
HedgeCode: A Multi-Task Hedging Contrastive
Learning Framework for Code Search

Gong Chen∗, Xiaoyuan Xie∗‡, Daniel Tang†, Qi Xin∗, Wenjie Liu∗
∗School of Computer Science, Wuhan University, China

†University of Luxembourg, Luxembourg
chengongcg@whu.edu.cn, xxie@whu.edu.cn, xunzhu.tang@uni.lu, qxin@whu.edu.cn, wenjieliu@whu.edu.cn

Abstract—Code search is a vital activity in software engineer-
ing, focused on identifying and retrieving the correct code snip-
pets based on a query provided in natural language. Approaches
based on deep learning techniques have been increasingly adopted
for this task, enhancing the initial representations of both code
and its natural language descriptions. Despite this progress, there
remains an unexplored gap in ensuring consistency between the
representation spaces of code and its descriptions. Furthermore,
existing methods have not fully leveraged the potential relevance
between code snippets and their descriptions, presenting a
challenge in discerning fine-grained semantic distinctions among
similar code snippets.

To address these challenges, we introduce a multi-task hedging
contrastive Learning framework for Code Search, referred to as
HedgeCode. HedgeCode is structured around two primary train-
ing phases. The first phase, known as the representation align-
ment stage, proposes a hedging contrastive learning approach.
This method aims to detect subtle differences between code
and natural language text, thereby aligning their representation
spaces by identifying relevance. The subsequent phase involves
multi-task joint learning, wherein the previously trained model
serves as the encoder. This stage optimizes the model through a
combination of supervised and self-supervised contrastive learn-
ing tasks. Our framework’s effectiveness is demonstrated through
its performance on the CodeSearchNet benchmark, showcasing
HedgeCode’s ability to address the mentioned limitations in code
search tasks.

Index Terms—code search, relevance detection, contrastive
learning, multi-task learning

I. INTRODUCTION

Code search is one of the most important tasks in the field
of software engineering [1], [2]. The goal of code search is
to retrieve codes from the codebase that match the intent
of developers. With the emergence of a large number of
available code libraries (such as GitHub and Stack Overflow),
developers often need to spend about 19% of their working
time to search code from existing code libraries based on
their intents for code reuse [3]–[5]. How to search codes that
confirm the intent of the query provided in natural language
from a rich pool of candidates becomes a challenge [6]–[9].

To contribute to the effectiveness and efficiency of code
search, various previous works concerning code search have
been proposed. In earlier studies, researchers utilized in-
formation retrieval (IR) techniques to search relevant codes
[10]–[12]. Specifically, they use TF-IDF methods to represent
queries and codes as sparse vectors and calculate the lexical

‡Corresponding author.

similarity between them. However, these methods are token-
sensitive and lack the ability to understand the semantics of
codes and the intent of queries. With the development of deep
learning (DL), researchers adopt deep neural networks for code
search [3], [6], [13]–[19]. The DL-based methods represent
codes and queries as dense vectors and then calculate the
cosine similarity of vectors to measure semantic relevances
[2]. Recently, code large language models (LLMs) pre-trained
on massive source code-related data have shown impressive
performance in code intelligence and achieved excellent per-
formance on code search task [20]–[22]. Although these code
LLMs have achieved advanced performance, the semantic
relevance between code and its natural language description
is not fully utilized [23], [24]. So it is difficult to distinguish
functional equivalent codes with different implementations
or code snippets with similar tokens but unequivalent in
semantics.

Inspired by the successful application of Contrastive Learn-
ing (CL) in the fields of natural language processing (NLP) and
computer vision (CV) [25]–[27], some researchers have intro-
duced CL into programming language processing [23], [24],
[28]–[32], and achieve advanced performance in code search.
However, these methods also have some limitations. Firstly,
code is a structured form of language that differs significantly
from natural language texts, making them distinct modalities.
Despite this, the consistency in representation spaces between
code and natural language texts remains an area that has
not yet been fully investigated. Fig. 2 illustrates that current
approaches are unable to bridge the gap in representation
spaces resulting from the inherent differences between code
and natural language texts.

Secondly, the relationship between code and its natural
language description remains inadequately explored, leading
to a situation where current techniques struggle to grasp
the finer nuances of their correlation. While these methods
do manage to establish a link between code and text using
self-supervised CL methods [25], supervised CL [33], by
contrast, has the advantage of leveraging prior knowledge
contained in supervised signals. This benefit is evident in
Fig. 1, where supervised CL employs these signals to capture
more semantic detail, thus enabling it to differentiate subtle
semantic distinctions more effectively. However, a significant
challenge with supervised CL is the difficulty in acquiring the
necessary supervised signals.

Fig. 1. Comparison of supervised and self-supervised CL.

This paper. To address these limitations, we propose
HedgeCode: A Multi-Task Hedging Contrastive Learning
Framework for Code Search. HedgeCode consists of two
training stages. In the representation alignment stage, we build
a dataset for relevance detection and design a supervised CL
method, hedging contrastive learning (HCL), to capture fine-
grained differences between the code and text and align the
representation spaces through relevance detection. In the multi-
task joint learning stage, we employ the trained model as the
encoder and adopt the joint learning paradigm to optimize it
through three tasks: code-text contrastive learning task (CTC),
code-text relevance detection task (CTRD), and code search
task (CS) based on supervised and self-supervised contrastive
learning. The experimental results on the CodeSearchNet
benchmark show the effectiveness of HedgeCode. Specifically,
for the three integrated pre-trained models (CodeBERT [20],
Unixcoder [23], CoCoSoDa [24]), the MRR is improved by
3.7, 2.6, and 1.5 respectively. The visualization results show
that HedgeCode can effectively align the representation space
of code and text.

Our main contributions are as follows:
❶ We propose HedgeCode. Through aligned representation

space and multi-task hedging contrastive learning by Hedge-
Code, the integrated code search model is optimized.

❷ We build a dataset and design a supervised contrastive
learning method, hedging contrastive learning for relevance
detection task. And we innovatively utilize HCL to align rep-
resentation space and optimize code-text relevance detection
task.

❸ Our experimental results on the dataset demonstrate the
effectiveness of our framework. The code and datasets are
available at: https://github.com/repo-anonymous/hedgecode.

The remainder of this paper is organized as follows. Sec-
tion II presents the motivations of our work. Section III
overviews our proposed approach. The experimental setup and
results are then described in Sections IV and V respectively.
We provide discussions in Section VI. We presented the
relevant work in Section VII and concluded in Section VIII.

II. MOTIVATION

Our motivation stems from two primary concerns:

Addressing the inconsistency in representation spaces
due to data diversity. Deep learning-based models typically
encode codes and natural language texts into dense vectors to
assess their semantic similarity through cosine similarity [2].
Ideally, a natural language text and its corresponding code
should exhibit similar vector representations in a multidimen-
sional space. Nonetheless, it has been noted that some widely
used models, such as CodeBERT [20], display discrepancies
in the representation distributions of code and natural language
texts.

