
Automatic Generation of Test Cases based on Bug Reports:
a Feasibility Study with Large Language Models
Laura Plein, Wendkûuni C. Ouédraogo, Jacques Klein, Tegawendé F. Bissyandé

firstname.lastname@uni.lu
University of Luxembourg

ACM Reference Format:
Laura Plein, Wendkûuni C. Ouédraogo, Jacques Klein, Tegawendé F. Bis-
syandé. 2024. Automatic Generation of Test Cases based on Bug Reports:
a Feasibility Study with Large Language Models. In 2024 IEEE/ACM 46th
International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3639478.3643119

1 INTRODUCTION
Tests suites are a key ingredient in various software automation
tasks. Recently, various studies [4] have demonstrated that they
are paramount in the adoption of latest innovations in software
engineering, such as automated program repair (APR) [3]. Test
suites are unfortunately often too scarce in software development
projects. Generally, they are provided for regression testing, while
new bugs are discovered by users who then describe them infor-
mally in bug reports. In recent literature, a new trend of research in
APR has attempted to leverage bug reports in generate-and-validate
pipelines for program repair. Even in such cases, when an APR tool
generates a patch candidate, if test cases are unavailable, developers
must manually validate the patch, leading to a threat to validity.

On the one hand, automatic test generation approaches in the
literature [2], unfortunately, either target unit test cases and thus
do not cater to the need for revealing complex bugs that users face
in the execution of software, or require formally-defined inputs
such as the function signatures, or even the test oracle. On the other
hand, bug reports are pervasive, but remain under-explored. There
is thus a need to investigate the feasibility of test case generation by
leveraging bug reports. Our ultimate objective indeed is to address
a challenge in the adoption of program repair by practitioners,
towards ensuring that patches can be automatically generated and
validated for bugs that are reported by users.

Concretely, we observe that, while bug reports can quickly be
overwhelming (in terms of high quantity and/or low quality) for
developers, they are still recognized to contain a wealth of informa-
tion. Unfortunately, such information hidden in natural language
informality can be difficult to extract, contextualize, and leverage
for specifying program executions. Nevertheless, recent advances
in Natural Language Processing (NLP) have opened up new pos-
sibilities in software engineering. In particular, with the advent

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0502-1/24/04.
https://doi.org/10.1145/3639478.3643119

of large language models (LLMs), a wide range of tasks have seen
machine learning achieve, or even exceed human performance.

In this work, we propose to study the feasibility of exploiting LLMs
towards producing executable test cases based on informal bug reports.
Our experiments build on ChatGPT [1], a general-purpose LLM,
and codeGPT [5], a code-specific LLM. The performance of test case
generation with LLMs is assessed based on the Defects4J reposi-
tory which includes real-world faults from various Java software
development projects.

2 EXPERIMENTAL SETUP
To train a model that is able to generate the required test case, our
pipeline includes the following steps: (1) We start by identifying
Java projects included and collecting their bug reports; (2) then, we
use LLMs (either an online service or a pre-trained model that we
fine-tune) for the purpose of generating test cases; (3) once the test
cases are generated, they are appended to the existing test suite
of the project to assess their executability and validity as well as
their relevance for the associated reported bug; (4) finally, once we
generated a relevant test case for the given bug, APR tools can
now be applied towards generating and validating the bug-fixing
patch. Figure 1 provides an example bug report for which ChatGPT
generated a correct test case (Listing 1).

Figure 1: Example bug report from De-
fects4J dataset - Cli 17

1 public void testPosixParserStopAtNonOption () throws
ParseException {

2 String [] args = {"-azb"};
3 Options options = new Options ();
4 options.addOption("a", false , "Option A");
5 options.addOption("b", false , "Option B");
6 CommandLineParser parser = new PosixParser ();
7 CommandLine cmd = parser.parse(options , args , true);
8
9 assertTrue(cmd.hasOption("a"));
10 assertTrue(cmd.getOptionValue("a").isEmpty ());
11 assertTrue(cmd.getArgs ()[0]. equals("zb"));
12 assertFalse(cmd.hasOption("b"));
13 }

Listing 1: ChatGPT-generated valid test case for Cli 17

This work licensed under Creative Commons Attribution International 4.0 License.

360

2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

https://doi.org/10.1145/3639478.3643119
https://doi.org/10.1145/3639478.3643119
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639478.3643119&domain=pdf&date_stamp=2024-05-23


ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Laura Plein, Wendkûuni C. Ouédraogo, Jacques Klein, Tegawendé F. Bissyandé

single generation attempt multiple (5) generation attempts
Project # of bug

reports
overall
exec.

overall
valid.

valid.
over
exec.

overall
relev.

relev.
over
exec.

overall
exec.

overall
valid.

valid
over
exec.

overall
relev.

relev.
over
exec.

