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Chapter 1

Introduction

Ever since the beginning of the field in 1920s, band theory has been a cornerstone that lies at

the very core of solid state physics, underpinning both theoretical developments and material

science applications. Indeed, as far as single particle picture, or more fundamentally Landau

Fermi liquid theory, applies, almost all of the properties of the electronic degrees of freedom

in solid state systems have been studied within the framework of band theory. Band theory

elegantly exploits symmetry to account for the quantum effects of a crystalline lattice via

energy band formation. One of the most spectacular successes of band theory is its ele-

gant and unified explanation of the categorization of insulators, semiconductors, and metals

among a large portion of solid-state materials. Band theory and the foundational Bloch’s

theorem has been a part of every solid state physics curriculum [11, 81, 136]. For a long

time the physics of the energy bands have been thought to be mature and well-understood

until the emergence of topological phases of matter in recent decades. The discovery of

the remarkable integer and fractional quantum Hall effects in the 1980s brought about a

revolution in condensed matter physics, introducing the profound idea of topological order,

which has sparked the investigation of a large variety of exotic quantum phases of matter:

topological insulators, topological superconductors, and topological semi-metals just to name

a few. Somewhat philosophically, one might say that one fundamental conceptual shift that

the notion of topological order has brought forward is the realization of the physical sig-

nificance of electronic wavefunctions, rather than the energy spectrum alone, as previously

thought. Indeed, in the case of quantum Hall effect, the quantization of Hall conductance

has been explained in terms of a topological invariant—the first Chern number—associated

with the filled bands. Such a topological invariant characterizes the global property of the

wavefunctions, as demonstrated by the seminal TKNN formula [149].

More recently it has been realized that not only the global topology but also the local
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CHAPTER 1. INTRODUCTION

geometric property of quantum states plays a role in the study of various aspects of elec-

trons in crystalline solids. In fact, from a more general perspective, the Berry curvature

which has traditionally been related to the topology of the band structure, such as the first

Chern number mentioned above, can itself be viewed as a local geometric quantity, even in

the topologically trivial case. Closely related is the so-called quantum metric tensor, also

known as the Fubini-Study metric, which has recently attracted much attention. Around

the same time as the seminal work by Berry [20], who identified an intrinsic phase factor

accompanying the adiabatic evolution of parameterized quantum states, namely the Berry

phase, the quantum metric tensor emerged in the work by Provost and Vallee from the study

of quantum information theory [121]. They realized that the Hilbert space of a family of

parameterized quantum states can be endowed with a Riemannian geometry, where roughly

speaking, a notion of distance between states is given by the degree of orthogonality, and

quantified by the quantum metric tensor. Moreover, both the quantum metric tensor and

the Berry curvature can be unified as the real and imaginary parts, respectively, of a quantity

known as the quantum geometric tensor. Ever since its discovery, the quantum geometry

of states has been exploited and applied in quantum information theory [17], and quantum

phase transitions [31, 39]. Propelled by the intense study of exotic topological phases of

matter, its significance in the solid state systems has also been noticed, and a variety of phe-

nomena such as transport, optical and many-body effects to name a few, have been studied

using quantum geometry [151].

Indeed, in crystalline solids, the Bloch states which constitute a basis of the Hilbert space

of electrons moving in a background lattice periodic potential, provide a natural example of

such parameterized states. The parameter is simply the crystal momentum, which is a good

quantum number that is associated with the lattice symmetry and label the eigenstates, as

dictated by Bloch’s theorem. The manifold of crystal momentum, the Brillouin zone, forms

a torus and geometric quantities such as the Berry curvature and quantum metric tensor

encode information about how electronic wavefunctions twist, overlap, and connect across

this manifold. Thus, the geometry of Bloch states may significantly influence physical ob-

servables, and dictate electronic, optical, and transport properties.

The central focus of this thesis is the exploration of such geometric effects on the semi-

classical dynamics of lattice electron wave-packets. Semi-classical equations of motion pro-

vide a low-energy effective approach to study the various quantum mechanical effects due to

the geometry of quantum states, which manifest as modifications to the classical equations

of motion. For instance, this approach has been applied to study phenomena such as the

5



CHAPTER 1. INTRODUCTION

anomalous Hall effect [58] induced by Berry curvature, the chiral magnetic effect [47] and

the anomalous magneto-resistance in topological semi-metals [95].

This thesis is structured into two parts, each exploring one aspect of the connection of

quantum geometry of Bloch states with semi-classical equations of motion in solid state

systems.

In Part I some more foundational and generic aspects of the way quantum geometry manifests

itself in the dynamics of Bloch electrons. We start out by providing some basic background

materials concerning the geometry of Hilbert space of parameterized states. We identify

from a mathematical point of view how the projective Hilbert spaces, namely the space of

physical states modulo the phase gauge redundancy, may be recognized as what is known as

complex projective space, and its connection to fiber bundle theory. For later development,

we also discuss the adiabatic evolution and the emergent geometric phase in great details,

with the purpose of highlighting the often neglected significance of projection onto a sub-

space in bringing forward the non-trivial geometrical effects. Then we introduce the quantum

geometric tensor for general parameterized quantum states, following the derivation of the

original reference [121], via enforcing gauge invariance. In particular, we shall identify the

imaginary and real part of the quantum geometric tensor is the precisely the Berry curvature

and quantum metric tensor respectively. Furthermore, we point out that the quantum metric

tensor provides a gauge invariant measure of distance between quantum states. Then we

specialize to crystalline solids, where by Bloch’s theorem, the Bloch states that emerge from

the periodic potential of crystal lattices is an important, physical example of such parameter-

ized quantum states. To complete the basic introduction, we mention how the time reversal

and spatial inversion symmetry impose constraints on geometric quantities.

A core contribution of this part is the systematic development of an operator-based for-

malism for the study of quantum geometric contributions to lattice electron dynamics. The

central observation is that the semi-classical dynamics is fundamentally a low energy effec-

tive description, and requires access to only a subset of all energy bands that are available.

Formally such restriction to a low-energy sector is done by a projection to a certain set of

bands, and the projected operators have substantially modified commutation relations, which

is the origin of the various geometric contributions to the equations of motion. By analyz-

ing commutation relations of band-projected operators, and identifying the operator form

of geometric quantities, we reveal a hierarchy of geometric corrections, from familiar Berry

curvature effects to higher-order geometric terms such as quantum geometric connections

6



CHAPTER 1. INTRODUCTION

when an inhomogeneous external field is applied.

In Part II, we shift our focus from Bloch momentum space geometry to real space ge-

ometric effects. We study the electron dynamics in tilted Weyl semi-metals—a class of

topological materials characterized by linear band crossings known as Weyl nodes. Around

the Weyl nodes, the quasi-particle may be described in terms of the Weyl Hamiltonian, and

a remarkable parallel to the motion of massless particle around a black hole is given by a

spatially varying tilt term added to the Weyl Hamiltonian. Specifically, we shall demonstrate

an analogy between the semi-classical dynamics in tilted Weyl semi-metals and gravitational

lensing phenomena in general relativity. Indeed, the effective Hamiltonian of tilted Weyl sys-

tems gives rise to an effective curved spacetime metric, known as the Painlevé-Gullstrand

metric, and the electron wave-packet motion around the Weyl node may be mapped to that

of a massless particle moving under the influence of the gravitational field of a black hole.

We study analytically various aspects of such electron motion, including deflection angles,

trapping, and critical separatrices between bound and unbound electron states. Moreover,

the Berry curvature related anomalous shift is also investigated, which may be viewed as an

analogue gravitational Magnus effect, inducing a transverse shift that is not present in the

classical theory of particle motion under gravity. In fact, this transverse shift may be viewed

as the spin dynamics of a Weyl fermion, which has an intrinsic spinor structure, and arises

in a solid state system due to the topological property of the Weyl nodes. To confirm and

better understand the analytics in the effective continuum picture, we also provide lattice-

based simulations using a tight-binding model, which provides further insights concerning

the lattice effects that may hint at microscopic details of electron dynamics under realistic

conditions.
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Chapter 2

Basics of geometry of quantum states

2.1 Geometry of quantum states

In this part of the thesis we will explore the geometry of the Bloch structure and its impli-

cations for semi-classical dynamics and transport in solid state materials. To set the stage,

we shall briefly describe the meaning of "geometry" in the context of quantum states, and

in particular Bloch states.

We first discuss the geometrization of Hilbert spaces in a rather general setting. More

specifically, we describe how the space of parameterized states may be given the structure of

a fiber bundle. Then we give an introduction to concepts such as quantum geometric tensor

and its real and imaginary components: quantum metric tensor and Berry curvature, which

characterize the geometry of Hilbert space. Finally we go to the specific situation where

such parameterized Hilbert space arises as the Bloch states of a particle moving in a crystal

lattice. Throughout the thesis we use units in which ℏ = 1, unless otherwise states

2.1.1 Geometry of quantum states

Hilbert space as a fiber bundle

We consider the following situation: we have a Hamiltonian Ĥ of some quantum mechanical

system whose eigenstates are smoothly parameterized by, say N variables λ = (λ1, λ2, ...λN),

normally some good quantum numbers associated with symmetry, such as the crystal mo-

mentum of Bloch states in a N-dimensional lattice. Another example of such parametrized

states, which is actually the one considered in the original reference [121], is the generalized

coherent states[17, 66]. We assume the Hilbert space Hλ of all states with a given λ has

dimension N, such as the number of energy bands in a solid. We may then always take Hλ

10



Geometry of quantum states Geometry of quantum states

to be spanned by the eigenstates |ψn(λ)⟩. Mathematically, therefore, the Hilbert space at

each λ is CN, while the total Hilbert space H is the direct sum of all local Hilbert spaces Hλ:

H =
⊕
λ

Hλ. (2.1.1)

Equivalently put, since the eigenstates form a complete basis, we have a resolution of iden-

tity being 1 =
∑
n

∑
λ |ψn(λ)⟩ ⟨ψn(λ)| (of course, the "sum" over λ is actually an integral

with an appropriately chosen measure). Take H′λ ⊂ Hλ to be the subspace consisting of

all states that are all normalized, namely ⟨ψ|ψ⟩ = 1, and then H′λ is just a hyper-sphere

S2N−1. Indeed, for an arbitrary state in H′λ, let |ψ(λ)⟩ = ∑
n cn |ψn(λ)⟩ be its expansion in

the eigenstate basis, then the map |ψ(λ)⟩ → (c1, c2, ...cN) clearly takes a state in H′λ to

the sphere, since
∑
n |ci |2 = 1 by normalization condition. A basic but crucial observation,

which has profound implications in topological band theory[62, 122] is that there is a certain

gauge freedom in this description: in quantum mechanics two states which differ by a phase

are physically equivalent. Then the physically distinct states are obtained by identifying all

states that are identical up to a phase, and the space of normalized, physical states with a

given λ is actually the ray/projective Hilbert space PHλ = H′λ/U(1), which mathematically

is the same as the (N − 1)-dimensional complex projective space PHλ = CPN−1[83, 106].

Such a decomposition of the Hilbert space H into a smoothly parameterized sum enables us

to view the collection of quantum states as a fiber bundle over the parameter manifold M,

such that at each point λ it is attached with a fiber H′λ = S2N−1, or PHλ = CPN−1[17].

A family of states |ψ(λ)⟩ with smoothly varying λ then defines a section over the fiber bundle.

Here we note that a physical state with a fixed phase is in one-to-one correspondence with

the projection operator P̂λ = |ψ(λ)⟩ ⟨ψ(λ)|. Indeed, all states that differ from each other

by a phase e−iθ(λ) give the same P̂λ. Put another way, a projection operator is naturally a

gauge invariant object that uniquely defines a physical state, i.e. there is a state-operator

correspondence. In our development later, we will heavily rely on the use of projection op-

erators to study the semi-classical dynamics, and it is at times helpful to have the intuition

that a local projection operator can be viewed as a state.

Sub-bundle

We note that in principle the fiber bundle constructed as above may in general be topologically

trivial, namely the space of normalized states is just the product M× S2N−1 or in terms of

physical statesM×CPN−1, which in mathematics jargon it is said to be a trivial bundle [83].

Does this mean no interesting or non-trivial topological and geometric phenomena arise? The

11



Adiabatic evolution Geometry of quantum states

subtle but important point which will be discussed in detail in later chapters is that, often

in physics we are working with not the entire Hilbert space given by the Hamiltonian, but a

sub-bundle of it. Roughly speaking, an external probe, say a weak electric field, accesses only

a subspace HB ⊂ H, and we may describe the effective physics using a low energy effective

Hamiltonian ĤB. When the eigenstates are parameterized as we described above, at each

λ we need to consider only the NB-dimensional subspace, with NB < N. The resulting sub-

bundle may then have highly non-trivial topological and geometric structures. Geometrically,

one can think as an example how a sphere, regarded as embedding in the Euclidean space R3

has nontrivial topology and curved geometry where one can introduce covariant derivative,

etc, while the R3 itself is rather trivial and flat, on which one differentiates using the usual

partial derivative.

2.1.2 Adiabatic evolution

In the previous section, the Hilbert space as a geometric object was discussed in a rather

abstract and formal way, and it is not clear how physically relevant such a picture is. Here we

introduce the typical context where a projection as discussed above is invoked, and how such

a geometric picture enters, namely the emergence of Berry phase in adiabatic evolution[20].

This is a widely discussed topic with a large amount of literature available; see, for example,

[27]. But we would go into quite some details of the well known concept to put a perspective

in things for later development. By this we mean that we would like to emphasize the role

of projection in bringing out the geometric features.

We consider the following situation: a system with Hamiltonian Ĥ0, whose eigenstates take

a smooth parameterization, is now perturbed by an external field that varies in time, so the

system’s Hamiltonian Ĥ(t) is now time dependent. Without loss of generality, we choose the

interaction to be turned on at t = 0 so that the |ψnλ⟩’s are eigenstates of the unperturbed

Hamiltonian Ĥ0. We assume that at any instant the eigenstates of Ĥ(t) can still be param-

eterized by the same parameters so that we may write Ĥ(t) =
∑
nλ ϵnλ(t) |ψtnλ⟩ ⟨ψtnλ|, where

|ψtnλ⟩ are the instantaneous eigenstates of Ĥ(t). Due to the explicit time dependence, the

spectrum ϵnλ(t) in geneal differs from that of Ĥ0. In the case of Bloch states, the discrete

label of energy levels n is called a band index.

Now we consider the evolution of a state |ψ(t)⟩ which at time t = 0 is an eigenstate of the

initial Hamiltonian, namely |ψ(0)⟩ =
∣∣∣ψ0nλ0〉 with some λ0, and |ψ(t)⟩ =

∣∣∣ψ0nλ0(t)〉. Note that

due to the time dependence of the Hamiltonian, the state
∣∣∣ψ0nλ0〉 is no longer an eigenstate of

the perturbed Hamiltonian except at t = 0, namely, that Û(t, 0) |ψ0nλ⟩ = |ψ0nλ(t)⟩ ̸= |ψtnλ⟩.
12



Adiabatic evolution Geometry of quantum states

More importantly, the instantaneous eigenstates do not satisfy the Schrodinger equation,

namely i∂t |ψtnλ⟩ ≠ Ĥ(t) |ψtnλ⟩ = ϵnλ(t) |ψtnλ⟩. In fact |ψtnλ⟩ should be thought to be fixed at

some time say t = 0, and the evolving eigenstate which satisfies the Schrodinger equation,

is |ψtnλ(t ′)⟩ ≡ Û(t ′, 0) |ψtnλ⟩.

Without further assumptions such as symmetry, at a later time the evolved state |ψ(t)⟩
is a superposition of all initial eigenstates:

|ψ(t)⟩ =
∑
mλ

cmλ(t)
∣∣∣ψ0mλ〉 , (2.1.2)

where the coefficients are chosen to make |ψ(t)⟩ normalized at all times, and cmλ(0) =

cnλ(0)δnmδλλ0. Another way to put this is that the perturbed Hamiltonian is not diagonal in

the basis of |ψ0mλ⟩, and in general allows for arbitrary transitions unless there are selections

rules. Then the coefficients have to be solved by using, for instance, time-dependent pertur-

bation theory, if the applied field is weak. However, if we assume the energy gap between

ϵtnλ and all the other energy levels m is large enough throughout the duration that the exter-

nal field acts ( we exclude level crossings), or equivalently the external fields evolve slowly,

then it can be shown that[28, 78] |ψ(t)⟩ may be approximately taken as an instantaneous

eigenstate, or Ĥ(t) |ψ(t)⟩ ≈ ϵtnλ(t) |ψ(t)⟩, for some λ(t). This is called adiabatic evolution.

Note that adiabatic evolution only states that the initial eigenstate of Ĥ0 would remain an

eigenstate of Ĥ(t) in the same band labeled n, but not necessarily with the same parameter

λ0. By normalization this means |ψ(t)⟩ can differ from
∣∣∣ψtnλ(t)〉 up to a phase, hence

|ψ(t)⟩ ≈ e iγn(t)
∣∣∣ψtnλ(t)〉 = P̂nλ(t) |ψ(t)⟩ (2.1.3)

where P̂nλ(t) =
∣∣∣ψtnλ(t)〉 〈ψtnλ(t)∣∣∣ is the local projection operator that projects the state onto

the eigenstates of Ĥ(t) with parameter λ(t). Thus under the assumption of adiabatic

evolution, the transition amplitude is just the phase γn(t). The Schrodinger equation now

reads

i
d

dt
|ψ(t)⟩ ≈ Ĥ(t)P̂nλ(t) |ψ(t)⟩ = ϵnλ(t)e iγn(t)

∣∣∣ψtnλ(t)〉 (2.1.4)

On the other hand the left hand side may also be written out as

i
d

dt
|ψ(t)⟩ ≈i

d

dt

(
e iγn(t)

∣∣∣ψtnλ(t)〉) (2.1.5)

=−
dγn
dt

e iγn(t)
∣∣∣ψtnλ(t)〉+ ie iγn(t)dλ

dt
∂λ(t)

∣∣∣ψtnλ(t)〉 . (2.1.6)

13
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Equating these two expressions, we have

i
dγn
dt
=− iϵnλ(t) +

dλ

dt
·
〈
ψtnλ(t)

∣∣∣ ∂λ(t) ∣∣∣ψtnλ(t)〉 (2.1.7)

=− iϵnλ(t)− i
dλ

dt
·Atn(λ(t)), (2.1.8)

where Atn(λ) ≡ i ⟨ψtnλ| ∂λ |ψtnλ⟩ is the celebrated Berry connection in this case. Finally sup-

pose the system goes back to the initial state after time T , we then have that by integration

γn(T ) = −
∫ T
0
dt ′ϵnλ(t

′)−
∮
C
dλ ·At ′n (λ(t ′)), (2.1.9)

where C is the path of the evolution of the parameter λ(t). The emergence of a geometric

phase in addition to the first, dynamical phase is the result of adiabatic evolution. Note in

particular that adiabatic evolution amounts to effect a projection via the projector P̂nλ. In fact

the Berry connection be re-written as Atn(λ) = i ⟨ψtnλ| P̂nλ
(
∂λP̂nλ

)
|ψtnλ⟩, which highlights

the role of projection.

14



Quantum geometric tensor Geometry of quantum states

2.1.3 Quantum geometric tensor

Provost-Valle’s derivation

Here we introduce the notions of quantum geometric tensor, quantum metric tensor and

Berry curvature. To motivate the definitions, we give a derivation of these quantities follow-

ing the original reference [121]. The problem is to define a notion of metric or distance for a

family of parametrized states |ψ(λ)⟩, i.e. a section over the bundleM×H′λ, thereby defining

a Riemannian geometry over the Hilbert space. All states are taken to be normalized, but

not gauge fixed. The idea of Provost and Valle is to start from a tentative definition of

distance between states, which turned out to be gauge dependent, and then, via introducing

the notion of covariant derivative, deriving a gauge invariant metric tensor.

A naive measure of distance for such parameterized states is

d(λ′,λ) = ∥|ψ(λ′)⟩ − |ψ(λ)⟩∥2, (2.1.10)

where ∥|ψ⟩∥ ≡ ⟨ψ|ψ⟩ is the norm of the state. In particular the distance between a state

with itself is 0. We want to define a metric tensor by considering an infinitesimal change of

the parameters:

∥|ψ(λ+ δλ)⟩ − |ψ(λ)⟩∥2 = gi jδλiδλj +O(δλ3), (2.1.11)

or in terms of a line element

ds2λ = gi j(λ)dλ
idλj , (2.1.12)

where the real symmetric tensor gi j(λ), would then be the metric tensor corresponding to the

notion of distance defined above, and thus potentially suitable for constructing a Riemannian

geometry. Let us compute the metric tensor in terms of |ψ(λ)⟩. We have

|ψ(λ+ dλ)⟩ − |ψ(λ)⟩ ≈ |∂iψ(λ)⟩ dλi , (2.1.13)

where |∂iψ(λ)⟩ ≡ ∂
∂λi
|ψ(λ)⟩ and the summation convention is used. Thus

∥ψ(λ+ δλ)− ψ(λ)∥2 = ⟨∂iψ(λ)|∂jψ(λ)⟩ dλidλj (2.1.14)

=
1

2
(⟨∂iψ(λ)|∂jψ(λ)⟩+ ⟨∂jψ(λ)|∂iψ(λ)⟩) dλidλj (2.1.15)

= Re ⟨∂iψ(λ)|∂jψ(λ)⟩ dλidλj , (2.1.16)

15



Quantum geometric tensor Geometry of quantum states

where in the second step we used the fact that i and j are just dummy variables that are

summed over.

It seems like we have defined a metric tensor as gi j = Re ⟨∂iψ(λ)|∂jψ(λ)⟩, however there is

a problem, namely that gi j thus defined is not gauge invariant [121]. Indeed, under a gauge

phase transformation, we have

|ψ′(λ)⟩ = e iα(λ) |ψ(λ)⟩ (2.1.17)

∂i |ψ′(λ)⟩ = e iα(λ)∂i |ψ(λ)⟩+ i(∂iα)e iα(λ) |ψ(λ)⟩ , (2.1.18)

where the last term spoils the gauge invariance.

In fact, the naive metric tensor we have thus defined transforms as

⟨∂iψ′(λ)|∂jψ′(λ)⟩ = ⟨∂iψ(λ)|∂jψ(λ)⟩+ ∂iα∂jα− ∂jαAi − ∂iαAj , (2.1.19)

where the quantity Ai = i ⟨ψ(λ)|∂iψ(λ)⟩ is exactly the Berry connection [20]. Note that

the Berry connection is gauge dependent itself, namely Ai → i ⟨ψ′(λ)|∂iψ′(λ)⟩ = Ai − i∂iα.

Furthermore, due to normalization, we have

∂i (⟨ψ(λ)|ψ(λ)⟩) = 0 = ⟨∂iψ(λ)|ψ(λ)⟩+ ⟨ψ(λ)|∂iψ(λ)⟩ , (2.1.20)

and therefore the Berry connection is real: Ai = A∗i .

Define a covariant derivative as∇i ≡ ∂i−iAi , then under a gauge transformation,∇i |ψ(λ)⟩ →
e iα(λ)∇i |ψ(λ)⟩. Thus the quantity

Qi j ≡ ⟨∇iψ(λ)|∇jψ(λ)⟩ = ⟨∂iψ(λ)|∂jψ(λ)⟩ − AiAj (2.1.21)

is in fact gauge invariant. The quantity Qi j is called quantum geometric tensor. Note that

using the normalization condition Eq. (2.1.20) again, we can alternatively write

Qi j = ⟨∂iψ(λ)|
(
1− P̂λ

)
|∂jψ(λ)⟩ (2.1.22)

where P̂λ = |ψ(λ)⟩ ⟨ψ(λ)| is the projection operator onto the state |ψ(λ)⟩. This form of the

quantum geometric tensor will prove useful when we discuss the Bloch states later, which

has a non-abelian gauge structure.
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The quantum geometric tensor is gauge invariant but generally complex, and we may de-

compose it into its real and imaginary part

Qi j = gi j −
i
2
Ωi j , (2.1.23)

where gi j ≡ ReQi j and Ωi j = −2ImQi j . Note that by definition gi j and Ωi j are symmetric

and anti-symmetric tensors respectively. The real part gi j is called the quantum metric

tensor[17, 121], which as we shall discuss below is indeed a measure of a certain distance.