Specifically, we adopt the t-SNE algorithm [34] to visualize
the representation distributions of codes and their descriptions
embedded by CodeBERT, as illustrated in Fig. 2. The figure
highlights the disparity in representation distributions; code
representations tend to be more clustered, whereas natural
language text representations are more scattered. This discrep-
ancy in distribution can lead to two issues: Firstly, the dense
clustering of code representations complicates the identifica-
tion of nuanced semantic differences between codes. Secondly,
the mismatch in representation distributions can skew the
similarity assessments between codes and texts, potentially
leading to incorrect matches.

Fig. 2. The representation distributions of CodeBERT.

Identifying distinctions between similar yet not identical
codes. Listing 1. presents two instances from the code search
dataset. The first instance illustrates that codes with highly
similar tokens can have diametrically opposed functional
semantics. The second instance exemplifies a typical pro-
gramming concept, code overload, where codes share similar
tokens and basic functions but differ in semantics due to
variations in inputs and outputs. These instances demonstrate
a prevalent issue: codes with similar lexical components may
convey different or subtly distinct semantics. This similarity
can deceive neural networks, making the differentiation of
nuanced semantic variations a significant challenge.

Driven by these challenges, we introduce HedgeCode to
delve into the nuanced correlations between code and natural
language texts and to align their representation spaces more
accurately.

Listing 1. Similar but unequivalent code snippets.
__
Example 1-1:
public boolean add(T o){

boolean result = super.add(o);
sizeOf += (result) ? o.sizeof() : 0;

return result;}
--
Example 1-2:
public void add(int index, T element){

super.add(index, element);
sizeOf += element.sizeof();}

__
Example 2-1:
Public LongAssert isGreaterThan(long other){

if(actual > other){return this;}
failIfCustomMessageIsSet();
throw failure(

unexpectedLessThanOrEqualTo(actual,
other));}

--
Example 2-2:
public IntAssert isLessThanOrEqualTo(int

other){
if(actual <= other){return this;}
failIfCustomMessageIsSet();
throw

failure(unexpectedGreaterThan(actual,
other));}

__

III. APPROACH

To align the representation spaces and capture the fine-
grained semantic relevance between code and natural language
text, we propose HedgeCode. As illustrated in Fig. 3, Hedge-
Code consists of three stages: representation alignment, multi-
task joint, and code search. HedgeCode aligns the representa-
tion spaces of code and text in the first stage and then further
optimizes the representation learning of code and text in the
second stage. Finally, it uses the trained model for code search.
We will fill in the details of each stage in the subsections.

A. Representation Alignment Stage (RA)

In the representation alignment stage, we align the represen-
tation spaces of code and text by detecting relevance between
them. We define the code-text relevance detection task (CTRD)
and build the dataset. In order to capture the fine-grained
differences between the code and text, we design a super-
vised contrastive learning method named hedging contrastive
learning (HCL).

1) Task Formalization: Specifically, we take the relevance
detection task as a binary classification problem. And it is
defined as Definition III-A1.

Definition III-A1 (Code-Text Relevance Detection Task
(CTRD)). Code-text relevance detection is a binary clas-
sification task. Given a pair of code and description, we
decide whether code and description are related or not.
If they are related, the detection result is expressed as
relevance = 1, otherwise relevance = 0.

2) Detection Dataset Building: We build the detection
datasets based on the CodeSearchNet benchmark. The Code-
SearchNet contains six programming language (PL) datasets.
We build detection datasets for each of them. The raw data
contains a code snippet and its description. To construct

detection pairs for each PL, we first take a code snippet as an
anchor, denoted code+, and identify the code snippets that are
similar to the token sequence of the anchor in the dataset. We
take the top K similar code snippets as the negative samples
set C− = {code−1 , ..., code

−
k }. Then, we take the pair of the

anchor as a positive sample pair (description, code+) and
label its relevance as 1. We combine each code snippet in the
negative sample set with the anchor’s description as a negative
sample pair (description, code−) and label their relevance
as 0. Finally, we collect the positive sample pair and the K
negative sample pairs of each anchor as detection pairs.

It is worth noting that the objective of the CTRD task is
to distinguish codes with similar vocabularies but nuanced se-
mantic differences through more fine-grained relevance detec-
tion. Compared to these codes, the anchor is more relevant to
its description. So we take the codes that have a similar token
sequence to the anchor as its negative samples. Specifically, we
adopt BERT [35] to identify codes with similar vocabularies.
We first encode all codes with BERT and output their vector
representations. Then we use cosine similarity to measure their
similarities. We set K = 2 and take the first two codes with
the highest similarities with the anchor as negative samples.

3) Hedging Contrastive Learning: The detection model is
designed to accept a pair of code and its description, embed-
ding their token sequences through an encoder and predicting
their relevance using a classification head. We enhance this
pipeline with HCL to refine the model’s sensitivity to the
subtleties distinguishing code from text.

The overview of the HCL is shown in Fig. 4. This approach
targets the identification and prioritization of hard negative
samples, which closely resemble positive samples but belong
to a different class, thus posing a significant challenge for
discrimination.

Fig. 4. The overview of the HCL.

In the HCL, we enhance the original dual contrastive loss
(DualCL) [36] by incorporating the data augmentation strat-
egy. DualCL is an advanced supervised contrastive learning al-
gorithm designed for text classification tasks (such as emotion
classification). However, different from these text classification
tasks, there may be no correlation between detection pairs, so
the CTRD task cannot simply benefit from the labels of pairs.

Fig. 3. The overview of the HedgeCode. HedgeCode consists of three stages. ❶ In the RA stage (Section III-A), we align the representation spaces of code
and text through the CTRD task and design a HCL method to capture fine-grained differences between the code and text. ❷ In the MJL stage (Section III-B),
we employ joint learning to optimize the CTRD task, CTC task, and CS task. ❸ In the CS stage (Section III-C), we employ the trained encoder to search
codes from the codebase.

Due to this data discrepancy, the DualCL cannot be directly
applied to the CTRD task. We design a data augmentation
strategy to make DualCL suitable for CTRD task.

a) Data Augmentation: Our data augmentation strategy
consists of two parts, positive sample augmentation and dy-
namic hard negative sampling.

Positive Sample Augmentation. We propose two positive
sample augmentation methods inspired by Masked Language
Models [35]. During training, in order to increase the diversity
and randomness of positive samples, we randomly choose a
data augmentation method to augment the input.

Random Masking (RM): randomly sample 20% of tokens
of the sequence and replace each token with a [MASK] token.

Random Replacement (RR): randomly sample 20% of
tokens of the sequence and replace each token with a random
token.

Dynamic Hard Negative Sampling. The effectiveness
of negative samples is crucial for contrastive learning. We
design a dynamic hard negative sampling strategy (DHNS).
In particular, we construct and maintain a sample queue for
DHNS. We sample the hard negative sample from this queue.
The queue is randomly initialized and updated with batch-
size data at each training batch. We rank the negative samples
based on their similarity to the positive sample and identify
the top-ranked sample as the hard negative sample at each
training batch. It’s a dynamic process.

b) Hedging Contrastive Loss: In the HCL framework,
given a detection sample, we insert [CLS] at the beginning and
insert the binary labels (relevance and irrelevance) between
[CLS] and the token sequence X as the input for the classifier,

denoted as
[[[
[CLS], relevance, irrelevance,X

]]]
. In the CTRD

task, for an input sample xi, the classifier ti outputs its feature
representation zi, and predicts its label through the softmax
transform of tTi · zi. Our objective is to maximize the consis-
tency between the prediction of the classifier and the ground-
truth label of xi. Meanwhile, we also expect to maximize the
dot product between the representation of ground-truth label
t∗i of the input token sequence and the feature representation
zi. To achieve this, we introduce an advanced contrastive loss
that leverages the relationship between training samples based
on label congruence. Specifically, we propose two contrastive
views: classifier contrastive view and feature contrastive view.

