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ABSTRACT KEYWORDS

This study reconceptualizes International Classification of Diseases
(ICD) coding as a complex multi-label prediction challenge, ne-
cessitating the allocation of one or more codes to comprehensive
discharge summaries. Contemporary automatic ICD coding method-
ologies struggle to efficiently categorize medical diagnostic nar-
ratives embodying intricate sparse classifications when their pa-
rameters undergo modification via conventional backpropagation
approaches. We introduce LGG-NRGrand, an innovative adversarial
framework that reframes ICD coding as a labeled graph genera-
tion task. A critical obstacle in this domain is the prevalent Over-
Smoothing phenomenon in deep graph neural networks, which
leads to the acquisition of homogeneous or indiscernible node rep-
resentations. Our model is engineered to enhance the learning
capacity of heterogeneous graph representations within a multi-
tiered network structure. At this level, we propose NRGrand, a
single-relational deep graph neural network architecture designed
to alleviate the Over-Smoothing issue while capturing more nu-
anced graph feature information during the representation learning
process. The training of LGG-NRGrand is accomplished through an
adversarial reinforcement architecture, utilizing an adversarial do-
main adaptation strategy. Empirical evaluations demonstrate that
LGG-NRGrand outperforms existing methodologies across pivotal
assessment metrics, including micro-F1, micro-AUC, and P@K.

CCS CONCEPTS

« Computing methodologies — Information extraction; Natu-
ral language generation; Discourse, dialogue and pragmatics.
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1 INTRODUCTION

Automated International Classification of Diseases (ICD) coding,
which involves assigning ICD codes to patient visits, has garnered
considerable attention owing to its potential to reduce the time
and labor required for billing [24, 21, 25]. Historically, healthcare
institutions have been compelled to engage the services of special-
ized coders for the execution of the International Classification of
Diseases (ICD) coding process. This approach is associated with
significant drawbacks, such as high financial costs, lengthy time
investments, and susceptibility to errors. Consequently, numerous
alternative methodologies aimed at automating the ICD coding
process have been proposed and explored since the 1990s [7].

Recent approaches to this task predominantly frame it as a multi-
label classification problem [34, 11, 40, 30, 29]. These methods
employ deep learning techniques to extract representations of Elec-
tronic Medical Records (EMRs) using Recurrent Neural Network
(RNN) or Convolutional Neural Network (CNN) encoders, and sub-
sequently predict ICD codes using multi-label classifiers. State-
of-the-art methodologies have introduced label attention, which
utilizes code representations as attention queries to extract code-
related representations [15]. In addition, numerous studies have
proposed leveraging the hierarchical structure of ICD codes [8, 35,
4] and integrating code descriptions to enhance label representa-
tions and improve the overall performance of the automated ICD
coding process.

Through our analysis of the International Classification of Dis-
eases (ICD) codes, we discovered that only 122 of the 9,219 codes
correspond to the most common top 50, indicating a severe imbal-
ance in the distribution of codes and a predominance of inactive
codes in clinical texts. Moreover, the majority of prior methods
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Predicted ICD codes

Figure 1: A hierarchical diagram of the International Clas-
sification of Diseases, Ninth Revision (ICD-9) codes, along
with an example of the automatic ICD coding task. In this
task, the model takes clinical text as input and outputs the
predicted ICD codes.

neglect or undervalue the relationships between ICD codes, such
as parent-child, sibling, and mutually exclusive relationships [15,
34]. Lastly, existing approaches rely on a single training method to
update parameters [28, 26, 9], which may result in failure for some
clinical texts covering uncommon disorders.

To address the difficulties discussed above, we propose a novel
approach for automated ICD coding that formulates the task as a
labeled graph generation problem along the ICD code graph. The
majority of neural network methods treat automated coding as a
multi-label prediction problem [14, 3]. In contrast to the majority of
preceding methodologies, which address this challenge as a multi-
label prediction issue, we approach it as a labeled graph generation
problem. Our proposed method, LGFat-RGCN, comprises several
components, including a Labeled Graph Generator (LGG), a Labeled
Graph Discriminator (LGD), and a Message Integration Module
(MIM). When provided with clinical text, the text encoder generates
an input representation, which is then fed to MIM to model the
relationships between clinical text and ICD codes. Specifically, the
LGG aims to generate graph labels that are indistinguishable from
original ICD labels, while the LGD aims to differentiate between
original and generated ICD labels.

