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ABSTRACT
This study reconceptualizes International Classification of Diseases

(ICD) coding as a complex multi-label prediction challenge, ne-

cessitating the allocation of one or more codes to comprehensive

discharge summaries. Contemporary automatic ICD codingmethod-

ologies struggle to efficiently categorize medical diagnostic nar-

ratives embodying intricate sparse classifications when their pa-

rameters undergo modification via conventional backpropagation

approaches. We introduce LGG-NRGrand, an innovative adversarial

framework that reframes ICD coding as a labeled graph genera-

tion task. A critical obstacle in this domain is the prevalent Over-

Smoothing phenomenon in deep graph neural networks, which

leads to the acquisition of homogeneous or indiscernible node rep-

resentations. Our model is engineered to enhance the learning

capacity of heterogeneous graph representations within a multi-

tiered network structure. At this level, we propose NRGrand, a
single-relational deep graph neural network architecture designed

to alleviate the Over-Smoothing issue while capturing more nu-

anced graph feature information during the representation learning

process. The training of LGG-NRGrand is accomplished through an

adversarial reinforcement architecture, utilizing an adversarial do-

main adaptation strategy. Empirical evaluations demonstrate that

LGG-NRGrand outperforms existing methodologies across pivotal

assessment metrics, including micro-F1, micro-AUC, and P@K.

CCS CONCEPTS
•Computingmethodologies→ Information extraction;Natu-
ral language generation; Discourse, dialogue and pragmatics.
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1 INTRODUCTION
Automated International Classification of Diseases (ICD) coding,

which involves assigning ICD codes to patient visits, has garnered

considerable attention owing to its potential to reduce the time

and labor required for billing [24, 21, 25]. Historically, healthcare

institutions have been compelled to engage the services of special-

ized coders for the execution of the International Classification of

Diseases (ICD) coding process. This approach is associated with

significant drawbacks, such as high financial costs, lengthy time

investments, and susceptibility to errors. Consequently, numerous

alternative methodologies aimed at automating the ICD coding

process have been proposed and explored since the 1990s [7].

Recent approaches to this task predominantly frame it as a multi-

label classification problem [34, 11, 40, 30, 29]. These methods

employ deep learning techniques to extract representations of Elec-

tronic Medical Records (EMRs) using Recurrent Neural Network

(RNN) or Convolutional Neural Network (CNN) encoders, and sub-

sequently predict ICD codes using multi-label classifiers. State-

of-the-art methodologies have introduced label attention, which

utilizes code representations as attention queries to extract code-

related representations [15]. In addition, numerous studies have

proposed leveraging the hierarchical structure of ICD codes [8, 35,

4] and integrating code descriptions to enhance label representa-

tions and improve the overall performance of the automated ICD

coding process.

Through our analysis of the International Classification of Dis-

eases (ICD) codes, we discovered that only 122 of the 9,219 codes

correspond to the most common top 50, indicating a severe imbal-

ance in the distribution of codes and a predominance of inactive

codes in clinical texts. Moreover, the majority of prior methods

https://orcid.org/0000-0002-1841-539X
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Figure 1: A hierarchical diagram of the International Clas-
sification of Diseases, Ninth Revision (ICD-9) codes, along
with an example of the automatic ICD coding task. In this
task, the model takes clinical text as input and outputs the
predicted ICD codes.

neglect or undervalue the relationships between ICD codes, such

as parent-child, sibling, and mutually exclusive relationships [15,

34]. Lastly, existing approaches rely on a single training method to

update parameters [28, 26, 9], which may result in failure for some

clinical texts covering uncommon disorders.

To address the difficulties discussed above, we propose a novel

approach for automated ICD coding that formulates the task as a

labeled graph generation problem along the ICD code graph. The

majority of neural network methods treat automated coding as a

multi-label prediction problem [14, 3]. In contrast to the majority of

preceding methodologies, which address this challenge as a multi-

label prediction issue, we approach it as a labeled graph generation

problem. Our proposed method, LGFat-RGCN, comprises several

components, including a Labeled Graph Generator (LGG), a Labeled

Graph Discriminator (LGD), and a Message Integration Module

(MIM). When provided with clinical text, the text encoder generates

an input representation, which is then fed to MIM to model the

relationships between clinical text and ICD codes. Specifically, the

LGG aims to generate graph labels that are indistinguishable from

original ICD labels, while the LGD aims to differentiate between

original and generated ICD labels.