In the feature contrastive view, given an anchor zi, we
define the set of positive samples as {t∗j}j∈Pi and the set
of hard negative samples as {t∗j}j∈Hi

. The contrastive loss
is expressed as:

Lz = − 1

N

∑
i∈I

1

|Pi|
∑
p∈Pi

log
exp (t

∗
p · zi/τ)∑

a∈Ai
exp(t∗h · zi/τ)

(1)

where A is the set of the hard negative samples and P is the
set of the positive samples.

Similarly, in the classifier contrastive view, for an anchor
t∗i , the contrastive loss is expressed as:

Lθ = − 1

N

∑
i∈I

1

|Pi|
∑
p∈Pi

log
exp (t

∗
i · zp/τ)∑

a∈Ai
exp(t∗i · zh/τ)

(2)

The Hedging Contrastive Loss integrates both enhancements
to ensure a balanced learning focus between easy and hard

examples and enhance the model’s ability to discern subtle
differences across classes. Finally, the Hedging Contrastive
Loss L′

HCL is given by:

L
′

HCL = Lz + Lθ (3)

To combine the HCL objective with the detection objective,
we introduce a modified cross-entropy loss LCE:

LCE = − 1

N

∑
i∈I

log
exp(θ∗i · zi)∑

k∈K exp(θki · zi)
(4)

This loss function prioritizes the correct detection of in-
stances by maximizing the dot product between the instance’s
feature representation zi and the correct classifier weight θ∗i .
K is the number of types of labels. In the CTRD task, K = 2.

Finally, we combine these training losses to jointly optimize
the classifier.

LHCL = LCE + λL
′

HCL (5)

where λ is a weighting factor to balance the detection objective
and the HCL objective.

B. Multi-task Joint Learning Stage (MJL)

In the multi-task joint learning stage, we design a multi-task
contrastive learning framework containing three tasks: code-
text relevance detection task (CTRD), code-text contrastive
learning task (CTC), and code search task (CS). We follow
the paradigm of joint learning and employ the model trained
by the representation alignment stage as the encoder. These
three tasks share a common goal, which is to learn the
semantic correlations between code and text. Among them,
CS is the main task. CTC learns the semantic associations
and distinctions between code and text from two views, cross-
modal and unique-modal, through self-supervised contrastive
learning. CTRD learns the fine-grained differences between
code and text through supervised signals. They are related and
complementary.

1) Model Architecture: The model architecture is shown
in Fig. 3. The model consists of three encoders with shared
weights: text-encoder, code-encoder, and pair-encoder. Among
them, text-encoder and code-encoder are used for the CS task
and CTC task, and a classification head is attached after pair-
encoder for the CTRD task.

Following Section III-A3a, we randomly employ RM or RR
to get the positive sample and we also adopt DHNS to sample
the negative sample.

2) Mulit-task Joint Learning: We optimize the model by
joint learning three tasks.

Code-Text Contrastive Learning Task (CTC) aims to
minimize the distance of similar sample representations and
maximize the distance of distinct samples. The model employs
the text-encoder and code-encoder to embed code descriptions
and code snippets and then employs self-supervised contrastive
learning to optimize their representations.

We take the given text/code as an anchor and randomly
select RM and RR for data augmentation, the augmented
texts/codes are used as positive samples of the anchor. And

we randomly sample negative samples from the mini-batch.
Following previous work [26], we employ InfoNCE loss [37]
to optimize this task. Specifically, we propose two contrastive
views, unique-modal and cross-modal, and their loss function
as follows:

Lcross = − log
exp (ti · ci/τ)∑

i,j∈I exp (ti · cj/τ)
(6)

Ltext
unique = − log

exp (ti · t+/τ)∑
i,j∈I exp (ti · tj/τ)

Lcode
unique = − log

exp (ci · c+/τ)∑
i,j∈I exp (ci · cj/τ)

(7)

where c and t are the embeddings of the code and text,
respectively. In cross-modal contrastive view, ti is an anchor,
ci is its positive sample, and cj is the negative sample. In
unique-modal contrastive view, c+ and t+ are the positive
samples of ci and ti, cj and tj are negative samples. And
τ is the temperature.

Finally, the loss function of CTC is as follows:

LCTC = Lcross + Ltext
unique + Lcode

unique (8)

Code-Text Relevance Detection Task (CTRD) aims to
capture the fine-grained relevance between code and its de-
scription. As stated in Definition III-A1, CTRD is a binary
classification problem. HedgeCode employs the pair-encoder
to learn code and text features simultaneously and employs a
classification head to predict whether the code-text pairs are
relevant or not.

Following the III-A3a section, for a given pair, we label its
relevance as 1 and adopt the same data augmentation strategy
to sample the positive and negative samples. We adopt HCL
(as shown in III-A3 section) to optimize the CTRD.

LCTRD = LHCL (9)

The CTRD task is included in the RA and MJL stages. In
the RA stage, we build a detection dataset through global token
similarity identification and align the representation space of
code and text through the CTRD task. In the MJL stage, we
adopt the CTRD task to further capture more fine-grained
relevance between code and text to optimize the representation
learning of code and text.

Code Search Task (CS) is the main task. Following
previous works [6], [20], [21], [24], we employ cross-entropy
loss to optimize this task.

LCS = −
k∑

i=1

[
log

exp (cos (qi, ci))

Σk
j=1 exp (cos (qi, cj))

]
(10)

where qi and ci are the embeddings of the query and code,
respectively. cos(·) is the cosine similarity score. k is the batch
size.

Joint Learning. Finally, we follow the joint learning
paradigm and optimize the three training tasks simultaneously.

TABLE I
STATISTICS OF DATASETS.

Languages CodeSearchNet Relevance Pairs
Train Valid Test Candidate Train Valid Test

Ruby 24,927 1,400 1,261 4,360 74,781 4,200 3,783
Javascript 58,025 3,885 3,291 13,981 17,4075 11,655 9,873

Java 164,923 5,183 10,955 40,347 494,769 15,549 32,865
Go 167,288 7,325 8,122 28,120 501,864 21,975 24,366

PHP 241,241 12,982 14,014 52,660 723,723 38,946 42,042
Python 251,820 13,914 14,918 43,827 755,460 41,742 44,754

The final training loss is as follows:

Ljoint = λ1LCS + λ2LCTRD + λ3LCTC (11)

C. Code Search Stage (CS)

After training, we use the trained model to search code. We
input the query q, and search codes that match the intent in
the given codebase C = {c1, c2, ..., cn}.

