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A B S T R A C T

The integration of Deep Neural Networks (DNN) with Natural Language Processing (NLP) technologies
has opened new avenues in financial market prediction, particularly through the utilization of textual
information. This study represents a significant advancement, which offers two primary contributions to
stock trend prediction: (i) the exploitation of textual data (news, comments, microblogs) using advanced
DNN architectures, enhancing market information utilization; (ii) significant improvement of the accuracy of
predicting the direction of stock volatility by integrating textual and neural network technologies. Meanwhile,
we have crawled, filtered, and constructed a large-scale microblog dataset. This dataset includes approximately
114,992 microblog textual data from 40 Science and Technology Innovation Board (STIB) companies in China
during 2021. We conducted a comprehensive analysis using various DNN techniques, including Feedback
Neural Networks (FNN), Supervised Contrastive Learning (SCL), Cross Entropy (CE), and Dual Contrastive
Learning (DualCL), in conjunction with bag of words models, BERT, and Roberta compilers. Our findings
reveal that the SCL method, when combined with microblog data, significantly increases prediction accuracy,
particularly during the COVID-19 period. Furthermore, we discovered that using a cross-stock dataset enhances
the accuracy of all prediction methods, and random allocation of microblog data leads to better results than
sequential allocation. Additionally, we compared the efficacy of traditional models like the CAPM, three-factor,
and five-factor models against neural network-based methods. Our results suggest a notable superiority of the
SCL method in increasing prediction accuracy. Finally, applying our findings to real-world trading strategies,
we demonstrated the practical advantages of using the SCL method in trading, evidenced by significant
improvements across all performance indicators.
1. Introduction

The prediction of stock prices has long been a subject of intense
interest, which used to rely on traditional numerical data like com-
pany fundamentals and historical stock performance [1]. However, the
occurrence of advanced information technology, particularly artificial
intelligence and deep learning, has broadened the scope of data sources
for stock market analysis. These new sources include market sentiment,
policy responses, media reports, and personal social media content
[2,3], all of which can significantly influence stock price trends [4].

Today, a wealth of information, ranging from market sentiment
and government policies to news media reports [5] and social media
content [6,7], is being harnessed to predict stock market trends. This
expansion of data sources has been catalyzed by the emergence of
Natural Language Processing (NLP) technologies [8,9], which have
shown promising potential in deciphering the wealth of textual data
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available [10]. Despite the burgeoning research on stock price predic-
tion using diverse datasets, a particular area remains underexplored:
the utilization of microblog data in the Chinese market. The signif-
icance of microblogs, with their real-time updates and wide reach,
cannot be overstated in a market as dynamic and interconnected as
China’s. However, the challenges of massive data volumes and complex
collection processes have hindered comprehensive research in this area.

Recognizing this gap, our study aims to construct a significant mi-
croblog dataset from Science and Technology Innovation Board (STIB)
in China for the entire year of 2021. This dataset not only enriches the
sources of data for stock price prediction but also provides a unique
lens through which market sentiments and trends can be analyzed.
Our research employs Supervised Contrastive Learning (SCL) [11–13],
a technique particularly suited for large-scale datasets, to analyze and
predict stock trends based on this microblog data. This approach is
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compared against traditional financial models such as CAPM, the three-
factor, and the five-factor models, as well as other neural network
methods like Feedback Neural Networks (FNN), Cross-Entropy (CE),
and Dual Contrastive Learning (DualCL) [14,15]. Beyond methodolog-
ical contributions, our study takes a practical approach to predicting
stock market trends. We use simulated trading scenarios to test how
useful our research is in real-life situations. Specifically, we look at how
much profit these strategies could potentially make and how risky they
are, using common measures like investment return rates and Sharpe
ratios. This part of our research connects the theoretical ideas we
discuss with actual stock market activities, providing useful information
that can be used by both academic researchers and people who work
in the finance industry.

The key contributions of this paper are as follows:

• We have constructed a comprehensive dataset encompassing
microblog-related data for 40 stocks listed on China’s STIB. Span-
ning from January 1, 2021, to December 31, 2021. This dataset
aligns each stock’s daily closing prices with corresponding mi-
croblog posts, resulting in an extensive collection of 114,992 data
points.

• Our study leverages the SCL approach for predicting stock trends,
rigorously comparing its effectiveness against other methods such
as Feedback Neural Networks (FNN), Cross-Entropy (CE), and
Dual Contrastive Learning (DualCL). Our analysis on both ran-
domly sampled and time-sequenced data demonstrate the supe-
rior predictive accuracy of SCL on single stock datasets.

• We have discovered that the predictive performance of the CE,
SCL, and DualCL methods is significantly improved when ap-
plied to cross-stock datasets, with DualCL showing remarkable
enhancements in particular.

• The study reveals that microblog textual data is a powerful tool
for enhancing the accuracy of stock trend predictions, which is
especially valuable during the COVID-19 pandemic.

• We further evaluated the performance of the algorithm in real-
world trading from more finance-related indicators. By conduct-
ing extensive experimental studies, we have shown that SCL
achieves notable performance on these indicators.

The rest of this paper will be arranged as follows: Section 2 first
summarizes the existing relevant research work on stock price trends’
prediction and methods. Section 3 describes some details of the meth-
ods we use in our research. Section 4 elaborates on the planned research
problem, and details the content and composition of the data set.
Section 5 discusses the basic attributes of the dataset and reports the
research results, and by comparing several models, it demonstrates the
effectiveness of the supervised contrastive learning model. Section 6
explains the methods of dealing with the validity and limitations of the
paper. Finally, Section 7 summarizes the entire paper.

2. Related work

2.1. The dataset of stock movement prediction

In the in-depth study of stock trend prediction, many scholars hold
the view that there is a definite time series in stock prices. Based
on this, they attempt to use historical data of stocks for prediction,
which may include all kinds of structured historical data such as
stock price [16], company’s book-to-market value [17], stock turnover
rate, company’s operating income [1], and other numerical structured
historical data [18,19] etc. However, with the rapid development of
the Internet, we are now able to use unstructured data for stock trend
prediction. Therefore, the data structure of stock trend prediction is
gradually changing, expanding from traditional numerical data struc-
ture to emerging non-numerical unstructured data such as audio, video,
text, images, etc. In particular, text data, due to their simplicity, recog-
2

nition, processing and analysis, are favored in stock trend prediction
research [20,21]. Scholars have delved into text data, including online
comments [22], news [23,24], tweets [6,7] and other related text data.
Some scholars even try to combine the historical numerical data of
stocks with text data to jointly predict the dynamic trends of stocks
[25–28]. Currently, the applied text-related data mainly include news,
tweets, internal company relationships, blogs and stock-related factors.
However, these materials seldom include datasets for large-scale stock
microblog-related information. Therefore, constructing a dataset con-
taining such information will undoubtedly provide significant support
and contributions to future stock prediction research.

2.2. The models of stock movement prediction

There are numerous types of models for stock price prediction, often
classified into models based on traditional numeric structured data and
models based on unstructured data. The former primarily relies on
historical numerical data for stock trend forecasting, including typical
models such as the capital asset pricing model (CAPM) [16], Three-
factor model [17], Five-factor model [1], and models like autoregres-
sive conditional heteroskedasticity (ARCH) [29] and generalized au-
toregressive conditional heteroskedasticity (GARCH) [30]. These mod-
els primarily analyze historical numerical data, offering valuable in-
sights into market dynamics. However, they often fall short in cap-
turing the nuanced, real-time market sentiments that can significantly
influence stock volatility.

With the rapid advancement of information technology, neural
networks have gradually replaced traditional regression analysis meth-
ods, giving birth to more prediction models including artificial neural
networks (ANN), Support Vector Machines (SVM) [31], multi-filtering
neural networks (MFNN) [32], REGARCH-MIDAS [33], SA-DLST [34],
and AE-ACG model [35]. While these models introduced advanced data
processing capabilities, they still primarily relied on traditional numer-
ical data, often overlooking the rich insights offered by unstructured
data sources.