We conduct extensive experiments on the MIMIC-III benchmark

dataset [10] to empirically demonstrate the effectiveness of our pro-

posed method, LGFat-RGCN. Our experimental results show that

LGFat-RGCN outperforms state-of-the-art techniques by a signifi-

cant margin. In summary, the key contributions of this paper in-

clude:

• We propose a novel approach that formulates automatic ICD

coding as a labeled graph generation task and introduce

a multi-algorithm model named LGFat-RGCN. Notably, we
design a Labeled Graph Discriminator (LGD) that evaluates

intermediate rewards as supervision signals for LGFat-RGCN.
• We introduce a Message Integration Module (MIM) that mod-

els the parent-child, sibling, and mutually exclusive relation-

ships among ICD codes in order to improve the accuracy of

automatic ICD coding.

• We demonstrate the effectiveness of proposed LGFat-RGCN
in generating ICD codes by achieving superior performance

over several baseline models on three benchmark datasets.

2 RELATEDWORK
2.1 Automatic ICD Coding
The automatic EHR coding task has garnered significant attention

in recent years, with a multitude of studies exploring various ap-

proaches such as joint word and label embeddings [27], multitask

classification [18], and separate machine learning models for differ-

ent EHR modalities [36]. Our work distinguishes itself from prior

research in two ways. Firstly, we frame automatic EHR coding

task as a labeled graph generation problem, a novel approach not

explored in previous studies. Secondly, our proposed framework in-

corporates various types of relationships between entities, allowing

for more comprehensive modeling of EHR data.

2.2 Graph Representation Learning
The domain of knowledge graphs has witnessed the emergence of

various solutions for graph representation learning, regarded as

a pivotal technology in this field. These solutions can be broadly

categorized into four primary classifications: translation distance

models [6], semantic matching models [38], random walk models

[33], and subgraph aggregation models [32]. Knowledge graph

representation learning models grounded in translation distance

predominantly encompass the Trans family of models, exemplified

by the TransE model [2].

3 METHODOLOGY
As illustrated in Figure 2, the LGFat-RGCN encompasses two prin-

cipal components: the labeled graph generator𝐺𝜃 and the labeled

graph discriminator 𝐷𝜁 . In the following sections, we expound

upon the architecture of LGFat-RGCN.

3.1 Labeled Graph Generator 𝐺𝜃

The labeled graph generation process is denoted by < S,A,T ,R >.

Within this formulation, S represents the state space, while A
constitutes the set of all feasible actions. For example, the subset

of A corresponding to a specific label comprises its neighbors in

the global graph. The transition function, denoted by T , facilitates

the progression of state transitions, whereas R signifies the reward

function associated with each (state, action) pair. To encourage 𝐺𝜃

to generate labels akin to ground truth, we propose maximizing the

expected rewards via the reinforce algorithm. Given a trajectory

𝜏 = 𝑠1, 𝑎1, 𝑠2, 𝑎2, ..., 𝑠𝑇 , 𝑎𝑇 , where a denotes an action, the expected

payoff can be computed using Equation 1, 2 and 3. Furthermore, 𝑅𝜃
yields the average expected value for the rewards across trajectories.

𝑅(𝜃 ) = 𝐸𝜏∼𝑃𝜃 (𝜏 ) [𝑅(𝜏)]
= 𝐸𝑎∼𝜋 (𝑎)

(1)

𝑅(𝜃 ) = 𝐸𝑎∼𝜋 (𝑎 |𝑆=𝑠,𝑋=𝑥 ;𝜃 ) [Σ𝑖𝑅 (𝑠 = 𝑠𝑖 , 𝑋 = 𝑥, 𝑎𝑖 )]
= Σ𝑡Σ𝑎𝑖 ∈A𝜋 (𝑎𝑖 | 𝑠 = 𝑠𝑖 , 𝑋 = 𝑥 ;𝜃 ) 𝑅𝑖

(2)

𝑅𝑖 = 𝑅 (𝑠 = 𝑠𝑖 , 𝑋 = 𝑥, 𝑎𝑖 ) (3)

In this context, 𝑅(𝜃 ) denotes the expected reward derived from

a single trajectory, while 𝑅(𝜃 ) signifies the anticipated aggregate

reward obtained from one episode, and 𝜏 represents the trajectory
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Figure 2: As delineated in the LGFat-RGCN framework, there are two pivotal components: the Label Generator 𝐺𝜃 and the Label
Discriminator 𝐷𝜁 . A thorough elucidation of MIM, MHR-CNN, and Fat-RGCN will be provided in the ensuing sections.