The imaginary part is the well known Berry curvature [20], which plays a fundamental role

in topological materials [62, 122]. The more common definition of Berry curvature is Ωi j =

∂iAj − ∂jAi , but it is easy to show that this agrees with our definition. Indeed

∂iAj − ∂jAi =i∂i⟨ψ(λ)|∂jψ(λ)⟩ − i∂j⟨ψ(λ)|∂iψ(λ)⟩ (2.1.24)

=i(2i)Im⟨∂iψ(λ)|∂jψ(λ)⟩ (2.1.25)

=− 2ImQi j . (2.1.26)

Quantum distance and quantum metric tensor

We started from a naive definition of a notion of distance between states given in Eq. (2.1.10),

which we found to be gauge dependent, and now we have derived a gauge invariant, symmet-

ric tensor, the quantum metric tensor gi j . The question is then, what notion of distance does

the metric gi j actually describe. As it turned out, the quantum distance that the quantum

metric tensor measures is the extent of orthogonality, or overlap between states. Namely it

is the metric tensor corresponding to the distance

d(λ′,λ) = 1− |⟨ψ(λ′)|ψ(λ)⟩|2, (2.1.27)

whose line element is ds2 = gi jdλ
idλj . To prove this, we compute the overlap between

states differing by infinitesimal parameters

⟨ψ(λ)|ψ(λ+ dλ)⟩ = 1− iAidλi +
1

2
⟨ψ(λ)|∂i∂jψ(λ)⟩ dλidλj , (2.1.28)
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so that up to second order in dλi

|⟨ψ(λ)|ψ(λ+ dλ)⟩|2=
(
1 + iAidλi +

1

2
⟨∂i∂jψ(λ)|ψ(λ)⟩dλidλj

)
(2.1.29)(

1− iAmdλm +
1

2
⟨ψ(λ)|∂m∂nψ(λ)⟩dλmdλn

)
(2.1.30)

=1 +AiAjdλidλj

+
1

2
(⟨∂i∂jψ(λ)|ψ(λ)⟩+ ⟨ψ(λ)|∂i∂jψ(λ)⟩) dλidλj (2.1.31)

=1 +AiAjdλidλj + Re⟨ψ(λ)|∂i∂jψ(λ)⟩dλidλj . (2.1.32)

But again normalization implies that Re⟨ψ(λ)|∂i∂jψ(λ)⟩ = −Re⟨∂iψ(λ)|∂jψ(λ)⟩, which can

be shown by taking a second derivative

0 =∂i∂j⟨ψ(λ)|ψ(λ)⟩ (2.1.33)

=2Re⟨∂iψ(λ)|∂jψ(λ)⟩+ 2Re⟨ψ(λ)|∂i∂jψ(λ)⟩. (2.1.34)

Using this we then have that indeed

ds2 =1− |⟨ψ(λ)|ψ(λ+ dλ)⟩|2 (2.1.35)

=−AiAjdλidλj + Re⟨∂iψ(λ)|∂jψ(λ)⟩dλidλj (2.1.36)

=gi jdλ
idλj . (2.1.37)

Example: Weyl Hamiltonian

Here we compute the quantum geometric tensor of a simple example, the Weyl Hamiltonian,

which was originally devised to describe massless spin-1
2

particles in particle physics. The

same Hamiltonian has also been used to describe the novel topological Weyl materials that

have linear crossing around Weyl nodes, and we shall discuss its semi-classical dynamics in

Part II of this thesis. The Hamiltonian reads

Ĥ = χσ · p̂, (2.1.38)

where p̂ is the momentum operator, and χ = ±1 is called the chirality. In the following,

we restrict to χ = 1. Since Ĥ2 = p · p1, its eigenvalues are ±p, with p = |p|, and its

eigenstates are then parametrized by the momentum eigenvalues, which we denote as
∣∣ψ±p〉,

with eigenvalues ±p respectively. Here we use ± to label the band/level in correspondence

to n in previous sections, and p is the smooth parameter λ in this example. We can solve
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them to be

∣∣ψ±p〉 = 1√
2p(p ± p3)

 p3 ± p
p1 − ip2

 . (2.1.39)

For
∣∣ψ+p〉, the quantum geometric tensor can be computed to be

Qi j =


p2
2+p3

2

4p4
−p1p2+ipp3

4p4
−p1p3+ipp2
4p4

−p1p2−ipp3
4p4

p1
2+p3

2

4p4
−p2p3+ipp1

4p4

−p1p3+ipp2
4p4

−p2p3+ipp1
4p4

p1
2+p2

2

4p4

 (2.1.40)

Specifically, the quantum metric tensor reads

gi j =


p2
2+p3

2

4p4
−p1p2
4p4

−p1p3
4p4

−p1p2
4p4

p1
2+p3

2

4p4
−p2p3
4p4

−p1p3
4p4

−p2p3
4p4

p1
2+p2

2

4p4

 , (2.1.41)

while the Berry curvature tensor defines a vector as (Ω)i = ϵi jkΩjk , then Ω = −1
2
p
p3

. Note

that the Berry curvature has the configuration in the parameter space (p in this case),

identical to that of the electric field of a point charge distribution (or the magnetic field

of a magnetic monopole): ∇ · Ω = −2πδ3(p), with charge 2π. More generally, we have

Ωχ = −χ12
p
p3

.
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2.2 Geometry of Bloch bands

2.2.1 Bloch’s theorem and band theory

The starting point of the study of solid state of matter is the idealization of solids as having a

stable crystal lattice structure, formed by the periodic arrangement of ions through chemical

bonding, and the remaining valance electrons move under the influence of the resulting peri-

odic potential. Lying at the foundation of solid state physics is Bloch’s theorem [25], which,

despite the idealization of a perfect crystalline structure and neglection of electron-electron

and electron-ion interaction, was able to predict a large number of physical properties of solid

state [11].

Bloch’s theorem in the most general form states that

Bloch’s theorem

Suppose the Hamiltonian Ĥ of a system is invariant under lattice translations T̂ (R) = e iR·p̂,

namely [Ĥ, T̂ (R)] = 0, then the eigenstates of Ĥ can be chosen to be of the form of a

modulated plane wave |ψk⟩ = e−ik·r̂ |uk⟩, where |uk⟩ is invariant under lattice translations:

T̂ (R) |uk⟩ = |uk⟩.

The relevance of Bloch’s theorem in solid state physics is established by taking a single particle

moving under the influence of a periodic lattice potential V (r) such that V (r) = V (r+R),

to model the electron in a solid. Namely we consider the elementary Hamiltonian describing

a non-relativistic particle moving in a periodic potential

Ĥ =
p̂2

2m
+ V (r̂), (2.2.1)

where in reduced zone scheme, the energy spectrum is organized into bands with eigenstates

of the Bloch form: Ĥ |ψnk⟩ = Enk |ψnk⟩, with crystal momenta restricted to the first Brillouin

zone ki ∈ [− πai ,
π
ai
], i = x, y , z , where ai is the lattice constant along the i−direction. This

then implies that there is a resolution of identity

1 =
∑
nk

|ψnk⟩ ⟨ψnk| . (2.2.2)

In this basis the lattice Hamiltonian assumes a spectral decomposition as

Ĥ =
∑
nk

Enk |ψnk⟩ ⟨ψnk| . (2.2.3)
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In the limit where the number of lattice sites becomes infinite, the discrete sum over crystal

momentum becomes an integral

∑
k

→
N

Vc

∫
dk, (2.2.4)

where N the number of unit cells, Vc is the volume of a unit cell in the Brillouin zone, and

we have the normalization ⟨ψnk|ψmk′⟩ = δnmδ(k − k′).

Example: Mathieu-Floquet equation

As an illustration of Bloch’s theorem, here we consider a classical problem in mathematical

physics, which may be taken to model a one-dimensional periodic lattice. Consider the

following Schrodinger equation which describes a particle in a cosine potential,

(
ℏ2

2m

∂2

∂x2
+ V cos 2πax

)
ψ(x) = Eψ(x). (2.2.5)

Setting a = 1, e = 2mE
ℏ2π2 , q =

mV
ℏ2π2 and z = πx , then we may re-write it as

(
∂2

∂z2
+ (ϵ− 2q cos 2z)

)
ψ(z) = 0, (2.2.6)

which is known as Mathieu’s equation [100], who first proposed it in the study of membrane

vibrations. In fact it is from the study of Mathieu’s equation and its generalization, the

French mathematician Gaston Floquet[46] proved what is known as Bloch’s theorem in the

physics community and Floquet’s theorem in the mathematics community. Indeed, it can be

shown that [163] for a given value of q, there is a family of values of ϵ, known as Matheiu

characteristics γk(q) such that the solution may be written in Bloch form, namely

ψ(z) = e ikzuk(z), (2.2.7)

where uk(z) = uk(z + π), and can be expressed explicitly in terms of the so-called Mathieu

cosine and sine functions, and the corresponding eigenvalues ϵk = γk(q).

2.2.2 Quantum geometry of Bloch states

With Bloch’s theorem, we know that the Bloch states of a particle moving in a periodic lattice

are parametrized by the crystal momenta, and thus we may define the geometric quantities

for the Bloch states as in Section 2.1.3. However, we have to also take into account the

emergence of bands. The most natural generalization of the quantum geometric tensor

might be Qnij(k) ≡ ⟨∂iψnk|∂jψnk⟩ − Ani Anj , where Ani = i ⟨ψnk|∂iψnk⟩ is the Berry connection
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Figure 2.1. In (a) we show the band structure of the cosine potential problem. The blue solid line is
with q = 0.3, and dashed line is the parabolic dispersion for a free particle. In (b) the spatial profile
for |ψnk(x)| with n = 1 and k = 0.3 is plotted. Note when the potential is strong, the Bloch states
become highly localized.

of the n−th band. This is indeed invariant under the gauge transformation of a Bloch state

|ψnk⟩ → e iθn(k) |ψnk⟩. When degeneracy is present, the gauge transformation may in general

generate a band rotation, such that |ψnk⟩ →
∑
m Unm(k) |ψmk⟩, where U(k) is an l× l unitary

matrix, with l being the degree of degeneracy. In this case the Berry curvature and quantum

metric tensor will no longer be gauge invariant, whilst their traces will remain invariant [19].

In the following, we shall restrict to the non-degenerate case.

TKNN formula

The imaginary component of the quantum geometric tensor, the Berry curvature, has been

found to be of fundamental significance in the study of topological phases of matter. To

illustrate this, we gave a short proof of one of the most important results that makes use of

Berry curvature, the TKNN formula of Hall conductance quantization, discovered by Thou-

less, Kohmoto, Nightingale, and den Nijs [149].

Consider a two dimensional system, where a uniform electric field, directed, say in the y -

direction, is applied to , then the current response in the transverse direction, σxy can be

derived using the Kubo formula [19] giving

σxy = ie2
∑
n∈occ

∫
BZ

d2k

(2π)2

∑
m ̸=n

⟨unk| ∂kx Ĥ(k) |umk⟩ ⟨umk| ∂ky Ĥ(k) |unk⟩ − (x ↔ y)

(ϵn − ϵm)2
. (2.2.8)
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where the band summation is over all the occupied bands, Ĥ(k) = eik·r̂ Ĥe−ik·r̂ , and the cell

periodic part of Bloch states satisfies

H(k) |unk⟩ = ϵnk |unk⟩ . (2.2.9)

Differentiating the above eigenstate equation and projecting onto |umk⟩, we obtain

⟨umk| ∂kx |unk⟩ =
⟨umk| ∂kx Ĥ(k) |unk⟩

ϵn − ϵm
. (2.2.10)

On the other hand, the z−component of Berry curvature for the n-th band may be rewritten

as

Ωnz(k) = ∂kxA
n
y(k)− ∂kyAnx(k) (2.2.11)

= i
(〈
∂kxunk

∣∣∣∂kyunk〉− 〈∂kyunk∣∣∣∂kxunk〉) . (2.2.12)

Locally at a given k, a resolution of the identity is given by

Ik =
∑
n

|unk⟩ ⟨unk| . (2.2.13)

Inserting this into the above equation we obtain

Ωnz(k) = i
∑
m ̸=n

(
⟨∂kxunk|umk⟩

〈
umk

∣∣∣∂kyunk〉− (x ↔ y)
)
, (2.2.14)

which after substituting Eq. (2.2.10) and its complex conjugate, we obtain yet another

expression of Berry curvature as

Ωn(k) = i
∑
m ̸=n

[
⟨unk| ∂kx Ĥ(k) |umk⟩ ⟨umk| ∂ky Ĥ(k) |unk⟩

(ϵn − ϵm)2
− (x ↔ y)

]
. (2.2.15)

We recognize that this is exactly the integrand in the Hall conductance formula Eq. (2.2.8),

and therefore we have derived the TKNN formula:

σxy = −2πe2
∑
n∈occ

Cn, (2.2.16)

where

Cn =
1

2π

∫
BZ
d2k Ωzn(k), (2.2.17)
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is known as the first Chern number [19, 106, 149]. This quantity is an integer valued

topological invariant [106], and therefore the TKNN formula shows that the quantization of

Hall conductance is a topological property of the electronic band structure.

2.2.3 Symmetry behavior

In this section we investigate the symmetry behaviors of the quantum metric tensor and

Berry curvature. We confine ourselves to the single band case.

Symmetry transformations

We first briefly describe the time reversal and inversion transformation on Bloch states, from

which the transformation properties of Berry curvature and quantum metric tensor would be

deduced.

Time reversal

The time reversal transformation is implemented via an anti-unitary operator T̂ such that

T̂ r̂T̂ −1 =r̂ (2.2.18)

T̂ p̂T̂ −1 =− p̂. (2.2.19)

Moreover, since [r̂i , p̂j ] = iδi j , we have that

T̂ (i) T̂ −1δi j = T̂ [r̂i , p̂j ]T̂ −1δi j = [r̂i ,−p̂j ]δi j = −iδi j , (2.2.20)

namely that the time reversal transformation does not commute with complex numbers, and

effects complex conjugation

T̂ (z) T̂ −1 = z∗. (2.2.21)

Such operators are known as anti-linear. It is clear that under the time-reversal transforma-

tion, the crystal momentum also transforms as T̂ k̂T̂ −1 = −k̂. From this we have

k̂T̂ |ψnk⟩ =T̂ T̂ −1k̂T̂ |ψnk⟩ (2.2.22)

= −kT̂ |ψnk⟩ . (2.2.23)
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That is, the time reversed state T̂ |ψnk⟩ is an eigenstate of the crystal momentum with

eigenvalue −k. In fact, we have

T̂ |ψnk⟩ = T̂ e−ik·r̂ |unk⟩ = e+ik·r̂T̂ |unk⟩ (2.2.24)

If the system has time reversal symmetry (i.e.[T ,H] = 0), then T̂ |ψnk⟩ must also be an

eigenstate:

ĤT |ψnk⟩ = T Ĥ |ψnk⟩ = ϵnkT |ψnk⟩ . (2.2.25)

However, as discussed above, the time reversed state has crystal momentum −k. Assuming

no degeneracy, this is consistent with the above results only if the spectrum is also time

reversal invariant: ϵnk = ϵn−k, and the time reversed states differ up to a phase: T |ψnk⟩ =
e iα |ψn−k⟩. In the case where degeneracy is present, it is in the most general case a linear

combination of the degenerate eigenstates.

Inversion

The spatial inversion transformation is a unitary operator defined by the action

Îr̂Î−1 =− r̂ (2.2.26)

Îp̂Î−1 =− p̂. (2.2.27)

It follows immediately that Î |r⟩ = |−r⟩ for r̂Î |r⟩ = ÎÎ−1r̂Î |r⟩ = −rÎ |r⟩. Acting on a

Bloch state we have that

(Iψnk) (r) ≡ ⟨r| Î |ψnk⟩ = ⟨−r|ψnk⟩ = ψnk(−r). (2.2.28)

Now suppose that the inversion transformation is a symmetry for the Bloch Hamiltonian,

then Î |ψk⟩ is also an eigenstate of the Bloch Hamiltonian, with momentum −k. Assuming

the state is non-degenerate, this then implies that |ψk⟩ and |ψ−k⟩ differ up to a phase,

namely

Iψk(−r) = ψk(−r) = eiα(k)ψ−k(−r) (2.2.29)

Berry curvature and quantum metric tensor

In a system that is symmetric under time reversal symmetry, using the transformation prop-

erties of the Bloch states given above, it is straightforward to show the Berry curvature
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satisfies Ωi(k) = −Ωi(−k), while for inversion invariant system Ωi(k) = Ωi(−k) [133] .

Thus in a system with both time reversal and inversion symmetric system, the Berry curva-

ture vanishes identically. For the quantum metric tensor on the other hand, when either T
or I symmetry is present, gi j(k) = gi j(−k)[90].
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Operator approach to dynamics
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3.1 Quantum geometry and projected moments

3.2 Introduction

In this part of the thesis we shall discuss the quantum geometric contribution to the semi-

classical dynamics in a rather general setting. In contrast to the conventional approach, we

shall use an operator formalism to deal with the problem of Bloch electron dynamics under

the influence of inhomogeneous perturbing field in a systematic manner. Historically, it had

been realized already in the very early days that the local geometry of the Bloch states mod-

ified the equation of motion of crystal electrons, which includes a correction to the group

velocity ∂E/∂k due to band dispersion. Indeed, such an observation was applied to explain

the intrinsic anomalous Hall effect in ferromagnets [1, 26, 58, 77, 84, 97, 105, 109]. In

fact, already in these works during the 1950s [1, 77], what is known today as the Berry

connection [20] and the anomalous velocity related to the Berry curvature have been dis-

covered [34, 147, 164]. A surge of renewed interest of such geometric effects in recent

decades has been brought about due to the rapid development in the study of topological

phases of matter, which has been applied in the study of various novel transport properties

in topological materials [29, 60, 68, 92, 111, 118, 132, 137].

We have already discussed from a rather formal point of view that the projective Hilbert space

admits a Riemannian structure, characterized by geometric quantities such as the Berry cur-

vature and the quantum metric or Fubini-Study metric [12, 17, 121]. Such a connection is

not just mathematical, however, and has been found to be relevant in a wide range of physical

phenomena. As we already mentioned in the introduction part, these geometric concepts

have been applied to quantum information theory and even quantum phase transitions. How-

ever, more recently it has also been known to be relevant in condensed matter physics, which

included, for instance, fractional Chern insulators [37, 101, 112, 114, 116, 128], topological

superfluidity and superconductivity in flat bands [72, 76, 94, 150], and nonlinear optical re-

sponses [3–5, 69]. In this work we shall focus on one aspect that is relevant in the study of

transport properties of solid state system when an inhomogeneous field is applied. In fact,

it has been discussed using a wave-packet approach that a metallic system subject to a spa-

tially varying electric field may have non-trivial transport signature beyond that induced by

the Berry curvature, where additional quantum geometric contributions due to the quantum

metric tensor as well as the associated Christoffel symbols emerge [48, 86, 90].

Conventionally the semi-classical equations of Bloch electrons are derived using a wave-
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packet approach. For example, under the influence of an applied field, a wave-packet is

constructed using a superposition of instantaneous eigenstates of the effective Hamiltonian

Ĥ(rc(t), k̂), obtained from replacing r by the center of motion position rc(t) [134, 147, 164],

and corrections to the dynamics, such as the anomalous velocity term, emerge in a rather

unexpected way. Naively this is rather surprising since it seems to contradict the Ehrenfest

theorem [131], which states that the equations of motion in quantum mechanical systems

shall formally parallel those of its classical counterpart, and in particular predicts no correction

to the velocity when the external potential field is only position dependent. Another puzzle is

that in this kind of derivations eigenstates that depend on the instantaneous center of mass

position are used, and while it can be argued they do form a set of approximate eigenstates

of the perturbed Hamiltonian, this seems like a particular mathematical trick to force out

the geometric contributions. Furthermore, when one actually applies the semiclassical equa-

tions of motion in studying electron transport, the Berry curvature, for instance,is computed

using the unperturbed lattice Hamiltonian. Thus, for the purposes of studying geometric

effects in in-homogeneous field, and to clarify the physical origin of them, we shall develop

an operator-based approach, which is capable of deriving the geometric contributions while

avoiding reference to wave-packets. Such an operator based approach has been known to

be very useful when studying quantum geometry in disordered systems, which require a real

space formulation [96, 125]. We shall derive the operator forms of various quantum geomet-

ric quantities in terms of projected operators, and provide a systematic way to compute their

matrix elements. Finally, in this approach we can demonstrate that such geometric contri-

butions are fundamentally multi-band effects. Specifically, they emerge in the dynamics of

electrons, where we project onto an effective low-energy subspace comprising of a restricted

set of bands.

3.2.1 Band Projection

As we discussed above, in the reduced zone scheme, where we restrict the crystal momentum

range to be within the first Brillouin zone, the eigenstates of the lattice Hamiltonian Ĥ0

organize into bands, so that we have a resolution of identity 1 =
∑
kn |ψnk⟩ ⟨ψnk|, where the

sum over k is restricted to the first Brillouin zone. When studying the low energy effective

physics, we can impose a cutoff that restricts the relevant energy scale. In the reduced

zone scheme of lattice systems, this translates to restriction to a specific subset of bands,

limiting the matrix elements of observable in interest to a subspace of the entire Hilbert

space. Formally, suppose the relevant subset of bands is NB, then such restriction can be
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effected by introducing the band projection operator

P̂B =
∑
k

∑
n∈NB

|ψnk⟩ ⟨ψnk| . (3.2.1)

Effective physics would then be described by states living in the restricted Hilbert space

HB = span{|ψnk⟩ , n ∈ NB} .

The complement operator is defined as Q̂B ≡ 1−P̂B =
∑
n/∈NB |ψnk⟩ ⟨ψnk|, which is orthogonal

to the projection operator such that P̂BQ̂B = 0. Furthermore both operators are idempotent:

P̂ 2B = P̂B, and Q̂2B = Q̂B. By definition, we also have that [Ĥ0, P̂B] = [Ĥ0, Q̂B] = 0. More

generally, for an arbitrary operator Ô, we have [Ô, 1] = 0 = [Ô, P̂B] + [Ô, Q̂B].

3.2.2 Band-projected operators

Band projection substantially modifies the commutation relation between position operators,

as well as momentum operators. As we shall demonstrate later, such modified commutation

relations are the origin of geometric contributions to the semi-classical dynamics. In this

section, we would like to study the algebraic properties of band-projected products of position

operator, and their decomposition into objects that we shall later identify as Bloch geometric

quantities.

Quadruple moment: quantum geometric tensor

For later convenience, we shall denote the n-order moment as r̂ (n)i1i2...in = r̂i1 r̂i2...r̂in . Let us first

discuss the lowest order examples, the quadruple moment and quantum geometric tensor.

In fact, the operator form of the quantum metric tensor has been reported previously; see

for instance[22, 124]. This form has also been applied in the study of disorder systems

[96, 125], where a real space formulation of the quantum metric tensor and Berry curvature is

needed. We, however, will not only extend such operator correspondence to other geometric

quantities but also point out how they appear from the modified commutation relations of

band-projected operators. Inserting the identity 1 = P̂B+Q̂B between the position operators,

we have

(
r̂
(2)
i j

)
B
= (r̂i r̂j)B = P̂B r̂i(P̂B + Q̂B)r̂j P̂B = r̂iB r̂jB +

(
r̂iQ̂B r̂j

)
B

(3.2.2)

We may also re-write the last term as Q̂(2)i j ≡
(
r̂iQ̂B r̂j

)
B
= −

([
r̂i , P̂B

]
Q̂B

[
r̂j , P̂B

])
B
. This

is the first geometric operator we shall encounter, the quantum geometric tensor. Thus we

may write more compactly that
(
r̂
(2)
i j

)
B
= r̂iB r̂jB + Q̂(2)i j . We note that the quantum geo-
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metric tensor is also the projected cumulant Q̂(2)i j = P̂B(r̂i − r̂iB)(r̂j − r̂jB)P̂B. Physically, this

form shows the quantum geometric tensor quantifies the deviation of the position operator

from the band projected one. It may seem that the complement space that is projected out

is explicitly involved due to the appearance of Q̂B. However, as we shall show in the next

section where we compute the matrix elements of the geometric quantities, such explicit

reference to the complement subspace actually disappears.

Following our discussion in the introduction section, let us decompose the quantum geo-

metric tensor operator into the symmetric and anti-symmetric part as

Q̂(2)i j = Ĝi j −
i
2
Ω̂i j , (3.2.3)

where Ĝi j = 1
2
(Q̂(2)i j + Q̂

(2)
j i ) and Ω̂i j = i

(
Q̂(2)i j − Q̂

(2)
j i

)
would be called the quantum metric

and Berry curvature tensor operators, respectively. We shall show later that the definition is

justified since their matrix elements in the Bloch basis are precisely the conventional form of

the corresponding quantities.

Note that
(
r̂
(2)
i j

)
B

is symmetric in i j indices, since the un-projected position operators com-

mute with each other: [r̂i , r̂j ] = 0. However, neither r̂iB r̂jB nor Q̂(2)i j is individually symmetric,

since the projected position operators no longer commute with each other, except for the

trivial case P̂B = 1. In fact, it is easy to see neither of the operators is even Hermitian. To

make the hermiticity and symmetry explicit, we symmetrize the previous expression as

(
r̂
(2)
i j

)
B
=r̂iB r̂jB + Q̂(2)i j =

1

2
{r̂iB, r̂jB}+

1

2

(
Q̂(2)i j + Q̂

(2)
j i

)
(3.2.4)

=
1

2
{r̂iB, r̂jB}+ Ĝi j . (3.2.5)

For this to agree with the former expression, we need the anti-symmetric part of each term

to cancel each other, which implies that

[r̂iB, r̂jB] = −
(
Q̂(2)i j − Q̂

(2)
j i

)
= iΩ̂i j . (3.2.6)
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We may also obtain this result by direct computation. Indeed, by definition of the curvature

and geometric tensor operator, we have

−iΩ̂i j =Q̂(2)i j − Q̂
(2)
j i (3.2.7)

=− ([r̂i , P̂B]Q̂B[r̂j , P̂B])B (3.2.8)

=
([[
P̂B, r̂i

]
,
[
r̂j , P̂B

]])
B

(3.2.9)

=− [r̂iB, r̂jB] . (3.2.10)

Here we see that rather remarkably, the band projected position operators no longer commute

with each other, and the correction is exactly the Berry curvature. Of course, we shall still

justify the definition of the operator form of the Berry curvature in the next section. Here we

simply note that if we regard the projected position operator as a momentum space covariant

derivative operator (see Section 3.3.2), which may be written as r̂iB = i∇̂ = i
(
∂k̂ − iÂi

)
B
, in

terms of a gauge connection Âi , then we may interpret the above result as

Ω̂i j =− i[r̂iB, r̂jB] (3.2.11)

=
[
∂k̂iB − iÂiB, ∂k̂jB − iÂjB

]
(3.2.12)

=
[
∂k̂iB, ÂjB

]
−
[
∂k̂jB, ÂiB

]
+ i

[
ÂiB, ÂjB

]
, (3.2.13)

which is indeed very suggestive of the definition of a curvature tensor [106].