Recognizing this limitation, recent research has turned to unstruc-
tured data sources, with a particular focus on image and text data. For
image data-processing, researchers proposed several models including
Natural Visibility Maps (NVG) [36] and graph convolutional networks
(GCN) [37]. For text data, we have the bag of words model [38],
integration of attention mechanism [39], two-way Gate Recurrent Unit
(GRU) networks incorporating news text noise reduction attention
mechanisms based on Reinforcement Learning (RL) [40], compiler like
BERT [41] and Roberta [42], hierarchical attention network based on
attentive multi-view news learning (NMNL) [43], Self-supervised Con-
trastive Learning (SCL) [13,44], DualCL [15], and MFF-FinBERT [27].
Worth noting is that self-supervised contrastive learning offers us
possibilities of avoiding the high cost of labeling large-scale datasets,
dogged to be an important part of natural language processing [45,46].
Recently, Chen et al. (2022) [15] compared five benchmark text
classification datasets based on NLP, DNN, and SCL technologies and
concluded that DualCL could enhance classification accuracy. However,
existing research has been limited by the scale and diversity of datasets
used. Their reliance on only five benchmark datasets raises questions
about the generalizability and stability of their findings.

Our study contributes to this field by not only utilizing a large-scale,
diverse microblog dataset, but also applying and comparing a range of
advanced NLP and DNN techniques, including SCL and DualCL, in the
context of stock trend prediction. This approach allows us to explore
the efficacy of these models on a dataset that is more representative of
the actual market conditions, thereby providing a more accurate and
comprehensive understanding of stock market dynamics. Moreover,
by incorporating textual data from microblogs, we can capture the
nuanced sentiments and trends that traditional numerical data and
limited-scale unstructured data analyses miss. This comprehensive and
diverse dataset approach, coupled with the application of cutting-edge
NLP techniques, makes our study a significant advancement in the field

of stock price prediction.
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3. Approach

3.1. Problem formulation

We begin by formulating our classification problem to the context
of Stock Movement Prediction. Assume a set of 𝐾 distinct classes, each
representing a unique stock market condition or trend. Our dataset,
denoted by  = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1, comprises 𝑁 training samples drawn from
financial markets. In this setting, 𝑥𝑖 corresponds to an input sample
with features like price, volume, or news sentiment, and 𝑦𝑖 is the label
ndicating the stock market condition or trend for that sample. The
ndex set of training samples is defined as  = {1, 2,… , 𝑁}, and the
ndex set of stock market conditions or trends as  = {1, 2,… , 𝐾}.

This formulation sets the stage for employing contrastive learning
echniques, which aim to learn powerful representations by contrasting
ositive and negative samples.

.2. Supervised contrastive learning paradigm

The dominant approach to improving natural language understand-
ng in classification tasks involves a two-stage process: pre-training
nd fine-tuning. In the first stage, a language model is pre-trained
n an auxiliary task, which enables it to learn generic language rep-
esentations. In the subsequent stage, this model is fine-tuned us-
ng task-specific labeled datasets and employs cross-entropy loss for
ptimization.

.2.1. Self-supervised contrastive learning
We transition to discussing self-supervised contrastive learning, a

aradigm gaining traction for its efficacy across various domains. This
earning paradigm leverages unlabeled data to learn useful representa-
ions by contrasting positive (similar) and negative (dissimilar) sam-
les. A crucial aspect of self-supervised contrastive learning is the
esign of the contrastive loss function, which encourages the model to
inimize the distance between similar samples while maximizing the
istance between dissimilar samples.

Given the 𝑁 training samples {𝑥𝑖}𝑁𝑖=1 along with augmented coun-
erparts, where each sample has at least one augmented sample in
he dataset, we define 𝑗(𝑖) as the index of the augmented sample
erived from the 𝑖th sample. The standard contrastive loss, as per Chen
t al. [15], is defined as:

𝑠𝑒𝑙𝑓 = 1
𝑁

∑

𝑖∈
− log

exp (𝑧𝑖 ⋅ 𝑧𝑗(𝑖)∕𝜏)
∑

𝛼∈𝑖
exp (𝑧𝑖 ⋅ 𝑧𝛼∕𝜏)

(1)

where 𝑧𝑖 is the normalized representation of 𝑥𝑖,𝑖 ∶=  ⧵ {𝑖} is the
set of indexes of the contrastive samples, the ⋅ symbol denotes the dot
product and 𝜏 ∈ 𝑅+ is the temperature factor.

3.2.2. Overall objective
The aforementioned self-supervised contrastive learning scheme

lacks the ability to utilize supervised signals, treating samples from the
same class as positive samples and from different classes as negative
samples indiscriminately [15]. To address this, we propose a supervised
variant of contrastive loss [15]. The overall objective is as follows:

𝐿𝑠𝑢𝑝 =
1
𝑁

∑

𝑖∈

1
|𝑃𝑖|

∑

𝑝∈𝑃𝑖

− log
exp (𝑧𝑝 ⋅ 𝑧𝑗(𝑝)∕𝜏)

∑

𝛼∈𝑖
𝑒𝑥𝑝(𝑧𝑝 ⋅ 𝑧𝛼∕𝜏)

(2)

here 𝑃𝑖 ∶= {𝑝 ∈ 𝑖 ∶ 𝑦𝑝 = 𝑦𝑖} is the set of indexes of positive samples,
he |𝑃 | is the cardinality of 𝑃 .
3

𝑖 𝑖
.3. Discussion on the choice of approach

The employment of a supervised contrastive learning paradigm in
his work is motivated by its potential to leverage both labeled and
nlabeled data in a unified framework. This hybrid approach can po-
entially outperform purely supervised or purely unsupervised methods,
specially in scenarios where labeled data is scarce. Furthermore, the
ontrastive learning framework is particularly well-suited for text clas-
ification tasks, as it can effectively capture the nuanced relationships
etween text samples belonging to different classes.

Additionally, the incorporation of a temperature parameter in the
ontrastive loss functions, as expressed in Eqs. (1) and (2), provides
mechanism to control the concentration of representations, thereby

ffering an extra degree of flexibility in the learning process. Our choice
f the supervised contrastive learning paradigm is also influenced by
ts demonstrated success in recent literature, where it has been shown
o yield state-of-the-art performance on a variety of natural language
nderstanding tasks. As shown in Fig. 1, a pretrained language model
s first pre-trained on a general task to acquire comprehensive language
epresentations. Following this, it is then fine-tuned with task-specific
abeled datasets, where dual contrastive loss, supervised contrastive
oss, and cross-entropy loss are employed simultaneously for precise
odel optimization.

Unlike other prevalent methods like traditional supervised learn-
ng or unsupervised learning, supervised contrastive learning offers
ignificant advantages. Supervised learning, while powerful, often re-
uires a substantial amount of labeled data, which can be costly and
ime-consuming to obtain. In situations where such data is scarce or
xpensive to produce, the ability of supervised contrastive learning to
arness both labeled and unlabeled data becomes particularly valuable.
n the other hand, unsupervised learning can leverage large amounts
f unlabeled data but may fall short in achieving promising results in
omplex tasks, as it fails to exploit the information contained labeled
ata.

Moreover, supervised contrastive learning stands out for its ability
o capture the nuanced differences between classes, which is often more
ffectively than traditional methods. By focusing on the relative com-
arisons between different classes, it can discern subtle distinctions and
omplex relationships in data, leading to more robust and generalizable
odels. This characteristic is particularly crucial in text classification

asks, where the intricacies of language and context play a significant
ole. In essence, supervised contrastive learning provides a balanced
pproach that is equipped with the strengths of both supervised and
nsupervised learning, which makes it a superior choice for scenarios
here both labeled and unlabeled data are available but labels are

imited in quantity or diversity.

. Experimental design

.1. Research questions

In this section, we empirically evaluate our framework based on five
esearch questions, as follows:

• (RQ1) Which training objective yields the best performance in
predicting stock movement with microblog text data, the cross-
entropy (CE) loss, the dual contrastive learning (DualCL) loss or
the supervised contrastive learning (SCL) loss?

• (RQ2) Which method is more effective in predicting stock move-
ment: traditional time series analysis methods using past stock
history data, or neural network methods employing NLP technol-
ogy with microblog text data?

• (RQ3) Does cross-stock microblog text data lead to more accurate
predictions in neural network methods?

• (RQ4) What is the impact of COVID-19 on stock forecasts based
on microblog text?