Figure 3: Message Integration Module (MIM).
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Figure 5: Fat-RCGN.

itself. The labeled graph generator is expressed as 𝐺𝜃 , with its

hybrid policy network given by 𝜋 (𝑎𝑖 |𝑠 = 𝑠𝑖 , 𝑋 = 𝑥 ;𝜃 ). Here, 𝑎𝑖
refers to the label generated based on the current states 𝑠𝑖 and x,
and 𝑅(𝑠 = 𝑠𝑖 , 𝑋 = 𝑥, 𝑎𝑖 ) constitutes the reward for producing 𝑎𝑖
contingent upon 𝑠𝑖 and x. The label 𝑎𝑖 can be incorporated into the

module𝐷𝜁 . Subsequently, we elucidate how the policy gradient can

be employed to adjust𝜃 , (notably,𝑅(𝑠 = 𝑠𝑖 , 𝑋 = 𝑥, 𝑎𝑖 ) is independent
of 𝜃 ):

▽𝑅(𝜃 ) = Σ
𝑡

Σ
𝑎𝑖 ∈A

𝜋 (𝑎𝑖 |𝑠 = 𝑠𝑖 , 𝑋 = 𝑥 ;𝜃 )

▽ log𝜋 (𝑎𝑖 |𝑠 = 𝑠𝑖 , 𝑋 = 𝑥 ;𝜃 )
(4)

The expression 𝜋 (𝑎𝑖 |𝑠 = 𝑠𝑖 , 𝑋 = 𝑥 ;𝜃 ) can be articulated as Equa-

tion 5:

𝜋 (𝑎𝑖 |𝑠 = 𝑠𝑖 , 𝑋 = 𝑥 ;𝜃 ) = 𝜎 (𝑊 (𝑠𝑖 ) + 𝑏𝑖 ) (5)

In this representation, W corresponds to a matrix and b denotes a
bias term, while the sigmoid activation function is symbolized by

𝜎 .

3.2 Labeled Graph Discriminator 𝐷𝜁

We devise the trajectory discriminator module 𝐷𝜁 to procure the

reward𝑚𝑡 for each code within the generated path (𝑐1, 𝑐2,...,𝑐𝑖 ) up

to time step 𝑖 . More precisely, we model ℎ𝑖 as the discrimination

probability, as elaborated below:

ℎ𝑖 = 𝑅 (𝑠=𝑠𝑖 ,𝑋=𝑥,𝑎=𝑎𝑖 )
= 𝑝𝑠 ((𝑐1, 𝑐2, 𝑐3, ..., 𝑐𝑖 ), 𝑥)
= 𝜎 (𝑀ℎ (𝐿𝑆𝑇𝑀 (ℎ𝑘−1

, 𝑐𝑘 ) ⊕ 𝑥))
(6)

In this formulation, ⊕ symbolizes the concatenation operation,

while𝑀ℎ denotes the weight matrix; 𝑐𝑖 refers to the current gener-

ated trajectory obtained through iterative application of an LSTM

to the ICD code path. To ascertain and gauge the accuracy of 𝐷𝜁 ,
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we employ a cross-entropy function, which is defined as:

𝐿𝑜𝑠𝑠𝑠 = − Σ
(𝑦𝑖 ,𝑥 ) ∈𝑆+

log𝑝𝑠 (𝑦𝑖 , 𝑥)−

Σ
(𝑦𝑖 ,𝑥 ) ∈𝑆−

log(1 − 𝑝𝑠 (𝑦𝑖 , 𝑥))
(7)

In this expression, 𝑆+ and 𝑆− correspond to positive and negative

samples, respectively, while 𝑝𝑠 (𝑦𝑡 , 𝑥) designates the probability

that the sample (𝑦𝑖 , x) is categorized as a positive instance.

3.3 Message Integration Module (MIM)
Our principal encoder for clinical representations is the RPGNet,

which encompasses three stages: EHR-to-Path Message Release

(EPMR), Parent-to-child message passing (PCMP), and Sibling-to-

Sibling Message Release (SSMR). Consequently, the state 𝑠𝑡 can be

encoded as depicted by MIM in Figure 2:

𝑠𝑡 = (1 −𝐺 (𝑟,𝑊𝑔))𝑟 +𝐺 (𝑟,𝑊𝑔)𝑚𝑡 (8)

where𝑊𝑔 is a weight matrix and 𝐺 is a control gate for informa-

tion transformation based on the 𝑟 and𝑚𝑡 representations of EHR,

respectively.

3.3.1 EPMR. The symbolic representation of the relationship be-

tween an EHR and an ICD trajectory, denoted by 𝑔𝑖 , can be gener-

ated as elaborated below:

𝑟𝑡 = (𝑥𝑖 · 𝑝𝑡 )⌢ (𝑥𝑖 + 𝑝𝑡 )⌢ (𝑥𝑖 − 𝑝𝑡 )⌢ (𝑝𝑡 − 𝑥𝑖 )
𝑔𝑖 = tanh(𝑊𝑝 (𝑥⌢𝑖 𝑝⌢𝑡 𝑟𝑡 ))

(9)

In this context,𝑊𝑝 represents the weight matrix, and
⌢

symbolizes

concatenation. The parameter within𝑊𝑝 is derived from distinct

transformations of the EHR representation 𝑟𝑡 and the path repre-

sentation 𝑝𝑡 .