We conduct extensive experiments on the MIMIC-III benchmark
dataset [10] to empirically demonstrate the effectiveness of our pro-
posed method, LGFat-RGCN. Our experimental results show that
LGFat-RGCN outperforms state-of-the-art techniques by a signifi-
cant margin. In summary, the key contributions of this paper in-
clude:

e We propose a novel approach that formulates automatic ICD
coding as a labeled graph generation task and introduce
a multi-algorithm model named LGFat-RGCN. Notably, we
design a Labeled Graph Discriminator (LGD) that evaluates
intermediate rewards as supervision signals for LGFat-RGCN.

e We introduce a Message Integration Module (MIM) that mod-
els the parent-child, sibling, and mutually exclusive relation-
ships among ICD codes in order to improve the accuracy of
automatic ICD coding.

e We demonstrate the effectiveness of proposed LGFat-RGCN
in generating ICD codes by achieving superior performance
over several baseline models on three benchmark datasets.

Zhenghan Chen et al.

2 RELATED WORK
2.1 Automatic ICD Coding

The automatic EHR coding task has garnered significant attention
in recent years, with a multitude of studies exploring various ap-
proaches such as joint word and label embeddings [27], multitask
classification [18], and separate machine learning models for differ-
ent EHR modalities [36]. Our work distinguishes itself from prior
research in two ways. Firstly, we frame automatic EHR coding
task as a labeled graph generation problem, a novel approach not
explored in previous studies. Secondly, our proposed framework in-
corporates various types of relationships between entities, allowing
for more comprehensive modeling of EHR data.

2.2 Graph Representation Learning

The domain of knowledge graphs has witnessed the emergence of
various solutions for graph representation learning, regarded as
a pivotal technology in this field. These solutions can be broadly
categorized into four primary classifications: translation distance
models [6], semantic matching models [38], random walk models
[33], and subgraph aggregation models [32]. Knowledge graph
representation learning models grounded in translation distance
predominantly encompass the Trans family of models, exemplified
by the TransE model [2].

3 METHODOLOGY

As illustrated in Figure 2, the LGFat-RGCN encompasses two prin-
cipal components: the labeled graph generator Gy and the labeled
graph discriminator D;. In the following sections, we expound
upon the architecture of LGFat-RGCN.

3.1 Labeled Graph Generator Gy

The labeled graph generation process is denoted by < S, A, 7, R >.
Within this formulation, S represents the state space, while A
constitutes the set of all feasible actions. For example, the subset
of A corresponding to a specific label comprises its neighbors in
the global graph. The transition function, denoted by 7, facilitates
the progression of state transitions, whereas R signifies the reward
function associated with each (state, action) pair. To encourage Gy
to generate labels akin to ground truth, we propose maximizing the
expected rewards via the reinforce algorithm. Given a trajectory
T = s1, a1, $2, a2, ..., ST, aT, Where a denotes an action, the expected
payoff can be computed using Equation 1, 2 and 3. Furthermore, Ry
yields the average expected value for the rewards across trajectories.

R(0) = Er-p,(r) [R(7)] (1)

= Ea~7r(a)
R(0) = Ea~7r(a|5=s,X=x;9) [ZiR (s = 5i, X = x,a;)] @)
=% 2gean(ails=s5,X=x0)R;
Ri =R(s=si,X = x,aj) (3)

In this context, R(0) denotes the expected reward derived from
a single trajectory, while R(0) signifies the anticipated aggregate
reward obtained from one episode, and 7 represents the trajectory
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Figure 2: As delineated in the LGFat-RGCN framework, there are two pivotal components: the Label Generator Gy and the Label
Discriminator D;. A thorough elucidation of MIM, MHR-CNN, and Fat-RGCN will be provided in the ensuing sections.

itself. The labeled graph generator is expressed as Gg, with its
hybrid policy network given by 7 (a;|s = s;, X = x;0). Here, a;
refers to the label generated based on the current states s; and x,
and R(s = s;,X = x,a;) constitutes the reward for producing g;
contingent upon s; and x. The label g; can be incorporated into the
module D;. Subsequently, we elucidate how the policy gradient can
be employed to adjust 6, (notably, R(s = s;, X = x, a;) is independent
of 0):

VR(O) =% I m(ails =si,X =x;0)
ta;e A (4)

V log n(ajls = si, X = x; 6)

The expression 7 (aj|s = sj, X = x;0) can be articulated as Equa-
tion 5:
Figure 3: Message Integration Module (MIM).