Octuple moment: quantum connection

As another example, we consider the octuple moment of the position operator, namely the

product of three band-projected position operators. In the following, we will use interchange-

ably that r̂iB = i∇̂i . As previously, we insert 1 = P̂B + Q̂B between the position operators,

and after some manipulation we have

(
r̂
(3)
i jk

)
B
= (r̂i r̂j r̂k)B = i3

(
∇̂i∇̂j∇̂k −

(
Q̂(2)i j ∇̂k + Q̂

(2)
ik ∇̂j + Q̂

(2)
jk ∇̂i +

[
∇̂i , Q̂(2)jk

]
+ Q̂(3)i jk

))
,

(3.2.14)

which includes the quantum geometric tensor Q̂(2)i j and a new geometric object Q̂(3)i jk . The

latter is in fact the operator form of the quantum geometric connection introduced in

Refs. [5, 12, 86]. To show this, as earlier, we symmetrize the above equation and after
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some manipulations we may re-write it as:

(
r
(3)
i jk

)
B
=
1

6
(r̂iB r̂jB r̂kB + permutations of i jk) +

1

2

(
{Ĝi j , r̂k,B}+ {Ĝik , r̂j,B}+ {Ĝjk , r̂i ,B}

)
(3.2.15)

+ i

(
Q
(3)
i jk +

i
2

([
r̂k,B, Ĝi j

]
+
[
r̂j,B, Ĝik

]
−
[
r̂i ,B, Ĝjk

])
+
1

6

([
r̂k,B, Ω̂i j

]
+
[
r̂j,B, Ω̂ik

]))
.

(3.2.16)

To bring forward the symmetric tensor in Q̂(3), it is useful to define the following two oper-

ators, i.e.

Q̂(3)i jk = Γ̂i ,jk −
i
2
ˆ̃Γi ,jk , (3.2.17)

Γ̂i ,jk =
1

2

([
∇̂k , Ĝi j

]
+
[
∇̂j , Ĝik

]
−
[
∇̂i , Ĝjk

])
, ˆ̃Γi ,jk =

1

3

([
∇̂k , Ω̂i j

]
+
[
∇̂j , Ω̂ik

])
+ 2T̂i jk ,

(3.2.18)

which reduces Eq. (3.2.16) to the symmetric tensor T̂i jk . Note that the quantities Γ̂i ,jk thus

defined can clearly be viewed as the Christoffel symbols associated with the metric tensor

Ĝi j [120, 160], and we show call it the quantum Christoffel symbols operator. Similarly, the

imaginary part of Q̂(3)i jk ,
ˆ̃Γi ,jk is known as the symplectic Christoffel symbols/connection of

the first kind [106], whereas

ˆ̃Γijk = Ω̂
i l ˆ̃Γl ,jk (3.2.19)

are the components of the symplectic connection ˆ̃Γijk of the second kind. Here Ω̂i j is the

matrix inverse of Ω̂i j (with respect to i j indices). From Eq. (3.2.18), we can derive the

following relation:

[
∇̂i , Ω̂jk

]
= ˆ̃Γj,ki − ˆ̃Γk,j i . (3.2.20)

Using this, we may define a covariant derivative ˆ̃∇i with respect to which the Berry curvature

is "flat" [86, 106]: ˆ̃∇iΩ̂jk = [∇̂i , Ω̂jk ] + Ω̂j l ˆ̃Γlki + Ω̂lk
ˆ̃Γlj i = 0.

General order

We would now consider such decomposition to arbitrary order. Following the same procedure

as in the derivation of the quantum geometric tensor and quantum Christoffel symbols, for

the n-th moment in the position operator, we insert a 1 = P̂B + Q̂B between each pair of
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position operators, thus relating it to a lower order by , i.e.

P̂B r̂
(n)
i1...in

P̂B = P̂B r̂i1

(
P̂B + Q̂B

)
r̂
(n−1)
i2...in

P̂B (3.2.21)

= r̂i1B r̂
(n−1)
i2...inB + P̂B r̂i1Q̂B r̂

(n−1)
i2...in

P̂B (3.2.22)

= r̂i1B r̂
(n−1)
i2...inB + Q̂

(n)
i1i2...in

, (3.2.23)

where we defined

Q̂(n)i1i2...in =
(
r̂i1Q̂B r̂

(n−1)
i2...in

)
B
= −

([
r̂i1, P̂B

]
Q̂B

[
r̂
(n−1)
i2...in

, P̂B
])
B
. (3.2.24)

Assuming that the n − 1-th order is already understood, then any new geometric quan-

tities that are associated with the Bloch structure shall emerge from the second term of

Eq. (3.2.23). Let us zero in on Eq. (3.2.24). We may decompose it further by using the

following identities:

P̂B

2N−1∏
n=1

[
Ôn, P̂B

]
P̂B = 0, Q̂B

2N∏
n=1

[
Ôn, P̂B

]
P̂B = 0, (3.2.25)

which are valid for an arbitrary set of operators {Ôn, N ∈ N}, by exploiting the orthogonality

and idempotence of P̂B and Q̂B. We will prove them by induction. First of all, when N = 1,

it is easy to directly check that both identities hold. Now suppose the identity holds up to

some N ∈ N, then we have for N + 1:

P̂B

2N+1∏
n=1

[
Ôn, P̂B

]
P̂B =P̂B

2N−1∏
n=1

[
Ôn, P̂B

] [
Ô2N, P̂B

] [
Ô2N+1, P̂B

]
P̂B (3.2.26)

=P̂B

2N−1∏
n=1

[
Ôn, P̂B

]
(P̂B + Q̂B)

[
Ô2N, P̂B

] [
Ô2N+1, P̂B

]
P̂B (3.2.27)

=0 + P̂B

2N−1∏
n=1

[
Ôn, P̂B

]
Q̂B

[
Ô2N, P̂B

] [
Ô2N+1, P̂B

]
P̂B (3.2.28)

=0 + P̂B

2N−1∏
n=1

[
Ôn, P̂B

]
× 0 (3.2.29)

=0, (3.2.30)

where in the second step, we inserted 1 = P̂B + Q̂B, and used the assumption that the first

identity in Eq. (3.2.25) holds for 2N − 1. In going from the second to the last, we used that

the second identity in Eq. (3.2.25) holds. A similar procedure also establishes the second

identity.
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Using Eq. (3.2.25), we may decompose Q̂(n)i1i2...in further. After some algebraic manipulations

we obtain

Q̂B
[
r̂
(n)
i1...in

, P̂B
]
P̂B = Q̂B

([
r̂i1, Q̂B

[
r̂
(n−1)
i2...in

, P̂B
]
P̂B
]
+
[
r̂
(n−1)
i2...in

, P̂B
]
r̂i1,B +

[
r̂i1, P̂B

]
r̂
(n−1)
i2...in,B

)
P̂B,

(3.2.31)

where in the first term of Eq. (3.2.31), we find that

Q̂B
[
r̂i1, Q̂B

[
r̂
(n−1)
i2...in

, P̂B
]
P̂B
]
P̂B = Q̂B

[
r̂i1,

[
r̂
(n−1)
i2...in

, P̂B
]]
P̂B. (3.2.32)

This motivates the definition of the nth geometric quantity through a recursive commutator

Ĝ(n)i1i2...in = (−i)nP̂B
[
r̂i1, P̂B

]
Q̂B

[
r̂i2,

[
. . . ,

[
r̂in , P̂B

]]]
P̂B. (3.2.33)

Note Ĝ(2)i1i2 is precisely the quantum geometric tensor. It is convenient to introduce the

moment generating function M̂(λ) = exp(λ · r̂), using the projected version of which we

have

(
r̂
(n)
in

)
B
= (r̂i1 . . . r̂in)B = limλ→0

∂λin
M̂B(λ). (3.2.34)

Previously in the case of quantum geometric tensor and quantum Christoffel symbols, we saw

that the quantum geometric quantities appear in the symmetrized form of the decomposition

of band-projected moments, and we expect that the same goes in any order, and we may

write the moment generating function as

M̂B(λ) =
(
eλ·r̂

)
B
= exp

(
λi r̂i ,B +

∞∑
n=2

1

n!
λin T̂

(n)
in

)
, (3.2.35)

where we used the the multi-index in = i1 . . . in, and ∂λin
= ∂λi1 . . . ∂λin , λin = λi1 . . . λin .

The quantities T̂ (n)in
are some rank-n tensor that are completely symmetric in all of its

indices, and emerge from symmetrizing Q̂(n)in . In fact, we can identify that Ĝi j = T̂ (2)i j and

T̂i jk = T̂ (3)i jk . At the moment of writing the thesis, we could not find a general formula for

T̂ (n)in
to arbitrary order. However, we conjecture that perhaps using the cumulant generating

function log M̂B(λ) a general formula of the geometric quantities might be obtained, and we

leave it for future research.
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3.3 Local expressions of the geometric operators

3.3.1 Local projection operators and moment generating function

In early parts of the thesis, we introduced the notion of quantum metric tensor and Berry

curvature for generic parametrized quantum states. In contrast, in the previous section,

we studied the algebraic properties of projected products of position operators, and the de-

compensation of a band projected product, namely the moments of position operators, in

terms of geometric quantities in operator form. Apart from in the definition of projection

operators, no explicit reference to states is invoked at all. To reconcile these two approaches

and further understand our definition of the geometric operators, we compute the matrix

elements of the geometric operators in the local Bloch basis, from which we may recover the

more conventional expressions for the geometric quantities.

For including the case of multi-band case, it is convenient to introduce the local (in mo-

mentum space) projection and complement operators

P̂q =
∑
n

∣∣unq〉 〈unq∣∣ , P̂qB =
∑
n∈NB

∣∣unq〉 〈unq∣∣ , Q̂qB =
∑
n/∈NB

∣∣unq〉 〈unq∣∣ = P̂q − P̂qB. (3.3.1)

Recall the orthogonality of the Bloch functions: ⟨unk|umk⟩ = δnm. Using this it is easy to

show that, as the band projection and complement operators, the local P̂qB and Q̂qB are

idempotent and orthogonal as well: P̂ 2qB = P̂qB, Q̂2qB = Q̂qB, P̂qBQ̂qB = Q̂qBP̂qB = 0. The

band projection operators can be expressed as the sum over Bloch momenta of the local

projection operators. More precisely we have that

1 =
∑
q

eiq·r̂P̂qe−iq·r̂, P̂B =
∑
q

eiq·r̂P̂qBe−iq·r̂. (3.3.2)

As already discussed previously in Section 3.2.2, a projected operator OB(r̂) that is a function

of the position operators can be expressed in terms of the projected generating operator(
e−ia·r̂

)
B

via

OB(r̂) = lim
a→0

O(i∂a)P̂B e−ia·r̂ P̂B, (3.3.3)

where for later convenience we now included a factor of i. Therefore, should we be able

to compute the matrix elements of
(
e−ia·r̂

)
B
, we can then compute the corresponding local

expressions of a projected product of position operators as well. Furthermore, in our dis-

cussion of the geometric operators, they are introduced via certain decomposition of band
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projected moments of position operators, and we would like to compute their corresponding

Bloch basis expressions as well.

The calculations will be done by using the following identities

P̂B e−ia·r̂ P̂B =
∑
q

eiq·r̂ P̂qB ea·∂q P̂qB e−iq·r̂, (3.3.4)

Q̂B e−ia·r̂ P̂B =
∑
q

eiq·r̂ P̂qB ea·∂q Q̂qB e−iq·r̂, (3.3.5)

where the exponential of derivatives acts on everything to the right.

We first note that unlike the band projection operator, the local projection and comple-

ment operator are not orthogonal since the Bloch functions are not simple plane waves in

general, and have finite overlap, i.e.
〈
unk

∣∣umq〉 ̸= δnmδ(q−k). Consequently, we do not have

P̂qP̂k ̸= δ(k − q) as one might have guessed. However, we have that

P̂qei(k−q)·r̂P̂k = δ(q − k)P̂q, (3.3.6)

which follows trivially from the orthonormality of
〈
ψnq

∣∣ψmk〉 = δnmδ(q − k), and holds

still when band projected, namely P̂q → P̂qB. The above central formulas, Eqs. (3.3.4)

and (3.3.5) can be obtained from a generalization of the modified orthogonality formula,

namely that

P̂qei(k−q−a)·r̂P̂k = ea·∂q (δ(q − k)) P̂qP̂k (3.3.7)

= e−a·∂k (δ(q − k)) P̂qP̂k. (3.3.8)

The detailed proof is given in the appendix. Basically, it is done by inserting an identify using

the position basis 1 =
∫
dr |r⟩ ⟨r|, and then apply the Poisson summation formula, hence

transforming the exponential to a Dirac delta , so that we have

P̂qea·∂q

(
e+i(k−q)·r̂

)
P̂k = ea·∂q (δ(q − k)) P̂qP̂k, (3.3.9)

from which the identity is established. Note that we intentionally do not transform the whole

of e+i(k−q−a)·r̂ into a Dirac delta, because q−k−a is no longer confined within the first Bril-

louin zone. This might then cause a phase term due to crossing the Brillouin boundary since∣∣unq〉 = eiθ ∣∣unq+G
〉
, where G is a reciprocal lattice vector. In fact when applying the Poisson

summation formula, one obtains instead of δ(q − k − a), rather
∑
Ki δ(q − k − a −Ki),
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where the sum is over all reciprocal lattice vectors Ki ; see Appendix A.1.

Using Eq. (3.3.8), we immediately obtain that the moment generating function can be

written as

e−ia·r̂ =
∑
q

eiq·r̂P̂qea·∂q P̂qe−iq·r̂, (3.3.10)

where the derivative acts on everything to the right. By applying band projection operators

accordingly we immediately obtain Equations (3.3.4) and (3.3.5). The matrix element of

the generating operator in the Bloch basis can be easily obtained from the above as

〈
ψnq

∣∣ e−ia·r̂ |ψmk⟩ (3.3.11)

=
〈
unq

∣∣ ei(k−(a+q))·r̂ |umk⟩

=
〈
unq

∣∣umk〉 ea·∂qδ(q − k). (3.3.12)

If we keep in mind that a is a parameter that is taken to be zero in the end pf the calculations,

then we may also summarize the above as
〈
ψnq

∣∣ e−ia·r̂ |ψmk⟩ =
〈
unq

∣∣uma+q−k〉 δ(a + q − k).
Note that here and everywhere else in the thesis, the inner product between the cell-periodic

part of the Bloch states, or their derivatives, are given as an integration over unit cells, with

a normalization factor (2π)d/Vuc included, with Uuc the volume of a unit cell. This implies

that (derivative on δ is w.r.t q)

〈
ψnq

∣∣ r̂n |ψmk⟩ = (i)nδ(n)(q− k)
〈
unq

∣∣umk〉 (3.3.13)

Note (−i)nδ(n)(q) = inδ(n)(−q), where δ(n)(q) ≡ ∂nqδ(q). We see that the product of position

operators encode information on the overlap between Bloch states, which characterize the

band structure, and this explains the importance of the moment. Put another way, the

physical significance of the quantum geometric quantities lies in the fact that they actually

carry information about the momentum space profile of the Bloch states.

3.3.2 Position and velocity operator

We mentioned before that the position operator may be rather suggestively decomposed as

r̂i = i∂k̂i + Âi , (3.3.14)
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where

∂k̂i =
∑
n

∑
k

|ψnk⟩ ∂ki ⟨ψnk| , Âi =
∑
nm

∑
k

|ψnk⟩Anm,i(k) ⟨ψmk| , (3.3.15)

and Anm(k) = i ⟨unk| ∂k |umk⟩ is the non-abelian Berry connection. This motivated us to

denote the projected position operator as a covariant derivative r̂iB = i∇̂i . Let us now show

this by applying the results in the previous section. Using Eq. (3.3.10) we have, (derivatives

act on everything to the right)

r̂i = lim
a→0

i∂aie
−ia·r̂ = i

∑
k

eik·r̂P̂k∂ki P̂ke
−ik·r̂ = i

∑
nm

∑
k

|ψnk⟩ ⟨unk| ∂ki |umk⟩ ⟨ψmk| (3.3.16)

=
∑
nm

∑
k

|ψnk⟩ (δnm∂ki + Anm,i(k)) ⟨ψmk| , (3.3.17)

where ∂ki in Eq. (3.3.16) acts on P̂ke−ik·r̂ =
∑
m |umk⟩ ⟨ψmk|. It can be shown that the

un-projected Berry connection operators satisfy i
(
∂ki Âj − ∂kj Âi

)
= [Âi , Âj ]. This is simply

the statement that the position operators commute, [r̂i , r̂j ] = 0.

To further illustrate that the position operator can be viewed as a covariant derivative,

let us study its action on operators. Consider a general Bloch diagonal operator, which is of

the form Ô =
∑
n

∑
k |ψnk⟩Onm(k) ⟨ψmk|. We have

1

i
[r̂i , Ô] =

∑
nm

∑
k

|ψnk⟩ (∂kiOnm(k)− i [Ai(k), O(k)]nm) ⟨ψmk| (3.3.18)

=
∑
nm

∑
k

|ψnk⟩ [∇i(k), O(k)]nm ⟨ψmk| , (3.3.19)

where the derivative acts on Onm(k) only, and [Ai(k), O(k)]nm =
∑
l Ai ,nl(k)Olm(k) −

Onl(k)Ai ,lm(k). In the second line we also introduced the covariant derivative ∇i = ∂ki −
iAi(k). Note that the second term vanishes for an operator whose matrix elements are band-

independent, such as the Bloch momentum operator k̂. When band projected, the above

receives little modification:

1

i
[r̂iB, ÔB] = [∇̂i , ÔB] =

∑
n,m∈NB

∑
k

|ψnk⟩ (∂kiOnm(k)− i [AiB(k), OB(k)]nm) ⟨ψmk| (3.3.20)

=
∑

n,m∈NB

∑
k

|ψnk⟩ [∇i , OB(k)]nm ⟨ψmk| , (3.3.21)

where the band summation in the commutator is also restricted to the projected bands.
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In particular, we have

[r̂i , k̂j ] = i[∂k̂i , k̂j ] = iδi j (3.3.22)

The velocity operator is defined as v̂ = 1
i [r̂, Ĥ0]. In terms of the above decomposition, we

have

v̂ =
1

i
[r̂, Ĥ0] =

∑
nmk

|ψnk⟩ ⟨ψmk| (δnm∂kEnk + i∆nm(k)Anm(k)) , (3.3.23)

where ∆nm(k) = Enk −Emk is the direct band gap. The first term is nothing but the familiar

band dispersion related group velocity. The second term can be neglected only when all

inter-band transitions is negligible, and in particular in a single-band approximation. Note

that with the specific Hamiltonian Ĥ0 = (p̂2/2m) + V (r̂), the velocity operator has a direct

relation with the canonical momentum as v̂ = p̂
m

. This, however, is a special case, and no

longer holds, for instance, for the Pauli Hamiltonian with a spin orbit coupling or a Dirac

electron moving in periodic potential [26]. Later we shall discuss a more relevant form of the

canonical momentum, as a sort of dual to the position operator as a covariant derivative in

real sapce.

3.3.3 Geometric quantities

Previously we defined various operators, and identified them as the operator form of the

quantum geometric quantities associated with the Bloch structure. We would now show

that the forms of the geometric quantities conventionally seen in the literature are simply

the matrix elements of these operators. We do this by using Eq. (3.3.10), which by applying

derivatives gives

(
r̂iQ̂B r̂

(n)
in

)
B
= −

(
[r̂i , P̂B]Q̂B[r̂

(n)
in
, P̂B]

)
B

(3.3.24)

= in+1
∑
k

e ik·r̂P̂kB

(
∂ki Q̂kB

)
Q̂kB

(
∂ki1 . . . ∂kin P̂kBe

−ik·r̂
)
, (3.3.25)

where as in the previous section r̂ (n)in = r̂i1 r̂i2...r̂in . Of course, in principle, the results below

can also be obtained by direct methods. We present two examples of such calculations in the

appendix, both to confirm the results obtained here, as well as to demonstrate the efficiency

of the methods that we introduce.
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Quantum geometric tensor

Let us first consider the quantum geometric tensor Q̂(2)i j = i2
([
r̂i , P̂B

]
Q̂B

[
r̂j , P̂B

])
B

. This

corresponds to the n = 1 case of the above. In the Bloch basis we have

Q̂(2)i j =
∑

n,m∈NB
Qi j,nm(k) |ψnk⟩ ⟨ψmk| . (3.3.26)

The matrix element can be computed by using Eq. (3.3.25), with n = 1, where we have

Qi j,nm(k) = ⟨ψmk| Q̂(2)i j |ψnk⟩ (3.3.27)

= i2 ⟨unk|
(
∂ki Q̂kB

)
Q̂kB

(
∂ki P̂B |umk⟩

)
(3.3.28)

= ⟨unk|
(
∂ki Q̂kB

)(
∂ki Q̂kB

)
P̂B |umk⟩ (3.3.29)

= ⟨unk|
(
∂ki P̂kB

)(
∂kj P̂kB

)
|umk⟩ , (3.3.30)

with k-derivatives that act only on the closest local projection operators. In going from the

second to the third line, we used that

0 = ∂k(P̂BQ̂B) = ∂k(P̂B)Q̂B + P̂B∂k(Q̂B). (3.3.31)

The form of the matrix element Qi j,nm(k) is precisely the multi-band version of quantum

geometric tensor [86], which in the single band cases reduced to Eq. (2.1.22).

Christoffel symbols and symplectic connection

Now let us consider the n = 2 case. Applying the formula Eq. (3.3.25) we have

P̂B[r̂i , P̂B]Q̂B[r̂j r̂k , P̂B]P̂B (3.3.32)

=i3
∑
k

e ik·r̂P̂kB

[(
∂kj P̂kB

)(
∂kk P̂kBe

−ik·r̂
)
+

(
∂kk P̂kB

)(
∂kj P̂kBe

−ik·r̂
)]

+ e ik·r̂P̂kB

(
∂ki Q̂kB

)(
∂kj∂kk P̂kB

)
P̂kBe

−ik·r̂ (3.3.33)

=Q̂
(2)
i j r̂kB + Q̂

(2)
ik r̂jB + Q̂

(3)
i jk , (3.3.34)

where we introduced the geometric quantity Q̂(3)i jk =
∑
n∈B

∑
kQ

(3)
i jk,nm(k) |ψnk⟩ ⟨ψmk|, whose

matrix elements are[86] Q(3)i jk,nm(k) = i ⟨unk|
(
∂ki P̂kB

) (
∂kj∂kk P̂kB

)
|umk⟩. Its relation to quan-

tum Christoffel symbols are given by eq.(3.2.17).
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3.4 Canonical momentum

So far we have considered the projected product of position operators. It is natural to wonder

about the momentum. In fact, this is a crucial issue when it comes to consider the dynamics

in a magnetic field, for we know that interaction between the field and particle is given by the

minimal coupling p → p − qA. Thus the modified commutation relations of the projected

momentum might also lead to modification of the dynamics. Hence in this section we shall

study the projected canonical momentum.

3.4.1 Canonical momentum and and real space Berry connections

The canonical momentum is defined as the infinitesimal translation generator, such that

⟨r| p̂ |ψ⟩ = −i∂rψ(r). (3.4.1)

On the other hand, the crystal or Bloch momentum operator may be defined in the Bloch

basis as k̂ =
∑
nk k |ψnk⟩ ⟨ψnk|. Even though both the canonical momentum and Bloch

momentum satisfies the commutation relation [r̂, p̂] = [r̂, k̂] = i, the crystal momentum

generates lattice translation: e−ik̂·R |r⟩ = |r +R⟩, where R is a lattice vector. In fact the

canonical momentum as is related to the Bloch momentum as p̂ = k̂ − Âr, with matrix

elements

〈
ψnq

∣∣ p̂ |ψmk⟩ = (kδnm −Arnm(q)) δ(q− k), (3.4.2)

where the second term is a real space Berry connection

Arnm(q) = i
〈
unq

∣∣ ∂r ∣∣umq〉 ≡ i (2π)d
Vuc

∫
cel l

dru∗nq(r)∂rumq(r). (3.4.3)

The detailed derivation is given in the appendix. Here we have abused the notation somewhat,

since r is a dummy variable that is integrated over, and Arnm(q) has no explicit dependence

on r. But given the lack of a better alternative, we stick with it. The same result has been

obtained by Blount [26]. It may be shown in the Wannier basis that the Bloch momentum

operator generates inter-cell translations, while the real space Berry connection generates

intra-cell displacements.