Specifically, the trained model embeds the query q and each
code ci of codebase C as vectors respectively, and computes
the cosine similarity between eq and eci using Eq. (12).
Finally, the model sorts the code snippets by cosine similarity
scores and outputs the top K results which most relevant to
the query q.

Cosine Similarity(q, ci) =
eq · eci

∥eq∥ · ∥eci∥
(12)

IV. EXPERIMENTAL SETUP

We first enumerate the research questions that we investigate
to assess HedgeCode. Then, we describe the datasets and
baselines used for answering the research questions. Next, we
present the evaluation metrics used in our study. Finally, we
describe the hyperparameter and experimental environment.

We investigate the advancement and effectiveness of Hedge-
Code through the following four RQs.
• RQ-1: How does HedgeCode perform in code search task

compared with state-of-the-art code search models?
• RQ-2: How does HedgeCode perform when integrating

different code representation models?
• RQ-3: How effective is each stage of HedgeCode?
• RQ-4: How effective is HedgeCode in special code search

scenarios?

A. Datasets & Baselines

1) Datasets: CodeSearchNet [38] is a widely used bench-
mark for code search task. It contains six different program-
ming languages. Following previous works [14], [20], [21],
[23], [24], [31], we choose CodeSearchNet to train and evalu-
ate HedgeCode. The statistical information of CodeSearchNet
is shown on the left of Table I.

As described in Section III-A2, we also construct a rele-
vance pair dataset for relevance detection task based on the
CodeSearchNet. The statistical information of the relevance
pair dataset is shown on the right of Table I.

2) Baselines: In this experiment, we selected nine advanced
code search models to compare with HedgeCode. The brief
introductions of the chosen models are as follows:

• RoBERTa [39] is a widely used Transformer-based pre-
trained language model.

• CodeBERT [20] is a Transformer-based pre-trained pro-
gramming language model used for multiple code-related
tasks.

• GraphCodeBERT [21] is a pre-trained model that com-
bines code tokens and data flow information during pre-
training.

• UniXcoder [23] is a unified contrastive pre-training
method that leverages multi-modal content to support
code-related tasks.

• SYNCOBERT [31] constructs a syntax-guided con-
trastive pretraining approach.

• CodeT5 [22] is a unified pre-trained encoder-decoder
transformer model and leverages developer-assigned
identifiers to learn the code semantics relevance.

• CodeRetriever [28] combines unimodal and bimodal
contrastive objectives to learn function-level semantic
representations of code snippets.

• CodeT5+ [32] is an advanced encoder-decoder LLM for
code and it supports a wide range of code understanding
and generation tasks.

• CoCoSoDa [24] proposes a soft data augmentation
method and a multi-modal contrastive objective for the
code search task.

B. Metrics

Accuracy. We take a widely used evaluation metric Accu-
racy to evaluate the relevance detection task of the represen-
tation alignment stage. The Accuracy metric is calculated as
follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

where TP, TN, FP and FN denote number of true positive
results, true negative results, false positive results, and false
negative results, respectively.

MRR. Following previous works [20]–[23], [32], we adopt
Mean Reciprocal Rank (MRR) to evaluate the code search
task.

MRR =
1

N

N∑
i=1

1

ranki
(14)

where N is the total number of queries, ranki is the rank of
the ground-truth in all search results.

C. Hyperparameter & Environment

We set the learning rate of the relevance detection task of
the representation alignment stage to 10−6 and the learning
rate of the multi-task joint learning stage to 2× 10−5. We set
the hyperparameters τ = 0.1, λ = 0.5, λ1 = 0.8, λ2 = 0.1,
and λ3 = 0.1.

We adopt the Adam optimizer to optimize the model. We
set the batch size to 64. We set the queue size of DHNS to

5 times the batch size. We adopt the early stop strategy, set
the maximum training epochs to 100, and stop the training
when the MMR no longer improves in 10 consecutive epochs.
All experiments were performed on a machine with two 48G
NVIDIA A6000 GPUs.

V. EXPERIMENTS & RESULTS

We conduct several experiments to answer the four research
questions.

A. Effectiveness of HedgeCode

[Experiment Goal]: The goal of RQ-1 is to explore the effec-
tiveness of HedgeCode. We answer RQ-1 by comparing the
HedgeCode’s performance with baselines on CodeSearchNet.
[Experiment Design]: Following previous works, we input the
codebase and queries of the test dataset to the trained model.
The model outputs the vector representations of queries and
codes. Then we compute the cosine similarity between them.
For each query, we rank the codes of the codebase according
to their cosine similarity score (as shown in Section III-C).
Finally, we evaluate the effectiveness of HedgeCode by com-
paring its MRR with baselines.

It is worth noting that HedgeCode is model-agnostic and can
integrate any code representation model simply. CoCoSoDa
[24] is the most advanced code representation model for code
search task. So, we implement HedgeCode by employing
CoCoSoDa as the encoder.
[Experiment Results]: The performances of HedgeCode and
baselines on CodeSearchNet are shown in Table II. By com-
paring the MRR scores in the table, it can be found that Hedge-
Code achieves state-of-the-art performance and CoCoSoDa
achieves best results in baselines. Specifically, HedgeCode’s
MRR is 1.5 higher than the most advanced CoCoSoDa on
average.

In this RQ, we integrate and optimize CoCoSoDa with
HedgeCode and HedgeCode’s MRR is improved on each
programming language of CodeSearchNet compared with the
original CoCoSaDa. It shows that HedgeCode can improve
the representation ability of code LLM (such as CoCoSoDa)
through its meticulously designed representation optimization
method.

✍ Summary. HedgeCode is effective and advanced.
HedgeCode can improve the code search performance
and achieve the new state-of-the-art performance on code
search.

B. Portability of HedgeCode

[Experiment Goal]: The goal of RQ-2 is to explore the
portability of HedgeCode. We answer RQ-2 by integrating
different code representation models and comparing their
performances with the original models.
[Experiment Design]: In this experiment, we further choose
two wildly used code representation models as encoders and
integrate them with HedgeCode. Among them, CodeBERT

TABLE II
THE MRR SCORES OF HEDGECODE AND BASELINES ON

CODESEARCHNET.

Language Ruby Javascript Go Python Java PHP Avg.
RoBERTa 62.8 56.2 85.9 61.0 62.0 57.9 64.3
CodeBERT 67.9 62.0 88.2 67.2 67.6 62.8 69.3

GraphCodeBERT 70.3 64.4 89.7 69.2 69.1 64.9 71.3
CodeT5 71.9 65.5 88.8 69.8 68.6 64.5 71.5

SY NCOBERT 72.2 67.7 91.3 72.4 72.3 67.8 74.0
UniXcoder 74.0 68.4 91.5 72.0 72.6 67.6 74.4
CodeT5+ 77.7 70.8 92.4 75.6 76.1 69.8 77.1

CodeRetriever 77.1 71.9 92.4 75.8 76.5 70.8 77.4
CoCoSoDa 81.8 76.4 92.1 75.7 76.3 70.3 78.8
HedgeCode 82.5 77.1 92.7 77.6 78.5 73.8 80.3(1.5↑)

TABLE III
THE MRR SCORES OF THE ORIGINAL MODELS AND THEIR HEDGECODES.