T

Optimized,

n(ajls = si, X = x;0) = o(W(s;) + b;) (5)

In this representation, W corresponds to a matrix and b denotes a
] bias term, while the sigmoid activation function is symbolized by
o.

} Relation ,

attention

3.2 Labeled Graph Discriminator D,

We devise the trajectory discriminator module D, to procure the
reward m; for each code within the generated path (c1, c2,....c;) up
to time step i. More precisely, we model h; as the discrimination
probability, as elaborated below:

Figure 4: MHMIL.
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Figure 5: Fat-RCGN. In this formulation, & symbolizes the concatenation operation,
while My, denotes the weight matrix; ¢; refers to the current gener-
ated trajectory obtained through iterative application of an LSTM
to the ICD code path. To ascertain and gauge the accuracy of Dy,
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we employ a cross-entropy function, which is defined as:

Losss=— % logps(yi,x)—
(yix)eSt (7)
) log(1 - is
(s og(1 - ps(yi, x))

In this expression, St and S~ correspond to positive and negative
samples, respectively, while ps(y;, x) designates the probability
that the sample (y;, x) is categorized as a positive instance.

3.3 Message Integration Module (MIM)

Our principal encoder for clinical representations is the RPGNet,
which encompasses three stages: EHR-to-Path Message Release
(EPMR), Parent-to-child message passing (PCMP), and Sibling-to-
Sibling Message Release (SSMR). Consequently, the state s; can be
encoded as depicted by MIM in Figure 2:

st = (1= G(r, Wy))r + G(r, Wy)m; 8)

where W is a weight matrix and G is a control gate for informa-
tion transformation based on the r and m; representations of EHR,
respectively.

3.3.1 EPMR. The symbolic representation of the relationship be-
tween an EHR and an ICD trajectory, denoted by g;, can be gener-
ated as elaborated below:

re = (xi - pe)” (i +pe)” (xi = pr)” (pr — xi)

gi = tanh(Wp (x; p; 11)) ©)

In this context, W), represents the weight matrix, and — symbolizes
concatenation. The parameter within W}, is derived from distinct
transformations of the EHR representation r; and the path repre-
sentation p;.

3.3.2 PCMP. PCMP is employed to capture the relationship be-
tween parent and child ICD codes of ICD code r;. The association
between an EHR and an ICD trajectory is characterized as p;. Subse-
quently, this relational representation is propagated from the parent
code to all its child codes, generating the relation representation
mi:n; = r 's’to . Here, - signifies the element-wise product operation,

and s‘f represents the vector representation of each child ICD code.

3.3.3 SSMR. SSMR is employed to encode the associations among
sibling ICD codes by facilitating the exchange of information be-
tween them. The corresponding formulation is presented below:

M; = nezsbicann(bi, b}) + b (10)
In this representation, Cyssp refers to the attention function, Sp;
corresponds to all ICD siblings of code b;, and b} designates the
n-th ICD sibling of code b;.

3.4 MHR-CNN for Gy’s Embedding

Multi-Header Convolutional Filter (MCF): Let us assume there are
m filters, fi, fa, ..., fn, With kernel sizes represented by ki, kz, ..., kn.
Consequently, m 1-dimensional convolutions can be applied to the
input matrix X. The formalization of the convolutional approach is
presented below:

Zhenghan Chen et al.

1
Fi = fi(X) = /\ tanh (W x/7171)
j=1

. (11)
Fu = fu(X) = /\ tanh (WnTXj:j*k""l)
j=1
In this representation, /\ﬁ.:1 denotes the left-to-right convolutional
operations. The sub-matrices of X are indicated by X/J*ki=1 ¢
RK1Xd™ and XJJ+kn=1 ¢ RknXd" The weight matrices of the cor-

responding filters are represented by W; € R(ki xd)xd" ynd w, e
R (knxd¥)xd/

n
Hpy = fn(E) = /\ tanh (W B/5n 1) (12)
j=1

Multi-Residual Convolutional Block (MCB): In the multi-filter
convolutional layer, a residual convolutional layer consisting of
p residual blocks is positioned above each filter. Comprising the
residual block ¢;,; are three convolutional filters: c,1, cn2, and cp3.
The computational process is denoted as follows:

l
— _ T 1jj+kn—1
I =cniy(I) = /\tanh (Wm-lljj+ n ),
Jj=1
I = cpiy (I) ;I3 = Cniz (I1); Fpi = tanh (I + I3) ,