Note that in the literature there is another notion of real-space Berry connection, which

arises for band systems that have arise from band structure that have spatial in-homogeneity,

such as systems in a magnetic texture; see for instance [134, 152, 164]. This is different
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from our Arnm(q) , as we can see from the matrix elements characterizes the spatial mod-

ulation of the Bloch states. Indeed, Arnm(q) vanishes in the plane-wave limit, where unk(r)

is a constant. This occurs in the limiting case where the lattice potential is just a uniform

background, the system essentially just describes a free particle and the crystal momentum

reduces to the canonical momentum. Finally, we note that only the band diagonal part of

the real-space Berry connection is gauge-invariant under a Bloch gauge transformation.

3.4.2 Mixed geometrical quantities

In the previous part we have extended the discussion on the geometric quantities related to

the projected product of position operators. On the other hand, in the presence of magnetic

field, the canonical momentum is coupled to the vector potential, and this might induce

contributions that are expressed in terms of new geometric quantities, which depends on

the spatial gradient of the cell-periodic part of Bloch states as well as the real space Berry

connection.

Mixed quantum geometric tensor

Analogously to the quantum geometric tensor intoduced before Q̂(2)i j ≡ −P̂B[r̂i , Q̂B][r̂j , Q̂B]P̂B,
we introduce a mixed quantum geometric tensor

L̂i j ≡ −P̂B[r̂i , Q̂B][p̂j , Q̂B]P̂B = ((r̂i − r̂iB)p̂j)B. (3.4.4)

We can see from the definition that L̂i j is odd under time reversal transformation and even

under inversion. For a Bloch diagonal operator Ô, i.e. operators which conserves the Bloch

momentum
〈
ψnq

∣∣ Ô ⟨ψmk| = Ônm(q)δ(q−k) , we may define a local (in momentum) operator

Ôq ≡ e−iq·r̂Ôe iq·r̂. (3.4.5)

The local operator has the property that its matrix elements evaluated on Bloch functions

(the cell-periodic part of Bloch states) are simply the matrix elements of Ô in Bloch states,

namely

〈
unq

∣∣ Ôq ∣∣umq〉 = Onm(q) = 〈ψnq∣∣ Ô ∣∣ψmq〉 . (3.4.6)

Now we may compute its matrix elements using Eq. (3.3.5):

L̂i j = lim
a→0

i∂ai P̂Ne
−ia·r̂Q̂N p̂j P̂N = ie iq·r̂P̂qB

(
∂qi Q̂qB

)
Q̂qBÂ

r
jqP̂qBe

−iq·r̂, (3.4.7)
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or

L̂i j,nm(q)δ(q − k) =
〈
ψnq

∣∣ L̂i j |ψmk⟩ = i
〈
unq

∣∣ (∂qi Q̂qB) Q̂qBÂrjq ∣∣umq〉 δ(q − k). (3.4.8)

This is a new geometric quantity that is local in momentum space. Note that unlike the

geometric quantities such as the quantum metric tensor and Christoffel symbols, this quantity

depends on the spatial gradient of the Bloch states as well, and thus encodes information

about the spatial profile of the Bloch states.

Modified canonical commutation relation

We saw before that band projected operators have modified commutation relations, for

instance the commutator between projected position operators is in fact the Berry curvature,

whereas their un-projected counterparts commute with each other. Let us now discuss

how the commutation relation between the projected position and canonical momentum is

modified, where the un-projected position and canonical momentum satisfy the canonical

commutation relation [r̂i , p̂j ] = δi j . Recall that we showed the canonical momentum may be

written as p̂ = k̂ −Ar, and thus we have

[r̂iB, p̂jB] = i1Bδi j − i[∇̂i , ÂrjB]. (3.4.9)

This shows that the projected position and momentum no longer form a canonical pair. We

may express this in terms of the mixed geometric quantity we introduced above. We have

[r̂iB, p̂jB] = [r̂i , p̂j ]B −
(
r̂iQ̂N p̂j − p̂jQ̂N r̂i

)
B

(3.4.10)

= iP̂Bδi j −
(
L̂i j − L̂†i j

)
, (3.4.11)

from which we have that

[∇̂i , ÂrjB] =
1

i

(
L̂i j − L̂†i j

)
. (3.4.12)

Note this is manifestly Hermitian.

Higher mixed geometric quantities

Consider now the quantity
(
r̂i r̂jQ̂Bp̂k

)
B
. We have that

(
r̂i r̂jQ̂Bp̂k

)
B
= r̂iB

(
r̂jQ̂Bp̂k

)
B
+
(
r̂iQ̂B r̂jQ̂Bp̂k

)
B
≡ i∇̂i L̂jk + Λ̂i jk , (3.4.13)
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where Λ̂i jk ≡
(
r̂iQ̂B r̂jQ̂Bp̂k

)
B
=
(
[r̂i , Q̂B]r̂jQ̂B[p̂k , P̂B]

)
B
, and we used r̂iB = i∇̂i . Note that by

symmetry we have

Λ̂i jk − Λ̂j ik = −i
(
∇̂i L̂jk − ∇̂j L̂ik

)
. (3.4.14)

In fact we have

Λ̂i jk =
(
[r̂i , Q̂B]r̂jQ̂B[p̂k , P̂B]

)
B

(3.4.15)

=
(
[[r̂i , Q̂B], r̂j ]Q̂B[p̂k , P̂B]

)
B
+
(
[r̂i , Q̂B]Q̂B r̂jQ̂B[p̂k , P̂B]

)
B

(3.4.16)

=
(
[r̂j , [r̂i , P̂B]]Q̂B[p̂k , P̂B]

)
B
−
(
r̂j P̂B[r̂i , P̂B]Q̂B[p̂k , P̂B]

)
B

(3.4.17)

= L̂(2)i jk + i∇̂j L̂ik , (3.4.18)

where we introduced a geometric quantity L̂(2)i jk ≡
(
[r̂j , [r̂i , P̂B]]Q̂B[p̂k , P̂B]

)
B
, which is sym-

metric in i j and local in momentum space. Substituting this back in Eq. (3.4.13), we have

(
r̂i r̂jQ̂Bp̂k

)
B
= L̂(2)i jk + i∇̂i L̂jk + i∇̂j L̂ik , (3.4.19)

which is manifestly i j symmetric as it should.

Name Definition

Covariant derivative ∇̂j ≡ −ir̂jB

Quantum geometric tensor Q̂(2)jk = −([r̂j , P̂B]Q̂B[r̂k , P̂B])B

Mixed geometric tensor 1 L̂jk ≡ −([r̂j , P̂B][p̂k , P̂B])B

Mixed geometric tensor 2 L̂(2)jkl ≡ ([r̂k , [r̂j , P̂B]]Q̂B[p̂l , P̂B])B

Table 3.1. A table of the operator forms of geometric quantities.

3.5 Semi-classical equation of motion

3.5.1 Bloch electron in external fields

Having understood how the operator form of the geometric quantities appear from the pro-

jected product of position operators, we would now study how the geometric quantities

modify the motion of a Bloch electron. Previous works [12, 86, 90] have shown that in the

presence of in-homogeneous electric fields, there would be additional geometric contributions

to the semi-classical equations of motion, besides the well known Berry curvature related
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anomalous velocity. We shall now apply our operator formalism to study the effective electron

dynamics, where not only we do not need to rely on any specific wave-packet construction,

but we shall also consider the case of in-homogeneous magnetic fields.

For this, consider a particle with charge q and mass m moving in a lattice potential in

the presence of an applied electromagnetic field. The free lattice Hamiltonian is simply

Ĥ0 = p̂
2/(2m) + V (r̂), where V (r̂) = V (r̂ +R) is the background lattice potential invari-

ant under lattice translation by a lattice vector R. The eigenstates of the lattice are the

Bloch states |ψnk⟩, which satisfy Ĥ0 |ψnk⟩ = Enk |ψnk⟩. They form a complete basis of the

Hilbert space, so that we have the resolution of identity 1 =
∑
nk |ψnk⟩ ⟨ψnk| and Ĥ0 in this

basis is decomposed as Ĥ0 =
∑
nk Enk |ψnk⟩ ⟨ψnk|. We now apply an external electromagnetic

field, which are assumed to be, but may otherwise have spatial inhomogeneity. The Bloch

Hamiltonian coupled to this external field is of textbook type

Ĥ =
π̂2

2m
+ qφ(r̂) + V (r̂) = Ĥ0 + U(p̂, r̂). (3.5.1)

The kinetic momentum π̂ = p̂− qA(r̂) is gauge invariant under a gauge transformation of

the electromagnetic potentials: A → A −∇rχ, φ → φ + ∂tχ. We may divide the external

perturbations into electric, diamagnetic and paramagnetic terms as

U(p̂, r̂) = Uφ(r̂) + Udia(r̂) + Upara(p̂, r̂). (3.5.2)

The electric field is given by the static electrostatic potential Uφ(r̂) = qφ(r̂), and has

been considered previously in [86, 90], and we shall see that our operator approach repro-

duces the results indeed. The vector potential gives rise to both the diamagnetic terms

Udia(r̂) = q
2A(r̂)2/(2m), and the paramagnetic contribution Upara(p̂, r̂) = −q(A(r̂) · p̂ +

p̂ · A(r̂))/(2m). Note that since r̂ does not commute with p̂, the order of the coupling

between A(r̂) and p̂ matters. Since the electromagnetic fields are static, we choose a gauge

in which the potentials are time-independent, and thus external fields are given by

B(r̂) = ∂r̂ ×A(r̂), E(r̂) = −∂r̂φ(r̂). (3.5.3)

We consider applied electromagnetic fields that act as external probes to the low-energy

physics of the lattice system, and thus the field strength is assumed to be weak, where

U(p̂, r̂) can be taken as a perturbation to the Bloch electrons. More specifically, the field

strength is assumed to be smaller than the relevant band gaps, and thus it is natural to

neglect the matrix elements of the perturbing term between the high-lying bands. For exam-
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ple, in the case of band metals under the influence of a weak driving field, where the Fermi

intersects a set of partially filled bands, the conduction bands, we may only need to consider

the contributions from the conduction bands. Similarly, in the case of insulators, where the

band gap between the valence conduction band is much larger than the applied fields, so that

few excitations into the valence band are driven by the perturbing field, the effective physics

can be entirely phrased in terms of the fully occupied bands. This is actually the same line

of reasoning as the lowest Landau level projection in the quantum Hall effect [44].

Such a restriction of observables onto a subspace might be formally effected by the pro-

jection operator, which, however, as we discussed in the previous section, has nontrivial

effects. Indeed, we saw there that the band-projected operators, which represent the low

energy effective observables, have modified commutation relations, and this leads to the

quantum geometric quantities. For example, we showed that the projected position opera-

tors r̂jB (j = x, y , z) no longer commute with each other, and the correction is exactly the

Berry curvature operator: [r̂jB, r̂kB] = iΩ̂jk . This is a key observation from which we shall

show that such modified operator algebra gives rise to the geometric contributions to the

electron dynamics in the presence of perturbing fields.

3.5.2 Projected dynamics

Here we recall the definition of projection operator and its complement:

P̂B =
∑
n∈NB

∑
k

|ψnk⟩ ⟨ψnk| , Q̂B = 1− P̂B, (3.5.4)

where NB denotes a subset of bands that are relevant for low-energy physics, and a band-

projected operator is denoted as ÔB = P̂BÔP̂B. Note that the projection operator P̂B and

its complement Q̂B are invariant under a band-dependent gauge transformation of the Bloch

states |ψnk⟩ → e iφn(k) |ψnk⟩.

Consider a general observable Ô in the Heisenberg picture, whose expectation value in an

arbitrary state within the projected Hilbert space is OB(t) = ⟨ψB| ÔB(t) |ψB⟩. Using Heisen-

berg’s equation of motion, the dynamics of the observable is given by

iȮB(t) = ⟨ψB| [ÔB(t), Ĥ] |ψB⟩ = ⟨ψB| [ÔB(t), ĤB] |ψB⟩ , (3.5.5)

where we assume that the observable Ô does not explicitly depend on time. Crucially, the

effective dynamics requires not projecting the commutator only, and in particular we need
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the projected Hamiltonian, whose matrix elements are restricted to be within the effective

subspace. Physically, we may say that the effective dynamics of a projected operator is

governed by an effective Hamiltonian ĤB, which is a cutoff version of the full Hamiltonian.

The same effective Heisenberg equations of motion can also be derived using the Feshbach

formalism of perturbation theory [108, 109], truncated to first order in the perturbation.

See also Appendix A.7. Since the state is completely arbitrary, we only need to consider the

operator equation

˙̂OB = −i[ÔB, ĤB] = P̂B(dÔB/dt)P̂B, , (3.5.6)

where the second equality follows from dÔB/dt = −i[ÔB, Ĥ].

Momentum dynamics: force equation

We shall now study the dynamics of the projected position and momentum. From now on and

throughout the text, we shall use the Einstein summation convention, where repeated indices

are summed. Let us first discuss the "force" equation, the dynamics of the momentum.

Note that any band-diagonal operator (i.e., operators that have the decomposition Ô =∑
nkOnk |ψnk⟩ ⟨ψnk| in the Bloch basis) commutes with the projection operator. Trivially,

this includes the Bloch momentum operator k̂ itself, defined as k̂ =
∑
nk k |ψnk⟩ ⟨ψnk| and

thus we have P̂Bk̂P̂B = P̂Bk̂ = k̂P̂B. Therefore, the projected dynamics of the crystal

momentum is simply

i
(
˙̂kiB
)
B
= [P̂Bk̂i P̂B, P̂BĤP̂B] = P̂B[k̂i , Ĥ]P̂B, (3.5.7)

where Ĥ = π̂2

2m
+ qφ(r̂) + V (r̂). It is easy to show on the Bloch basis that [k̂, Ĥ0] = 0,

which is simply the statement that the Bloch momentum is conserved in the absence of an

external field and feels no force due to the lattice potential alone. For simplicity let us use

the Coulomb gauge, for now, where we have ∇r · A(r) = 0. It is easy to show that this

implies the vector potential commutes with the canonical momentum p̂, and the equation
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of motion of the crystal momentum read

˙̂kiB =
1

i
P̂B[k̂i , U(p̂, r̂)]P̂B (3.5.8)

=
1

i
P̂B[k̂i , qφ(r̂)−

qA(r̂) · p
m

+
q2A2(r̂)

2m
]P̂B (3.5.9)

= −q (∂riφ(r̂))B +
q

m
((∂riA) · (p̂− qA))B (3.5.10)

= qEiB(r̂) +
q

m
(∂riA · π̂)B (3.5.11)

= qEiB(r̂) +
q

m
([∂r̂i , Aj(r̂)] π̂j)B , (3.5.12)

where we used [k̂i , f (r̂)] = −i [∂r̂i , f (r̂)]. Note that while the first term is clearly the Coulomb

force due to the electric field, the Lorentz force does not really show up in the force equation.

In fact, when a magnetic field is applied, the suitable quantity to consider is not the crystal

momentum k̂. From classical mechanics, we know that the interaction between charged

particles and the magnetic field is introduced via the minimal coupling between the canonical

momentum p and the vector gauge potential A. However, the canonical momentum p is a

gauge-dependent quantity that is not invariant under a transformation of the electromagnetic

potentials A→ A−∇rχ, and is not an observable itself without gauge fixing. The gauge-

invariant dynamical variable is the kinematic momentum π = p − qA(r). Similarly in the

case of Bloch electrons, the crystal momentum is not gauge invariant either, and while the

kinematic momentum π̂ is gauge-invariant, it feels a physically irrelevant lattice force due

to the lattice potential, even in the absence of external perturbation. The existence of this

lattice force simply means that the canonical momentum is not a conserved quantity due

to the breaking of full translation invariance. A gauge-invariant observable more suited for

studying the Bloch electron dynamics is the crystal kinematic momentum κ̂ ≡ k̂−qA(r̂). It

is straightforward to show that [κ̂i , κ̂j ] = iqϵi jkBk(r̂), and thus the (un-projected) equation

of motion of the crystal kinematic momentum is

˙̂κ =
q

2
(π̂ ×B(r̂)−B × π̂(r̂) + 2E) . (3.5.13)

The first and second terms are precisely the Lorentz force, and this operator equation is

exact and gauge-independent. Note that the gauge-invariant π (and not ˙̂r) appears in the

Lorentz force terms. This equation does not hold strictly for the projected dynamics of the

gauge-invariant crystal momentum κ̂, but to the lowest order in the physical electromagnetic
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field we can still take as approximation:

˙̂κB ≈ qEB(r̂) +
q

2m

(
π̂ ×B(r̂)−B(r̂)× π̂

)
B
. (3.5.14)

Position dynamics

Let us now consider the projected dynamics of the position operator. Using the identity

1 = P̂B + Q̂B, we have

˙̂rB = −i[r̂B, ĤB] (3.5.15)

= −i
(
[r̂, (1− Q̂B)Ĥ]

)
B

(3.5.16)

=
π̂B
m
+ i

(
r̂Q̂BU(p̂, r̂)− U(p̂, r̂)Q̂Br̂

)
B
, (3.5.17)

(3.5.18)

where we used −i [r̂, Ĥ] = π̂, and Q̂BĤ0P̂B = 0. Here we see that the projected dynamics

contains the term

˙̂r⊥ ≡ i
(
r̂Q̂BU(p̂, r̂)− U(p̂, r̂)Q̂Br̂

)
B

(3.5.19)

= i [r̂ − r̂B, U(p̂, r̂)]B , (3.5.20)

which involves matrix elements of the perturbation between the projected and un-projected

bands, and thus we shall call it the inter-band velocity, while π̂B the intra-band velocity.

and in particular this correction vanishes without projection, namely ˙̂r⊥ = 0 if B = H.

Physically, the inter-band velocity capture effects due to virtual scatterings between the

set of low-energy bands B and the high-lying states, and thus this correction is a purely

quantum mechanical effect. Often the inter-band velocity is neglected, and we see this is an

approximation ˙̂rB ≈ π̂B/m, justified when the transition amplitudes between the projected

subspace and its complement are suppressed due to band baps. However, for example, in

systems where the highest-occupied bands have point crossings to the empty valence band,

such as the Weyl semi-metal, the inter-band velocity cannot be ignored, and this is the reason

that the Berry curvature induced anomalous velocity must be taken into account in studying

the Weyl systems. As we shall demonstrate below, more generally all the quantum geometric

contributions to the equation of motion can be understood as such multi-band effects that

are captured by the inter-band velocity term.
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3.5.3 Inhomogeneous electric field and geometry

In the above, we derived the inter-band velocity in the projected dynamics that corrects the

equations of motion, while in the previous section, we discussed how the geometric quanti-

ties appear from the projected product of position and momentum operators. We shall now

demonstrate explicitly that this is exactly how the quantum geometric contributions to the

equations of motion emerge.

Let us first consider the electric field case, where the external perturbation includes only

the electrostatic potential: U(p̂, r̂) = Uφ(r̂). Then the projected equation of motion reads

˙̂rB =
p̂B
m
+ ˙̂r⊥, (3.5.21)

where the intra-band contribution is simply the projected velocity operator v̂B, which reduces

to the familiar group velocity in the single band case as we discussed in the previous section.

The inter-band velocity reads

˙̂rj⊥ = −
q

i

(
r̂jQ̂Bφ(r̂)− φ(r̂)Q̂B r̂j

)
B
=
q

i
[r̂jB, φB(r̂)]. (3.5.22)

We shall now show the fundamental result that the inter-band velocity may be expressed as

the sum of quantum geometric contributions:

˙̂rj⊥ = −
q

2
{Ω̂jk , EkB(r̂)}+ R̂j⊥, (3.5.23)

where the first term involving the Berry curvature tensor Ω̂i j is exactly the operator form of

the anomalous velocity. Recall the force equation Eq. (3.5.14), which in the electric field

case is actually exact, and reads

k̇B = qEB(r̂). (3.5.24)

Then the anomalous velocity can be written as −k̇B × Ω̂, where (Ω̂)i ≡ ϵi jkΩ̂jk . While

the anomalous velocity is rather well known in the solid state community[34, 147, 164],

we see that there is actually an additional term R̂φi⊥, which includes the contributions due

to geometric quantities other than the Berry curvature which arise because of the spatial

in-homogeneity of the electric field. Note that φB(r̂) ̸= φ(r̂B) except for a uniform electric

field, where only the anomalous velocity term would appear. For a non-uniform electric field,

however, even if one makes the approximation φB(r̂) ≈ φ̃(r̂B), where φ̃(r̂B) has the position

operators symmetrized so as to remain hermitian, the other geometric contributions would
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still appear in addition to the anomalous velocity.

Let us now calculate explicitly the geometric contributions. Assume that the field con-

figuration is such that it is centered around a reference point r0, and varies slowly enough

around it. In application, the physically more relevant choice of the reference point might be

the center of mass of a wave-packet rc(t) = ⟨r̂(t)⟩, but for our purpose of demonstrating

the origin of the geometric contributions, let us for simplicity take it to be the origin. In

Appendix A.6, we shall show that the expansion around the center of mass position can

be organized in terms of cumulants, instead of moments of position operators, which how-

ever, presents no further difficulties otherwise. Then in this case, we may take the gradient

expansion

φ(r̂) ≈ −E(0)i r̂i −
1

2!
E
(1)
i j r̂i r̂j −

1

3!
E
(2)
i jk r̂i r̂j r̂k , (3.5.25)

or in terms of the electric field

Ei(r̂) ≈ E(0)i +
1

2!
E
(1)
i j r̂j +

1

3!
E
(2)
i jk r̂j r̂k , (3.5.26)

Substituting the expansion into Eq. (3.5.22), we have to first order the inter-band velocity

is ˙̂ri⊥ = iqE(0)j [r̂iB, r̂jB] = −qE
(0)
j Ω̂i j , which we recognize as precisely the anomalous velocity

given by a uniform electric field E(r̂) = E(0). However, for a spatially in-homogeneous field,

additional geometric contributions emerge. Consider the second order expansion of the scalar

potential φ(r̂) = − 1
2!
E
(1)
i j r̂i r̂j , corresponding to the the electric field being Ei(r̂) = E

(1)
i j r̂j .

We showed in the previous section that (r̂i r̂j)B = {r̂iB, r̂jB} + Ĝi j , where Ĝi j is the quantum

metric tensor. Using this we have that

i ˙̂ri⊥ = [r̂iB, qφB(r̂)] = −
q

2
E
(1)
jk [r̂iB, (r̂j r̂k)B] (3.5.27)

= −
q

2
E
(1)
jk

(
1

2
i{Ω̂i j , r̂kB}+

1

2
i{Ω̂ik , r̂jB}+ [r̂iB, Ĝjk ]

)
(3.5.28)

= −i
q

4

(
{Ω̂i j , EjB(r̂)}+ {Ω̂ik , EkB(r̂)}

)
−
q

2
E
(1)
jk [r̂iB, Ĝjk ] (3.5.29)

= −i
q

2
{Ω̂i j , EjB(r̂)} −

q

2
E
(1)
jk [r̂iB, Ĝjk ], (3.5.30)

or in terms of the covariant derivative ∇̂j = 1
i r̂jB,

˙̂ri⊥ = −
q

2
{Ω̂i j , EjB(r̂)} −

q

2
E
(1)
jk [∇̂i , Ĝjk ]. (3.5.31)
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We see that indeed there is a new geometric contribution in addition to the anomalous

velocity that emerges, which depends on the quantum metric tensor Ĝjk , thus establishing

our assertion above. The same terms have been obtained using a wave-packet approach

in [90] and [86], whereas our operator equation not only reproduces their result, but also

presents the generalization to the multi-band case. By using higher order expansion, it can be

shown that such a decomposition of the inter-band velocity into the sum of a Berry curvature

induced anomalous velocity and additional geometric terms would continue to hold, and our

operator formalism is able to systematically study them in an arbitrary order.

3.5.4 Magnetic field

In the above we showed how the geometric quantities appear in the inter-band velocity

using our operator formalism, for electric fields. We shall now apply the formalism to an in-

homogeneous magnetic field. Except for assuming the gauge potentials to be static, we leave

the gauge un-fixed otherwise. The Hamiltonian in a magnetic field is Ĥ = π̂2/2m+ V (r̂) =

Ĥ0 + U(r̂, p̂), where the perturbation is the sum of the diamagnetic and paramagnetic term

U(r̂, p̂) = Udia(r̂) + Upara(p̂, r̂), with

Udia(r̂) =
q2

2m
A(r̂)2 (3.5.32)

Upara(p̂, r̂) = −
q

2m
(A(r̂) · p̂+ p̂ ·A(r̂)). (3.5.33)

The projected dynamics of the position operator then reads

d

dt
r̂B = −i

[
r̂B, ĤB

]
(3.5.34)

=
π̂B
m
+ i

(
r̂Q̂BU(p̂, r̂)− U(p̂, r̂)Q̂Br̂

)
B

(3.5.35)

=
π̂B
m
+ ˙̂r⊥, (3.5.36)

where again
(
Q̂BĤ0

)
B
= 0 is used to obtain the second equality. As we commented earlier,

the first, intra-band term is the gauge-invariant kinematic momentum.