Language Ruby Javascript Go Python Java PHP Avg.
CodeBERT 67.9 62.0 88.2 67.2 67.6 62.8 69.3
UniXcoder 74.0 68.4 91.5 72.0 72.6 67.6 74.4

HedgeCodeCodeBERT 72.7 66.3 90.2 71.3 71.2 66.2 73.0(3.7 ↑)
HedgeCodeUniXcoder 76.2 73.2 91.8 74.6 75.5 70.8 77.0(2.6 ↑)

[20] is the first pre-trained code representation model. UniX-
coder [23] is an advanced and widely used code representation
model.
[Experiment Results]: The performances of HedgeCode in-
tegrated with different code representation models and their
original models are shown in Table III. Specifically, for the
two integrated code representation models CodeBERT and
UniXcoder, the MRR scores are improved by 3.7 and 2.6 on
average, respectively. The results show that HedgeCode can
effectively improve different code representation models.

Among the models, CodeBERT has significant improve-
ment, because this model does not design pre-training objects
to learn the relevance between code and text, so it can further
understand the relevance between code and text by integrating
it with HedgeCode. The improvement of the UniXcoder is
limited because UniXcoder can learn the relevance between
code and text to a certain extent through unified pre-training
and self-supervised CL. However, due to the heterogeneity
of code and text and the lack of more fine-grained semantic
learning, the understanding of the relevance is still insufficient.
So the more fine-grained relevance between code and text can
be learned by integrating it with the HedgeCode.

In summary, the above results show that understanding the
relevance between code and text is crucial to the code search
task. HedgeCode can better understand the relevance between
code and text, so as to improve the performance of code search.

✍ Summary. HedgeCode has good portability. It can
easily integrate different code representation models and
improve their performance on code search task.

C. Ablation Study of HedgeCode

[Experiment Goal]: The goal of RQ-3 is to study the effec-
tiveness of each training stage of HedgeCode. Specifically, we
study the following two research questions:

TABLE IV
ACCURACY OF RELEVANCE DETECTION TASK ON REPRESENTATION

ALIGNMENT STAGE.

Language Ruby Javascript Go Python Java PHP Avg.
CodeBERTCE 85.67 86.87 86.74 85.27 87.98 84.37 86.15
UniXcoderCE 87.92 88.04 88.23 88.26 89.27 86.82 88.09
CoCoSoDaCE 90.55 89.42 90.42 89.91 91.34 89.13 90.13
CodeBERTHCL 87.51 88.68 88.2 88.31 89.21 88.92 88.47
UniXcoderHCL 89.86 89.92 90.42 90.98 90.78 88.85 90.14
CoCoSoDaHCL 92.67 91.56 92.36 93.18 93.56 91.59 92.49

• RQ-3.1: Whether the semantic space of code and text
be aligned through the relevance detection task in the
representation alignment stage?

• RQ-3.2: What impact does each task of the multi-task
joint learning stage have?

[Experiment Design (RQ-3.1)]: We answer RQ-3.1 by eval-
uating the accuracy of the relevance detection task and visu-
alizing the representation spaces of code and text.

Firstly, we evaluate the relevance detection task. The rele-
vance detection task takes the pair of code and its description
as input and then outputs the detection result. We use detection
accuracy to evaluate the detection performance. To evaluate
the effectiveness of HCL, we train the model with the cross-
entropy loss (CE) and HCL, respectively.

Then, we visualize the representation spaces of code and
text to study whether the representation spaces are aligned. We
randomly sample 500 pairs from the test dataset and employ
the encoder trained by the relevance detection task to embed
them, respectively. We visualize them by the t-SNE algorithm
[34] and compare the representation distributions before and
after the representation alignment stage.

Finally, we investigate the overall effectiveness of the repre-
sentation alignment stage by removing it from the HedgeCode.
[Experiment Results (RQ-3.1)]: The performances of the
relevance detection task are shown in Table IV. Among
them, the CoCoSoDaHCL achieves the highest accuracy. For
each encoder (CodeBERT, UniXcoder, and CoCoSoDa), the
detection accuracies of the models trained by the HCL method
are better than those trained by the CE, which shows the
effectiveness of the HCL.

The visualizations of the representation spaces are shown in
Fig. 5. It can be seen that after representation space alignment,
the distributions of code and text are more uniform and
resemblant.

The ablation experiment results of the representation align-
ment stage are shown in Table V. We can see that the
MRR of HedgeCode decreased by 0.6 compared to the com-
plete HedgeCode on average without representation alignment.
When only optimizing HedgeCode with representation align-
ment, the MRR of HedgeCode improved by 0.5 compared to
the original model. These results illustrate the effectiveness of
the representation alignment stage.
[Experiment Design (RQ-3.2)]: We answer RQ-3.2 by study-
ing the effectiveness of the CTC task or CTRD task. Specifi-
cally, we train the CS task with the CTC task or CTRD task,
respectively.

Fig. 5. The visualizations of HedgeCodes and original models.

TABLE V
THE RESULTS OF ABLATION STUDIES.

Language Ruby Javascript Go Python Java PHP Avg.
CoCoSoDa 81.8 76.4 92.1 75.7 76.3 70.3 78.8
+CTC 81.9 76.5 92.3 76.4 76.6 70.9 79.1
+CTRD 82.1 76.5 92.2 76.7 76.9 71.4 79.3
+CTRD + CTC 82.3 76.7 92.4 77.1 77.5 72.1 79.7
+RA 82.0 76.6 92.2 76.8 76.9 71.5 79.3
+RA+ CTC 82.2 76.7 92.5 77.0 77.9 72.6 79.9
+RA+ CTRD 82.3 76.8 92.5 77.3 78.2 72.9 80.0
HedgeCode 82.5 77.1 92.7 77.6 78.5 73.8 80.3

*Notes: RA is short for Representation Alignment Stage. CTC is short
for Code-Text Contrast Learning Task. CTRD is short for Code-Text
Relevance Detection Task.

[Experiment Results (RQ-3.2)]: The results of ablation stud-
ies are shown in Table V. The results show that the complete
HedgeCode achieved optimal results. When the CTC and
CTRD are used alone without representation alignment, the
performance of HedgeCode is improved compared with the
original model. When adopting the CTC and CTRD alone after
representation alignment, the performance of the code repre-
sentation model can be further improved compared with the
performance of HedgeCode only optimized with representation
alignment. These results show that the CTC and CTRD are
complementary, and the performance of the HedgeCode can be
further improved when they are used together. Even after the
representation alignment stage, the code representation model
can still benefit from these two tasks.

✍ Summary. Both training stages of HedgeCode are
valid. The representation spaces of code and text are
aligned after the representation alignment stage. Each
task of the multi-task joint learning stage has a positive
effect on the code search task.

D. Effectiveness of HedgeCode in Special Code Search Sce-
narios

[Experiment Goal]: In order to investigate HedgeCode’s
effectiveness in special code search scenarios, we explore
the effectiveness of HedgeCode under zero-shot and few-shot
settings. Specifically, we study the following two research
questions:

TABLE VI
THE MRR SCORES OF HEDGECODE IN ZERO-SHOT CODE SEARCH

SCENARIO.