(13)

The calculation process of a Multi-Residual Convolutional Block
(MCB) is represented by the symbol /\521,
quence of convolutional operations. [ is the input matrix of the
block, and [/+kn=1 ¢ RknXd"™" represents its submatrices. The
weight matrices of the three convolutional filters, namely cy;,, cpi,

1S,
and cp;,, are represented by Wy;, € R(knxd™")xd" 514 Whi, €

which denotes a se-

R(1xd™)xd" The kernel sizes of mi, and rpy;, are the same as
the corresponding filter f;, in the multi-filter convolutional layer,
denoted by kj,, but they have different in-channel sizes. On the
other hand, rp;, is a convolutional filter with a kernel size of 1,
which is special compared to the other filters.

3.5 Fat-RGCN for D;’s Embedding

3.5.1 Attention Mechanism Optimization (AMO). Three dif-
ferent one-hop neighbor-level-based models are currently in use:
Graph Convolutional Networks (GCN), Graph Attention Networks
(GAT), and Relational Graph Convolutional Networks (RGCN). The
GAT model’s attention formula consists of two components, namely
sij and n;j.

BT [AmllAn] = [Bs +Pa 1" [AmllAn]
= .Bs Am + ﬁn An

In practice, the original GAT model’s parameters are separated
into those of s;j and n;;. The Attention parameter « represents the
overall GAT.

In other words, the attention mechanism of the GAT model
comprises both s;; and n;;, resulting in a more comprehensive
approach to attention.

(14)
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3.5.2 One-hop Neighborhood Graph Representation (ONGR).

This section presents a novel model for ONGR that simultaneously
accounts for the influence of nodes, relations, and weights. The
proposed ONGR model employs three attention optimization tech-
niques, including Node Attention in RGCN Convergence (NARC),
Faster Attention Mechanism in Convergence (FAMC), and Faster
Attention in Nodes and Relations (FANR). This model represents a
significant advancement over previous approaches and addresses
several deficiencies identified in the literature. Extensive experi-
mentation confirms the effectiveness of the proposed model, with
empirical results supporting its efficacy.

NARC: The NARC is to directly include GAT’s Attention during
the RGCN model convergence process.

Cy=F Z

(nr)eP(u)

FAMC: The FAMC strategy adds the Attention weights to the
neighbor nodes. As shown below, the formula for central node
aggregation.

¥ (Nr, BG * Xn) * R (16)

Cy=F Z

(n,r)eP(u)

¥ (Nr, Bo * Xn) = Ry (17)

The remaining processing techniques are the same as in the
first scheme, where fp stands for the modified GAT’s Attention
aggregation approach.

FANR: The FANR strategy adds Attention weights to nearby
nodes and relations.

Cu=F Z

(n,r)eP(u)

Y (Nr, Xn) * Ry * fo (18)

As a key step in the proposed methodology, the node represen-
tation X, and relationship representation N, are first combined
using the y function. Subsequently, we introduce the use of fp
to determine the weights of the combined representations. This
weighting process serves to selectively focus on the most relevant
features, thereby improving the accuracy of graph neural networks
in capturing complex relationships.

3.5.3 Multi-hop Neighborhood Graph Representation (MNGR).

We suggest a gate mechanism be used to filter nodes, given that
the inclusion of a significant number of two-hop neighbor nodes
results in noise, alongside accurate information. To depict the node
aggregation process in MNGR, we present the following equation.

Cui=F Z

(n,r)eP(u)

Y(Zri,Xni) Wr (19)
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CujZF )/(er,an) Wy (20)
(n,r)eP(u)

Cu=(l—D(Cuj))-Cuj+D(Cuj)-Cui (21)

We propose that the gate mechanism D(Cy;) be applied to filter
Cyi and Cyj, following the aggregation of one-hop neighbors and
two-hop neighbors. The letters Cy,; and Cy, are utilized to represent
D(Cy;j) after these aggregations.

3.5.4 Multi-hop Model Integration (MHMI). The revised algo-
rithm model is extensively detailed at the one-hop and multi-hop
neighbor levels. Subsequently, we introduce MHMI - a novel, multi-
relational deep graph representation constructed by integrating
multiple-level enhancement techniques. Figure 4 depicts the archi-
tecture of this model.