3.3.2 PCMP. PCMP is employed to capture the relationship be-

tween parent and child ICD codes of ICD code 𝑟𝑖 . The association

between an EHR and an ICD trajectory is characterized as 𝑝𝑡 . Subse-

quently, this relational representation is propagated from the parent

code to all its child codes, generating the relation representation

𝑚𝑖 : 𝑛𝑖 = 𝑟𝑖 ·𝑠𝑝𝑡 . Here, · signifies the element-wise product operation,

and 𝑠
𝑝
𝑡 represents the vector representation of each child ICD code.

3.3.3 SSMR. SSMR is employed to encode the associations among

sibling ICD codes by facilitating the exchange of information be-

tween them. The corresponding formulation is presented below:

𝑀𝑖 = Σ
𝑛∈𝑆𝑏𝑖

𝐶𝑎𝑡𝑡𝑛 (𝑏𝑖 , 𝑏𝑛𝑖 ) + 𝑏𝑖 (10)

In this representation, 𝐶𝑎𝑡𝑡𝑛 refers to the attention function, 𝑆𝑏𝑖
corresponds to all ICD siblings of code 𝑏𝑖 , and 𝑏

𝑛
𝑖
designates the

𝑛-th ICD sibling of code 𝑏𝑖 .

3.4 MHR-CNN for 𝐺𝜃 ’s Embedding
Multi-Header Convolutional Filter (MCF): Let us assume there are

m filters, 𝑓1, 𝑓2, ..., 𝑓𝑛 , with kernel sizes represented by 𝑘1, 𝑘2, ..., 𝑘𝑛 .

Consequently, m 1-dimensional convolutions can be applied to the

input matrix X. The formalization of the convolutional approach is

presented below:

𝐹1 = 𝑓1 (𝑋 ) =
𝑙∧
𝑗=1

tanh

(
𝑊𝑇

1
𝑋 𝑗 :𝑗+𝑘1−1

)
𝐹𝑛 = 𝑓𝑛 (𝑋 ) =

𝑙∧
𝑗=1

tanh

(
𝑊𝑇

𝑛 𝑋 𝑗 :𝑗+𝑘𝑛−1

) (11)

In this representation,

∧𝑙
𝑗=1

denotes the left-to-right convolutional

operations. The sub-matrices of 𝑋 are indicated by 𝑋 𝑗 :𝑗+𝑘1−1 ∈
R𝑘1×𝑑𝑥

and 𝑋 𝑗 :𝑗+𝑘𝑛−1 ∈ R𝑘𝑛×𝑑𝑥
. The weight matrices of the cor-

responding filters are represented by𝑊1 ∈ R(𝑘1×𝑑𝑥 )×𝑑 𝑓
and𝑊𝑛 ∈

R(𝑘𝑛×𝑑
𝑥 )×𝑑 𝑓

.

𝐻𝑚 = 𝑓𝑚 (𝐸) =
𝑛∧
𝑗=1

tanh

(
𝑊𝑇
𝑚𝐸 𝑗 :𝑗+𝑘𝑚−1

)
(12)

Multi-Residual Convolutional Block (MCB): In the multi-filter

convolutional layer, a residual convolutional layer consisting of

p residual blocks is positioned above each filter. Comprising the

residual block 𝑐𝑛𝑖 are three convolutional filters: 𝑐𝑛1, 𝑐𝑛2, and 𝑐𝑛3.

The computational process is denoted as follows:

𝐼1 = 𝑐𝑛𝑖1 (𝐼 ) =
𝑙∧
𝑗=1

tanh

(
𝑊𝑇

𝑛𝑖1
𝐼 𝑗 :𝑗+𝑘𝑛−1

)
,

𝐼2 = 𝑐𝑛𝑖2 (𝐼1 ) ; 𝐼3 = 𝑐𝑛𝑖3 (𝐼1 ) ; 𝐹𝑛𝑖 = tanh (𝐼2 + 𝐼3 ) ,
(13)

The calculation process of a Multi-Residual Convolutional Block

(MCB) is represented by the symbol

∧𝑙
𝑗=1

, which denotes a se-

quence of convolutional operations. 𝐼 is the input matrix of the

block, and 𝐼 𝑗 :𝑗+𝑘𝑛−1 ∈ R𝑘𝑛×𝑑𝑖−1

represents its submatrices. The

weight matrices of the three convolutional filters, namely 𝑐𝑛𝑖1 , 𝑐𝑛𝑖2

and 𝑐𝑛𝑖3 , are represented by 𝑊𝑛𝑖1 ∈ R(𝑘𝑛×𝑑𝑖−1)×𝑑𝑖
and 𝑊𝑛𝑖3 ∈

R(1×𝑑𝑖−1)×𝑑𝑖
. The kernel sizes of 𝑟𝑚𝑖1 and 𝑟𝑚𝑖2 are the same as

the corresponding filter 𝑓𝑚 in the multi-filter convolutional layer,

denoted by 𝑘𝑚 , but they have different in-channel sizes. On the

other hand, 𝑟𝑚𝑖3 is a convolutional filter with a kernel size of 1,

which is special compared to the other filters.