The diamagnetic contribution to the inter-band velocity can be dealt with in the similar

way as the electric field case with the only modification being replacing the scalar potential
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φ(r̂) by (A(r̂))2, which explicitly reads

i ˙̂r dia
j⊥ =

q2

2m
[r̂jB, (Ak(r̂)Ak(r̂))B] (3.5.37)

=
q2

2m

(
{[r̂jB, AkB(r̂)], AkB(r̂)}+ [r̂jB,

(
Ak(r̂)Q̂BAk(r̂)

)
B
]
)
. (3.5.38)

The paramagnetic contribution is more involved. Rather than directly considering the inter-

band velocity, for the calculation it would prove helpful to include the paramagnetic contri-

bution at first. Thus we consider projected dynamics

i ˙̂r para
j = [r̂jB, Upara(p̂, r̂)] (3.5.39)

= −
q

2m
[r̂jB, ({Ak(r̂), p̂k})B] (3.5.40)

= −
q

2m

(
[r̂jB, {AkB(r̂), p̂kB}] + [r̂jB,

(
Ak(r̂)Q̂Bp̂k + p̂kQ̂BAk(r̂)

)
B
]
)

(3.5.41)

= −
q

2m

(
{[r̂jB, p̂kB], AkB(r̂)}+ {[r̂jB, AkB(r̂)], p̂kB}+ [r̂jB,

(
Ak(r̂)Q̂Bp̂k + p̂kQ̂BAk(r̂)

)
B
]
)
,

(3.5.42)

where in the third line we inserted the identity 1 = P̂B + Q̂B. Note that in contrast to

the electric field case previously considered, the projected dynamics due to a magnetic field

is more complicated, where the projected canonical momentum and position operators no

longer satisfy the canonical commutation relation, but rather Eq. (3.4.9) , [r̂iB, p̂jB] = i1Bδi j−
i[∇̂i , ÂrjB]. Note the paramagnetic intra-band velocity is −i q

m
AjB(r̂), after subtracting it from

the first term in the bracket, and using the modified commutation relation, we obtain the

para-magnetic inter-band velocity

i ˙̂r para
j⊥ = −

q

2m

(
−{[r̂jB, ÂrkB], AkB(r̂)}+ {[r̂jB, AkB(r̂)], p̂kB}+ [r̂jB,

(
Ak(r̂)Q̂Bp̂k + p̂kQ̂BAk(r̂)

)
B
]
)

(3.5.43)

Let us comment on the origin of these terms. The last two terms arise for the reason as the

inter-velocity in the electric field case considered previously, due to the non-commutativity of

the projected position operators. On the other hand, the first term involving the real space

Berry connection emerges due to the modified canonical commutation, where by Eq. (3.4.9)

receives a correction, and we expect it to give new contributions to the dynamics involving

the mixed geometric quantities that we discussed in the previous section.
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Gradient expansion

Combining the diamagnetic and paramagnetic contributions, we obtain that the inter-band

velocity in a magnetic field reads

i ˙̂rj⊥ =−
q

2m

(
−{[r̂jB, ÂrkB], AkB(r̂)}+ {[r̂jB, AkB(r̂)], π̂kB}+ [r̂jB,

(
Ak(r̂)Q̂Bpk + pkQ̂BAk(r̂)

)
B
]
)

(3.5.44)

+
q2

2m

(
[r̂jB,

(
Ak(r̂)Q̂BAk(r̂)

)
B
]
)
. (3.5.45)

To bring about the geometric contributions, we expand the magnetic vector potential as in

the electric case, with Ai(r̂) = A
(1)
i j r̂j +

1
2
A
(2)
i jk r̂j r̂k , where the corresponding magnetic field is

given by B(r) = ∇r ×A(r).

Substituting in the first order gradient expansion, we obtain

˙̂r
(1)
l⊥ = iA(1)jk

q

m

(
{∇̂k , [∇̂l , ÂrjB]}+ {Ω̂lk , π̂jB} − [∇̂l , L̂jk ]

)

+
q2

2m
A
(1)
ka A

(1)
kb [∇̂l , Q̂

(2)
ab ] (3.5.46)

= iA(1)jk
q

m

(
{∇̂k , [∇̂l , ÂrjB]}+ {Ω̂lk , π̂jB} − [∇̂l , L̂jk ]

)

+
q2

2m
A
(1)
ka A

(1)
kb [∇̂l , Ĝab], (3.5.47)

where Q̂(2)ab is the quantum geometric tensor, and in arriving at the second equality, we used

that a and b are dummy variables to re-write the last term due to diamagnetic contribution in

a manifestly Hermitian form. We may identify the second term in the parenthesis is precisely

the anomalous velocity term, with the force equation of k̇B evaluated to the same order.

The other two terms are new geometric contributions, involving both the real space Berry

connection ÂrjB as well as the mixed geometric tensor L̂jk , where we recall the latter has

matrix elements Ljk,nm(q) = i
〈
unq

∣∣ (∂qj Q̂qB)Q̂qBÂrkq ∣∣umq〉. This implies that in the magnetic

field case, in contrast to the electric field case, the spatial variation of the Bloch states, i.e.

the real space profile, also contributes to the projected dynamics.
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Some calculations give, to second order in the gradient expansion,

˙̂r
(2)
i⊥ =

+q

2m
A
(2)
jkl {[∇̂i , ÂrjB], (r̂k r̂l)B} −

q

2m
A
(2)
jkl {[∇̂iB, (r̂k r̂l)B], pjB}

−
q

2m
A
(2)
jkl

(
[∇̂i , i(L̂l j + L̂†l j)∇̂k + i(L̂kj + L̂†kj)∇̂l + i [∇̂k , L̂l j ] + i [∇̂l , L̂kj ]] + [∇̂i , L̂

(2)
klj + L̂

(2)†
klj ]

)
,

(3.5.48)

where in arriving at the second line we used

i∇̂kL̂l j + iL̂†l j∇̂k = i(L̂l j + L̂
†
l j)∇̂k + i [∇̂k , L̂l j ]. (3.5.49)

We may also identify the anomalous velocity from the second term using

(r̂k r̂l)B = r̂
(2)
kl,B = i2

(
1

2
{∇̂k , ∇̂l} − Ĝkl

)
, (3.5.50)

where Ĝkl is the quantum metric tensor.

3.5.5 Wave-packet dynamics

In the above, we have identified the inter-band velocity that arises from using the projected

dynamics as the source of the geometric contributions. The discussion has been done on the

level operators, and no reference to specific states has been made, with the only assump-

tion being that the projected dynamics provides an effective low-energy description of Bloch

electrons in the presence of a weak perturbing field. To make contact with the standard

semi-classical approach, as well as for applications to transport, in this section we shall apply

the results to the semi-classical dynamics of wave-packets.

Consider a wave-packet that is initially prepared by a superposition of states in the pro-

jected subspace, but otherwise of arbitrary shape. In Schrodinger picture, we may than write

|W (0)⟩ = ∑n∈NB ∫BZ dqcnq(0) ∣∣ψnq〉. The evolution of the state is encoded in the coefficients

cnk(t), namely

|W (t)⟩ =
∑
n

∫
BZ
dq cnq(t)

∣∣ψnq〉 , (3.5.51)

subject to the normalization condition

⟨W (t)|W (t)⟩ =
∑
n

∫
dq
∣∣cnq(t)∣∣2 = 1. (3.5.52)
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Note that the band summation is not restricted, for as the wave-packet evolves, in the ab-

sence of special symmetry which leads to certain selection rules, the coefficients cnk(t) for

which n /∈ NB may develop to be non-zero, even if we prepared the wave-packet initially in

the projected subspace. However, as we argued in the beginning of Section 3.5.2, when the

perturbing field is weak enough, those matrix elements are suppressed by the band baps, and

we may then assume only cnk(t) with n ∈ NB are non-vanishing, so that the wave-packet

remains within the projected subspace: P̂B |W (t)⟩ = |W (t)⟩, and evolves with the effective

Hamiltonian ĤB. The solution of the state evolution, namely integrating the Schrodinger

equation to determine cnk(t) is a separate question, and we taken them to be given.

Previously, the dynamics was discussed in the Heisenberg picture, which was more suit-

able there since we were working with operators. Transforming to the Schrodinger picture,

we note that the dynamics of an observable O(t) ≡ ⟨ψ| Ô(t) |ψ⟩ in the Heisenberg picture

can be equivalently written as idO(t)/dt = ⟨ψ(t)| [Ô, Ĥ] |ψ(t)⟩ [131], where the Heisenberg

state |W ⟩ = |W (0)⟩ is obtained from the Schrodinger state using the evolution operator

|W (t)⟩ = Û(t, 0) |W ⟩, and Ô(t) = Û†(t, 0)ÔÛ(t, 0). It is easy to see that the same holds

for the projected dynamics, where thus our earlier operator form of the equations of motion

Eq. (3.5.5) is translated to

ȮB = −i ⟨W (t)| [ÔB, ĤB] |W (t)⟩ .

In particular, applying this to the center of mass and the gauge-invariant crystal momentum,

we have

Ṙ = −i ⟨W (t)| [r̂B, ĤB] |W (t)⟩ ,

K̇ = −i ⟨W (t)| [κ̂B, ĤB] |W (t)⟩ . (3.5.53)

The geometric contributions to the semi-classical wave-packet motion in the presence of an

in-homogeneous electric field has been reported previously, see for instance [86, 90, 147],

and we shall consider only the magnetic field here. As in the operator approach, we expand

the magnetic vector potential around a reference point, taken for simplicity to be origin, so

that Aj(r̂) ≈ A(1)jk r̂k + 1
2
A
(2)
jkl r̂k r̂l , and the inter-band velocity are correspondingly expanded as

ṙj⊥ = ṙ
(1)
j⊥ + ṙ

(2)
j⊥ + . . ., with each term given by the respective term in the expansion of Aj .

Concretely, let us consider a band metal, in which the Fermi level lies within a non-degenerate

band, so that we may use the single band approximation. In this scenario, the projection
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operator is simply P̂B =
∑
k |ψnk⟩ ⟨ψnk|, with n denoting the conduction band that intersects

the Fermi level. To leading order in magnetic field, the inter-band velocity reads

ṙ
(1)
l⊥ = iA(1)jk

q

m

〈〈
Rk(q, t)

∂ArjB(q)
∂ql

+Ωlk(q)πj(q)−
∂Ljk(q)
∂ql

〉〉
, (3.5.54)

where the double angle bracket is defined as the the weighted average ⟨⟨...⟩⟩ ≡
∫
BZ dqc

†
q(t)...cq(t).

Here Rj(q, t) is the instantaneous center-of-mass position of the wave-packet, which as we

show in the appendix explicitly reads

⟨W | r̂j(t) |W ⟩ = ⟨⟨Rj(q, t)⟩⟩ =
∫
dqRj(q, t)|cq(t)|2, (3.5.55)

where Rj(q, t) ≡ i∂qjθ(q, t) +Aj(q), and θ(q, t) is the phase of the expansion coefficient

cq(t) = |cq(t)|e−iθ(q,t). The last term is of special interest, since as we shall demonstrate

in the following, is a Fermi surface contribution, which gives rise to a magnetization current

density.

Recall that in the Boltzmann theory of transport, the semi-classical equations of motion

are used for calculating the density current[11], and we now discuss the possible transport

signatures of the geometric contributions. In the Boltzmann theory, the current density is

given by

J(r) =
∫

dk

(2π)3
Ṙ(k)f (k, r, t), (3.5.56)

where R(k) is the center of motion of a state with momentum k, and f (k, r, t) the distri-

bution function. In the ballistic regime, the mean free path l is much larger than the lattice

spacing, and by the Heisenberg uncertainty principle, we may then take the momentum

width of the typical wave-packets to be narrow, so that the wave-packet may be approxi-

mately taken to be sharply peaked at a single momentum. A net current may then arise when

system is driven to a non-equilibrium state, where the distribution f (k, r, t) differs from the

equilibrium Fermi-Dirac distribution. There is a second scenario, where the semi-classical

equations has additional corrections to the group velocity, and a net currents might appear

even using the equilibrium distribution as approximation. One well known example of the sec-

ond case is the Berry curvature induced anomalous velocity term, which has been extensively

studied in a wide range of contexts, such as the intrinsic anomalous Hall effect [105]. See

also the second part of the thesis, where we discuss this effect in the topological Weyl semi-

metal. To isolate the geometric effects, we would then assume that the external field is weak

enough and an equilibrium distribution can be taken as approximation. Therefore, at zero
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temperature, we take f (K, t) ≈ Θ[ϵFS−ϵn(K)], where ϵFS is the Fermi energy. In the sharp

momentum approximation, we may take |cq|2 ≈ δ(q −K), where K(t) = ⟨W (t)| κ̂ |W (t)⟩
is the mean gauge-invariant crystal momentum of the wave-packet. Consider the last term in

semi-classical equation of motion Eq. (3.5.54). Substituting this in the Boltzmann equation,

we see that the last term involving the mixed geometric tensor gives rise to a geometric

contribution the current density, which reads

Jl = −iA(1)jk
q

m

∮
FS

dS

|∇Kϵ(K)|
∂ϵ(K)

∂Kl
Ljk(K), (3.5.57)

where the integration is over the Fermi surface given by ϵFS = ϵn(k). This shall be understood

as a magnetization current: integrated over space it sums up to be zero, and thus inducing

no net current. This is physically reasonable, for to this order of the gradient expansion, we

have a uniform magnetic field.
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3.6 Summary

In Part I of this thesis, we studied the quantum geometric contributions to the dynamics of

electrons in crystalline solids. We began with a review of the geometry of quantum states

in general, where we discussed the concept of quantum geometric tensor whose real and

imaginary component are the quantum metric tensor and the Berry curvature respectively.

We showed that these geometric quantities encode information about the electronic wave-

functions. Following the general review, we specialized to Bloch states as the background

where such geometric quantities naturally arise from band theory.

A central contribution of this part is the development of an operator formalism of quan-

tum geometric quantities, which was then applied to understand the geometric contributions

to the semiclassical electron dynamics of Bloch electrons. We provided the operator forms

of the quantum geometric quantities, and how they emerge from the decomposition of pro-

jected product of position and momentum operators. In this way, we also demonstrated

that band projection onto a subset of energy bands significantly alters the commutation re-

lations among position and momentum operators, and the resultant nontrivial commutation

relations between projected operators is the source of the quantum geometric corrections

to the semiclassical equations of motion. Using this formalism, we studied the effective dy-

namics of crystal electrons in the presence of inhomogeneous electromagnetic fields. Beside

reproducing and extending previous results in operator form, we also studied the hitherto

unexplored case of magnetic fields. We found that we also need to consider the projected

canonical momentum, where a dual concept of Berry connection, which we call real space

Berry connection also merges, and leads to further geometric quantities that depend on the

spatial modulation of Bloch states as well.
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Poisson summation formula

A.1 Poisson summation formula

One of the crucial step of the calculations in the Bloch basis is to exploit the lattice translation

invariance of the Bloch states, and turn certain integrals over the entire volume into a sum

of integrals over only one unit cell. This relies on the Poisson summation formula.

A:Lattice Poisson formula

We shall show that, in the thermodynamic limit where the number of lattice sites N → ∞,

we have

1

N

∑
Ri

e−ik·Ri =
∑
Gi

δk,Gi (A.1.1)

where Ri and Gi are d−dimensional lattice and reciprocal lattice vectors respectively.

Proof:

We first convert the lattice vector sum into a geometric series by noting we can express the

lattice vector and k vector as

Ri =
∑
naaa (A.1.2)

k =
∑
kaba (A.1.3)

where ai and bi are the basis vectors in the lattice and reciprocal lattice respectively, normal

to each other as ai ·bj = 2πδi j , so that Ri ·k =
∑
naka. Since we will take the thermodynamic

limit anyway, we may assume, without loss of generality that along a given direction, say the

a−th, there are 2Na + 1 lattice sites (including the origin), then we have the total number

number of sites is simply

N = (2N1 + 1)(2N2 + 1)...(2Nd + 1), (A.1.4)

so that

∑
Ri

=
N1∑

n1=−N1

N2∑
n2=−N2

...
Nd∑

nd=−Nd
. (A.1.5)
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Poisson summation formula

The left hand-side thus factorizes into a product of geometric series as

1

N

∑
Ri

e−ik·Ri =
1

(2N1 + 1)...(2Nd + 1)

N1∑
n1=−N1

...
Nd∑

nd=−Nd
e−i2πn1R1e−i2πn2R2...e−i2πndRd

(A.1.6)

=
d∏
a=1

 1

2Na + 1

Na∑
na=−Na

e−i2πnaRa

 (A.1.7)

=
d∏
a=1

sin (πka(2Na + 1))

(2Na + 1) sinπka
, (A.1.8)

where in the last step we used the fact the term above is a geometric series.

Now elementary calculus gives

lim
x→0

sin nx

n sin x
= 1 (A.1.9)

lim
n→∞

sin nx

n sin x
= 0 sin x ̸= 0 (A.1.10)

thus

lim
Na→∞

sin (πka(2Na + 1))

(2Na + 1) sinπka
= 1 ka ∈ Z (A.1.11)

= 0 otherwise (A.1.12)

But ka ∈ Z is equivalent to k = Gi for some reciprocal lattice vector Gi , thus we have proved

discrete Poisson summation formula.

B: Continuum

Now we pass on to the continuum approximation, where the discrete crystal momentum is

now concinnous, and the Kronecker delta goes to a Dirac delta with a normalization factor
(2π)d

V
, so that

δk,Gi →
(2π)d

V
δd(k− Gi). (A.1.13)
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Dirac calculus

Specifically, this means understood as distributions, we have

1

N

∑
Ri

e−ik·Ri =
∑
Gi

δk,Gi =
(2π)d

V

∑
Gi

δ(k −Gi), (A.1.14)

where the last term is understood to be always inside an integral with measure
∫
ddk (not

restricted to one Brillouin zone cell). Note that in the reduced zone scheme, where k is

restricted to the first Brillouin zone, the identity reduces to

∑
Ri

e−ik·Ri =
N(2π)d

V
δ(k) =

(2π)d

Vc
δ(k), (A.1.15)

since the only reciprocal lattice vector in the first Brillouin zone is the center G0, chosen to

be at the origin . Here Vc = V
N

is the volume of one unit cell in the real space.

A.2 Dirac calculus

In the following, we shall show how to compute the matrix elements of various operators in

local Bloch basis, we would be dealing with distributions. In those calculations, the order of

the placement of derivatives must be carefully taken into account, and here we recall some

calculus rules to properly deal with the Dirac delta function.

Lemma

∫
dk∂q

(
δ(q − k)f (k)

)
∂k

(
δ(q − k)h(p)

)
(A.2.1)

̸=
∫
dkδ(q− k)f (k)∂q∂k

(
δ(k− p)h(p)

)
(A.2.2)

unless f (k) is a constant.
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Dirac calculus

Proof:

To assert the properties of the distributions, we need to act on them a generic test function

g(q). On the one hand we have that

∫
dqdkg(q)∂q

(
δ(q− k)f (k)

)
∂k

(
δ(k− p)h(p)

)
(A.2.3)

= −
∫
dqdk∂q

(
g(q)

)
δ(q− k)f (k)∂k

(
δ(k− p)h(p)

)
(A.2.4)

= −
∫
dk∂k(g(k)f (k))∂k

(
δ(k− p)h(p)

)
(A.2.5)

=
∫
dk∂k

(
∂k(g(k))f (k)

)
δ(k− p)h(p) (A.2.6)

= ∂p

(
∂p(g(p))f (p)

)
h(p). (A.2.7)

Here the derivatives act on the bracket immediately next to it. On the other hand we have

∫
dqdkg(q)δ(q− k)f (k)∂k∂k

(
δ(k− p)h(p)

)
(A.2.8)

=
∫
dkg(k)f (k)∂k∂k

(
δ(k− p)h(p)

)
(A.2.9)

=
∫
dk∂k∂k

(
g(k)f (k)

)
δ(k− p)h(p) (A.2.10)

= ∂p∂p

(
g(p)f (p)

)
h(p). (A.2.11)

Indeed, we see when f is a constant the two equations equal, while otherwise they do not

agree. We can also obtain as a corollary, via induction that

Corollary

∫
dkea·∂q

(
δ(q− k)f (k)

)
eb·∂k

(
δ(k− p)h(p)

)
(A.2.12)

̸=
∫
dkδ(q− k)f (k)e(a+b)·∂k

(
δ(k− p)h(p)

)
(A.2.13)

unless f is a constant. Note the second form is symmetric in a and b. In fact, this gener-

alization is the reason why band projection leads to non-commutativity, and thus non-trivial

dynamics.
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Moment generating operators

A.3 Moment generating operators

Here we compute the matrix elements of the projected moment generating function
(
e−ia·r̂

)
B

in the Bloch basis. Assuming n,m ∈ B, we have, upon inserting 1 =
∫
dr |r⟩ ⟨r|,

〈
ψnq

∣∣ e−ia·r̂ |ψmk⟩

=
∫
drei(k−q−a)·r̂ 〈unq∣∣r〉 ⟨r|umk⟩

=
∫
drea·∂q

(
ei(k−q)·r̂

) 〈
unq

∣∣r〉 ⟨r|umk⟩
=
∑
Rj

∫
cel l

drea·∂q

(
ei(k−q)·(r+Rj )

) 〈
unq

∣∣r +Rj〉 ⟨r +Rj |umk⟩
=
∑
Rj

∫
cel l

drea·∂q

(
ei(k−q)·(r+Rj )

) 〈
unq

∣∣r〉 ⟨r|umk⟩
=ea·∂q

(
δ(k− q)

) 〈
unq

∣∣umk〉
=
〈
unq

∣∣ ea·∂q

(
δ(k− q)P̂ ′k

)
eb·∂k

(
δ(p− k)

∣∣ulp〉
)

(A.3.1)

In the derivation we used the lattice invariance of the Bloch functions: ⟨r +Rj |umk⟩ =
⟨r|umk⟩, and the Poisson summation formula

∑
Rj

ei(k−q)·Rj = δ(k − q), for q,k in the first

Brillouin zone. We also stress here that the bra-ket between two Bloch functions have the

normalization factor (2π)
d

Vuc
included in the definition.
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Moments of position

A.4 Moments of position

As shown in the main texts, using the moment generating function e−ia·r̂ we may compute

the matrix elements of operator quantities such as the moments, as well as the quantum

metric tensor, Berry curvature, etc., in a systematic and efficient way, which agree with their

more conventional definition of these quantities in the momentum space. We may confirm

the results in yet another way, namely by direct calculation. Besides checking the results, we

hope to demonstrate the advantage of our operator based approach.

A.4.1 Average position distribution

Let us start with the matrix elements of the position operator. Note that we have the identity

in the position basis reads 1 =
∫
dr |r⟩ ⟨r|, where dr ≡ dd r and the integration range is

over the entire volume V . Inserting this, we have

〈
ψnq

∣∣ r̂i |ψmk⟩ (A.4.1)

=
∫
drrieir·(k−q)u∗nq(r)umk(r) (A.4.2)

=
∫
dr

(
i∂qie

ir·(k−q)
)
unq(r)umk(r) (A.4.3)

=i∂qi
∫
dr

(
eir·(k−q)u∗nq(r)umk(r)

)
− i

∫
dreir·(k−q)∂qi

(
u∗nq(r)umk(r)

)
(A.4.4)

=i∂qi
〈
ψnq

∣∣ψn,k〉− i
∑
R

eiR·(k−q)
∫
cel l

dreir·(k−q)∂qi

(
u∗nq(r)umk(r)

)
(A.4.5)

=δnmi∂qiδ(q − k)− δ(q − k)i
(2π)d

Vuc

∫
drumq(r)∂qiu

∗
nq(r) (A.4.6)

=δnmi∂qiδ(q − k) + δ(q − k)i
(2π)d

Vuc

∫
cel l

dru∗nq(r)∂qiumq(r) (A.4.7)

=δnmi∂qiδ(q − k) + δ(q − k)Ainm(q), (A.4.8)

where in going from Eq. (A.4.4) to Eq. (A.4.5) we transformed the integral over the whole

volume to one over the unit cells, and the exponential is swapped to a Dirac delta using the

Poisson summation formula. Also recall that the Berry connection is defined as

Ainm(q) = i
(2π)d

v

∫
cel l

dru∗nq(r)∂qiumq(r) = i
〈
unq

∣∣ ∂qi ∣∣umq〉 . (A.4.9)
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Second moment distribution Moments of position

A.4.2 Second moment distribution

We shall now calculate the matrix elements of the quadrupole moments. Exactly the same

as in the position operator case, we insert an identity using the position basis, and we have:

〈
ψnq

∣∣ r̂i r̂j |ψmk⟩ (A.4.10)

=
∫
drri rjeir·(k−q)unq(r)umk(r) (A.4.11)

=
∫
dr

(
i2∂ki∂kje

ir·(k−q)
)
u∗nq(r)umk(r) (A.4.12)

=i2∂ki∂kj
∫
dr

(
eir·(k−q)u∗nq(r)umk(r)

)
− i2

∫
dreir·(k−q)u∗nq(r)∂ki∂qjumk(r)

− i2
∫
dr∂ki

(
eir·(k−q)u∗nq(r)

)
∂kjumk(r)− i2

∫
dr∂kj

(
eir·(k−q)u∗nq(r)

)
∂kiumk(r) (A.4.13)

=i2∂ki∂kj
∫
dr

(
eir·(k−q)u∗n,q(r)umk(r)

)
− i2

∫
dreir·(k−q)u∗n,q(r)∂ki∂kjumk(r)

− i2∂ki
∫
dreir·(k−q)u∗nq(r)∂kjumk(r) + i2

∫
dreir·(k−q)u∗n,q(r)∂ki∂kjumk(r)

− i2∂kj
∫
dreir·(k−q)u∗n,q(r)∂kiumk(r) + i2

∫
dreir·(k−q)u∗nq(r)∂ki∂kjumq(r) (A.4.14)

=i2∂ki∂kj
∫
dr

(
eir·(k−q)u∗nq(r)umk(r)

)
+ i2

∫
dreir·(q−q)u∗nq(r)∂ki∂kjumk(r)

− i2∂ki
∫
dreir·(k−q)u∗nq(r)∂kjumk(r)− i2∂kj

∫
dreir·(k−q)u∗nq(r)∂kiumk(r) (A.4.15)

=− ∂ki∂kj
∫
dr

(
eir·(k−q)u∗nq(r)umk(r)

)
−
∫
dreir·(k−q)u∗nq(r)∂ki∂kjumk(r)

− i∂ki
(
δ(q − k)Ajnm(q)

)
− i∂kj

(
δ(q − k)Ainm(q)

)
(A.4.16)

=
(
δnm∂qi∂qj −

〈
unq

∣∣ ∂qi∂qj ∣∣umq〉) δ(q − q)− iAjnm(q)∂kiδ(q − k)− iAinm(q)∂kjδ(q − k)
(A.4.17)

=
(
δnm∂qi∂kj −

〈
unq

∣∣ ∂qi∂qj ∣∣umq〉) δ(q − k) + iAjnm(q)∂qiδ(q − k) + iAinm(q)∂qjδ(q − k)
(A.4.18)

A straightforward, but tedious calculation of
〈
ψnq

∣∣ ({r̂iB, r̂jB}+ Gi j) ∣∣ψnq〉 will give identi-

cal results. Note that the same result will be obtained for any choice of the projected

bands, except for when P̂B = 1, which includes the special case of a single band projection:

P̂B =
∑
k |ψnk⟩ ⟨ψnk|.