The convergence equation that leverages the Attention mecha-
nism of the modified GAT to calculate o is presented below.

u=(l—D(CuJ'))~Cuj+D(Cuj)~Cui (22)

D (Cu]) =0 (X+Auj) (23)

The aforementioned formula is evidently based on the multi-hop
scheme convergence of Cy; and Cy;.

4 EXPERIMENTAL SETUP

In this section, we conduct comprehensive experiments aimed at
addressing the following research questions:

e RQ-1: What is the performance of LGFat-RGCN?

o RQ-2: What is the impact of the key design choices on the perfor-
mance of LGFat-RGCN?

o RQ-3: To what extent is LGFat-RGCN effective on multi-relational
medical graph data?

4.1 Dataset

MIMIC-III[10]. LGFat-RGCN validation utilized the public MIMIC-
III dataset ( 50,000 records, 2000-2012); distinguished as MIMIC-III
full and MIMIC-III top 50.

Cora[13]. The Cora graph dataset encodes nodes using 1433-
dimensional vectors, representing features tied to dictionary terms;
1433 features correspond to the lexicon in 2708 papers.

FB15k-237 [19]. FB15k-237, a subset of Freebase knowledge
base [5] and FB15k [2], comprises 14,541 nodes with 237 edge types,
resembling Wikipedia’s metadata [22] in a graph database format.

4.2 Metrics

In the experimental section, the evaluation metrics for the LGFat-RGCN
model include Accuracy, MR, MRR, Hit@1, Hit@3, and Hit@10, as
described in [31].
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4.3 Baselines

Hierarchy-SVM & Flat-SVMs [16]. This study proposes two
encoding strategies for ICD9 codes: an independent treatment of
each code (Flat-SVMs) and a hierarchical consideration of ICD9
codes (Hierarchy-SVM).

C-MemNN [17] & C-LSTM-Att [20]. C-MemNN employs itera-
tive memory condensation, while C-LSTM-Att utilizes character-
aware neural language models for hidden representations.

BI-GRU [39] & HA-GRU [1]. BI-GRU employs bidirectional
gated recurrent units for EHRs integrated embedding, while HA-
GRU, an enhanced version, improves the architecture’s effective-
ness.

CAML & DR-CAML [15]. CAML utilizes convolutional atten-
tion networks for ICD embeddings, while DR-CAML enhances this
method for improved performance.

LAAT & JointLAAT [26]. LAAT introduces ICD code-encoded
hidden state attention learning in LSTM, while JointLAAT expands
it with a hierarchical joint learning approach.

ISD [40] & MSMN [37] & FUSION [12]. ISD presents a model
linking related diagnoses; MSMN uses synonym matching for ICD
classification; FUSION tackles redundant diagnosis vocabulary.

5 RESULT AND ANALYSIS

5.1 [RQ-1] Overall Performance and
Comparison)

To address RQ1, we present the experimental results from the
MIMIC-III dataset for both fundamental core assessment metrics
and personalized metrics in Table 1. Upon careful examination of
the data presented in Table 1, we draw the following conclusions.

Firstly, the LGFat-RGCN model yields the best results across both
fundamental core assessment metrics and personalized metrics,
demonstrating its efficacy and superiority. The relatively small and
varying standard deviation values of the evaluation metrics for the
LGFat-RGCN model attest to the model’s stability.

Secondly, compared to LGFat-RGCN, the relatively low AUC and
F1 scores for CAML and JointLAAT suggest that these models have
limited coverage of rare codes.

Lastly, an analysis and comparison of recursive models based on
the GRU class in Table 1 reveal their relatively poor performance
compared to other models. The issue of gradient disappearance can
be addressed by incorporating a carefully designed CNN residual
connection structure.