• (RQ5) Does SCL yield a higher rate of return under the same

investment strategy compared to other neural network methods?
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Fig. 1. The overview of our proposed objective encompasses a cross-entropy term (CE), supervised contrastive learning (SCL), and dual contrastive learning (DualCL). While we
illustrate a binary classification case for simplicity, this loss framework is generally applicable to any multi-class classification setting.
Fig. 2. Overview of the raw microblog text data of TRS.
4.2. Dataset

On June 13, 2019, the Science and Innovation Board of China’s
stock market was officially opened. Considering that there were few
listed companies on the Science and Innovation Board at the beginning
and received less attention from the majority of shareholders, we
mainly selected the 40 stocks from the science and innovation board of
that year from January 1, 2021, to December 31, 2021 as the keywords
of microblog related data search.

We obtained the stocks´ code (𝑆𝑦𝑚𝑏𝑜𝑙), the publishes text of mi-
croblog (𝑀𝑖𝑐𝑟𝑜𝑏𝑙𝑜𝑔𝑡𝑒𝑥𝑡), and the release time of microblog (𝑀𝑖𝑐𝑟𝑜𝑏𝑙𝑜𝑔
𝑡𝑖𝑚𝑒) of the 40 stocks on the Science and Technology Innovation
board from the official website of microblog. Then we downloaded
the daily closing price and basic informations of the 40 stocks on
the Science and Technology Innovation Board stocks from the CSMAR
database, and matched the release time of microblog to get the daily
close price after the release time of microblog (𝐶𝑙𝑜𝑠𝑒𝑝𝑟𝑖𝑐𝑒) and the
daily close price before the release time of microblog (𝑃𝑟𝑒𝑐𝑙𝑜𝑠𝑒𝑝𝑟𝑖𝑐𝑒).
Furthermore, in order to analysis the (RQ2) and (RQ5), the three-factor
data and five-factor data were downloaded from CSMAR database too,
and Shibor radio was downloaded from the China money Network.
Finally, the binary variable of movement was generated. If 𝐶𝑙𝑜𝑠𝑒𝑝𝑟𝑖𝑐𝑒−
𝑃𝑟𝑒𝑐𝑙𝑜𝑠𝑒𝑝𝑟𝑖𝑐𝑒 > 0, which means stock’s closed price increases after
the microblog text was released, then the movement is ‘‘increase’’;
if 𝐶𝑙𝑜𝑠𝑒𝑝𝑟𝑖𝑐𝑒 − 𝑃𝑟𝑒𝑐𝑙𝑜𝑠𝑒𝑝𝑟𝑖𝑐𝑒 < 0, which means stock’s closed price
decreases after the microblog text was released, then the movement
is ‘‘decrease’’; if 𝐶𝑙𝑜𝑠𝑒𝑝𝑟𝑖𝑐𝑒 − 𝑃𝑟𝑒𝑐𝑙𝑜𝑠𝑒𝑝𝑟𝑖𝑐𝑒 = 0, which means stock’s
closed price has no changes after the microblog text was released, then
the movement is ‘‘no change’’. Considering that the information quality
of microblog posts without stock fluctuations, which the movement is
‘‘no change’’, is not high, this part of data is removed. So, we obtained
114,992 stock microblog text data in the end. Take TRS stock for
example in Fig. 2. Meanwhile, we have list basic information of these
40 stocks in Table 1, and draw the stock price trend chart as shown in
Fig. 3.

As shown in Fig. 3, we could find the movement trend of each stock
during January 1, 2021 to December 31, 2021. Some stock prices have
a slightly fluctuating upward or downward trend, such as the prices of
CHI, YHL and QX show a slightly fluctuating downward trend, while
the prices of TE, HIU and TSE show a slightly fluctuating upward trend,
4

and some stock prices have a large fluctuation back and forth, and no
obvious trend, such as BMB, GMT and SHT. In addition, there are some
stocks in the science and technology board listing time is shorter, less
time data, such as HOM and ALT.

4.2.1. Microblog dataset basic information
In FNN method, we need built a words’ bag by splitting the words

from raw microblog text data of classify label for each stock firstly, then
randomly assign 90% of data as train data and 10% of data as test data
for predicting, the words number with data are listed in Table 2, and
the ‘‘#UP’’ means the words number in increase microblog text data,
the ‘‘#Down’’ means the words number in decrease microblog text data,
and the ‘‘#Dic’’ means the number of words bag.

In CE, SCL and DualCL method, we computed the data length of
each microblog dataset, and choose 10% of data for test data and the
90% of data for train data by randomly or chronologically. Whether
dividing the data by randomly or chronologically, the number of train
data and test data are unchanged. Thus, the length of dataset was listed
by name of each stock. Furthermore, the microblog dataset is binary
movement classification dataset about stocks of science and technology
innovation board in China and each sample was labeled as ‘‘increase’’
or ‘‘decrease’’. The ‘‘no change’’ data, means that there was unchanged
in stock price, are deleted in order to simplify the analysis. Table 2
summarizes the statistics of the dataset.

From Table 2, the ‘‘#UP’’ words bag almost contains about the
same number of words as the ‘‘#Down’’ words bag, and the ‘‘#Dic’’
are between 1148 and 23,130 in the FNN method. Meanwhile, we
can see that the volume of datasets ranged from small to large, with
the smallest having only 162 samples to the largest having 5850
samples in the CE, SCL and DualCL models. And we found that there
are 114,992 samples in total, including 103,483 training samples and
11,509 testing samples, and the average length of dataset is 2874.8
which is approximately 2900. Thus, 2900 is used as the dividing point
between large and small samples in the following experiment.

4.3. Metric

To thoroughly evaluate the performance of the techniques and

trading, we adopt the following evaluation metrics:
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Table 1
Basic information about stocks.

Stocks Symbol ShortName IndustryName IndustryCode EstablishDate FirstListingDate

TRS 688036 Transsion Computer, communications and other electronic
equipment manufacturing

C39 2013-8-21 2019-9-30

DQE 688303 Daqo New Energy Manufacture of electrical machinery and equipment C38 2011-2-22 2021-7-22
CSB 688185 CanSinoBIO Pharmaceutical industry C27 2009-1-13 2019-3-28
BMB 688363 Bloomage Biotech Pharmaceutical industry C27 2000-1-3 2019-11-6
TE 688187 Times Electric Railway, Marine, aerospace and other C37 2005-9-26 2006-12-20
CRM 688396 CR Micro Computer, communications and other electronic

equipment manufacturing
C39 2003-1-28 2004-8-13

CM 688012 Cmsemicon Special equipment manufacturing industry C35 2004-5-31 2019-7-22
TSE 688599 Trinasolar Manufacture of electrical machinery and equipment C38 1997-12-26 2006-12-19
MT 688008 Montage Tech. Computer, communications and other electronic

equipment manufacturing
C39 2004-5-27 2013-9-26

QX 688561 Qi’an Xin Software and information technology services I65 2014-6-16 2020-7-22
ACM 688082 ACM Research Special equipment manufacturing industry C35 2005-5-17 2021-11-18
EDP 688538 Everdisplay Computer, communications and other electronic

equipment manufacturing
C39 2012-10-29 2021-05-28

VZM 688105 Vazyme Research and experimental development M73 2012-03-16 2021-11-15
JC 688099 Amlogic Jing Chen Software and information technology services I65 2003-07-11 2019-08-08
FDM 688385 FuDan Micro Computer, communications and other electronic

equipment manufacturing
C39 1998-07-10 2000-08-04

AWN 688798 Awinic Computer, communications and other electronic
equipment manufacturing