It should be clear that the calculations become very tedious with increasing orders, and

while they will give the same results, the method that we develop is much more efficient.
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Real space Berry connection

A.5 Real space Berry connection

To derive the real space Berry connection, we compute the matrix elements of canonical p

in Bloch states. We have that upon inserting a resolution of identity in terms of the position

states,

〈
ψnq

∣∣ p̂ |ψmk⟩ = −i ∫ dre−iq·ru∗nq(r)∂r

(
e ik·rumk(r)

)
(A.5.1)

=
∫
dre−i(q−k)·r

(
u∗nq(r)kumk(r)− iu∗nq(r)∂rumk(r)i

)
(A.5.2)

=
∑
Ri

e−i(q−k)·Ri

∫
cel l

dre−i(q−k)·r
(
u∗nq(r)kumk(r)− iu∗nq(r)∂rumk(r)i

)
(A.5.3)

=
(2π)d

Vuc
δ(q− k)

∫
cel l

dre−i(q−k)·r
(
u∗nq(r)kumk(r)− iu∗nq(r)∂rumk(r)i

)
(A.5.4)

=
(2π)d

Vuc
δ(q− k)

∫
cel l

dr

(
u∗nq(r)qumq(r)− iu∗nq(r)∂rumq(r)i

)
(A.5.5)

= kδ(q− k)δnm − i
〈
unq

∣∣ ∂r ∣∣umq〉 δ(q− k), (A.5.6)

where we used the trick of translating the integral to a cell integral, thus getting a Poisson

sum. Also recall that the normalization of unq over cells is

〈
unq

∣∣umq〉 = (2π)d
Vuc

∫
cel l

dru∗nq(r)qumq(r) = δnm. (A.5.7)

We recognize that the second term in the matrix element is a real space Berry connection,

which we may denote as

Arnm(q) = i
〈
unq

∣∣ ∂r ∣∣umq〉 (A.5.8)〈
ψnq

∣∣ p̂ |ψmk⟩ = kδ(q− k)δnm −Arnm(q)δ(q− k) (A.5.9)

Here we recall that

〈
ψnq

∣∣ r̂ |ψmk⟩ = i∂kδ(q− k)δnm + Anm(q)δ(q− k) (A.5.10)

Despite of the apparent duality, one crucial difference is that the canonical momentum is

diagonal in crystal momentum.
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Center of mass operator

A.6 Center of mass operator

We may expand the inhomogeneous potential around the center of mass position using the

cumulant generating function. Define the center of mass position operator r̂c as such that,

when evaluated at an arbitrary state it satisfies

⟨r̂c r̂c ...r̂c⟩ = ⟨r̂⟩ ⟨r̂⟩ ... ⟨r̂⟩ , (A.6.1)

where rc = ⟨r̂⟩ = ⟨r̂c⟩ is the center of mass position. In particular it has the property

⟨f (r̂c)⟩ = f (⟨r̂⟩). (A.6.2)

We may then expand a generic position dependent operator as

⟨f (r̂)⟩ = ⟨f (r̂ − r̂c + r̂c)⟩ =
∞∑
n=0

f (n)(⟨r̂⟩)
n!

⟨(r̂ − r̂c)n⟩ (A.6.3)

=
∞∑
n=0

f (n)(⟨r̂⟩)
n!

⟨(r̂ − ⟨r̂c⟩)n⟩ (A.6.4)

=
∞∑
n=0

f (n)(rc)

n!
⟨r̂n⟩c (A.6.5)

where ⟨r̂n⟩c = ⟨(r̂ − ⟨r̂c⟩)n⟩ are the connected parts or cumulants, while ⟨r̂n⟩ are the mo-

ments.

The cumulants can still be generated from the log of the momentum generating function

⟨r̂n⟩c = (i)n∂a∂a...∂a log
〈
e−ia·r̂

〉
. (A.6.6)
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Perturbation theory via projection operator

A.7 Perturbation theory via projection operator

In this appendix we show how perturbation theory may be phrased in terms of projection

operators, also known as Feshbach formalism[45]. The aim is to show how the effective

Hamiltonian may be understood from a perturbative point of view, which makes contact

with the adiabatic evolution that is also phrased in terms of projection operators.

We consider a perturbed Hamiltonian Ĥ = Ĥ0 + V̂ , where the unperturbed part Ĥ is as-

sumed to be solved so that we know its spectrum ϵ0n and the corresponding eigenstates

Ĥ0 |ϵ0n⟩ = ϵ0n |ϵ0n⟩. We split the Hilbert space into two parts using 1 = P̂ + Q̂, where the

projection operator P̂ and its complement Q̂ are both idempotent: P̂ 2 = P̂ , Q̂2 = Q̂, and

orthogonal to each other P̂ Q̂ = 0. We take the projection operator to be formed by a subset

of the unperturbed eigenstates, then we have that [Ĥ, P̂ ] = [Ĥ, Q̂] = 0.

An eigenstate of the full Hamiltonian satisfies

Ĥ |ψ⟩ = E |ψ⟩ . (A.7.1)

We would like to consider the system within the subspace given by P̂ , say within some energy

range. Split the eigenstate as |ψ⟩ = P̂ |ψ⟩+ Q̂ |ψ⟩ ≡ |ψP ⟩+ |ψQ⟩. The aim is to construct

an effective Hamiltonian such that Ĥef f |ψP ⟩ = E |ψP ⟩. To achieve this, we assume there is

an operator Ŝ which can re-construct the full eigenstate from the projected state, namely

Ŝ |ψP ⟩ = |ψ⟩, then Ĥef f = P̂ ĤŜP̂ is the sought-after effective Hamiltonian in the projected

subspace. To determine Ŝ, we note that from Eq. (A.7.1), we have

(
E − Ĥ0

)
|ψQ⟩ = Q̂

(
E − Ĥ0

)
|ψ⟩ = Q̂

(
E − Ĥ + V̂

)
|ψ⟩ = Q̂V̂ |ψ⟩ (A.7.2)

hence the orthogonal part can be solved as

|ψQ⟩ =
1

E − Ĥ0
Q̂V̂ |ψ⟩ (A.7.3)

and

|ψ⟩ = Ŝ |ψP ⟩ = |ψP ⟩+ |ψQ⟩ = |ψP ⟩+
1

E − Ĥ0
Q̂V̂ |ψ⟩ (A.7.4)
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Perturbation theory via projection operator

Although this is exact, the right-hand side still involves the full |ψ⟩. We may iterate this

equation, thus eliminating |ψQ⟩ using Eq. (A.7.3), so that we have a series solution to Ŝ as

Ŝ =
∞∑
n=0

(
(E − Ĥ0)−1Q̂V̂

)n
. (A.7.5)

Thus the effective Hamiltonian now reads

Ĥef f =
∞∑
n=0

P̂ Ĥ
(
(E − Ĥ0)−1Q̂V̂

)n
P̂ , (A.7.6)

which to lowest order is simply the projected Hamiltonian P̂ ĤP̂ .

72



Part II

73



Chapter 4
Analogue gravitational lensing

4.1 Introduction

In the Part II of the thesis we shall explore a surprising connection between the semi-classical

dynamics of quasi-particles and the geodesics of particles moving around curved spacetimes,

which represents an example of theintersection between solid state and relativistic physics.

The key observation is that the low-energy states in a class of topological materials, the so-

called Weyl semi-metals [10] can be described by the massless limit of the Dirac equation, the

Weyl Hamiltonian, which was first applied in relativistic quantum mechanics. In fact, such a

connection was already noticed in graphene [32]. Despite connecting two extremely different

physical situations, such an analogy allows for the study of phenomena in high-energy physics

using tabletop solid state systems. Indeed, such an observation underlie the Klein tunneling

in graphene [79] and the chiral anomaly in Weyl semimetals [2, 6, 15, 16, 82, 107, 138], as

well as a connection between various quantum anomalies and transport properties in solids

[18, 52, 145, 158].

Fueled by such progress, it has been proposed that Weyl semimetals with a modified dis-

persion relation, namely those with a spatially varying nodal tilt gives rise to an effective

curved spacetime metric around a black hole [21, 56, 63, 70, 71, 80, 85, 93, 130, 154–

156, 161, 169]. More specifically, the linear dispersion relation of Weyl nodes may be taken

to model a light-cone in relativistic physics, and the in-homogeneously tilted Weyl nodes

forms a family of lightcones in curved spacetimes [93, 161]. Such a mapping allows us to

take the wave-packet dynamics of Weyl nodes to be the solid state analogue of particle motion

around black holes. In fact similar ideas of simulating relativistic physics in solid state systems

have already been exploited before, using, for instance site dependent tight-binding hopping

amplitudes [102–104], or ultracold quantum gases [14, 64, 99, 129, 140, 141, 146, 153, 157].
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Tilted Weyl semi-metals

In this part of the thesis, our aim is to study the potential of using in-homogeneously tilted

Weyl systems as an electronic lensing devices that mimic the so-called gravitational lensing

effect in curved spacetimes [53, 56, 161]. However, one advantage of approaching such rel-

ativistic effects from a solid state side is that we may understand certain microscopic effects

not directly accessible in actual gravitational systems, such as the question what happens

when the wave-packet reaches the event horizon? We thus also provide an analysis using

a microscopic tight-binding model, both to confirm the effective continuum theory and to

better understand such subtle questions. This part is based on the work [59], where Dr.

Hegde, Dr. Haller, Dr. De Beule and I contributed equally to the analytical analysis of both

the geodesic equations of motion and the transverse shift, while the numerical calculation

and simulation of the lattice model and the were carried out mainly by the coauthor Dr.

Haller.

4.2 Tilted Weyl semi-metals

4.2.1 Weyl Semi-metals

Weyl semi-metals are a class of topological materials which has a number of interesting

properties. The name reflects the fact these three dimensional materials are gapless, but

the conduction and valence bands touch at discrete points, instead of a continuum as in a

normal metal (the Fermi surface). Thus the carrier density is much lower than that of the

normal metal due to the vanishing density of states at the band crossing points, hence a

much lowered conductivity and the name semi-metal. Weyl semi-metals are characterized

by a linear dispersion around these band crossing points, known as the Weyl nodes. Weyl

semi-metals also furnish an example of topological phase of matter since the Weyl nodes can

in fact be viewed as a 3-dimensional monopole in the momentum space. More precisely, each

node is a source or sink of Berry curvature charge, where the Berry curvature, discussed also

in Part I of this thesis, may be viewed as an emergent magnetic field in the momentum space.

Around a Weyl node located at k0 in Brillouin zone, the point where two non-degenerate

bands touch, the band dispersions are linear below some cut-off momentum, and the Weyl

Hamiltonian provides a low energy effective model for such band structure, which is

Hw(k) = χvF (k − k0) · σ, (4.2.1)

where vF is the Fermi velocity, and σ = (σx , σy , σz) is the vector of Pauli matrices. χ = ±1
is called the node’s chirality, which as we discussed in Part I can in fact be seen as the
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topological charge (Chern number) associated with the Weyl node. Without loss of generality,

we may take k0 to be at the origin, or put another way, we measure energy difference from the

respective node. The spectrum of this minimal model is easy to calculate as E±(k) = ±vF |k|.
We have already discussed this simple model, modulo the Fermi velocity, in Section 2.1.3 of

this thesis. In particular, we have shown that the curvature associated with the Weyl nodes

is computed to be

Ωχ = −χ
1

2

k

|k|3
. (4.2.2)

We also saw in Section 2.1.3 that the chirality χ has the interpretation as a topological

charge of a monopole in the momentum space.

The Weyl semi-metal is a remarkable class of materials, one of whose interesting prop-

erty being simulating a relativistic system. Indeed, the Weyl Hamiltonian proposed by Weyl

[162], was thought to describe the relativistic neutrino[119]. In fact the linear dispersion

relation is already suggestive of this fact. In special relativity we have the energy momentum

relation E2 = (mc2)2 + (pc)2, which for massless particle reduces to E = ±c |p|. We see

that this is precisely the dispersion relation we have in Weyl semi-metals, with the analogue

of the speed of light c being now the Fermi velocity vF . Furthermore, in the following we

shall explain that, if we modify the Weyl Hamiltonian by adding a spatially varying term, it

can in fact simulate the motion of a massless particle near a black hole, thus providing a

potential tabletop lab for studying general relativistic effects.

4.2.2 Tilted Weyl systems

The linear dispersion around the Weyl form a cone given by the equation E± = vF |k|. The

semi-metallic nature of the system can be rephrased as the Fermi level interacts exactly with

the apex of the cone, i.e. the Weyl nodes. However, there are other classes of 3−dimensional

materials that also have a linear dispersion, but do not fit exactly this description. More

generally, we may add a term to the Weyl Hamiltonian HW as

H1(k) = (u · k)σ0 + χvF k · σ, (4.2.3)

where the additional term given by u is called a nodal tilt. The eigenvalues can easily be

calculated as E±(k) = u · k ± vF |k|, still a linear dispersion. In momentum space, the

first term coming from the tilt rotates the Weyl cone, while deforming it at the same time,

namely changing the slope of the cone. As |u| > vF , the cone over tilts, and should we fix
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the chemical potential, the Fermi level intersects the Weyl cone and form electron and hole

pockets. In this case the system is metallic, and we have a type-II Weyl node, whilst below

the critical value of the tile, it is a type-I tilted Weyl node.

u = 0.0 u = 1.0 u = 1.4

Figure 4.1. Transition from type-I to type-II Weyl semimetals with increasing tilt parameter u, with
vF = 1. Red curves show the Fermi level intersections forming electron and hole pockets.

This motivates us to consider a spatially varying tilt profiles, u → u(r), where we have

a family of titled Weyl cones that is similar to the light cones in curved space-times, varying

from point to point. We shall establish and explore this connection to analogue gravity below.

The effective Hamiltonian has explicit spatial dependence now as well H1(k) → H1(r,k).

With a spatially dependent tilt profile, as we have discussed extensively in Part I, position

operators act as momentum space covariant derivative, and thus spatial in-homogeneity

couples Bloch states with different momentum. Indeed, there we have seen that these spa-

tial dependence would in general give rise to new geometric contributions that modify the

semi-classical equations of motion. To isolate the effects due to the spatial geometry, we

will assume that tilt profiles have spatial variations that are smooth on the relevant elec-

tronic length scales. More specifically, we assume that the tilt profile varies on a scale much

larger than the inverse momentum difference between Weyl nodes, and the inverse of the

momentum cutoff that was implicitly imposed in taking the linear dispersion in Eq. (4.2.3).

In particular, the tilt profile u(r) varies on scales much larger than the width of the typical

wave-packet formed in, for instance, the transport process, and thus quantum geometric cor-

rections to the semi-classical equations involving the quantum metric can be ignored [87, 91].

We shall discuss the lattice effects in more detail in the later section Section 4.4 on lattice

simulation of the continuum theory.

Provided these assumptions, we can quantize the theory by promoting the tilt term to an
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Hermitian operator via

u · k→ u(r) · (−i∇r) +
1

2
(−i∇r · u(r)) , (4.2.4)

which provides an effective model for a nodal band structure in a spatially varying tilt texture.

The second term in the above is needed to preserve hermiticity [21, 130]. In this part of

the thesis, ∇r will denote the normal vector derivative. The same applies to ∇k. It is clear

that the only modification to the dispersion is changing u → u(r), namely E±(k, r) =

u(r) · k ± vF |k|. Note, however, that the tilt term in the Hamiltonian is proportional to

the identity matrix and therefore the eigenstates remain unchanged compared to the untilted

Weyl nodes. As a result, the Berry curvature remains the same, and there are no real-space

Berry curvature contributions that emerge from a band system in inhomogeneous texture (

see for instance [165]).

4.2.3 Gravitational analogue

As we discussed earlier, the linear dispersion of Weyl nodes resembles that of a massless

relativistic particle. More remarkably, it has been suggested that an inhomogeneously tilted

Weyl system may form a potential solid state platform to simulate the particle motion around

curved spacetimes near black holes [21, 56, 63, 70, 80, 93, 104, 130, 154, 155, 161, 169].

For definiteness let us restrict to a given chirality. From a kinematic point of view, the

gravitational analogy can then be understood as follows. We will use the mostly plus metric

sign convention of (− + ++), and the four-momentum vector reads kµ = (−E/vF ,k)
(equivalently kµ = (vFE,k)). Note vF here takes the role of speed of light as in actual

relativistic system. The quasi-particle dispersion near a tilted Weyl node E± = u(r)·k±vF |k |
can then be re-written as that of a particle in a curved spacetime as

gµνkµkν = 0, (4.2.5)

via introducing an effective metric gµν. Explicitly the inverse metric reads

gµν =



−1 + |u|2/v 2F −ux/vF −uy/vF −uz/vF
−ux/vF 1 0 0

−uy/vF 0 1 0

−uz/vF 0 0 1

 , (4.2.6)
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or in more compact tensor notation, the metric and inverse metric read

gµν =

−1 + |u|2/v 2F −uj/vF
−ui/vF δi j

 , gµν =

 −1 −uj/vF
−u i/vF δi j − u iuj/v 2F

 . (4.2.7)

This in fact is nothing but the famous Schwarzschild metric that describes a black hole

written in Painlevé-Gullstrand coordinates (t, r) [21, 56, 63, 70, 80, 93, 104, 130, 154, 155,

161, 169]. In fact, the line element of the metric Eq. (4.2.7) reads

ds2 = gµνdx
µdxν = −

(
1−
|u(r)|2

v 2F

)
v 2Fdt

2 − 2u(r) · drdt + dr2. (4.2.8)

and upon making the change of variable

τ = t +
∫ u

1− |u|2/v 2F
· dr.

the metric Eq. (4.2.7) is then transformed to

ds2 = −(1− |u|2)dτ2 +
dr 2

1− |u|2
+ r 2(dθ2 + sin2 θdφ2), (4.2.9)

which is precisely the Schwarzschild metric, with vF playing the role of c . The gravitational

physics related to the metric is not the focus of the thesis, and thus we will not go into

details but provide only a brief description of the Painlevé-Gullstrand metric. Note that the

analogue Schwarzschild metric Eq. (4.2.9) has a singularity when |u| = vF . For the actual

Schwarzschild spacetime, u(r) = −vF
√
rs/r r̂, where the singularity thus occurs at r = rs ,

known as the horizon radius, and the singularity implies the Schwarzschild metric describes a

spherically symmetric black hole. On the other hand, we can re-write the Painlevé-Gullstrand

metric Eq. (4.2.6) as

ds2 = −v 2Fdt2 + (dr − u(r)dt)
2
, (4.2.10)

where the tilt u(r) has an interpretation as a local free-fall velocity field under the gravity

of the black hole [120], and the Painlevé-Gullstrand metric represents what a free-falling

observer experiences. In particular, when u vanishes such as at the spatial infinity from the

black hole, the metric reduces to that of flat Minkowski metric.

The gravitational analogue may also be discussed from a dynamics point of view. Specifically,

we may show that semiclassical trajectories of wave-packets in in-homogeneously tilted Weyl
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nodes can be mapped to the geodesics of the curved spacetime the corresponding to the

emergent metric (see Section B.1).

4.3 Cylindrical tilt and lensing

With the connection to the particle motion in curved space-time discussed above, let us now

consider wave packets in the in-homogeneously tilted Weyl nodes. We consider excitations

above the Weyl node, and thus the wave-packets are constructed from states associated with

the E+(r,k)-band with dispersion E+(k, r) = u(r) ·k+ vF |k|. We assume the wave-packet

has a well-defined center of mass position r and momentum k, and in the absence of external

perturbing electromagnetic fields, the semiclassical equations of motion read

ṙ =∇kE+(r,k) + k̇ ×Ω(k) = u(r) + vF k̂ + k̇ ×Ω(k),

k̇ = −∇rE+(r,k) = −∇r(u(r) · k), (4.3.1)

where recall the Berry curvature is Ω(k) = χk/(2 k3) and k = |k|.

The Schwarzschild metric describes a static spherical black hole, which thus requires a rota-

tionally symmetric tilt profile to form an exact mapping. However, such a highly symmetric

tilt is not easily found or engineered in a three-dimensional solid state systems. On the

other hand, a tilt profile with a slightly reduced, axial symmetry could in principle result from

straining a Weyl semi-metal, and thus provides a more realistic possibility. One possibility of

inducing such such a cylindrical tilt by applying mechanical strain has been discussed previ-

ously, where a microscopic displacement field h(r) might induce nodal tilts ui ∝ (∂ihj) k0j
around a certain axis, where 2k0 is the separation between Weyl nodes [9]. Therefore, in the

following of the thesis, we shall consider axially symmetric tilt profiles, i.e., a cylindrical tilting

field u(r) = u(ρ)ρ̂, where ρ̂ is the unit vector along the radial direction of the cylinder, and

ρ is the radius in cylindrical coordinates (ρ, φ, z).

In the cylindrical coordinates, the semiclassical equations read

ṙ = u(ρ) + vF k̂ + k̇ × Ω, (4.3.2)

k̇ = −
∂u

∂ρ
(k · ρ̂) ρ̂−

uLz
ρ2

ϕ̂, (4.3.3)

where L = r × k is the orbital angular momentum, and explicitly Lz = ρk · ϕ̂ ≡ ρkφ. We

recognize two contributions in the semi-classical equations of motion of wave-packets, where
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the first and second terms in Eq. (4.3.3) are the group velocity ∇kE+(r,k) given by the

Weyl dispersion relation, and is tilt dependent. The third term is a geometric contribution

to the wave-packet dynamics, the anomalous velocity, whose sign is given by the chirality χ.

The two equations are coupled through the anomalous velocity term, and upon substituting

the second equation into the first, we obtain

ṙ = u(ρ) + vF k̂ −
χ

2k3

[
k · ρ̂
ρ

(
∂u

∂ρ
−
u

ρ

)
Lz ẑ + kz

(
u Lz
ρ2

ρ̂− (k · ρ̂)
∂u

∂ρ
ϕ̂

)]
. (4.3.4)

Our analysis of the electron dynamics would be based on the above equation, and it is helpful

to consider the symmetry and associated conservation laws associated with the semiclassical

equations of motion. First of all, our tilt profile is static, and the tilted Weyl Hamiltonian

is time-independent, hence we have the conservation of energy Ė±(r,k) = 0, which is

consistent with the fact that the effective metric describes an analogue Schwarzschild black

hole that is static. Second, the tilt profile is axially symmetric, namely that is is invariant

under rotation around the z-axis, and thus the angular momentum along the axial direction

is conserved: J̇z = 0, where J = L + s is the total angular momentum that is the sum

of orbital and spin angular momentum, the helicity s = χ k̂/2, where here k̂ = k
|k| . Let

us add some remarks to the spin angular momentum. For the Weyl Hamiltonian, the spin

operator that generates a spinor rotation is given by the Pauli matrices 1
2
σ does not directly

give an observable intrinsic spin. That would require a rest frame to be properly defined, for

otherwise it is mixed with the orbital part, while a massless particle has no rest frame just

as photons. The actual analogue of a spin angular momentum is the projection of the spin

operator along the direction of motion, namely the helicity, and s is the expectation value of

it evaluated at a state with definite momentum k, which we take from the E+-band. Finally,

we note that the cylindrically symmetric system also has translation invariance along the

z-direction, which implies the momentum conservation k̇z = 0. Furthermore, the equations

of motion are invariant under the discrete transformation where u → −u, k → −k and

t → −t.

