, Xing Hu, Xin Xia, David Lo, and Ahmed E Hassan. 2023. Colefunda: Ex-
plainable silent vulnerability fix identification. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). IEEE, 2565–2577.

[57] Jiayuan Zhou, Michael Pacheco, Zhiyuan Wan, Xin Xia, David Lo, Yuan Wang, and Ahmed E Hassan. 2021. Finding a
needle in a haystack: Automated mining of silent vulnerability fixes. In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 705–716.

[58] Xin Zhou, Bowen Xu, DongGyun Han, Zhou Yang, Junda He, and David Lo. 2023. CCBERT: Self-Supervised Code
Change Representation Learning. In 2023 IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 182–193.

[59] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019. Devign: Effective vulnerability identification
by learning comprehensive program semantics via graph neural networks. Advances in neural information processing
systems 32 (2019).

[60] Yaqin Zhou, Jing Kai Siow, Chenyu Wang, Shangqing Liu, and Yang Liu. 2021. Spi: Automated identification of security
patches via commits. ACM Transactions on Software Engineering and Methodology (TOSEM) 31, 1 (2021), 1–27.

, Vol. 1, No. 1, Article . Publication date: August 2025.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Silent Security Patches: A Critical Threat
	2.2 Limitations of Existing Approaches
	2.3 Opportunities with Large Language Models
	2.4 Research Objective

	3 Approach
	3.1 Data augmentation with LLMs
	3.2 Generation of Bimodal Input Embeddings
	3.3 PT-Former: Embeddings alignment and Concatenation
	3.4 Stochastic Batch Contrastive Learning (SBCL)
	3.5 Prediction and Training Layer for Security Patch Detection

	4 Experimental Setup
	4.1 Research Questions
	4.2 Datasets
	4.3 Evaluation Metrics
	4.4 Baseline Methods
	4.5 Implementation

	5 Experiment Results
	5.1 Overall performance of llmda
	5.2 Contributions of key design decisions
	5.3 Discriminative power of llmda representations
	5.4 Robustness of llmda
	5.5 Effect of Different Models and Different Instructions
	5.6 Extended Evaluation of Instruction

	6 Discussion
	6.1 Threats to Validity
	6.2 Limitation
	6.3 Leveraging Patch Descriptions for Enhanced Cross-Attention
	6.4 Limitations of PT-Former: Dependency on Embedding Models
	6.5 Comparison with CoLeFunDa
	6.6 Model Selection for Initial Embeddings
	6.7 Extended Case Studies on the Impact of Explanations and Instructions

	7 Related Work
	7.1 Security Patch Analysis
	7.2 Deep Learning in Vulnerability Detection and Bug Repair
	7.3 Patch representation learning

	8 Conclusion
	9 Acknowledgments
	References