Language Ruby Javascript Go Python Java PHP Avg.
HedgeCodeCodeBERT 69.8 63.5 88.9 68.8 68.7 63.5 70.5(1.2↑)
HedgeCodeUniXcoder 74.9 69.5 91.5 72.3 73.3 68.5 75.0(0.6↑)
HedgeCodeCoCoSoDa 82.0 76.6 92.2 76.8 76.9 71.5 79.3(0.5↑)

• RQ-4.1: How effective is HedgeCode in the zero-shot code
search scenario?

• RQ-4.2: How effective is HedgeCode in the few-shot code
search scenario?

[Experiment Design (RQ-4.1)]: In this study, the zero-shot
code search scenario refers to code search using the model
trained after the representation space alignment stage. There-
fore, in this RQ, we aim to study: How well does the detector
perform on the code search task?

When using the detector to search, the detection pairs are
unable to be input like search task in matrix form. It will
cause an excessively large search space problem. To reduce the
search space and improve the search efficiency, we introduced
the Ball-Tree [40], which is an efficient high-dimensional
vector matching algorithm. We first use the trained encoder to
represent queries and codes as high-dimensional vectors. Then
the Ball-Tree is used to recall N codes from the codebase
before detection by comparing the similarity between the
vectors of queries and codes. In this RQ, we set N = 1000.

Then, we combine the query and each recalled code as
the detection pair. These pairs are input to the detector for
detection. The detector outputs the relevance detection result
(0 or 1) and the relevance score (0 ∼ 1). We collect pairs
whose detection result is 1 and rank them by the relevance
score. The corresponding codes are returned as the code search
result. We adopt MRR to evaluate the performance of the
detector on the code search.

It is worth noting that the previous models search the codes
by calculating the cosine similarity between code and query
vectors. Unlike these models, we first recall the top N codes by
calculating the spatial distance of vectors, and then performed
more fine-grained matching and ranking through the detector
to improve the accuracy of code search.
[Experiment Results (RQ-4.1)]: The experiment results of
HedgeCode in the zero-shot code search scenario are shown
in Table VI. We can find that after the representation alignment
stage, the code search performance of each integrated encoder
is improved. Among them, HedgeCodeCoCoSoDa achieves the
best result, whose MRR is 0.5 higher than CoCoSoDa.
[Experiment Design (RQ-4.2)]: In this study, the few-shot
code search scenario refers to training the model only with
a small amount of data during the multi-task joint learning
stage. Therefore, in this RQ, we aim to investigate: How well
does the HedgeCode perform on the code search when
only trained with a few data? Specifically, we explore the
performance of HedgeCode under the few-shot scenario by
randomly sampling 20% of code-text pairs from the training
data to further train the model.

TABLE VII
THE MRR SCORES OF HEDGECODES IN FEW-SHOT CODE SEARCH

SCENARIO.

Language Ruby Javascript Go Python Java PHP Avg.
HedgeCodeCodeBERT 71.6 65.6 89.2 69.8 69.8 64.9 71.8(2.5↑)
HedgeCodeUniXcoder 75.6 71.6 91.6 72.9 74.4 69.8 76.0(1.5↑)
HedgeCodeCoCoSoDa 82.1 76.8 92.1 77.2 77.5 72.6 79.7(0.9↑)

[Experiment Results (RQ-4.2)]: The experiment results of
the few-shot code search are shown in Table VII. We can
find that the performance of HedgeCode can further im-
prove after multi-task joint training with a few data. Among
them, HedgeCodeCoCoSoDa achieves the best result, whose
MRR is 0.9 higher than CoCoSoDa and 0.4 higher than
HedgeCodeCoCoSoDa in the zero-shot scenario.

✍ Summary. Through representation alignment, the orig-
inal model can optimize code and text representations,
which enables accurate code search in the zero-shot
scenario. HedgeCode can learn the fine-grained relevance
between code and text from a few data by the multi-task
joint learning, which enables accurate code search in the
few-shot scenario.

VI. THREATS TO VALIDITY

Although HedgeCode has the overall effectiveness, there are
several threats:

Constructed Threat. HedgeCode is model-agnostic, we
evaluate its portability by integrating three typical models,
including CodeBERT [20], UniXcoder [23] and CoCoSoDa
[24]. Whether the proposed method is applicable to other pre-
trained source code models such as CodeT5 [22], has not been
explored.

Internal Threat. Firstly, following previous works [23],
[24], HedgeCode samples negative samples from the mini-
batch, so its effectiveness is influenced by the batch size.
Secondly, in the existing benchmark, the paired code is the
correct result of a given query. In fact, there may be multiple
codes that match the intent of the given query. However, this
is not fully considered in the existing benchmark.

External Threat. Although we have evaluated the effec-
tiveness of HedgeCode in six widely used programming lan-
guages. However, limited by available datasets, many program-
ming languages are still not evaluated. In order to evaluate
the universality of HedgeCode, we need to evaluate it in more
programming languages in the future.

VII. RELATED WORK

In this section, we describe the related work to highlight
the relevance and the novelty of our work.

A. Code search

The existing code search methods can be divided into IR-
based and DL-based methods.

IR-based methods focus on lexical matching between nat-
ural language texts and codes. McMillan et al. [10] proposed

Portfolio, which searches API sequences by keyword match-
ing and PageRank algorithm. Linstead et al. [12] proposed
Sourcerer, which combines the textual content and structural
information of programs to achieve code search. Lv et al.
[11] proposed CodeHow, which extends queries with APIs
and considers the effect of textual similarity and latent APIs.
However, these methods are susceptible to tokens of codes and
queries and cannot understand the deep semantics.

To achieve semantic matching, DL-based methods have
been introduced for code search. Gu et al. [6] proposed the first
DL-based code search method DeepCS, which employs the
Long Short-Term Memory Network (LSTM) [41] and multi-
layer perceptron (MLP) [42] to represent queries and codes.
Cambronero et al. [13] proposed UNIF, which adopts fastText
[43] and attention mechanism [44] to achieve better perfor-
mance. Zhu et al. [45] proposed OCoR, which constructs an
overlap matrix to capture the character-level overlap between
tokens of code and text. Yang et al. [14] proposed TabCS,
which introduces structural features to better represent code
semantics. Cheng et al. [16] proposed CSRS, which takes
advantage of IR-based methods and DL-based methods to
capture semantic and lexical correlation. Cheng et al. [17]
proposed TranCS, which translates codes into Intermediate
representation provided in natural language to alleviate the
insufficient semantic understanding of code and embedding
differences between text and code. Chai et al. [15] proposed
CDCS, which introduces meta-learning [46] to code search and
extends the pre-train and fine-tune paradigm with a transfer
learning framework.

HedgeCode is a DL-based code search method, which im-
proves the performance of code search by optimizing the code
and text representation space and capturing their fine-grained
semantic relevance through meticulously designed multi-task
hedging contrastive learning.