C39 2008-06-18 2021-08-16

HKT 688006 HangKe Tech. Special equipment manufacturing industry C35 2011-11-21 2019-07-22
VSL 688521 VeriSilicon Software and information technology services I65 2001-08-21 2020-08-18
HXT 688608 HengXuan Tech. Bestchnic Computer, communications and other electronic C39 2015-06-08 2020-12-16
ALT 688107 Anlogic Computer, communications and other electronic

equipment manufacturing
C39 2011-11-18 2021-11-12

CDB 688739 ChengDa Biotech Pharmaceutical industry C27 2002-06-17 2021-10-28
PNT 688063 Pylon Tech. Manufacture of electrical machinery and equipment C38 2009-10-28 2020-12-30
NM 688029 NanWei Medicine Special equipment manufacturing industry C35 2000-05-10 2019-07-22
GMT 688696 GiMi Tech. Computer, communications and other electronic C39 2013-11-18 2021-03-03
GDW 688390 Goodwe Manufacture of electrical machinery and equipment C38 2010-11-05 2020-09-04
MDC 688202 Medicilon Research and experimental development M73 2004-02-02 2019-11-05
CHI 688425 China Railway Construction Heavy Industry Special equipment manufacturing industry C35 2006-11-23 2021-06-22
HOM 688032 Hoymiles Manufacture of electrical machinery and equipment C38 2012-09-04 2021-12-20
OPT 688686 OPT machine Vision Instrumentation manufacturing industry C40 2006-03-24 2020-12-31
HFT 688200 HuaFeng Tech. Special equipment manufacturing industry C35 1999-09-01 2020-02-18
LRR 688499 Lyric Robot Special equipment manufacturing industry C35 2014-11-19 2021-07-01
CRO 688131 Chem Express Research and experimental development M73 2006-09-30 2021-06-08
ATS 688617 Access Point Tech. Medical Special equipment manufacturing industry C35 2002-06-17 2021-01-07
BPS 688368 BPS EMI Software and information technology services I65 2008-10-31 2019-10-14
SHT 688339 SinoHytec Manufacture of electrical machinery and equipment C38 2012-07-12 2020-08-10
HIU 688680 HiUV Materical Tech. Rubber and plastic products industry C29 2005-09-22 2021-01-22
BZ 688097 BoZhon Special equipment manufacturing industry C35 2006-09-22 2021-05-12
TTT 688133 TiTan Tech. Research and experimental development M73 2007-10-18 2020-10-30
EYL 688190 YunLu Smelting and pressing of ferrous metals C31 2015-12-21 2021-11-26
YHL 688575 YHLO Pharmaceutical industry C27 2008-09-17 2021-05-17
Fig. 3. Price chart of 40 stocks.
5



Neurocomputing 584 (2024) 127583S. Yang and D. Tang

4

n
l
v
e
d
c
i
a
i

Table 2
Statistics of assigned microblog text dataset of 40 stocks.

Model FNN CE, SCL and DualCL (#Class = 2)

(#Class = 2) Len #Train #Test

Dataset #Up #Down #Dic Train Len #Increase #Decrease Test Len #Increase #Decrease

TRS 102 614 103 160 12 595 3970 3573 1748 1825 397 192 205
DQ 45 896 43 431 10 241 1721 1549 775 774 172 85 87
CSB 121 245 120 476 17 945 4847 4362 2090 2272 485 218 267
BMB 144 231 161 178 23 130 5850 5265 2292 2973 585 247 338
TE 53 195 56 154 13 734 1936 1742 898 844 194 99 95
CRM 129 795 111 542 18 818 4475 4027 2114 1913 448 226 222
CM 109 893 105 636 14 961 4127 3714 1843 1871 413 204 209
TSE 117 587 102 134 15 401 4185 3766 1936 1830 419 230 189
MT 110 726 109 827 14 927 4165 3748 1936 1812 417 211 206
QX 31 024 31 847 9076 1188 1069 548 521 119 58 61
ACM 12 908 11 879 4283 487 438 237 201 49 27 22
EDP 860 3023 1148 79 71 10 61 8 1 7
VZM 14 171 56 710 5487 1940 1746 72 1674 194 6 188
JC 85 177 93 415 10 786 3516 3164 1505 1659 352 166 186
FDM 38 371 33 764 8634 1440 1296 737 559 144 79 65
AWN 33 408 37 773 10 320 1368 1231 576 655 137 61 76
HKT 112 168 94 032 13 690 3886 3497 1894 1603 389 189 200
VSL 86 488 104 783 11 776 3608 3247 1386 1861 361 162 199
HXT 87 582 101 028 11 399 3630 3267 1562 1705 363 173 190
ALT 11 368 21 735 6107 623 560 190 370 63 17 46
CDB 24 600 28 000 7787 949 854 381 473 95 37 58
PNT 118 629 121 704 23 069 4257 3831 1781 2050 426 186 240
NM 106 833 117 584 16 289 4180 3762 1638 2124 418 182 236
GMT 97 945 121 235 21 096 3871 3484 1508 1976 387 177 210
GDW 114 910 88 792 13 661 3847 3462 1970 1492 385 201 184
MDC 107 882 102 985 14 796 4188 3769 1768 2001 419 197 222
CHI 48 066 70 273 9501 2246 2021 917 1104 225 112 113
HOM 3982 4939 2318 162 145 72 73 17 10 7
OPT 102 388 110 589 10 968 3968 3571 1641 1930 397 178 219
HFT 116 377 109 091 11 990 4258 3832 2043 1789 426 213 213
LRR 45 215 47 824 9195 1793 1613 594 1019 180 72 108
CRO 63 220 79 718 10 516 2727 2454 903 1551 273 93 180
ATS 83 857 85 664 10 423 3340 3006 1395 1611 334 168 166
BPS 5357 6367 2920 239 215 115 100 24 7 17
SHT 115 415 122 386 14 796 4330 3897 2002 1895 433 219 214
HIU 93 879 86 457 12 463 3433 3089 1533 1556 344 199 145
BZ 64 892 68 923 8944 2591 2332 1082 1250 259 119 140
TTT 123 343 122 994 13 505 4569 4112 1899 2213 457 213 244
EYL 10 599 11 543 4155 442 397 191 206 45 17 28
YHL 52 337 77 959 9417 2561 2305 1059 1246 256 130 126

Sum 114 992 103 483 48 841 54 642 11 509 5381 6128
• Test accuracy: We evaluated the stock movement prediction by
the Accuracy as evaluation metrics.

• Profitability: we applied the Rate of Return, Maximum Drawdown
and Sharpe Ration as evaluation metrics based on our simulated
trading strategy.

.4. Baselines

We compared the performance of SCL with that of three baselines,
amely CE, DualCL, and FNN. Note that SCL is a variant of contrastive
earning that is implemented in a supervised learning setting. It in-
olves learning representations by contrasting positive pairs (similar
xamples) against negative pairs (dissimilar examples) using labeled
ata. The approach enables the model to learn more nuanced and dis-
riminative features by leveraging class label information. This results
n embeddings that not only bring examples of the same class closer but
lso ensure that examples from different classes are distinctly separated
n the feature space. The description of the baselines are as follows:

• CE: This is a standard loss function widely used in classification
tasks. In our study, CE aims to maximize 𝑧𝑖 ⋅ 𝑧𝑗(𝑖) for each input
𝑥𝑖 example by cross-entropy loss, representing the alignment
between an input instance and its correct output. The objective
6

is to increase the probability of the true class while decreasing
that of the incorrect classes. This is implemented through the
cross-entropy loss, as detailed in [15].

• DualCL: DualCL is an extension of the traditional contrastive
learning framework. In DualCL, the goal is to maximize 𝑧𝑖 ⋅𝑧𝑗(𝑖)∕𝜏
for each input 𝑥𝑖 example by dual contrastive loss. Unlike stan-
dard contrastive learning that focuses on pulling similar examples
closer and pushing dissimilar examples apart in the embedding
space, DualCL introduces a dual perspective by considering ad-
ditional contextual or semantic relationships. This approach is
further elaborated in [15].

• FNN: The calculation of FNN is to build a dictionary set (words
bag) by collecting the text data and the labels of ‘‘Up’’ or ‘‘Down’’
divided by it, and then predict the test set based on this dictionary
set. And the dictionary set is sorted according to the increasing
and decreasing text data, it is necessary to conduct random data
sorting processing to obtain a new dictionary set. So, we initially
constructed a simple three-layer feedforward neural network.

We use the AdamW [47] optimizer to finetune the pretrained BERT-
base-uncased and RoBERTa-base [48] model with a 0.01 weight decay.
We trained these models for 20 epochs and use a linear learn-ingrate
decay 10−5. We set the dropout rate to 0.1 for a layer and the train
batch size to 64 and the test batch size equal to 128. And we applied

the stock movement prediction by the accuracy as evaluation metrics.
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Table 3
Accuracy on the test set with randomly assigned samples.