3.5 Fat-RGCN for 𝐷𝜁 ’s Embedding
3.5.1 Attention Mechanism Optimization (AMO). Three dif-
ferent one-hop neighbor-level-based models are currently in use:

Graph Convolutional Networks (GCN), Graph Attention Networks

(GAT), and Relational Graph Convolutional Networks (RGCN). The

GATmodel’s attention formula consists of two components, namely

𝑠𝑖 𝑗 and 𝑛𝑖 𝑗 .

𝛽𝑇 [𝐴𝑚 ∥𝐴𝑛] = [𝛽s + 𝛽n ]𝑇 [𝐴𝑚 ∥𝐴𝑛]
= 𝛽s 𝐴𝑚 + 𝛽n 𝐴𝑛

(14)

In practice, the original GAT model’s parameters are separated

into those of 𝑠𝑖 𝑗 and 𝑛𝑖 𝑗 . The Attention parameter 𝛼 represents the

overall GAT.

In other words, the attention mechanism of the GAT model

comprises both 𝑠𝑖 𝑗 and 𝑛𝑖 𝑗 , resulting in a more comprehensive

approach to attention.
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(15)

3.5.2 One-hopNeighborhoodGraphRepresentation (ONGR).
This section presents a novel model for ONGR that simultaneously

accounts for the influence of nodes, relations, and weights. The

proposed ONGR model employs three attention optimization tech-

niques, including Node Attention in RGCN Convergence (NARC),
Faster Attention Mechanism in Convergence (FAMC), and Faster

Attention in Nodes and Relations (FANR). This model represents a

significant advancement over previous approaches and addresses

several deficiencies identified in the literature. Extensive experi-

mentation confirms the effectiveness of the proposed model, with

empirical results supporting its efficacy.

NARC: TheNARC is to directly include GAT’s Attention during

the RGCN model convergence process.

𝐶𝑢 = 𝐹
©­«

∑︁
(𝑛,𝑟 ) ∈P (𝑢 )

𝛾 (𝑁𝑟 , 𝛽𝐺 ∗ 𝑋𝑛) ∗ 𝑅𝑡
ª®¬ (16)

FAMC: The FAMC strategy adds the Attention weights to the

neighbor nodes. As shown below, the formula for central node

aggregation.

𝐶𝑢 = 𝐹
©­«

∑︁
(𝑛,𝑟 ) ∈P (𝑢 )

𝛾 (𝑁𝑟 , 𝛽𝑂 ∗ 𝑋𝑛) ∗ 𝑅𝑡 ª®¬ (17)

The remaining processing techniques are the same as in the

first scheme, where 𝛽𝑂 stands for the modified GAT’s Attention

aggregation approach.

FANR: The FANR strategy adds Attention weights to nearby

nodes and relations.

𝐶𝑢 = 𝐹
©­«

∑︁
(𝑛,𝑟 ) ∈P (𝑢 )

𝛾 (𝑁𝑟 , 𝑋𝑛) ∗ 𝑅𝑡 ∗ 𝛽𝑂
ª®¬ (18)

As a key step in the proposed methodology, the node represen-

tation 𝑋𝑛 and relationship representation 𝑁𝑟 are first combined

using the 𝛾 function. Subsequently, we introduce the use of 𝛽𝑂
to determine the weights of the combined representations. This

weighting process serves to selectively focus on the most relevant

features, thereby improving the accuracy of graph neural networks

in capturing complex relationships.

3.5.3 Multi-hopNeighborhoodGraphRepresentation (MNGR).
We suggest a gate mechanism be used to filter nodes, given that

the inclusion of a significant number of two-hop neighbor nodes

results in noise, alongside accurate information. To depict the node

aggregation process in MNGR, we present the following equation.

𝐶𝑢𝑖 = 𝐹
©­«

∑︁
(𝑛,𝑟 ) ∈P (𝑢 )

𝛾 (𝑍𝑟𝑖 , 𝑋𝑛𝑖 )𝑊𝑟
ª®¬ (19)

𝐶𝑢 𝑗 = 𝐹
©­«

∑︁
(𝑛,𝑟 ) ∈P (𝑢 )

𝛾
(
𝑍𝑟 𝑗 , 𝑋𝑛𝑗

)
𝑊𝑟

ª®¬ (20)

𝐶𝑢 =
(
1 − 𝐷

(
𝐶𝑢 𝑗

) )
·𝐶𝑢 𝑗 + 𝐷

(
𝐶𝑢 𝑗

)
·𝐶𝑢𝑖 (21)

We propose that the gate mechanism 𝐷 (𝐶𝑢 𝑗 ) be applied to filter

𝐶𝑢𝑖 and 𝐶𝑢 𝑗 , following the aggregation of one-hop neighbors and

two-hop neighbors. The letters𝐶𝑢𝑖 and𝐶𝑢 𝑗 are utilized to represent

𝐷 (𝐶𝑢 𝑗 ) after these aggregations.