B. Code Large Language Model

Inspired by the successful application of large language
models (LLMs) such as BERT [35] and GPT [47] in nat-
ural language processing (NLP). Recently, some researchers
have introduced the LLMs into the programming language
processing domain to improve code understanding and achieve
significant improvements in code search tasks. Feng et al.
[20] present CodeBERT, which is the first bimodal pre-trained
code LLM. Guo et al. [21] proposed GraphCodeBERT, which
combines code tokens and data flow information during pre-
training to improve the semantic understanding of the code.
Wang et al. [22] present CodeT5, which is a unified pre-trained
encoder-decoder transformer model and leverages developer-
assigned identifiers to learn the code semantics relevance.
Wang et al. [32] proposed CodeT5+, which is a family of
encoder-decoder LLM for code and suit a wide range of
downstream code tasks.

HedgeCode is a model-agnostic framework and can easily
integrate existing code LLMs and improve their performance
on code search.

C. Contrastive Learning

There are two contrastive learning (CL) paradigms:
self-supervised and supervised contrastive learning. Self-
supervised CL is a popular representation learning approach
and has been successfully applied in CV [25], [26] and NLP
[27], [48]–[50]. The basic idea of self-supervised CL is that
good representations should be able to recognize the same
object while distinguishing themselves from other objects.

Recently, self-supervised CL has been widely used in
programming language processing. To address the long tail
problem and the challenge of cross-language representation, Li
et al. [28] proposed CodeRetriever, which learns function-level
code semantic representation through unimodal and bimodal
CL. Bui et al. [30] used the program transformation technique
to construct positive samples and used self-supervised CL
method to identify equivalent or unequivalent codes with
similar tokens. Ding et al. [29] proposed BOOST, which
adopts the bug injection method to construct negative samples
and designs a pre-training task to learn code structure. Wang
et al. [31] proposed SYNCOBERT, which obtains a more
comprehensive code representation from three modalities via
grammar-guided multi-modal self-supervised CL. Li et al. [24]
propose CoCoSoDa, which adopts multi-modal self-supervised
CL and soft data augmentation method for code search and
achieves SOTA performance.

The basic idea of supervised contrastive learning (SCL) is
maximizing the distance of training samples with the same
labels while minimizing the distance between different labels.
Khosla et al. [33] extended the CL to the supervised task.
SCL treats samples with the same label as positive pairs and
samples with different labels as negative pairs and achieves
significant improvements in the image classification task.
Gunel et al. [51] extend supervised CL to the NLP domain.
Chen et al. [36] propose dual contrastive learning (DualCL)
to improve text classification tasks by using label information
and sample features to optimize the text representation and
classifier via contrastive learning, simultaneously.

Unlike existing CL-based code search methods, we propose
HedgeCode, which is a multi-task hedging contrastive learning
framework integrated with self-supervised and supervised CL.
We designed hedging contrastive learning (HCL) to align the
representation spaces between code and text and capture fine-
grained semantics differences between codes. DualCL is a piv-
otal element of HCL. Due to differences in data characteristics,
the original DualCL cannot be directly migrated to the CTRD
task. We enhance the original DualCL with the designed data
augmentation strategy.

VIII. CONCLUSION & FUTURE WORK

To tackle the challenges posed by the disparities in repre-
sentation spaces between code and natural language descrip-
tions, as well as the limitations faced by current code search
techniques in capturing fine-grained semantic distinctions, we
introduced HedgeCode. Our empirical findings demonstrate
that HedgeCode is capable of effectively synchronizing the

representation spaces of code and natural language, thereby
markedly enhancing the efficacy of code search task.

Despite the overarching benefits of HedgeCode, it occa-
sionally delivers imprecise outcomes, particularly with code
involving third-party library APIs or custom functions. As
a direction for future research, we plan to augment our
framework by incorporating a broader spectrum of related
external information. This enhancement aims to further refine
the accuracy and performance of HedgeCode.

IX. ACKNOWLEDGMENTS

This work was supported by National Natural Science
Foundation of China (Grant No. 62250610224) and the NAT-
URAL project, which has received funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (Grant No. 949014).

REFERENCES

[1] K. Kim, S. Ghatpande, D. Kim, X. Zhou, K. Liu, T. F. Bissyandé,
J. Klein, and Y. Le Traon, “Big code search: A bibliography,” ACM
Computing Surveys, vol. 56, no. 1, August 2023.

[2] Y. Xie, J. Lin, H. Dong, L. Zhang, and Z. Wu, “Survey of code search
based on deep learning,” ACM Transactions on Software Engineering
and Methodology, vol. 33, no. 2, p. 1–42, December 2023.

[3] J. Shuai, L. Xu, C. Liu, M. Yan, X. Xia, and Y. Lei, “Improving code
search with co-attentive representation learning,” in Proceedings of the
28th International Conference on Program Comprehension. New York,
NY, USA: Association for Computing Machinery, 2020, p. 196–207.

[4] J. Li, F. Liu, J. Li, Y. Zhao, G. Li, and Z. Jin, “MCodeSearcher:
Multi-view contrastive learning for code search,” in Proceedings of the
14th Asia-Pacific Symposium on Internetware. New York, NY, USA:
Association for Computing Machinery, October 2023, p. 270–280.

[5] Z. Li, G. Yin, T. Wang, Y. Zhang, Y. Yu, and H. Wang, “Correlation-
based software search by leveraging software term database,” Frontiers
of Computer Science, vol. 12, no. 5, pp. 923–938, October 2018.

[6] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proceedings of
the 40th International Conference on Software Engineering. New York,
NY, USA: Association for Computing Machinery, 2018, p. 933–944.

[7] C. Liu, X. Xia, D. Lo, C. Gao, X. Yang, and J. Grundy, “Opportunities
and challenges in code search tools,” ACM Computing Surveys, vol. 54,
no. 9, October 2021.

[8] L. Di Grazia and M. Pradel, “Code search: A survey of techniques for
finding code,” ACM Computing Surveys, vol. 55, no. 11, February 2023.

[9] Y. Hu, H. Jiang, and Z. Hu, “Measuring code maintainability with deep
neural networks,” Frontiers of Computer Science, vol. 17, no. 6, p.
176214, January 2023.

[10] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in 2011 33rd
International Conference on Software Engineering, 2011, pp. 111–120.

[11] F. Lv, H. Zhang, J.-g. Lou, S. Wang, D. Zhang, and J. Zhao, “CodeHow:
Effective code search based on api understanding and extended boolean
model,” in 2015 30th IEEE/ACM International Conference on Automated
Software Engineering, 2015, pp. 260–270.

[12] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi,
“Sourcerer: Mining and searching internet-scale software repositories,”
Data Mining and Knowledge Discovery, vol. 18, no. 2, p. 300–336,
April 2009.

[13] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep
learning met code search,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. New York, NY, USA:
Association for Computing Machinery, 2019, p. 964–974.

[14] L. Xu, H. Yang, C. Liu, J. Shuai, M. Yan, Y. Lei, and Z. Xu, “Two-
stage attention-based model for code search with textual and structural
features,” in 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering, 2021, pp. 342–353.

[15] Y. Chai, H. Zhang, B. Shen, and X. Gu, “Cross-domain deep code
search with meta learning,” in Proceedings of the 44th International
Conference on Software Engineering. New York, NY, USA: Association
for Computing Machinery, 2022, p. 487–498.