Complier Words bag BERT RoBERTa

Dataset/Model FNN CE SCL DualCL CE SCL DualCL

𝑇𝑅𝑆𝑟 62.96 85.64 85.64 55.67 80.86 86.15 56.93
𝐷𝑄𝐸𝑟 66.86 93.02 93.60 54.65 90.12 79.65 55.23
𝐶𝑆𝐵𝑟 50.00 89.90 92.37 55.26 86.39 90.93 58.35
𝐵𝑀𝐵𝑟 63.58 94.19 93.85 72.99 62.74 92.31 57.78
𝑇𝐸𝑟 59.60 86.08 89.69 58.76 82.47 87.11 57.22
𝐶𝑅𝑀𝑟 61.42 85.94 86.16 52.23 80.80 86.61 55.13
𝐶𝑀𝑟 59.57 86.20 90.31 53.51 72.15 86.20 58.11
𝑇𝑆𝐸𝑟 59.24 92.84 94.99 58.23 89.50 92.84 56.32
𝑀𝑇𝑟 65.71 84.89 88.73 56.59 86.09 88.01 57.79
𝑄𝑋𝑟 76.80 98.32 96.64 56.30 98.32 94.96 70.59
𝐴𝐶𝑀𝑟 53.70 89.80 91.84 57.14 71.43 87.76 59.18
𝐸𝐷𝑃𝑟 66.67 87.50 87.50 87.50 87.50 87.50 87.50
𝑉 𝑍𝑀𝑟 87.13 100.00 100.00 99.48 98.97 100.00 98.97
𝐽𝐶𝑟 49.44 87.22 89.20 53.98 85.23 88.07 54.55
𝐹𝐷𝑀𝑟 51.97 89.58 89.58 54.86 83.33 77.78 58.33
𝐴𝑊𝑁𝑟 61.54 85.40 86.13 55.47 81.02 85.40 59.12
𝐻𝐾𝑇𝑟 56.49 89.46 86.89 52.96 81.49 83.03 52.44
𝑉 𝑆𝐿𝑟 64.85 88.37 89.20 60.66 86.70 87.81 59.56
𝐻𝑋𝑇𝑟 47.98 86.78 89.53 53.99 81.82 82.37 84.30
𝐴𝐿𝑇𝑟 54.69 90.48 82.54 73.02 84.13 87.30 79.37
𝐶𝐷𝐵𝑟 60.78 88.42 92.63 61.05 83.16 89.47 64.21
𝑃𝑁𝑇𝑟 60.32 90.61 92.25 63.62 86.38 89.67 60.09
𝑁𝑀𝑟 60.33 88.52 89.00 56.46 81.82 85.17 56.46
𝐺𝑀𝑇𝑟 61.24 90.70 92.76 54.52 79.33 87.60 54.52
𝐺𝐷𝑊𝑟 61.03 60.00 91.43 56.10 82.60 87.27 53.25
𝑀𝐷𝐶𝑟 60.00 89.26 90.69 56.32 87.35 88.54 56.32
𝐶𝐻𝐼𝑟 54.15 86.67 87.56 50.22 76.00 88.89 53.78
𝐻𝑂𝑀𝑟 64.71 88.24 70.59 64.71 76.47 82.35 94.12
𝑂𝑃𝑇𝑟 54.59 85.14 86.15 55.16 81.36 81.36 55.16
𝐻𝐹𝑇𝑟 49.07 84.98 89.44 50.47 78.64 81.46 50.47
𝐿𝑅𝑅𝑟 64.64 83.89 85.56 60.00 83.89 85.56 60.56
𝐶𝑅𝑂𝑟 62.95 93.04 93.04 65.93 87.55 89.01 65.93
𝐴𝑇𝑆𝑟 64.33 88.02 85.63 49.70 82.04 61.98 51.80
𝐵𝑃𝑆𝑟 67.74 87.50 70.83 37.50 45.83 83.33 70.83
𝑆𝐻𝑇𝑟 63.04 87.30 91.22 56.58 80.14 87.76 61.20
𝐻𝐼𝑈𝑟 64.64 91.86 93.02 49.71 83.72 57.85 57.27
𝐵𝑍𝑟 64.86 81.47 86.10 54.83 81.47 83.78 55.21
𝑇𝑇𝑇𝑟 61.00 89.28 89.06 53.39 78.56 83.81 55.58
𝐸𝑌 𝐿𝑟 62.22 77.78 68.89 62.22 66.67 66.67 64.44
𝑌𝐻𝐿𝑟 65.63 88.28 91.02 49.22 87.89 83.98 55.86

Avg. 61.19 87.81 88.53 58.27 81.55 83.98 55.86
Len ≥ 2900 59.13 87.14 89.89 55.82 81.62 84.40 57.43
Len < 2900 63.70 88.64 86.87 61.27 81.46 85.58 67.25

Cross-data 88.94 89.33 89.39 53.25 88.54 85.12

Note: 𝑇𝑅𝑆𝑟 means the ‘‘TRS’’ stock dataset assigned by randomly, other stocks are similar.
. Experimental result

.1. The effect of supervised contrastive learning approach (RQ1 and RQ2)

.1.1. Experimental result with randomly assigned samples
From the Table 3, in one side, compared with the FNN, CE and

ualCL results, the results of SCL [13] with both BERT and RoBERTa
ncoders achieves better classification performance for most stocks. It
lso attains the best average classification performance, except in a
ew datasets. For instance, in the 𝑄𝑋𝑟 where CE with both BERT and
oBERTa encoders is used, and in the 𝐻𝐾𝑇𝑟 dataset where CE with the
ERT encoder is applied. Then, compared to CE, the average improve-
ent of SCL is 0.82% and 2.98% on BERT and RoBERTa, respectively.
eanwhile, compared to DualCL, the average improvement of SCL is

1.93% and 50.34% on BERT and RoBERTa, respectively. On the other
and, we define datasets with a length greater than or equal to the
ean length of all datasets (equal to 2900) as large volume samples,
hile the others are considered small samples. We find that in large
atasets, SCL with both BERT and RoBERTa encoders achieves the best
7

verage classification performance. However, this is not the case in
small datasets, indicating that SCL performs better in large datasets
than in small ones.

5.1.2. Experimental result with chronologically assigned samples
To answer (RQ1) and (RQ2), considering that the data of stock

trend prediction is time series prediction problem, we can calculate the
training set and test set divided according to time series with historical
stock price related data.

Firstly, we compute the data length of all microblog dataset re-
spectively, and chronologically choose the former 90% of data as train
data, and the latter 10% of data as test data. Two categories are still
maintained, namely ‘‘Increase’’ and ‘‘Decrease’’. Therefore, the length
of training set and test set remains unchanged.

Secondly, we choose the capital asset pricing model (CAPM) [16],
three-factor model (3FactorM) [17] and five-factor model(5FactorM)
[1] with simple linear least square estimating method for comparative
analysis in traditional time series stock forecasting. These models are
as following:

𝑟𝑖𝑡 − 𝑟𝑓 = 𝛼𝑖 + 𝛽𝑖(𝑟𝑚𝑡 − 𝑟𝑓 ) + 𝑒𝑖𝑡 (3)
𝑟𝑖𝑡 − 𝑟𝑓 = 𝛼𝑖 + 𝛽𝑖𝑀𝑘𝑡𝑡 + 𝑠𝑖𝑆𝑀𝐵𝑡 + ℎ𝑖𝐻𝑀𝐿𝑡 + 𝑢𝑖𝑡 (4)
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𝑟𝑖𝑡 − 𝑟𝑓 = 𝛼𝑖 + 𝛽𝑖𝑀𝑘𝑡𝑡 + 𝑠𝑖𝑆𝑀𝐵𝑡 +ℎ𝑖𝐻𝑀𝐿𝑡 + 𝑟𝑖𝑅𝑀𝑊𝑡 + 𝑐𝑖𝐶𝑀𝐴𝑡 + 𝜖𝑖𝑡 (5)

here 𝑟𝑖𝑡 is the return on asset 𝑖 for month 𝑡, 𝑟𝑓 is the risk-free rate (the
ne-year Sharpe rate), 𝑀𝑘𝑡𝑡 is the value-weight (VW) market portfolio
eturn minus the risk-free rate, and 𝑒𝑖𝑡, 𝑢𝑖𝑡, 𝜖𝑖𝑡 are zero-mean resid-
al. The remaining right-hand-side (𝑅𝐻𝑆) variables are differences
etween the returns on diversified portfolios of small and big stocks
𝑆𝑀𝐵𝑡), high and low B/M stocks (𝐻𝑀𝐿𝑡), stocks with robust and
eak profitability (𝑅𝑀𝑊𝑡), and stocks of low and high investment

irms (conservative minus aggressive, 𝐶𝑀𝐴𝑡). If the true values of the
actor exposures, 𝛼𝑖, 𝛽𝑖, 𝑠𝑖, ℎ𝑖, 𝑟𝑖, and 𝑐𝑖, capture all differences in
xpected returns, the intercept 𝛼𝑖 in (3) to (5) is indistinguishable from
ero for all stocks 𝑖 [49].