3.5.4 Multi-hop Model Integration (MHMI). The revised algo-

rithm model is extensively detailed at the one-hop and multi-hop

neighbor levels. Subsequently, we introduceMHMI - a novel, multi-

relational deep graph representation constructed by integrating

multiple-level enhancement techniques. Figure 4 depicts the archi-

tecture of this model.

The convergence equation that leverages the Attention mecha-

nism of the modified GAT to calculate 𝛽𝑂 is presented below.

𝐶𝑢 =
(
1 − 𝐷

(
𝐶𝑢 𝑗

) )
·𝐶𝑢 𝑗 + 𝐷

(
𝐶𝑢 𝑗

)
·𝐶𝑢𝑖 (22)

𝐷
(
𝐶𝑢 𝑗

)
= 𝜎

(
𝑋 +𝐴𝑢 𝑗

)
(23)

The aforementioned formula is evidently based on the multi-hop

scheme convergence of 𝐶𝑢𝑖 and 𝐶𝑢 𝑗 .

4 EXPERIMENTAL SETUP
In this section, we conduct comprehensive experiments aimed at

addressing the following research questions:

• RQ-1:What is the performance of LGFat-RGCN?
• RQ-2:What is the impact of the key design choices on the perfor-
mance of LGFat-RGCN?

• RQ-3: To what extent is LGFat-RGCN effective on multi-relational
medical graph data?

4.1 Dataset
MIMIC-III[10]. LGFat-RGCN validation utilized the publicMIMIC-

III dataset ( 50,000 records, 2000-2012); distinguished as MIMIC-III

full and MIMIC-III top 50.

Cora[13]. The Cora graph dataset encodes nodes using 1433-

dimensional vectors, representing features tied to dictionary terms;

1433 features correspond to the lexicon in 2708 papers.

FB15k-237 [19]. FB15k-237, a subset of Freebase knowledge

base [5] and FB15k [2], comprises 14,541 nodes with 237 edge types,

resembling Wikipedia’s metadata [22] in a graph database format.

4.2 Metrics
In the experimental section, the evaluationmetrics for the LGFat-RGCN
model include Accuracy, MR, MRR, Hit@1, Hit@3, and Hit@10, as

described in [31].
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4.3 Baselines
Hierarchy-SVM & Flat-SVMs [16]. This study proposes two

encoding strategies for ICD9 codes: an independent treatment of

each code (Flat-SVMs) and a hierarchical consideration of ICD9

codes (Hierarchy-SVM).

C-MemNN [17] & C-LSTM-Att [20]. C-MemNN employs itera-

tive memory condensation, while C-LSTM-Att utilizes character-

aware neural language models for hidden representations.

BI-GRU [39] & HA-GRU [1]. BI-GRU employs bidirectional

gated recurrent units for EHRs integrated embedding, while HA-

GRU, an enhanced version, improves the architecture’s effective-

ness.

CAML & DR-CAML [15]. CAML utilizes convolutional atten-

tion networks for ICD embeddings, while DR-CAML enhances this

method for improved performance.

LAAT & JointLAAT [26]. LAAT introduces ICD code-encoded

hidden state attention learning in LSTM, while JointLAAT expands

it with a hierarchical joint learning approach.

ISD [40] & MSMN [37] & FUSION [12]. ISD presents a model

linking related diagnoses; MSMN uses synonym matching for ICD

classification; FUSION tackles redundant diagnosis vocabulary.

5 RESULT AND ANALYSIS
5.1 [RQ-1] Overall Performance and

Comparison)
To address RQ1, we present the experimental results from the

MIMIC-III dataset for both fundamental core assessment metrics

and personalized metrics in Table 1. Upon careful examination of

the data presented in Table 1, we draw the following conclusions.

Firstly, the LGFat-RGCNmodel yields the best results across both

fundamental core assessment metrics and personalized metrics,

demonstrating its efficacy and superiority. The relatively small and

varying standard deviation values of the evaluation metrics for the

LGFat-RGCN model attest to the model’s stability.

Secondly, compared to LGFat-RGCN, the relatively low AUC and

F1 scores for CAML and JointLAAT suggest that these models have

limited coverage of rare codes.