[16] Y. Cheng and L. Kuang, “CSRS: Code search with relevance matching
and semantic matching,” in 2022 IEEE/ACM 30th International Confer-
ence on Program Comprehension, 2022, pp. 533–542.

[17] W. Sun, C. Fang, Y. Chen, G. Tao, T. Han, and Q. Zhang, “Code search
based on context-aware code translation,” in Proceedings of the 44th
International Conference on Software Engineering. New York, NY,
USA: Association for Computing Machinery, July 2022, p. 388–400.

[18] Y. Shi, Y. Yin, Z. Wang, D. Lo, T. Zhang, X. Xia, Y. Zhao, and
B. Xu, “How to better utilize code graphs in semantic code search?”
in Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.
New York, NY, USA: Association for Computing Machinery, 2022, p.
722–733.

[19] S. Fang, Y.-S. Tan, T. Zhang, and Y. Liu, “Self-attention networks for
code search,” Information and Software Technology, vol. 134, p. 106542,
2021.

[20] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A pre-trained model for
programming and natural languages,” in Findings of the Association for
Computational Linguistics. Association for Computational Linguistics,
November 2020, pp. 1536–1547.

[21] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. LIU, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. Clement, D. Drain,
N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “GraphCodeBERT: Pre-
training code representations with data flow,” in International Confer-
ence on Learning Representations, 2021.

[22] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding
and generation,” in Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing. Online and Punta
Cana, Dominican Republic: Association for Computational Linguistics,
November 2021, pp. 8696–8708.

[23] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “UniXcoder:
Unified cross-modal pre-training for code representation,” in Proceed-
ings of the 60th Annual Meeting of the Association for Computational
Linguistics, vol. 1. Dublin, Ireland: Association for Computational
Linguistics, May 2022, pp. 7212–7225.

[24] E. Shi, Y. Wang, W. Gu, L. Du, H. Zhang, S. Han, D. Zhang, and
H. Sun, “CoCoSoDa: Effective contrastive learning for code search,” in
Proceedings of the 45th International Conference on Software Engineer-
ing. IEEE Press, 2023, p. 2198–2210.

[25] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in Proceedings of the
37th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, vol. 119. PMLR, July 2020, pp. 1597–
1607.

[26] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
9726–9735.

[27] Y. Yan, R. Li, S. Wang, F. Zhang, W. Wu, and W. Xu, “ConSERT: A
contrastive framework for self-supervised sentence representation trans-
fer,” in Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing, vol. 1. Association for Computational
Linguistics, August 2021, pp. 5065–5075.

[28] X. Li, Y. Gong, Y. Shen, X. Qiu, H. Zhang, B. Yao, W. Qi, D. Jiang,
W. Chen, and N. Duan, “CodeRetriever: A large scale contrastive pre-
training method for code search,” in Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing. Abu Dhabi,
United Arab Emirates: Association for Computational Linguistics, De-
cember 2022, pp. 2898–2910.

[29] Y. Ding, L. Buratti, S. Pujar, A. Morari, B. Ray, and S. Chakraborty,
“Contrastive learning for source code with structural and functional
properties,” CoRR, vol. abs/2110.03868, 2021.

[30] N. D. Q. Bui, Y. Yu, and L. Jiang, “Self-supervised contrastive learning
for code retrieval and summarization via semantic-preserving trans-
formations,” in Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval.
New York, NY, USA: Association for Computing Machinery, 2021, p.
511–521.

[31] X. Wang, Y. Wang, F. Mi, P. Zhou, Y. Wan, X. Liu, L. Li, H. Wu, J. Liu,
and X. Jiang, “SynCoBERT: Syntax-guided multi-modal contrastive pre-
training for code representation,” CoRR, vol. abs/2108.04556, 2021.

[32] Y. Wang, H. Le, A. Gotmare, N. Bui, J. Li, and S. Hoi, “CodeT5+:
Open code large language models for code understanding and
generation,” in Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing. Singapore: Association for
Computational Linguistics, December 2023, pp. 1069–1088. [Online].
Available: https://aclanthology.org/2023.emnlp-main.68

[33] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learn-
ing,” in Advances in Neural Information Processing Systems, vol. 33.
Curran Associates, Inc., December 2020, pp. 18 661–18 673.

[34] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of machine learning research, vol. 9, no. 11, 2008.

[35] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, vol. 1. Minneapolis, Minnesota: Association for Com-
putational Linguistics, June 2019, pp. 4171–4186.

[36] Q. Chen, R. Zhang, Y. Zheng, and Y. Mao, “Dual contrastive learn-
ing: Text classification via label-aware data augmentation,” CoRR, vol.
abs/2201.08702, 2022.

[37] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman,
A. Trischler, and Y. Bengio, “Learning deep representations by mutual
information estimation and maximization,” in International Conference
on Learning Representations, 2019.

[38] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“CodesearchNet challenge: Evaluating the state of semantic code
search,” CoRR, vol. abs/1909.09436, 2019.

[39] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A robustly optimized bert
pretraining approach,” CoRR, vol. abs/1907.11692, 2019.

[40] T. Liu, A. W. Moore, and A. Gray, “New algorithms for efficient high-
dimensional nonparametric classification,” J. Mach. Learn. Res., vol. 7,
p. 1135–1158, December 2006.

[41] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[42] M. Gardner and S. Dorling, “Artificial neural networks (the multilayer
perceptron)—a review of applications in the atmospheric sciences,”
Atmospheric Environment, vol. 32, no. 14, pp. 2627–2636, 1998.

[43] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” in Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics,
vol. 2. Valencia, Spain: Association for Computational Linguistics,
April 2017, pp. 427–431.

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems. Red Hook, NY, USA: Curran Associates Inc., 2017, p.
6000–6010.

[45] Q. Zhu, Z. Sun, X. Liang, Y. Xiong, and L. Zhang, “OCoR: An
overlapping-aware code retriever,” in Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. New
York, NY, USA: Association for Computing Machinery, 2021, p.
883–894.

[46] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, vol. 70. PMLR, August 2017, pp. 1126–
1135.

[47] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[48] H. Fang, S. Wang, M. Zhou, J. Ding, and P. Xie, “CERT: Con-
trastive self-supervised learning for language understanding,” CoRR, vol.
abs/2005.12766, 2020.

[49] T. Gao, X. Yao, and D. Chen, “SimCSE: Simple contrastive learning
of sentence embeddings,” in Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing. Online and Punta
Cana, Dominican Republic: Association for Computational Linguistics,
November 2021, pp. 6894–6910.

[50] J. Giorgi, O. Nitski, B. Wang, and G. Bader, “DeCLUTR: Deep
contrastive learning for unsupervised textual representations,” in Pro-
ceedings of the 59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint Conference on
Natural Language Processing, vol. 1. Association for Computational
Linguistics, August 2021, pp. 879–895.

[51] B. Gunel, J. Du, A. Conneau, and V. Stoyanov, “Supervised contrastive
learning for pre-trained language model fine-tuning,” in International
Conference on Learning Representations, 2021.