The CAPM model mainly analyzes the prediction of market risk
remium to stock return premium. The 3FactorM mainly analyzes
he prediction of market risk premium, stock market value and book
arket value to stock return. And the 5FactorM mainly analyzes the
rediction of market risk premium, stock market value, book market
alue, profitability and investment pattern to stock return. All factors
re weighted by market capitalization, and portfolio approach select a
∗ 2 ∗ 2 ∗ 2 portfolio.

Finally, the accuracy of different stock periods, calculated using
arious methods, is presented in Table 4. The results indicate that,
egardless of whether the BERT or RoBERTa parser is used, SCL con-
istently yields better and more accurate outcomes across average,
arge, small, and cross-sample datasets when the training and test sets
re divided chronologically. Furthermore, when comparing the highest
ccuracy of CE, SCL, and DualCL across 40 stocks using BERT and
oBERTa analytica, it was observed that aside from 9 stocks where

he accuracy was the same, BERT and RoBERTa outperformed in 16
nd 15 stocks respectively, with BERT showing slightly better results
han RoBERTa. From the results in Table 3, we can conclude that
or the (RQ1) problem, the SCL method is most effective under both
ERT and RoBERTa parsers, regardless of whether the sample set is
orted randomly or chronologically. However, the accuracy obtained
n chronological order is significantly less than that obtained by ran-
om allocation. This is mainly due to the phenomenon of excessive
ccumulation of positive or negative information in the face of market
nformation. As a result, when the training set and test set are allocated
n chronological order, the training set is prone to lack of training
amples that can better analyze the text of part of the test set, that is,
hen the stock price rise and fall are predicted in chronological order

hrough the data of the microblog. The text covered by the training
et is not expected to be comprehensive enough, which leads to the
rong analysis of the microblog text in the test set, which leads to

he overall prediction accuracy. On the other hand, by comparing the
raditional time series prediction method with Neural Networks with
LP Technology method, it can be found that the prediction effect of

he latter is significantly better than that of the former. Therefore, the
uestion (RQ2) can be answered: the neural networks of NLP technol-
gy method with microblog text data is better effective in predicting
tock movement than the traditional time series analysis methods with
ast stock history data.

.1.3. Visualization
It can be seen from the above research that the prediction accuracy

nder random allocation is significantly higher than that under time
rder allocation, to investigate how supervised contrastive learning
mproves the quality of representations, we draw the test accuracy
f 20 epochs on the GMT and HIU test sets of large dataset using
ERT as the compiler with randomly assigned training samples and
hronologically assigned training samples. And the results of CE, SCL
nd DualCL methods are shown in Fig. 4.

In Fig. 4, it is observed that the test accuracy of the SCL method
apidly increases after epoch nine, significantly outperforming both
8

he CE and DualCL methods in both the GMT and HIU datasets with p
andomly assigned training samples (left results). However, all the
ethods have no obvious advantages and disadvantages under the two

arge sample stocks in chronologically assigned training samples(right)
esults, and CE and SCL also show a downward trend when the epoch
ncreases in GMT stocks, which indicates that the chronologically allo-
ated sample training results have poor prediction effect.

In addition, we draw the test accuracy of 20 epochs on the QX and
LT test sets of small dataset using BERT as the encoder with ran-
omly assigned training samples and chronologically assigned training
amples. And the results are shown in Fig. 5.

In Fig. 5, the CE method performs better than both the SCL and Du-
lCL methods in the QX and ALT datasets with randomly assigned train-
ng samples (left results). Similarly, in the two small-sample stocks with
hronologically assigned training samples (right results), no method
emonstrates a distinct advantage or disadvantage. Both CE and SCL
xhibit a downward trend as the epoch increases in QX and ALT stocks,
urther indicating that training with chronologically allocated samples
eads to poorer predictions.

To sum up, the following three conclusions with answers to (RQ1)
nd (RQ2) can be drawn. (i) SCL with both BERT and RoBERTa en-
oders achieves most of all stocks are better classification performance,
nd achieves the best classification performance in average level by
andomly assigned samples or chronologically assigned samples. (ii)
n case of the randomly assigned samples, accuracy of SCL method is
ncreasing faster than the CE and DualCL methods in large datasets, but
he accuracy of CE method is better in small datasets. (iii) the neural
etworks of NLP technology method with microblog text data are better
ffective in predicting stock movement than the traditional time series
nalysis methods with past stock history data.

.2. The effect of cross-data (RQ3)

In order to discuss RQ3, we combined all microblog datasets by
rain set and test set, and got 103,483 training samples with 48,841
‘increase’’ and 54,642 ‘‘decrease’’, and 11,509 testing samples with
381 ‘‘increase’’ and 6128 ‘‘decrease’’, respectively. The results are
howed in the bottom line of Tables 3 and 4 respectively.

It is observed that the SCL method retains the best performance
ith the RoBERTa encoder, whereas the DualCL method achieves an
ccuracy of 89.39%, the highest with the BERT encoder and better
han SCL’s 88.54% accuracy, as shown in Table 3. However, in the case
f chronologically ordered samples, the prediction accuracy for cross-
ata does not show improvement, and is even lower than the average
ccuracy of the CE, SCL, and DualCL models in Table 4. This suggests
hat the effectiveness of cross-sample predictions depends on how the
raining and test samples are allocated. The cross-data can effectively
mprove the prediction accuracy in randomly assigned samples, but
t does not improve the prediction accuracy in chronological assigned
ample.

Therefore, we can draw conclusion about (RQ3). Although the
ualCL’s performance is not so good in individual stocks and in av-
rage level, but its performance would increase in cross stocks data.
ross-data can effectively enhance prediction accuracy in randomly as-
igned samples, but it does not have the same effect on chronologically
ssigned samples.

.3. The impact of the COVID-19 pandemic (RQ4)

In order to analyze the impact of COVID-19 on stock trend pre-
iction and answer (RQ4), we divided stocks into those with a high
orrelation with COVID-19(𝐻𝑖𝑔ℎ𝑐𝑜𝑟𝐶𝑂𝑉 𝐼𝐷−19) and those with a low
orrelation with COVID-19(𝐿𝑜𝑤𝑐𝑜𝑟𝐶𝑂𝑉 𝐼𝐷−19) according to the indus-
ries mentioned in the stocks. The average forecast level of each stock
s shown in Table 5.

As inferred from the table above, when using microblog data to
redict stock trends, the prediction accuracy for industries closely
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Table 4
Accuracy on the test set with randomly assigned samples.