4.3.1 Trajectory analysis

In the above, the form of the tilt is assumed to be axially symmetric, but otherwise general.

To be more definite, we shall now specialize to the class of axially symmetric tilt profiles

u(ρ) = u(ρ) ρ̂ of the form of the form u(ρ) = −vF (ρt/ρ)α. We set the tilt center to be

at the origin, and ρt is the radius at which at which u(ρ = ρt) = −vF . Recalling the form

of the Schwarzschild metric, we see this is the event horizon radius from the center of the

analogue black hole. For the Weyl node, this sets the point at which the tilted Weyl node
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transitions from type I to a type II, while the parameter α that determines how fast the

tilt vanishes sets how rapid the gravitational attraction decays outside the analogue event

horizon [21, 130, 154, 155]. On the one hand, this form of tilt profile is an obvious gener-

alization of the analogue Schwarzschild black hole metric with α = 1/2; on the other hand,

it may represent the dominant part of a more general form of tilt profile in an asymptotic

expansion near the tilt center.

Our aim is to analyze the motion of an incoming electron wave-packet, which we take

to be injected perpendicularly to the cylindrical axis, i.e., with initial kz = 0. This implies the

helicity, namely the spin angular momentum also vanishes, sz = 0 and by the conservation of

linear momentum, k̇z = ṡz = 0, namely that they will remain zero. Furthermore, this in fact

implies that in this case the orbital and spin angular momentum are conserved separately,

for we also have J̇z = 0 and thus L̇z = 0. In the dynamics of classical particles, the fact

that kz remains zero and angular momentum is conserved implies the motion is restricted

to the xy -plane, and for analyzing the trajectory in this scenario we only need to consider

the ρ and φ components of the equations of motion Eq. (4.3.1). However, unlike a purely

classical particle, there is an additional motion due to the Berry curvature induced anomalous

velocity along z direction, which exists even for kz = 0. This will be discussed separately in

Section 4.5, and we will neglect it for now, focusing on the planar motion.

In general, we may expect the trajectories of the electron motion to fall into two distinct

classes, lensing and capture, corresponding to the scattering and bound orbit scenario repet-

itively. A lensed trajectory is one in which the electron begins with moving towards the tilt

center from afar, approaches this region, and then escapes to infinity, i.e. a scattering mo-

tion. In an optical analogy, the lensing due to the in-homogeneous tilt may also be intuitively

understood as light refraction due to texture of the propagation medium, and as such, it

might be said we study the "tiltronics" using Weyl nodes. In contrast, a captured trajectory

is one where the incoming wave-packet falls into the "black hole", and never escapes again.

Between the lensed and captured trajectory, there is a critical situation where the incom-

ing electron orbits around the region of strong tilt and neither falls in nor escapes, which

is known as the “separatrix”, and is related to the notion of "photon sphere" in black hole

physics [120]. These types of trajectories, together with one corresponding to radial escape

from the tilt, are demonstrated in Fig. 4.2. The above is clearly a rather classical picture

of the electron dynamics, which follows from using the semi-classical equations. We shall

give a microscopic quantum mechanical description of the wave-packet propagation using a

lattice model in Section 4.4, so that the meaning of "falling" is better understood.
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Figure 4.2. Panel (a) and (b) show the trajectories given by the solutions of r(t) and k(t) for
the tilt profile u = −vF

√
ρt/ρ respectively. Differently colored trajectories correspond to lensing,

escape, in-falling, and orbiting solutions respectively. The radial escape trajectory starts at a distance
1.0001ρt from the tilt center, and initial momenta are chosen as kx = ky , kz = 0. Panels (c) and
(d) display the corresponding velocity and acceleration components of each type of trajectories. The
arrows indicate the direction of time evolution, with trajectories oriented toward increasing time.

Let us now analyze the lensing and capturing motion in terms of the equations of mo-

tion, which we only need the components projected to the (x, y)-plane by symmetry as we

discussed above. Thus we focus on the (ρ, φ)-components of r and k, whose corresponding
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equations read

ρ̇ = u(ρ) + vF
k · ρ̂
k
, (4.3.5a)

ρ φ̇ = vF
k · ϕ̂
k

, (4.3.5b)

d(k · ρ̂)
dt

− (k · ϕ̂) φ̇ = −
∂u

∂ρ
(k · ρ̂), (4.3.5c)

d(k · ϕ̂)
dt

+ (k · ρ̂) φ̇ = −
u(ρ)

ρ
(k · ϕ̂). (4.3.5d)

We would like to analyze the motion in terms of the impact parameters, which are the

conserved quantities: energy E+, and angular momentum Lz . For this, note that LZ = ρk ·ϕ̂
in cylindrical coordinates, and thus with kz = 0, k2 = (k · ρ̂)2+L2z/ρ2. Substituting in these

identities, and the dispersion relation of the titled Weyl nodes, we may express the radial

equation of motion ρ̇ as a function of the impact parameters and ρ. Indeed, after some

manipulations, we find

ρ̇2 =
1

k2

[
E2+ − εp,eff(ρ)

]
, (4.3.6)

εp,eff(ρ) =
L2z
ρ2

(
v 2F − u(ρ)2

)
. (4.3.7)

Here we introduced an effective potential energy εp,eff(ρ), and the radial equation of motion

Eq. (4.3.6) resembles the energy equation of a classical free particle, whose total energy is

εtot,eff = E2+ that is the sum of an effective kinetic energy εk,eff = meff ρ̇
2/2 with a mass

meff = 2 k
2, and an effective potential εp,eff(ρ). This is of course not an exact analogy,

because k is a dynamical variable, not being conserved, and thus meff is not really a param-

eter of motion. Nevertheless, it is a useful one, which allows us to understand the motion

by energetics, namely to classify the types of trajectories according to the behavior of the

effective poetical energy, as discussed below.

For a general tilt profile u(ρ), the effective potential εp,eff(ρ) consists of a positive, re-

pulsive part given by vF that is ∝ 1/ρ2, and an attractive part which depends on the specific

form of the tilt. Due to the competition between the two parts, the potential energy in

general, then, have both minima and maxima. For the tilt profiles u(ρ) = −vF (ρt/ρ)α con-

sidered here, we find that εp,eff(ρ) has exactly one maximum for a given value of Lz , see

Fig. 4.3. In particular, for α = 1/2, which is the closest analogue of a Schwarzschild-like tilt

profile u(ρ) = −vF
√
ρt/ρ, we have effective potential consists of a repulsive potential energy

∝ 1/ρ2 and an attractive cubic term ∝ 1/ρ3, as in the Schwarzschild black hole [33].
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Figure 4.3. In panel (a) the effective potential for tilt profiles u(ρ) = −vF (ρt/ρ)α is plotted for a
range of α. The analogue horizon is located at ρ/ρt = 1, while the maxima of the effective potential
locating at ρs = ρt(1 + α)

1/2α are indicated by the dashed lines. In panel (b) we plotted how the
location of the maxima varies with the exponent α.

Finally, we may now analyze quantitatively the types of the particle trajectory discussed

earlier using the total energy E+ and the effective potential εp,eff.

1. Lensing: in this case the wave-packet first moves towards the tilt center and then

shoots off to infinity. By attraction of the tilt, the trajectory will be deflected and thus

possesses a periapsis of the trajectory, the point of closest approach to the tilt center

at some ρp. It is clear that ρ̇ = 0 at the periapsis, and from Eq. (4.3.6), we see it is

also the point at which E2+ = εp,eff(ρp). Solving for ρp, we have the implicit equation

E+ ρp = |Lz |
√
v 2F − u(ρp)2.

2. Capture: in this case the particle simply moves towards the center, and ρ̇ never vanishes

within the range of the validity of the theory (i.e. excluding the tilt center). By

Eq. (4.3.6), this case happens when E2+ > εp,eff throughout the motion, and the

effective potential never reaches the maximum.

3. Separatrix: this is a critical case in which the wavepacket approaches the tilt center at

first, and then performs an angular motion orbiting around it. In this case, similar to

that at the periaspsis of a lensing trajectory, E2+ = εp,eff(ρs) at the orbiting radius ρs .

This is an unstable bound state motion, and related to the so-called photon sphere in

the black hole physics. There is only one such radius for which such orbiting motion is

allowed, and is given by ρ = ρs = ρt(1 + α)1/2α (see Fig. 4.3).

In all of the above discussions, we have in mind a particle that is ejected from somewhere

far away from the tilt center, namely the initial radius of the particle is larger than ρt , the
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analogue black hole horizon radius. Let us now consider the case of escape or emission of

particles near the tilt. However, should the analogy to black hole physics hold, we expect

that no particles can escape from within the horizon. Indeed, for ρ < ρt , u(ρ) < −vF with

our choice of tilt profiles and clearly k · ϕ̂ ≤ |k|, by Eq. (4.3.5a) we therefore conclude ρ̇ < 0

at radii within the horizon ρt ; that is particles cannot be emitted from within ρt of the tilt

center. On the other hand, if the particle is released from outside of the horizon, namely with

initial radius ρinitial > ρt , then the escape should be possible. For simplicity, let us consider

the radial escape case, where k = kρ̂ > 0. The momentum being along the radial direction

gives a straight outward trajectory, which can be seen from Eq. (4.3.5b), where we obtain

φ̇ = 0 in this case. To show that it does escape indeed, we note that u(ρ) > −vF , while the

term in Eq. (4.3.5a) is simply vF , hence ρ̇ > 0. Furthermore, ρ̈ = u′(ρ)ρ̇ > 0, so it is not

dragged back again.

4.3.2 Lensing and deflection angle

Having understood the formation of different trajectory types from an energetic point of view,

let us study the two-dimensional motion in the (ρ, φ)-plane in more detail. In this section,

we compute the lensing angle and the detailed condition of the formation of an orbiting

trajectory. For this purpose, by dividing φ̇ and ρ̇, we may express the angular coordinate as

a function of the radius to obtain the trajectory equation. Using k · ϕ̂ = Lz/ρ, we have that

dφ

dρ
=
φ̇

ρ̇
= ±

vF Lz

ρ2
√
E2+ − εp,eff(ρ)

, (4.3.8)

where the sign corresponds to whether the particle is approaching or leaving the center of

the tilt, i.e., the sign of ρ̇.

Using Eq. (4.3.8), we can compute the deflection angle of a lensed trajectory, in a manner

analogous to the standard calculations for gravitational lensing by black holes[160], which

gives

π + ϕ = 2
∫ ∞
ρp

vF dρ√
1
ρ2p
(v 2F − u(ρp)2)ρ4 − ρ2(v 2F − u(ρ)2)

, (4.3.9)

where ϕ is the angle of deflection. More details about the derivation and evaluation of

the integral is given in Section B.2. The above result shows that the deflection angle

is determined by ρp, the closest distance of approach. This integral may be numerically

evaluated, and in Fig. 4.4, we show that the numerical values of the integral in Eq. (4.3.9)

indeed coincide with those obtained from the exact solution of Eq. (4.3.1), with initial
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Figure 4.4. In panel (a), a typical lensing trajectory is plotted (black line). The deflection angle ϕ is
given by the asymptotic trajectories, drawn as blue and yellow dashed lines, with ϕ = φ2−φ1. In panel
(b) we plotted the deflection angles resulting from different periapsides and tilt profiles. Solid and
dotted lines represent the results that are calculated using exact numerical integration of Eq. (4.3.9)
and the approximate analytic result in Eq. (4.3.10), respectively.

conditions giving the same ρp. To gain more insight, let us consider the asymptotic behavior

of the lensing angle for trajectories whose periapsides are far from the tilt center such that

ρp/ρt ≫ 1. In this limit, we may obtain analytically from Eq. (4.3.9) that, again detailed in

Section B.2, the deflection angle to leading order in ρt/ρp is

ϕ ≈
u(ρp)

2

v 2F

√
π Γ

(
3
2
+ α

)
Γ (1 + α)

. (4.3.10)

For the specific case of a Schwarzschild-like tilt profile with α = 1/2, i.e., u(ρ) = −vF
√
ρt/ρ,

we have ϕ ≈ 2 u(ρp)2/v 2F .

4.3.3 Capture and Separatrix

Recall our early discussion about the notion of separatrix, which is the boundary dividing the

trajectories into the escaping (lensing) and in-falling types. Referring to our Eq. (4.3.6),

we know that the former situation occurs for a trajectory having initial conditions such that

E2+ > εmax
p,eff and ρ̇ < 0 initially, and the semi-classical equations of motion predict the wave-

packet to be attracted towards the origin and then escaping away. Conversely, any trajectory

with E2+ < εmax
p,eff are said to be inside the separatrix, since in this case the fate of the incoming

wave-packet would spiral inward to the origin. The final part of the process would be a plunge

towards the center, and the velocity and acceleration diverge, hence marking a break-down

of the equations of motion Eq. (4.3.5). From the gravity perspective, this simply means
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we do not know what happens in the black hole. For our solid state system, however, we

should be able to observe some physical consequences since the "black hole" in our case is

an analogue one after all. We shall discuss such issues using a lattice model in Section 4.4.

Finally, let us discuss the situation where the particle trajectory lies exactly on the sepa-

ratrix. In this case, we have the precise vanishing of ρ̇, or E2+ = εmax
p,eff. The wave-packets

would approach the origin of the tilt up to a distance at ρs = ρt(1+α)1/2α, and then remain

orbiting at this radius. To show this, note by definition, both the radial velocity ρ̇ and the

radial acceleration ρ̈ shall vanish, while the radial acceleration is obtained by taking a further

derivative of Eq. (4.3.6), the vanishing of which then gives

ρ̈|ρ=ρs = −
1

k2

(
1

2

∂εp,eff

∂ρ
+ ρ̇ k̇ k

)
ρ=ρs

= 0. (4.3.11)

Since ρ̇ = 0, we see that the condition reduces to that εp,eff(ρ) has a maximum ∂εp,eff
∂ρ
= 0 at

ρ = ρs , whose solution is easily solved to be ρs = ρt(1+α)1/2α using the dispersion relation.

However, the effective potential has a local maximum at ρs , so ∂2εp,eff/∂ρ
2 is negative at

ρ = ρS, and therefore the orbit is an unstable one. That is any small change to the impact

parameters will cause the wave-packet to either plunge into the tilt center, or simply shoots

off again.

Earlier we have remarked that the case of a spherically symmetric tilt profile with α = 1/2,

i.e., replacing u(ρ)ρ̂ → u(r)r̂ = −vF
√
rH/r r̂, corresponds to the Schwarzschild spacetime.

The semi-classical equations of motion, neglecting anomalous velocity terms, describe the

propagation of a massless particle around a Schwarzschild black hole with an event horizon

at rH. In this context, the family of all orbiting trajectories fall on a sphere, and the sepa-

ratrix is known as the photon sphere [33, 120, 160]. The existence of photon spheres is an

important property of black holes, and it is an active topic of investigation to this day, due to

both its importance in gravitational wave detection measurements[30], as well as theoretical

studies of black holes[38, 57, 123]. In fact, the photon sphere is what is captured in the

recent black hole images taken by the Event Horizon Telescope [7], making it one of the

few directly observed aspects of black holes, which is also taken as evidence of the existence

of black holes at all instead of other more regular types of massive astrological object. In

our discussion of Weyl semimetals with inhomogeneous nodal tilts, we may then identify the

separatrix between lensed and captured trajectories as the analogue of photon sphere in black

holes, and since the tilt profiles that we considered are axially symmetric, the separatrix has
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the shape of a cylinder instead of a sphere, therefore we may dub it the "photon cylinder".
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4.4 Lattice simulations

In the former section Section 4.3 we have already seen that the semiclassical equations have a

limited range of applicability, where we saw that it is unclear what happens to the wave-packet

after plunging into the center of the tilt. Such questions arise from using the semi-classical

equations,and in this section we shall check the validity of results obtained from such effective

continuum description by a microscopic computations, and, in particular, understand the fate

of wave-packets crossing the separatrix. It has for example been discussed in refs. [21, 130]

that in order to obtain the correct description of transport in in-homogeneously tilted Weyl

nodes, one needs to include in the calculation additional large momentum states. We shall

use an effective two-dimensional lattice model from which the tilted Weyl Hamiltonian follows

as an approximation. Note that this is possible since we have already seen that if we neglect

the possible transverse deflections from Berry curvature, the electron dynamics is effectively

two-dimensional by the axial symmetry. We will first re-do the semi-classical analysis using

the lattice mode to check the consistency of the lattice and continuum model, and then a

full quantum mechanical simulation.

4.4.1 Effective lattice model

We start with writing down a minimal model for a tilted Weyl semimetal with two Weyl nodes.

In second quantization formalism, such a low-energy continuum Hamiltonian is provided

by Ĥ =
∑
k ĉ
†
kH(k)ĉk, where we have a two-component spinor ĉk = (ĉ↑,k, ĉ↓,k)T , and a

Hamiltonian matrix,

H2(k) = [uxkx + uyky + uz(kz + k0)]σ0 + vFkxσx + vFkyσy +
1

2m∗
(k2 − k20 )σz . (4.4.1)

Here k0 > 0 is the separation between the two Weyl nodes, one located at k = (0, 0,−k0)
and zero energy, the other at k = (0, 0, k0) at energy 2uzk0. The first term term proportional

to σ0 gives a nodal tilt, and the last term proportional to 1/2m∗ induces the separation be-

tween the nodes, and at the same time gives a quadratic modification to the linear dispersion

relation along the z direction.

Now we shall construct a lattice model on a square lattice with lattice constant a that

shall give the tilted Weyl node dispersion in the continuum limit. To focus on, say, the first

Weyl node, we fix kz = −k0 while letting kx and ky vary. There is no loss of generality for do-

ing this because kz is conserved by translational invariance along the z direction for an axially

symmetric tilt profile. It is not hard to see that a two-dimensional square lattice model which
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Figure 4.5. Lattice dispersion relations around the Weyl node with zero energy, restricted the first
Brillouin zone. Figures in the top row are those with un-tilted Weyl nodes, and we see the degenerates
modes at the edges of the Brillouin zone are gapped by ∆E latt± . In the bottom row, the figures show
that the Weyl cones are tilted by ux and uy , with the gap fixed to be ∆E latt± m∗a2 = 2.

reduces to the low energy Hamiltonian Eq. (4.4.1) when kx , ky ≪ 1/a is Ĥ =
∑
k ĉ
†
kH(k)ĉk,

with

Hlatt(k) = a
−1 [(ux sin(kxa) + uy sin(kya))σ0 + vF sin(kxa)σx + vF sin(kya)σy ]

+
1

m∗a2
[2− cos(kxa)− cos(kya))]σz . (4.4.2)

At the boundary of the Brillouin zone, additional gapless modes are formed (top left of

Fig. 4.5), which are then gapped by the m∗ terms in the Hamiltonain, with gap size ∆E latt± =

4(m∗a2)−1 and 8(m∗a2)−1. In Fig. 4.5, we show how these degeneracies at the boundary

of the Brillouin zone are lifted by ∆E latt± , and the tilting of the Weyl cones centered at

kx = ky = 0 through ux and uy .

The above model gives a uniformly titled Weyl Hamiltonian, and to induce inhomogene-

ity, we shall first Fourier transform the Bloch Hamiltonian in Eq. (4.4.2) to real space in the
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(x, y)-plane. Using ĉr = 1
N

∑
r e−ik·rĉk, where r are the lattice sites, we have

Ĥlatt =
1

a

∑
i∈{x,y}

∑
r′−r=î

(
ĉ†r

[
iuiσ0/2 + ivFσi/2−

1

2m∗a
σz

]
ĉr′ + h.c.

)

+
2

m∗a2

∑
r

ĉ†rσz ĉr . (4.4.3)

We make the tilt spatially varying by promoting the constant tilt to be site dependent ui →
ui(r − r0), where r0 is the location of the tilt center. To avoid singularity that might arise,

we regularize the tilt by taking the average between two lattice nodes, so that the lattice

model we shall use is

Ĥlatt =
1

a

∑
i∈{x,y}

∑
r′−r=î

ĉ†r

[
iui

(
r + r′

2
− r0

)
σ0/2 + ivFσi/2−

1

2m∗a
σz

]
ĉr′ + h.c.

+
2

m∗a2

∑
r

ĉ†rσz ĉr . (4.4.4)

Writing the above Hamiltonian as Ĥlatt =
∑
r,r′ ĉ

†
rHr,r′ ĉr′ defies the real-space Hamiltonian

matrix Hr,r′, i.e., a non-constant hopping amplitude.

Let us take m∗avF = 1, and diagonalizing the lattice model Eq. (4.4.4) the dispersion is

obtained to be

E latt± =
∑
i

ui(ρ, φ)

a
sin(kia)± εlatt(k), (4.4.5)

εlatt(k) =
vF
a

√
6− 4 cos(kya) + 2 cos(kxa)(cos(kya)− 2), (4.4.6)

where ux = u(ρ) cosφ and uy = u(ρ) sinφ, and the first in Eq. (4.4.5) is the tilt term, while

εlatt(k) is the dispersion of the lattice Weyl node given by Eq. (4.4.4).

We first study the wave-packet dynamics using the microscopic lattice model by numeri-

cally integrating the coupled equations of motion Eq. (4.3.1) using the lattice dispersion

instead, and compare it with the results obtained from the continuum dispersion relation

that was used previously. To begin with, note that the dispersion we used in Section 4.3 is

obtained from linearizing the lattice dispersion, which is valid only near the nodal point. Thus

we expect deviations of the results obtained from the lattice model as compared to that of

the linearized continuum model, due to the finite curvature of the Weyl cone. In fact, note

that the lattice dispersion Eq. (4.4.6) is not precisely axially symmetric around the z-axis.

However, the symmetry does hold approximately. To see this, Taylor expand εlatt(k) about
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an arbitrary momentum κ

εlatt(k) = veff(κ) · (k − κ) + εlatt(κ) +O
(
(k − κ)2

)
, (4.4.7)

where the group velocity at κ is

veff(κ) =
v 2F

aεlatt(κ)
[sin(κxa)(2− cos(κya))êx + sin(κya)(2− cos(κxa))êy ] . (4.4.8)

As far as dynamics is concerned, the constant εlatt(κ) is just an energy shift, and does not

contribute to the equations of motion. Therefore we may safely neglect it. We see that to

the linear order, the lattice dispersion is indeed invariant under a rotation in the xy plane.

Zero in on the Weyl node, we expand veff(κ) near κ = 0. After some algebra, it can be

obtained that veff ≈ vF k̂, up to third order in κ, and therefore veff = vF k̂ near εlatt = 0. The

lattice dispersion near this point then reads ϵlatt(k) ≈ vF k̂ · k = vF |k|, precisely the linear

dispersion we sought after.

Now we are in a position to discuss the fate of the horizon in the lattice model. The horizon

may be defined as the points at which the group velocity vanishes: vg(rt ,k) = ∂E/∂k = 0.

Indeed, in our earlier continuum model of a Weyl node with tilt profile u(r) = u(ρ)ρ̂, where

u(ρ) = −vF (ρ/ρt)α, we have vg(rt ,k) = ∂E/∂k = u(rt) + vF k̂ = 0, and the group ve-

locity vanishes at ρ = ρt , ρ̂ = k̂. The fact the ρt is indeed an analogue of horizon is

discussed in Section 4.3, where we showed that particles cannot escape from ρ < ρt using

the semi-classical equations of motion. For the lattice model Eq. (4.4.5), however, unless

we retain the linearizing approximation above, the equation vg(rt ,k) = u(rt) + veff(k) = 0

has momentum-dependent solutions rt(k). For a given k, the analysis in Section 4.3 shall

still follow, that is, there is no outward trajectory for such a particle from within |rt(k)|.
This means that the analogue of the horizon is no longer a single surface with some fixed

radius ρt , but a family of momentum dependent constraints on the trajectories for particles.

That is, the horizon is washed out on the microscopic scale. Nevertheless, in Section 4.4.3,

where we compare the trajectories computed from semi-classical equations of motion and

microscopic simulations, we shall see that the first approach is still valid up to the length

scales ρt . As for the "photon cylinder", the separatrix between lensing and capture trajec-

tories, since it is an unstable orbit it should be of no surprise that trajectories obtained using

the lattice model will not exactly reproduce such an orbiting motion.

In Fig. 4.6 for comparison we presented the trajectories calculated from using the lattice
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Figure 4.6. In panel (a) and (b) semi-classical trajectories obtained by using the continuum (dashed
line) and lattice (solid lines) model are plotted for α = 1/2 with different impact parameters. Initial
coordinates are chosen at x = 0, and initial momenta ky = 0. For the trajectory from the continuum
model, we sued the impact parameters ky = 0 and kxρt = 2. The larger gray sphere represents
the photon cylinder, while the inner sphere represents the event horizon. Panel (a) shows that the
would-be capture trajectories in the continuum model are in fact slingshot motion when the lattice
dispersion is used. Panel (b) displays the lensed trajectories with various energies, which shows that
there are only small deviations in the lattice model from those in the continuum model . In (c) and
(d), we plotted the lensing angle with initial conditions kx = −ky , and ky = 0 respectively. It is clear
that the asymptotic scaling behavior of the deflection angle (see Eq. (4.3.10)) holds.

model together with those from the continuum model with a Schwarzschild-like tilt. Most

importantly, we see from panel (a) of Fig. 4.6 that the would-be capture trajectory of the
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continuum Weyl node model (depicted as the dashed line) does not really just terminate at

the origin. Rather, it shoots off again similar to the lensed trajectories. This is physically ac-

ceptable for otherwise the particle conservation is violated; after all, we are dealing with solid

sate systems and not actual black holes. At small energies (with ℏ = 1), Em∗a2 ≲ 0.01, the

trajectories obtained using the linearized dispersion agree with those found using the lattice

dispersion Eq. (4.4.6). In contrast, the solution to the capture trajectory for Em∗a2 = 0.01

using the continuum model has a divergence near the origin, and thus we have to terminate

the trajectory.