Lastly, an analysis and comparison of recursive models based on

the GRU class in Table 1 reveal their relatively poor performance

compared to other models. The issue of gradient disappearance can

be addressed by incorporating a carefully designed CNN residual

connection structure.

✍ Answer to RQ-1: ▶ To sum up, our study on the MIMIC-
III dataset (Table 1) demonstrates the superior performance of
LGFat-RGCN in fundamental and personalized metrics. Small stan-
dard deviations suggest its stability. Limited coverage of rare codes
is implied by low AUC and F1 scores for CAML and JointLAAT, and
recursive models based on the GRU class require a CNN residual
connection structure to address gradient disappearance. ◀

The ablation study conducted on the LGFat-RGCN model, as de-

tailed in Table 2, demonstrates the importance of individual compo-

nents to the model’s overall performance. Removing ARCL, MIM,

MR MRR Hit@1 Hit@3 Hit@10
Metrics

0

10

20

30

40

50

Re
la

tiv
e 

In
cr

ea
se

 (%
)

RGCN
RGCN+NARC
RGCN+FAMC
RGCN+FANR

(a) FB15K-237

MR MRR Hit@1 Hit@3 Hit@10
Metrics

0

5

10

15

20

25

30

35

40

Re
la

tiv
e 

In
cr

ea
se

 (%
)

RGCN
RGCN+NARC
RGCN+FAMC
RGCN+FANR

(b) CORA

Figure 6: Experimental results of attentional optimization
mechanisms in one-hop neighborhood graph representation
schemes on the FB15k-237 and Cora dataset.

or MHR-CNN resulted in substantial declines in the performance

metrics across both the MIMIC-III Full and Top50 datasets. The

most significant performance deterioration was observed in the

absence of the ARCL module, followed by MHR-CNN and MIM.

These results emphasize the necessity of each component in the

LGFat-RGCN model for achieving optimal performance in multi-

relational medical graph data analysis.

5.2 [RQ-2] LGFat-RGCN Ablation
As delineated in Table 2, several ablation scenarios were assessed

for the LGFat-RGCN model:

1) No ARCL: The absence of ARCL resulted in a substantial

performance deterioration of the LGFat-RGCN model. Notably, the

macro AUC and micro AUCmeasures for the MIMIC-III Full dataset

declined by 15.16% and 13.13%, respectively. A similar trend was

observed in the MIMIC-III Top50 dataset.

2) No MIM: Excluding the MIM component led to a comparable

performance reduction for the LGFat-RGCN model. For instance,

in the MIMIC-III Top50 dataset, the macro AUC and micro AUC

metrics decreased by 9.07% and 5.97%, respectively.

3) No MHR-CNN: Evaluating the MIMIC-III Full dataset with-

out the MHR-CNN module demonstrated an average decline of

11.02% in both macro AUC and micro AUC measures. An exam-

ination of the comparative experimental outcomes revealed that

the MHR-CNN module in the LGFat-RGCN model enabled a more

precise representation of the MHR-CNN text information.

✍ Answer to RQ-2: ▶ The ablation study in Table 2 highlights
the importance of the LGFat-RGCN model’s components. Removing
ARCL, MIM, or MHR-CNN led to considerable performance declines
across both MIMIC-III datasets. The results emphasize the criti-
cal role of each component in the LGFat-RGCN model for optimal
performance in medical graph data analysis. ◀

5.3 [RQ-3] Representation Experiment
5.3.1 Attention Optimization Comparison. Figure 6 depicts the ex-
perimental outcomes derived from an array of investigations, en-

compassing RGCN replication, RGCN+NARC, RGCN+FAMC, and
RGCN+FANR. The two bar plots displaying experimental results

feature relative boosting metrics on the vertical axis. As indicated

by the results in Figure 6, the integration of attention mechanisms

into the heterogeneous graph representation model RGCN, whether
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Table 1: Experiment results on MIMIC-III Top50 and MIMIC-III Full. The results of LGFat-RGCN are shown in means ± standard
deviations