Chart 6 0% 0% 0% 0% 0% 33% 17% 50% 17% 50%
Cli 30 37% 23% 64% 10% 27% 53% 37% 69% 17% 31%

Closure 127 6% 3% 50% 3% 50% 46% 28% 59% 3% 7%
Lang 60 25% 10% 40% 17% 67% 60% 43% 72% 27% 44%
Math 100 13% 3% 23% 3% 23% 43% 15% 35% 6% 14%
Time 19 32% 32% 100% 0% 0% 84% 17% 81% 0% 0%
Total 342 15% 7% 47% 6% 38% 50% 30% 59% 9% 19%

Table 1: Performance of ChatGPT on the task of test case generation based on bug report.
Legend: exec. → executability; valid. → validity. relev. → relevance

2.1 Research Questions
To evaluate the feasibility of translating informal bug reports into
executable test cases we investigate the following research ques-
tions: ❶ Can informally-written bug reports be translated into exe-
cutable test cases with ChatGPT? ❷ To what extent can fine-tuned
models compare to the baseline results achieved with ChatGPT? ❸

Can LLMs actually generate executable test cases for new bugs?

2.2 Metrics
• Executability is a binary metric which describes whether the
test case is directly executable on the corresponding project ver-
sion without any manual changes.

• Validity: an executable test case may or may not fail on the tar-
get buggy program. We follow the convention of patch validation
in program repair and consider the generated test case to be valid
only when it, indeed, fails on the buggy program. Otherwise it is
considered as invalid.

• Relevance is another binary metric which describes if a valid
test case can not only reproduce the bug but also validate the
patched version.

3 EXPERIMENTAL RESULTS
3.1 [RQ1]: LLM baseline performance on test

case generation with ChatGPT
Our experimental results in Table 1 show that ChatGPT can be
prompted with bug reports to generate executable test cases for
50% of the input samples. Beyond executability, about 30% of the
bugs could be reproduced with valid test cases, and about 9% of
all generated test cases were actually relevant. Nonetheless, we
note that over half (59%) of the executable test cases were valid
test cases. These results, which are based on an off-the-shelf LLM
as-a-service, show promises for automated test case generation,
leveraging complex information from user-reported bugs.

3.2 [RQ2]: Performance of CodeGPT, a
code-specific and fine-tuned LLM

Fine-tuning CodeGPT yielded an LLM that generates executable
test cases for 24% of the bug reports with a single generation at-
tempt (cf. Table 2). This rate is substantially larger than the one
achieved by the ChatGPT single generation baseline (15%). However,
when performing several generation attempts, ChatGPT achieves
a significantly higher rate of success. These results suggest that a
fine-tuned LLM could be beneficial in an automated pipeline where
a single shot is adequate, whereas ChatGPT would be more useful

in recommendation scenarios. The results further suggest that more
powerful models should be investigated in future work.

single generation 5 generations
ChatGPT CodeGPT ChatGPT CodeGPT

Executability of all test cases 15% 24% 50% 34%
Validity of all test cases 7% 15% 30% 17%

Validity of executable test cases 47% 60% 59% 51%
Relevance of all test cases 6% 5% 9% 6%

Relevance of executable test cases 38% 20% 19% 17%
Table 2: Performance of fine-tuned CodeGPT vs ChatGPT on
the task of bug report driven test case generation

3.3 [RQ3]: Performance on unseen bugs
ChatGPT, an LLM-as-a-service, was proven capable of generating
executable test cases for newly reported bugs as shown in Table 3.
Overall, in over 55% cases, the new bug reports could effectively
serve as prompts to generate an executable test case. Through
manual analysis, we confirmed that the generated test case reflects
the described behaviour.

Project # new bugs # executable % executable % valid over exec.
Cli 3 0 0% -
Lang 12 8 67% 50%
Math 5 2 40% -

JacksonDatabind 5 4 80% 100%
Jsoup 13 7 54% -
Total 38 21 55% 47%
Table 3: Executability for newly reported bugs

Acknowledgement. This work is supported by funding from the
European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant agreement
No. 949014).

REFERENCES
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. 2020. Language models are few-shot learners. Advances in neural information
processing systems 33 (2020), 1877–1901.

[2] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416–419.

[3] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
program repair. Commun. ACM 62, 12 (2019), 56–65.

[4] Kui Liu, Anil Koyuncu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein, and
Yves Le Traon. 2019. You cannot fix what you cannot find! an investigation of
fault localization bias in benchmarking automated program repair systems. In
2019 12th IEEE conference on software testing, validation and verification (ICST).
IEEE, 102–113.

[5] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou,
Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. CoRR abs/2102.04664 (2021).

361