Method Traditional stock forecasting methods(OLS) Neural networks with NLP technology

Encoder None BERT RoBERTa

Dataset/Model CAPM tock 3FactorM 5FactorM CE SCL DualCL CE SCL DualCL

𝑇𝑅𝑆𝑐 46.06 43.15 40.25 56.68 58.44 52.90 57.18 56.68 56.42
𝐷𝑄𝐸𝑐 34.58 32.71 28.04 61.63 63.95 60.47 59.30 55.23 47.67
𝐶𝑆𝐵𝑐 43.15 33.20 32.78 53.40 55.05 56.91 56.70 54.85 54.23
𝐵𝑀𝐵𝑐 39.42 31.54 30.71 66.84 67.69 68.21 68.03 68.03 68.21
𝑇𝐸𝑐 40.54 36.49 29.73 61.86 61.86 51.55 60.82 59.28 54.64
𝐶𝑅𝑀𝑐 38.17 38.17 36.10 56.92 52.01 48.21 54.02 55.58 52.46
𝐶𝑀𝑐 31.95 37.76 36.10 69.98 68.52 59.32 64.89 64.89 65.86
𝑇𝑆𝐸𝑐 39.42 40.25 34.02 54.89 55.61 51.55 56.09 51.31 48.93
𝑀𝑇𝑐 40.66 36.93 37.34 53.72 52.76 54.92 52.76 55.64 53.00
𝑄𝑋𝑐 40.25 37.76 37.34 62.18 63.03 60.50 60.50 61.34 53.78
𝐴𝐶𝑀𝑐 48.28 44.83 41.38 85.71 93.88 87.76 100 100 87.76
𝐸𝐷𝑃𝑐 26.21 22.76 22.07 62.50 62.50 75.00 62.50 62.50 75.00
𝑉 𝑍𝑀𝑐 40.63 31.25 37.50 100 100 100 100 100 100
𝐽𝐶𝑐 43.15 35.27 36.93 55.68 57.39 43.18 48.86 57.95 57.39
𝐹𝐷𝑀𝑐 39.80 36.73 34.69 49.31 56.94 53.47 59.03 57.64 52.78
𝐴𝑊𝑁𝑐 41.11 42.22 38.89 57.66 59.85 34.31 71.53 67.15 68.61
𝐻𝐾𝑇𝑐 33.61 36.93 35.68 60.15 63.24 37.02 62.98 46.02 39.07
𝑉 𝑆𝐿𝑐 38.59 34.02 34.02 56.23 58.17 58.17 58.73 57.89 58.17
𝐻𝑋𝑇𝑐 44.40 38.17 35.68 50.69 47.11 35.54 46.28 64.74 36.91
𝐴𝐿𝑇𝑐 36.36 48.48 33.33 80.95 80.95 80.95 80.95 80.95 80.95
𝐶𝐷𝐵𝑐 43.18 47.73 43.18 53.68 50.53 51.58 49.47 48.42 60.00
𝑃𝑁𝑇𝑐 42.74 40.25 38.17 64.79 67.61 60.80 66.20 67.37 64.79
𝑁𝑀𝑐 41.08 31.95 36.10 61.24 62.92 62.92 62.92 62.92 62.92
𝐺𝑀𝑇𝑐 38.92 35.96 36.95 60.72 60.72 60.47 60.72 60.47 60.47
𝐺𝐷𝑊𝑐 39.00 30.29 30.29 57.66 55.58 49.61 53.51 54.03 50.13
𝑀𝐷𝐶𝑐 36.93 36.51 36.10 59.67 59.67 53.94 60.62 62.53 60.14
𝐶𝐻𝐼𝑐 27.91 21.71 25.58 53.33 51.56 51.11 51.11 52.89 51.11
𝐻𝑂𝑀𝑐 42.86 42.86 28.57 64.71 58.82 76.47 58.82 64.71 70.59
𝑂𝑃𝑇𝑐 38.17 34.02 34.44 56.93 54.66 51.64 53.65 54.91 54.41
𝐻𝐹𝑇𝑐 40.66 38.59 40.25 54.46 53.05 53.05 53.05 53.99 55.16
𝐿𝑅𝑅𝑐 42.62 40.98 36.07 67.22 68.33 68.33 68.33 68.33 66.67
𝐶𝑅𝑂𝑐 35.51 34.06 34.06 70.33 70.33 70.33 70.70 70.33 70.33
𝐴𝑇𝑆𝑐 41.77 32.91 32.49 56.29 58.08 58.38 58.38 58.08 58.08
𝐵𝑃𝑆𝑐 41.49 39.00 41.08 50.00 58.33 62.50 41.67 62.50 54.17
𝑆𝐻𝑇𝑐 40.66 37.76 36.10 57.04 58.89 50.35 55.43 58.43 55.43
𝐻𝐼𝑈𝑐 38.94 35.40 34.07 56.98 60.76 49.13 55.81 59.88 46.22
𝐵𝑍𝑐 42.68 33.12 36.94 72.59 72.59 71.81 72.20 73.75 70.27
𝑇𝑇𝑇𝑐 41.08 36.10 33.61 63.68 61.05 61.71 62.36 62.36 62.36
𝐸𝑌 𝐿𝑐 30.43 34.78 26.09 60.00 60.00 60.00 64.44 60.00 57.78
𝑌𝐻𝐿𝑐 38.31 30.52 31.82 40.62 41.80 34.38 34.38 34.38 34.77

Avg. 39.28 36.33 34.61 60.97 61.61 58.21 60.87 61.70 59.44
Len ≥ 2900 39.94 36.14 35.37 58.39 58.59 53.54 57.69 58.57 55.49
Len < 2900 38.49 36.56 33.69 64.13 65.29 63.92 64.76 65.52 64.27

Cross-data 56.72 57.24 57.14 57.42 58.09 57.43

Note: 𝑇𝑅𝑆𝑐 means the ‘‘TRS’’ stock dataset assigned by chronologically, other stocks are similar.
Table 5
Accuracy on the 𝐿𝑜𝑤𝑐𝑜𝑟𝐶𝑂𝑉 𝐼𝐷−19 stocks and the 𝐻𝑖𝑔ℎ𝑐𝑜𝑟𝐶𝑂𝑉 𝐼𝐷−19 stocks by randomly assigned samples and chronologically assigned samples, respectively.

Method Neural networks with NLP technology Traditional stock return forecasting methods

Complier Words bag BERT RoBERTa None

Assigned Model FNN CE SCL DualCL CE SCL DualCL CAPM 3FactorM 5FactorM

Randomly 𝐿𝑜𝑤𝑐𝑜𝑟𝐶𝑂𝑉 𝐼𝐷−19 60.51 86.88 87.46 56.79 80.92 83.73 61.28
𝐻𝑖𝑔ℎ𝑐𝑜𝑟𝐶𝑂𝑉 𝐼𝐷−19 63.88 91.55 92.83 64.21 84.08 89.76 64.13

Chronologically 𝐿𝑜𝑤𝑐𝑜𝑟𝐶𝑂𝑉 𝐼𝐷−19 60.33 61.19 57.23 60.40 61.47 58.36 39.16 36.63 34.53
𝐻𝑖𝑔ℎ𝑐𝑜𝑟𝐶𝑂𝑉 𝐼𝐷−19 63.53 63.27 62.13 62.78 62.61 63.76 39.78 35.11 34.97

Note: The 𝐿𝑜𝑤𝑐𝑜𝑟𝐶𝑂𝑉 𝐼𝐷−19 contains 8 industries, namely C29, C31, C35, C37, C38, C39, C40 and I65, while the 𝐻𝑖𝑔ℎ𝑐𝑜𝑟𝐶𝑂𝑉 𝐼𝐷−19 contains 2 industries, namely C27 and M73, as
detailed in Table 1.
related to COVID-19, namely Research and Experimental Development
(M73) and Pharmaceutical Manufacturing (C27), surpasses that of other
industries, regardless of whether the data is randomized or sequential.
When using traditional time series analysis methods, the degree of
correlation with COVID-19 has different influences on the prediction
effect of stock trend. In CAPM and 5FactorM, the prediction effect
9

of stocks closely related to COVID-19 is better, while in 3FactorM,
the opposite is true. This indicates that during the COVID-19 period,
people pay more attention to stock-related microblog data, and the
acquisition and comprehension of textual information exceed that of
historical stock data. Therefore, when using microblog to predict stock
trend, stocks in industries closely related to COVID-19 will get better
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Fig. 4. Test accuracy on the GMT and HIU dataset in CE, SCL and DualCL using BERT with randomly assigned training samples(left) and chronologically assigned training samples
(right).
Fig. 5. Test accuracy on the QX and ALT dataset in CE, SCL and DualCL using BERT with randomly assigned training samples(left) and chronologically assigned training sample
(right).
prediction effect. However, with traditional time series analysis meth-
ods, the effectiveness is inconsistent regarding the stocks’ correlation
with COVID-19.