# Answer to RQ-1: » To sum up, our study on the MIMIC-
III dataset (Table 1) demonstrates the superior performance of
LGFat-RGCN in fundamental and personalized metrics. Small stan-
dard deviations suggest its stability. Limited coverage of rare codes
is implied by low AUC and F1 scores for CAML and JointLAAT, and
recursive models based on the GRU class require a CNN residual
connection structure to address gradient disappearance. <

The ablation study conducted on the LGFat-RGCN model, as de-
tailed in Table 2, demonstrates the importance of individual compo-
nents to the model’s overall performance. Removing ARCL, MIM,

Zhenghan Chen et al.
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Figure 6: Experimental results of attentional optimization
mechanisms in one-hop neighborhood graph representation
schemes on the FB15k-237 and Cora dataset.

or MHR-CNN resulted in substantial declines in the performance
metrics across both the MIMIC-III Full and Top50 datasets. The
most significant performance deterioration was observed in the
absence of the ARCL module, followed by MHR-CNN and MIM.
These results emphasize the necessity of each component in the
LGFat-RGCN model for achieving optimal performance in multi-
relational medical graph data analysis.

5.2 [RQ-2] LGFat-RGCN Ablation

As delineated in Table 2, several ablation scenarios were assessed
for the LGFat-RGCN model:

1) No ARCL: The absence of ARCL resulted in a substantial
performance deterioration of the LGFat-RGCN model. Notably, the
macro AUC and micro AUC measures for the MIMIC-III Full dataset
declined by 15.16% and 13.13%, respectively. A similar trend was
observed in the MIMIC-III Top50 dataset.

2) No MIM: Excluding the MIM component led to a comparable
performance reduction for the LGFat-RGCN model. For instance,
in the MIMIC-III Top50 dataset, the macro AUC and micro AUC
metrics decreased by 9.07% and 5.97%, respectively.

3) No MHR-CNN: Evaluating the MIMIC-III Full dataset with-
out the MHR-CNN module demonstrated an average decline of
11.02% in both macro AUC and micro AUC measures. An exam-
ination of the comparative experimental outcomes revealed that
the MHR-CNN module in the LGFat-RGCN model enabled a more
precise representation of the MHR-CNN text information.

# Answer to RQ-2: » The ablation study in Table 2 highlights
the importance of the LGFat-RGCN model’s components. Removing
ARCL, MIM, or MHR-CNN led to considerable performance declines
across both MIMIC-III datasets. The results emphasize the criti-
cal role of each component in the LGFat-RGCN model for optimal
performance in medical graph data analysis. <

5.3 [RQ-3] Representation Experiment

5.3.1 Attention Optimization Comparison. Figure 6 depicts the ex-
perimental outcomes derived from an array of investigations, en-
compassing RGCN replication, RGCN+NARC, RGCN+FAMC, and
RGCN+FANR. The two bar plots displaying experimental results
feature relative boosting metrics on the vertical axis. As indicated
by the results in Figure 6, the integration of attention mechanisms
into the heterogeneous graph representation model RGCN, whether
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Table 1: Experiment results on MIMIC-III Top50 and MIMIC-III Full. The results of LGFat-RGCN are shown in means + standard

deviations
MIMIC-III Full MIMIC-III Top50
Model AUC F1 AUC F1
Macro Micro Macro Micro @8 Macro Micro Macro Micro @5
Hierarchy-SVM 0.456 0.438 0.009 0.001 0.202 0.376 0.368 0.041 0.079 0.144
Flat-SVMs 0.482 0.467 0.011 0.002 0.242 0.439 0.401 0.048 0.093 0.179
C-MemNN 0.833 0.913 0.082 0.514 0.695 0.824 0.896 0.509 0.588 0.596
C-LSTM-Att 0.831 0.908 0.079 0.511 0.687 0.816 0.892 0.501 0.575 0.574
BI-GRU 0.500 0.547 0.002 0.140 0.317 0.501 0.594 0.035 0.268 0.228
HA-GRU 0.501 0.509 0.017 0.004 0.296 0.500 0.436 0.072 0.124 0.205
CAML 0.895 0.959 0.088 0.539 0.709 0.875 0.909 0.532 0.614 0.609
DR-CAML 0.897 0.961 0.086 0.529 0.609 0.884 0.916 0.576 0.633 0.618
LAAT 0.919 0.963 0.099 0.575 0.738 0.925 0.946 0.666 0.715 0.675
JointLAAT 0.941 0.965 0.107 0.577 0.735 0.925 0.946 0.661 0.716 0.671
ISD 0.938 0.967 0.119 0.559 0.745 0.935 0.949 0.679 0.717 0.682
MSMN 0.943 0.965 0.103 0.584 0.752 0.928 0.947 0.683 0.725 0.680
FUSION 0.915 0.964 0.088 0.636 0.736 0.909 0.933 0.619 0.674 0.647
0.989 0.998 0.134 0.789 0.798 0.981 0.989 0.754 0.787 0.763
LGFat-RGCN (+4.88%) (+3.21%) | (+12.61%) (+19.39%) | (+6.12%) | (+4.91%) (+4.21%) | (+7.10%) (+8.55%) | (+11.88%)
+ 0.002 +0.001 +0.001 + 0.002 +0.001 + 0.001 + 0.002 + 0.001 + 0.002 + 0.001