Model

MIMIC-III Full MIMIC-III Top50

AUC F1

P@8

AUC F1

P@5

Macro Micro Macro Micro Macro Micro Macro Micro

Hierarchy-SVM 0.456 0.438 0.009 0.001 0.202 0.376 0.368 0.041 0.079 0.144

Flat-SVMs 0.482 0.467 0.011 0.002 0.242 0.439 0.401 0.048 0.093 0.179

C-MemNN 0.833 0.913 0.082 0.514 0.695 0.824 0.896 0.509 0.588 0.596

C-LSTM-Att 0.831 0.908 0.079 0.511 0.687 0.816 0.892 0.501 0.575 0.574

BI-GRU 0.500 0.547 0.002 0.140 0.317 0.501 0.594 0.035 0.268 0.228

HA-GRU 0.501 0.509 0.017 0.004 0.296 0.500 0.436 0.072 0.124 0.205

CAML 0.895 0.959 0.088 0.539 0.709 0.875 0.909 0.532 0.614 0.609

DR-CAML 0.897 0.961 0.086 0.529 0.609 0.884 0.916 0.576 0.633 0.618

LAAT 0.919 0.963 0.099 0.575 0.738 0.925 0.946 0.666 0.715 0.675

JointLAAT 0.941 0.965 0.107 0.577 0.735 0.925 0.946 0.661 0.716 0.671

ISD 0.938 0.967 0.119 0.559 0.745 0.935 0.949 0.679 0.717 0.682

MSMN 0.943 0.965 0.103 0.584 0.752 0.928 0.947 0.683 0.725 0.680

FUSION 0.915 0.964 0.088 0.636 0.736 0.909 0.933 0.619 0.674 0.647

LGFat-RGCN
0.989 0.998 0.134 0.789 0.798 0.981 0.989 0.754 0.787 0.763

(+4.88%) (+3.21%) (+12.61%) (+19.39%) (+6.12%) (+4.91%) (+4.21%) (+7.10%) (+8.55%) (+11.88%)

± 0.002 ± 0.001 ± 0.001 ± 0.002 ± 0.001 ± 0.001 ± 0.002 ± 0.001 ± 0.002 ± 0.001

Table 2: Ablation experiment results on MIMIC-III Top50 and MIMIC-III Full datasets. The standard deviation of LGFat-RGCN
results is consistent with the previous table, so it is omitted in this table.

Model

MIMIC-III Full MIMIC-III Top50

AUC F1

P@8

AUC F1

P@5

Macro Micro Macro Micro Macro Micro Macro Micro

LGFat-RGCN 0.983 0.998 0.134 0.622 0.798 0.981 0.989 0.754 0.787 0.763
No ARCL 0.834 0.867 0.098 0.509 0.645 0.813 0.852 0.594 0.619 0.521

No MIM 0.901 0.923 0.095 0.547 0.732 0.892 0.930 0.674 0.718 0.626

No MHR-CNN 0.862 0.901 0.099 0.515 0.659 0.833 0.889 0.637 0.629 0.573

through RGCN+NARC, RGCN+FAMC, or RGCN+FANR, results in
marked improvements across the five core metrics. These findings

substantiate the efficacy of the three attention mechanism opti-

mization algorithms proposed in this study. Ultimately, due to the

exceptional performance of FANR, this mechanism is incorporated

into the final LGFat-RGCN model.

5.3.2 Experiments on Gate Mechanism. The experimental frame-

work encompasses three distinct investigations. The initial exper-

iment aims to reproduce the RGCN baseline model and evaluate

its performance. Subsequently, the second experiment, designated

as RGCN+Multi-Hop, extends the RGCN model by incorporating

two-hop node information into the convergence process. The final

experiment, RGCN+Multi-Hop+Gate, integrates a gate mechanism,

as outlined in the AliNet study [23], into the RGCN+Multi-Hop

model. Figure 7 illustrates the percentage magnitude of improve-

ment achieved by the optimized model relative to the baseline

RGCN model, as represented on the vertical axis for each metric as-

sessed. The outcomes depicted in Figure 7 underscore the efficacy of

the gate mechanism introduced in this study, which proficiently fil-

ters out noise information from neighboring nodes while retaining

salient feature information of key adjacent nodes.
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Figure 7: Comparison of core metrics results of graph charac-
terizationmethods based onmulti-hop neighbor aggregation
as well as gate mechanism on FB15k-237 and Cora dataset.

✍ Answer to RQ-3: ▶ In conclusion, the integration of attention
mechanisms and the addition of a gate mechanism into the RGCN
model led to significant improvements in performance. The final
LGFat-RGCN model, incorporating FANR and the gate mechanism,
demonstrated improved accuracy at the top-k recommendation. ◀

6 CONCLUSION
In the present investigation, the encoding and classification of

EHR are reconceptualized as the construction of adversarial hi-

erarchical labeled graphs. This study introduces the adversarial

migration-based labeled graph generation network (LGFat-RGCN),
which incorporates MHR-CNN and Fat-RGCN modules to capture
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diverse medical text patterns, as well as a message integration mod-

ule (MIM) to encode EHR connections. Experimental results on the

MIMIC-III benchmark dataset reveal that the LGFat-RGCN model

notably surpasses multiple comparable baseline models, achiev-

ing the highest performance reported thus far. Future research

endeavors will focus on augmenting the LGFat-RGCN model’s per-

formance through the exploration of prior knowledge incorpora-

tion, automated hyperparameter tuning, an enhanced loss function,

and optimized graph representation in subsequent phases.
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