5.4. The return of stocks (RQ5)

5.4.1. Simulated trading strategy
We refer to the investment strategies in this article [23] and specif-

ically divide investment operations into three categories: short, long,
and preserve. Given that some stocks in the Chinese stock market are
subject to short selling, we assume that a short selling policy applies
to all stocks for our analysis. When the stock is predicted to fall in the
next trading day, the ‘‘short’’ operation is performed in current trading
day. When the stock is predicted to rise in the next trading day, the
‘‘long’’ operation is performed in current trading day. Otherwise, when
there is no change in the next trading day or there is no microblog
information about the stock in current trading day, the ‘‘preserve’’
10
operation is performed. And for different trading operations, different
yield calculation methods are adopted. When the ‘‘short’’ operation is
executed, the log of daily return rate is defined as 𝑟𝑡 = [𝑙𝑛(𝑃𝑠𝑒𝑙𝑙) −
𝑙𝑛(𝑃𝑏𝑢𝑦)] ∗ 100%. When the ‘‘long’’ operation is executed, the log of daily
return rate is defined as 𝑟𝑡 = [𝑙𝑛(𝑃𝑏𝑢𝑦) − 𝑙𝑛(𝑃𝑠𝑒𝑙𝑙)] ∗ 100%. And when the
‘‘preserve’’ operation is executed, the log of daily return rate is 𝑟𝑡 = 0.
So, the monthly rate of return is 𝑒𝑠𝑢𝑚(𝑟𝑡) − 1. 𝑃 is the stock close price,
and 𝑙𝑛(𝑃 ) is the log function of 𝑃 .

This strategy is based on the assumption that the stock price will
surge or plummet in response to the release of microblog information.
The trading operations will be triggered according to the result pre-
dicted by our model. Specifically, if the average predicted result from
microblog texts is greater than or equal to 0 but less than a predefined
threshold (indicating a ‘‘downtrend’’ signal), a ‘‘short’’ operation is
triggered. Conversely, if the average result is greater than or equal
to this threshold and less than 1.5 (indicating an ‘‘uptrend’’ signal), a
‘‘long’’ action is initiated. With different dataset’s predicted results, the
threshold would be different. See Table 6.
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Table 6
The comparison of profitability test on Maximum Drawdown (%), Daily Rate of Return (%), and Sharpe Ratio Rate with strong baselines, GMT, HIU, QX and ALT of BERT model
from 11/1/2021 to 12/31/2021.

Dataset Microblog period Train interval Test interval Method Monthly Rate of Return (%) Maximum Drawdown (%) Sharpe Ratio

GMT 2021/3/3-2021/12/31 [1,3433] [3434,3871] SCL 4.38 10.59 1.92
CE 4.13 10.59 1.59
DualCL 3.61 10.59 0.94

HIU 2021/1/25-2021/12/31 [1,3046] [3047,3463] SCL 9.94 16.71 3.65
CE 2.33 16.71 −0.27
DualCL 0.81 16.71 −1.04

QX 2021/1/3-2021/12/31 [1,1131] [1132,1228] SCL 4.04 15.79 1.81
CE 3.38 15.79 0.77
DualCL −1.42 15.79 −6.42

ALT 2021/11/15-2021/12/31 [1,217] [218,639] SCL 20.18 25.03 11.71
CE 21.37 25.03 12.73
DualCL 1.46 25.03 −0.83
5.4.2. Profit metrics
For simulated trading, we applied the Daily Rate of Return, Maxi-

mum Drawdown and Sharpe Ratio as evaluation metrics based on our
simulated trading strategy.

• Monthly Rate of Return reflects the monthly return level of the
stock, and 𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝑅𝑎𝑡𝑒𝑜𝑓𝑅𝑒𝑡𝑢𝑟𝑛 = 𝑒𝑠𝑢𝑚(𝑟𝑡) − 1. 𝑒(⋅) means to
the exponential function, and 𝑠𝑢𝑚(⋅) means to the summation
function.

• Maximum Drawdown is a risk measure of the degree to which an
asset holds its value, and 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐷𝑟𝑎𝑤𝑑𝑜𝑤𝑛 = 𝑀𝑎𝑥(𝑃𝑥 − 𝑃𝑦)∕
𝑃𝑥 ∗ 100%, 𝑤𝑖𝑡ℎ𝑦 > 𝑥.

• Sharpe Ratio reflects its nature of balancing return and risk of a
strategy, and 𝑆ℎ𝑎𝑟𝑝𝑒𝑅𝑎𝑡𝑖𝑜 = (𝑅𝑎𝑡𝑒𝑜𝑓𝑅𝑒𝑡𝑢𝑟𝑛 − 𝑅𝑖𝑠𝑘 − 𝑓𝑟𝑒𝑒𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡
𝑅𝑎𝑡𝑒)∕𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑜𝑓𝑅𝑒𝑡𝑢𝑟𝑛, which Risk-free Interest Rate
equals to 0.0287 that is the average 1Y Shibor rate in 2021 year.

5.4.3. Simulation result
In order to analysis the performance of return by different methods

in real stocks, we compare the profit of test with GMT, HIU, QX, and
ALT. The length of Train and Test data information and simulation
results are summarized in Table 6.

In this section, we discuss the possible profitability of the proposed
strategy in real-world trading. We use our trading strategy to conduct
trading simulation (backtesting) on stock data from November 2021
to December 2021 using the stock movement prediction result of our
model trained from January 2021 to October 2021 as mentioned in
Section 5.2. In Table 6, we demonstrate that the ALT datasets, when
processed with SCL and CE methods, achieve an impressive monthly
rate of return of 20.18% and 21.37%, respectively, surpassing the oth-
ers. Meanwhile, the average monthly return rate of these four datasets
with three methods are 9.635%, 7.8025%, and 1.115%, respectively,
with SCL being the highest. Furthermore, SCL exhibits superior profit
performance, a lower Maximum Drawdown, and a higher Sharpe Ratio
in large datasets; however, these advantages are not as pronounced in
smaller datasets.

6. Discussion

6.1. Threat to validation

This paper constructs a large-scale stock microblog dataset for
forecasting stock trends. This dataset serves as a reliable basis for
further research in stock prediction using natural language processing.
Compared to the study by [15], our larger dataset yields distinct results
when employing BERT and RoBERTa language models. We posit that
11

SCL offers a superior predictive effect.
6.2. Limitations

The research presented in this paper has some limitations. It fo-
cuses only on predicting stock trends based on stock microblog data,
overlooking the significant correlation between stocks. Moreover, in
China, stock trend fluctuations are also influenced by other types of
information such as news, policy documents, and newspaper reports.
Relying solely on stock microblog data for predictions is somewhat
simplistic. Therefore, integrating these factors represents a valuable
direction for future research enhancement. Additionally, our analysis
of stock prediction accuracy across different methods involves com-
paring text data of varying sample sizes. We find that both large and
small samples affect the accuracy of single stock predictions. Notably,
there are significant differences in the predictive outcomes between
cross-sample and single-stock sample datasets.

7. Conclusion and future work

7.1. Conclusion

In this paper, we build a platform with microblog dataset and study
the problem of NLP-based stock movement prediction. We have drawn
multiple conclusions as follows:

• SCL with both BERT and RoBERTa encoders generally achieves
better classification performance for most stocks, showing the
best average performance in both randomly and chronologically
assigned samples. However, SCL performs better in large datasets
than in small ones when samples are randomly assigned.

• Neural network methods using NLP technology with microblog
text data are more effective in predicting stock movement than
traditional time series analysis methods using historical stock
data.

• The cross stocks data would improve the accuracy of CE, SCL
and DualCL methods, especially in DualCL, in randomly assigned
samples, but it does not improve the prediction accuracy in
chronological assigned samples.

• In the period of COVID-19, people pay more attention to stock-
related microblog data, and the acquisition and recognition of
textual information are higher than that of historical stock data.
Therefore, when using microblog to predict stock trend, stocks
in industries closely related to COVID-19 will get better predic-
tion effect. However, when using traditional time series analysis
methods, the effectiveness is inconsistent regardless of the stock’s
relation to COVID-19.

• The SCL reflects better profit performance, smaller Maximum
Drawdown and larger Sharpe Ratio in the large datasets, but it
is not necessarily true in the small datasets.
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7.2. Future work

In this paper, through a web crawl blog data and sorting and build
a larger microblog dataset, then stocks movement are discussed by the
natural language technology with neural networks methods of FNN,
CE, SCL and DualCL, and traditional stocks return time series forecast
models of CAPM, Three-factor Model and Five-factor Model. However,
this article has not addressed two points. The first is the potential
significant relationship between different textual data in microblogs.
The second is the possible correlation between different stocks. These
two points have not considered in this paper and can be used as the
direction of future research.
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