Table 2: Ablation experiment results on MIMIC-III Top50 and MIMIC-III Full datasets. The standard deviation of LGFat-RGCN
results is consistent with the previous table, so it is omitted in this table.

MIMIC-II Full MIMIC-III Top50
Model AUC F1 AUC F1
Macro Micro | Macro Micro P@3 Macro Micro | Macro Micro P@3
LGFat-RGCN 0.983 0.998 | 0.134 0.622 | 0.798 | 0.981 0.989 | 0.754 0.787 | 0.763
No ARCL 0.834 0.867 0.098 0.509 | 0.645 0.813 0.852 0.594 0.619 | 0.521
No MIM 0.901 0.923 0.095 0.547 | 0.732 0.892 0.930 0.674 0.718 0.626
No MHR-CNN | 0.862 0.901 0.099 0.515 | 0.659 0.833 0.889 0.637 0.629 | 0.573
through RGCN+NARC, RGCN+FAMC, or RGCN+FANR, results in w0 — . —

marked improvements across the five core metrics. These findings
substantiate the efficacy of the three attention mechanism opti-
mization algorithms proposed in this study. Ultimately, due to the
exceptional performance of FANR, this mechanism is incorporated
into the final LGFat-RGCN model.

5.3.2  Experiments on Gate Mechanism. The experimental frame-
work encompasses three distinct investigations. The initial exper-
iment aims to reproduce the RGCN baseline model and evaluate
its performance. Subsequently, the second experiment, designated
as RGCN+Multi-Hop, extends the RGCN model by incorporating
two-hop node information into the convergence process. The final
experiment, RGCN+Multi-Hop+Gate, integrates a gate mechanism,
as outlined in the AliNet study [23], into the RGCN+Multi-Hop
model. Figure 7 illustrates the percentage magnitude of improve-
ment achieved by the optimized model relative to the baseline
RGCN model, as represented on the vertical axis for each metric as-
sessed. The outcomes depicted in Figure 7 underscore the efficacy of
the gate mechanism introduced in this study, which proficiently fil-
ters out noise information from neighboring nodes while retaining
salient feature information of key adjacent nodes.

RGCN+Multi-Hop+Gate

< RGCN+Multi-Hop+Gate
mER RGCN+Multi-Hop+Gate-+ FANR 52

mE RGCN+Multi-Hop+Gate+FANR

Relative Increase (%)

Hit@10 TR MRR

MR MRR Hit@1

Metrics

Hit@3 Hit@1

Metrics

HIt@3  Hit@10

(a) FB15K-237 (b) CORA

Figure 7: Comparison of core metrics results of graph charac-
terization methods based on multi-hop neighbor aggregation
as well as gate mechanism on FB15k-237 and Cora dataset.

# Answer to RQ-3: » In conclusion, the integration of attention
mechanisms and the addition of a gate mechanism into the RGCN
model led to significant improvements in performance. The final
LGFat-RGCN model, incorporating FANR and the gate mechanism,
demonstrated improved accuracy at the top-k recommendation. <«

6 CONCLUSION

In the present investigation, the encoding and classification of
EHR are reconceptualized as the construction of adversarial hi-
erarchical labeled graphs. This study introduces the adversarial
migration-based labeled graph generation network (LGFat-RGCN),
which incorporates MHR-CNN and Fat-RGCN modules to capture
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diverse medical text patterns, as well as a message integration mod-
ule (MIM) to encode EHR connections. Experimental results on the
MIMIC-III benchmark dataset reveal that the LGFat-RGCN model
notably surpasses multiple comparable baseline models, achiev-
ing the highest performance reported thus far. Future research
endeavors will focus on augmenting the LGFat-RGCN model’s per-
formance through the exploration of prior knowledge incorpora-
tion, automated hyperparameter tuning, an enhanced loss function,
and optimized graph representation in subsequent phases.
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