In panel (b) of Fig. 4.6 we platted a series of lensing trajectories obtained using the lat-

tice dispersion, as well as the dashed line using the continuum model. The initial conditions

are chosen so that they have the same energies as in panel (a) (the initial positions are

different though of course). It can be seen from the plot that the lattice and continuum

trajectories match very well, and thus we may conclude for lensing trajectories that stay

relatively far way from the tilt center, the continuum tilted Weyl model provides a very good

approximation. Furthermore, in panels (c)-(d), we present deflection angles calculated for

trajectories associated with the same energy scales but different periapsides ρp. Thus in the

lattice model we still have the same scaling behavior of the deflection angle ϕ ∝ (u(ρp)/vF )2

that we found in the continuum model (see Eq. (4.3.10)).

In conclusion, we find that the semiclassical equations of motion obtained using the low-

energy model Eq. (4.4.2) agree rather well with those using the lattice Hamiltonian Eq. (4.4.5).

We also discovered that the capture trajectory that falls inside the tilt center, beyond which

the continuum theory fails to be applicable, becomes slingshot trajectories demonstrating no

such singularities if the regularized lattice model is used. Furthermore, the asymptotic scal-

ing behavior of the deflection angle exists and matches in both cases. Thus from the lattice

perspective, the capture motion may be viewed as a special case of the lensed trajectory in

which it winds around with a deflection angle ϕ > π/2. And this is the trace that the photon

cylinder leaves in the lattice model, where the separatrix is such that, below it we have the

slingshot trajectories.

4.4.2 The microscopic setup

In the above we studied the semi-classical equations of motion using the lattice Hamiltonian,

and showed that the results agree with those obtained from the continuum Weyl model. Now

we perform a quantum mechanical analysis using the lattice dispersion in Eq. (4.4.4), where

we simulate the propagation of an injected particle on the two dimensional lattice using the
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Figure 4.7. The left-most panel depicts the Kwant setup with the system size Lx = Ly = 19. The
bulk lattice sites are represented by black dots, where electron hoppings are depicted by black lines.
The purple and green triangles the semi-infinite leads, explained in the matin text. We inject particles
from the blue lead, which may leak out in the purple lead regions. The panels on the right display
the charge density (color gradient) calculated with different system sizes using the for un-tilted Weyl
dispersions. Both uses energy Em∗a2 = 0.8 and initial momentum kxa = 0.832. The directed lines
present the charge current vector field. We see that the wave-packet is more focused with a larger
system size.

Kwant library [55]. Let us first describe the Kwant set-up. We use a rectangular lattice

consisting of (Lx , Ly) sites that are coupled to six semi-infinite leads. The bulk would have

the tilted lattice dispersion Eq. (4.4.4), while the leads have a vanishing tilt profile. One

of the leads, the one along the −êx axis where the wave-packets would be injected from,

is chosen to be narrow compared to the diameter of the scattering region (≈ 0.1Ly). The

injected wave-packet corresponds to an incoming particle in the semi-classical picture, and

is constructed to have a well-defined average position initially and subsequently spread along

the êy -direction. The injected particles then move across the bulk and escape from the other

leads on the other side, which fully cover the remaining edge sites.

Reflections from the lattice boundary might cause unwanted interference. However, these

are suppressed if the horizon radius ρt of the tilt profile, which sets the length scale of strong

tilt region, is small. More specifically if the tilt profile is such that ρt ≪ Lma, where Lma is

the minimum distance between the tilt center and the boundary site at which the injected

wave leaks out. To simulate the semi-classical regime, we need the horizon radius tilt to

be much larger than the lattice spacing ρt ≫ a. Let Nl be the number of bulk lattice sites

connected to lead l , then each one of the semi-infinite leads has 2Nl bands, which are the

transverse projections of the lattice dispersion Fig. 4.5. Since we assume no tilt terms in

the leads, the dispersion relations of the leads can be obtained from each other by swapping

kx ↔ ky appropriately. We depicted schematically the wave-packets with two different sys-

tems sizes in Fig. 4.7. The smaller one with Lx = Ly = 19 shows that the wave-packet will
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spread out as it travels across the sample bulk. On the other hand, with the same energy,

the wave-packet appears to be much more focused in the larger system with over 400 sites

depicted on the right in Fig. 4.7. Thus to have wave-packets that have sharply peaked center

of mass position, which we need in order to apply the semi-classical equations of motion, a

larger system size shall be used.

The finite system size presents a limitation since the wave-packet will never reach its asymp-

totic deflection angle, which requires a very large number of sites. To resolve the difficulty,

instead of computing the deflection angle, we directly calculate the local charge density

and compare it with the trajectories computed from the semi-classical equations of motion.

Let |ψ⟩ be a scattering state, whose wavefunction is ψr = ⟨r|ψ⟩, then the charge density

operator is simply

nr = ψ
†
rψr. (4.4.9)

4.4.3 Numerical results

We now compute the local charge density for different scattering states and compare them

with those obtained from solving the semi-classical equations of motion using the lattice

model, Eq. (4.4.6). The initial momenta for the semiclassical equations of motions are the

same as those for the injecting lead modes, and the edge sites of the injecting lead give the

initial position of the semi-classical wave-packet. This ensures that we use the same set of

initial conditions to make a meaningful comparison. As we discussed earlier in this section,

the horizon in the lattice model is slightly different from that in the continuum model. Al-

though both are defined as points at which the group velocity vanishes, they are not located

at a surface with fixed radius but rather have a momentum dependence. That is, states with

different momenta actually experience different horizon radii. However, this should not give

a drastic effect, and to continue, we still fix the horizon radius to be at where u(ρt) = −vF
at energy E = 0 in the lattice computations.

The charge density is computed for a Schwarzschild-like tilt (α = 1/2) at a high energy

(Em∗a2 = 0.8), and the results of the Kwant simulation is displayed in Figure 4.8. Recall

that the photon cylinder has a radius ρs = 3ρt/2, where ρt is the analogue event horizon

radius. They are depicted as the semi-transparent disks in Figure 4.8. Seven of the semi-

classical trajectories are displayed, which are depicted by the directed solid lines. We see

that, generally the semi-classical trajectories agree quite well with the quantum mechanical
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Figure 4.8. Lensing trajectories for different initial conditions, with α = 1/2. The disk with radius
ρt and ρs = 3 ρt/2 represent the photon cylinder and analogue horizon respectively. The energy of
all trajectories is fixed to Em∗a2 = 0.8, with initial momenta are ky = 0 and kxa = 0.823. The
semiclassical trajectories obtained from integrating the equations of motion are indicated by directed
arrows, while the trajectories obtained from calculating the local density is indicated as color gradient.
They agree rather well when the injected wave travels far from the tilt center ((a)- (d)). From (e)
and (f ) we see that when the wave packet gets closer to the tilt center there are some deviations,
where the semi-classical trajectories are seen to be deflected more.

ones. In particular, the agreement is better the further away the wave-packet is from the tilt

center, namely when the periapsides ρp are much larger than ρs . Closer to the separatrix at

ρs , we find that there are some deviations from each other, where the semi-classical results

predict a stronger lensing effect, and larger deflection angles.

We saw from the previous section that the would-be capture trajectories become sling-

shots using the lattice model. In the quantum mechanical calculation, however, more drastic

effects are seen when the particles travel inside the horizon, where the wave-packets seem to

experience some violent scatterings and separate. To investigate this phenomenon, we would

like to zoom in around the tilt center. With a fixed system size, this means we need a larger

horizon radius ρt . However, this introduces more unwanted boundary reflections around the

system-lead interface since the tilt would still be present there. For this reason, we switch

to a tilt profile with α = 1 instead, which has a faster decay rate than the Schwarzschild-like

tilt, and larger horizon radius may be used.
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Figure 4.9. Trajectories with different initial conditions are plotted for the tilt profile with α = 1,
with energy fixed to Em∗a2 = 0.4, and initial momenta ky = 0, kxa = 0.403. The plotting style
is same as those in Fig. 4.8. In (e) to (f ) we see that the microscopic simulations show some
significant differences from the cases where the wave-packets travels away from the center. Not only
the outgoing wave-packets deviates significantly from the semi-classical ones, they do not even stay
coherent, but splits into beams. Moreover, in (k) and (l) we see that there are aa large number of
scatterings that happen within a smaller disk, inside the horizon.

The results of the simulation are presented in Fig. 4.9, where we use a lower energy

Em∗a2 = 0.4. Overall, qualitatively the same types of trajectories are observed. From

panels (a), (b) and (c) we see that the same lensed trajectories when the wave-packets are

staying far away from the tilt center are obtained. In panels (d) to (i), we see when moving

near the tilt center, where we should have slingshot motion in semi-classical approach, we
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find however that the injected wave-packets do no stay focused, but rather split into various

jets upon leaving the tilt center, and deviates significantly from the semi-classical predictions.

When multiple jets cross each other, some interference patterns are observed. In panels (j)

to (l), we display the simulation of trajectories that pass the tilt center. Here for some of

the semi-classical wave-packets the numerical evaluation suffer from instability, and we have

to terminate around the tilt center escape from the analogue black hole (where the velocity

exceeds 100 vF ). This seems to suggest that not all of the semi-classical trajectories escape

from within the horizon ρt . For instance in panel (K), only 5 out of the 7 semiclassical

trajectories escape However, the dominant jets free from this instability still follow the semi-

classical trajectories. More interestingly, we see some violent scatterings confined within a

circular domain of size ≈ 0.8ρt near the tilt center. At the moment of the completion of

this thesis, we do not know explanation of these phenomena that we observe in the quantum

mechanical calculation, which we think is an interesting question that is worthy of further

investigation.

In conclusion, the quantum mechanical simulations of the lattice model confirm that overall

the semiclassical equations of motion do indeed provide a valid description of the particle

motion, as long as it is moving far away from the tilt center. This includes the slingshot

motion that we obtained using the lattice dispersion in the semi-classical approach. How-

ever, when near the center of the analogue black hole, where the tilt strength is large the

semi-classical picture seems to break down, where the wave-packet does not stay focused

but split, and some scattering pattern confined within a certain region near the tilt center is

observed.

4.5 Berry curvature and transverse shift

In Section 4.3, we analyzed semi-classical equations of motion of tilted Weyl nodes. As we

discussed there, due to the axial symmetry of the tilt profiles, ż decouples from the other

coordinates for particles with initial momentum kz = 0, and the motion is planar. However,

the semi-classical equations of motion Eq. (4.3.1) also includes the anomalous velocity term

due to Berry curvature, and this actually causes a movement along the z direction. In this

section we show analyze the transverse shift caused by the anomalous velocity. To isolate

this effect, we still assume kz = 0, so that the initial ż = 0 when the particle is injected from

far from the tilt center.

With kz = 0, and a cylindrical tilt profile, the z component of the equation of motion
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Eq. (4.3.2) has only contribution from the anomalous velocity term due to the finite Berry

curvature of Weyl semi-metals, i.e., the term k̇ × Ω. Note that the direction of this term

depends on the chirality χ of the Weyl nodes, which is the topological charge it carries, and

thus has no classical analogue. This anomalous velocity term leads to a variety of differ-

ent phenomena in Weyl semi-metals, depending on the physical origin of the force k̇. For

instance, it is used to explain the chirality-dependent Hall conductance in Weyl materials

[49, 65, 73], and the Imbert-Federov shift [74] or chiral impurity scattering [75]. Simi-

larly in tilted Weyl semi-metals it is known to cause a chiral Hall response [88, 98], and

different refraction ratio in potential barrier tunneling [167]. In non-equilibrium transport,

the transverse motion this Berry curvature term induces ‘anomalous currents’, which leads

to the chiral magnetic and chiral vortical effects in Weyl systems and have been investi-

gated in connection to the so-called chiral anomaly that originated from high-energy physics

[13, 35, 36, 89, 127, 135, 139, 166]. Our discussion of the transverse shift concerns its

effect in the case of tilted Weyl nodes. By our mapping of a tilted Weyl node to curved

spacetime, this hints at a similar effect to massless particles traveling around a black hole. In

fact, such an effect for photons has indeed been studied in the gravitational context, where

it is known as the gravitational spin Hall effect [54, 61, 110].

Since the force k̇ has only ρ̂ and ϕ̂ components, the anomalous velocity only has z-

component, which explicitly reads

ż = −
χ

2k3

(
∂u

∂ρ
−
u

ρ

)
(k · ρ̂)

Lz
ρ
. (4.5.1)

For the lensed trajectories, as shown in Fig. 4.10, the wavepacket moves in the z-direction,

while the motion on the xy -plane is un-altered as before. Similar to the deflection angle,

this transverse shift can be calculated using the equations of motion, which gives

dz

dρ
=
ż

ρ̇
= −

χ

2 k3

k·ρ̂
ρ

(
∂u
∂ρ
− u
ρ

)
Lz

u + vF
k·ρ̂
k

. (4.5.2)

Analytically expressions can be obtained for lensed trajectories that stay far away from the

tilt center (ρp/ρt ≫ 1), which is found to be

∆z ≈ −
χ

Lz
ρp
u(ρp)

2

v 2F

√
π Γ

(
α+ 1

2

)
2 Γ(α)

. (4.5.3)
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We leave the details of the derivation and calculation of the above results to the appendix

(see Section B.3).

This term has a remarkable consequence for the trajectory on the photon sphere. Although

the anomalous velocity does not affect the motion projected to the xy -plane, and the loca-

tion of separatrix itself receives no change when the Berry curvature is taken into account.

However, due to this transverse shift, depending on chirality, the wavepacket will spiral up-

ward or downward along the z direction while staying at a fixed radius. This is depicted in

Fig. 4.14.
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Figure 4.10. In panels (a) and (b), we plotted a typical lensed trajectory that is projected onto
the the xy and yz planes respectively. Here we use α = 1/2, ρp/ρt = 2.23. The transverse shift is
calculated to be ∆z = −0.512. In (c), we plotted the transverse shifts −∆z calculated by numerically
integrating the semiclassical equations of motion (dots), and the shift formula Eq. (B.3.6) (solid lines).
The dotted lines are the results obtained from using the asymptotic formula Eq. (4.5.3) (dotted line)
for different α (different colors). It is clear that for ρ > ρt , where the wave-packets stay far away
from the tilt center, the asymptotic approximation is very accurate. All results are for the chirality
χ = +1.

4.5.1 Spin precession

Note that the anomalous velocity depends on the chirality χ, and in the early parts of the

thesis, we know that in the solid state context, it is in fact a momentum space topolog-

ical charge associated with the Berry curvature monopole. Therefore it is not surprising

that the anomalous velocity is related to the topological spin-transport of massless particles

[23, 24, 142–144]. Furthermore, the semiclassical equations of motion coincide with those
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Figure 4.11. Lensing trajectories for different chiralities. The black and gray cylinder represent the
analog horizon and photon cylinder respectively. The projected trajectories show that the planar
motion is not affected by the anomalous velocity.

of a massless spinning particle, i.e a Weyl fermion [41, 42], and thus it is of interest to study

the spin dynamics in more detail.

Recall the proper notion of the spin angular momentum of the Weyl particle is its helic-

ity, which when evaluated to a state with definite momentum is s = χ/2k̂, and its dynamics

is then given by

ds

dt
=
χ

2

(k × k̇)
k3

× k = ωsp × s, (4.5.4)

where we have introduced a frequency ωsp = (k × k̇)/k2. This is a spin precession. Explicitly

for our axially symmetric tilt, assuming again kz = 0, we have

ωsp =
(k · ρ̂)
ρ k2

(
∂u

∂ρ
−
u

ρ

)
Lz ẑ. (4.5.5)

Using the explicit form of the Berry curvature of the Weyl Hamiltonian, this precession

is directly related to the anomalous velocity ṙA as

ṙA = k̇ ×Ω = −
χ

2 k
ωsp, (4.5.6)

from which we see that the transverse shift from the anomalous velocity may be intuitively

understood as a spin spinning effect, a sort of "Magnus effect" as in a banana kick in football.

In our case, k̇ originates from the analogue gravitation attraction due to the the tilt profile,

and in turn, this spin dynamics also induces dynamics in the orbital angular momentum, since

we require the conservation of the total angular momentum. The dynamics of position, mo-
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Figure 4.12. In panels (a) and (b), evolution of the x- and y -components of the position and
momenta are plotted. As expected, they are independent of the chirality. On the other hand, plotted
in panels (c) and (d), the z-coordinate and the x- and y -components of spin and orbital angular
momentum do depend on the chirality, which have opposite evolution as shown in the plots. In panel
(d) we see that the orbital angular momentum is increased.

Figure 4.13. The trajectories on the photon cylinder for the Schwarzschild-like tilt. The dark inner
cylinder represents the analogue horizon.

mentum, spin and orbital angular momentum are shown in Fig. 4.12 and Fig. 4.14 for the

lensed and photon cylinder trajectory, respectively. Back in Section 4.3, we already remarked

that with kz = 0, by axial symmetry the z-component of the spin and orbital angular mo-

mentum sz and Lz are actually conserved separately, and thus we only need to consider the

dynamics in the x- and y -components of spin and angular moment.
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Figure 4.14. In panels (a) and (b), the dynamics of the x− and y -components of the coordinates
and momentum are shown, which confirms the assertion that the planar motion is independent of the
chirality. They oscillate around the ẑ axis during the winding motion along the photon cylinder. On
the other hand, panels (c) and (d) show that the z-coordinate and the planar components of the spin
and orbital angular momenta are chirality dependent. The spin precession undergoes an oscillatory
motion (panel (c)), while the angular momentum grows in magnitude in addtion (panel (d)).

From Fig. 4.12 we see that the shift occurs around the periapsis of the lensed trajectory,

accompanied by a rapid change of the non-conserved components of momentum, and angu-

lar momentum. After leaving the tilt center, the transverse shift approaches the asymptotic

values calculated in Eq. (4.5.3), where the comparison to the exact numerical results are

shown in Fig. 4.10. The spin dynamics ceases when the electron no longer feels the tilt, and

we see from plots in panels (c) and (d) that part of the x- and y -components of the spin

angular momentum is transferred to orbital angular momentum, and the particle leaves the

tilt region with a higher orbital angular as can be seen from the plots. Plots in panels (b)

and (c) clear show an oscillatory pattern associated with the spin precession. Here as well,

we see that magnitude of the orbital angular momentum grows, shown in (d).

We have also plotted the orbiting trajectories on the photon cylinder in Fig. 4.14. The

trajectories corresponding to the two chiralities craw along the cylinder in opposite directions

along the z-axis, due to the different sign of the anomalous velocity term.
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Since the Weyl nodes have an apparent connection to Weyl fermions, which are relativistic

particles with spin, we may also discuss the anomalous velocity and spin precession in the

context of relativistic quantum mechanics. The characteristic quantum numbers of a Weyl

fermion can be identified as momentum and spin [40, 113], and indeed such an anomalous

velocity term has been obtained in a quantum mechanical approach and shown to be related

to the spin dynamics [143]. More generally, the implications of the Lorentz invariance of

the Weyl Hamiltonian on the semi-classical dynamics have been extensively studied, see for

instance [8, 35, 41–43, 142–144]. In the tilted Weyl nodes, the anomalous velocity and spin

dynamics can be further understood using the notion of local Lorentz boosts. Intuitively we

know that the tilted Weyl cones form the analogue of moving light cones in curved space-

times, while the latter may be obtained from Lorentz boosts that vary from point to point

[160]. Similarly, the tilted Weyl Hamiltonian may be obtained from an un-tilted one using

a Lorentz transformation [126, 148, 168]. We may then obtain the evolution of the spin

angular momentum for a particle moving in a spatially varying tilt profile from performing

a sequence of non-collinear Lorentz boosts at each point. This is the physics of Thomas

precession, and thus we see the Berry curvature induced spin precession may be understood

in this way as well [143]. This gives another example where the tilted Weyl nodes are an

ideal playground for studying relativistic effects in solid state systems.
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4.6 Summary

In this chapter we have studied the dynamics of electrons around tilted Weyl nodes, specif-

ically in the context of mapping its trajectory to that of the geodesics of a particle moving

around an analogue black hole. We considered an inhomogeneous tilt profile that is cylin-

drically symmetric, and studied the dynamics in three different approaches : (i) an effective

continuum description where the electron trajectory is taken to be the geodesic equations cor-

responding to the effective metric given by the titled Weyl Hamiltonian; (ii) the semi-classical

equations of motion using the dispersion relations given by a microscopic lattice model, and

(iii) a numeric computation using quantum-mechanical scattering states in the lattice model.

We found that the geodesic equations of the effective metric given by our axially symmetric

tilt profile also has an analogue “photon cylinder” as in actual Schwarzschild black hole, i.e.,

an unstable orbit which separates captured trajectories from scattering trajectories corre-

sponding to gravitational lensing. The semi-classical equations of motion of the continuum

model encounter difficulties when the particles plunge into the tilt center, where the trajecto-

ries have to be terminated by hand. However, the semi-classical equations of motion remain

a valid approximation if we use the lattice dispersion instead of the simple Weyl Hamiltonian.

There we found that the in-falling trajectories using the continuum model become slingshot

motion, where the particles escape again, instead of being captured. Moreover, we com-

pared the trajectories obtained using the semi-classical equations of motion with those from

a quantum-mechanical calculation. We found that as long as the wave-packets travel at a

distance from the horizon, the two approaches agree rather well. In particular, the deflection

angle of the electron lensing possesses an asymptotic scaling behavior in both approaches.

More interestingly, we found that when getting even closer to the tilt center, there appears

a region inside which violent scatterings occur. This is some phenomenon inside the "even

horizon" and is worthy of further investigation. Beyond the geodesic equation of motion, the

Berry curvature provides an additional anomalous velocity contribution to the semi-classical

equation of motion. We have also shown that while this term does not affect the in-plane

component of the trajectories, it induces a transverse shift instead, with the direction given

by the chirality of the Weyl cone, or equivalently its topological charge.
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B.1 Geodesic equation

In this appendix we shall demonstrate explicitly the mapping of a tilted Weyl node with

spatially inhomogeneous tilt to relativistic Weyl fermions in curved spacetimes [21, 56, 63,

70, 80, 93, 104, 130, 154, 155, 161, 169]. This mapping can be done at the level of the

Hamiltonian, where we write it by introducing the tetrad (also known as vielbeins), which is

defined as a set of fields that satisfy gµν(r) = eaµe
b
νηab, with ηab being the flat spacetime

Minkowski metric[21, 154, 155, 161]. Roughly speaking the tetrads represent a local Lorentz

frame, using which we may define a set of local Pauli matrices and spinor covariant deriva-

tives which couple the Weyl fermion to gravity. For our purposes, however, it is sufficient to

take a simpler approach, where we shall show that the dispersion relation of a tilted Weyl

node coincides with that of a particle in a curved spacetime with a metric gµν, the Painlevé-

Gullstrand form of Schwarzschild metric. It is also known as the acoustic metric[120, 156].

Here and in the following, the metric signature is (−+++), and the four vector is denoted

by xµ = (ct,x) (c is the speed of light).

Explicitly, by a change of coordinates which we already mentioned in the main text, the

famous Schwarzschild black hole metric may be re-written as

ds2 = gµνdx
µdxν = −

(
1−

u(r)2

c2

)
c2dt2 − 2u(r) · drdt + dr2, (B.1.1)

which is known as the Painlevé-Gullstrand metric . The field u(r), which corresponds to the

inhomogeneous tilt of the Weyl node can be interpreted as the local free-fall velocity field

under the gravity of a black hole[120]. We may write the metric tensor gµν in a matrix form,

which reads

g =
1

c



u(r)2/c − c −ux(r) −uy(r) −uz(r)
−ux(r) c 0 0

−uy(r) 0 c 0

−uz(r) 0 0 c

 , (B.1.2)

where the components of the matrix g is (g)µνgµν (and not the inverse metric gµν). For

a massless particles moving in this spacetime, the energy momentum relation is given by

gµνkµkν = 0, where kµ = (−E/c,k) is the momentum four-vector, which reads explicitly

0 = gµνkµkν = k
2 −
(E − u(r) · k)2

c2
. (B.1.3)
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Solving for the energy, we find that the solutions are precisely the dispersion relation of a

tilted Weyl cone

E± = u(r) · k ± c |k|. (B.1.4)

This then establishes the Weyl cone associated with the tilted Weyl nodal point can be

mapped to the local light-cone structure at each point in a curved spacetime [154]. For

the Schwarzschild spacetime, the velocity field u(r) reads explicitly u(r) = −c
√
rH/r r̂ in

spherical coordinates, where r̂ is the unit vector, rH = GM/c2 is the radius of the event

horizon, G denotes the universal gravitational constant and M corresponds to the mass of

a black hole. In electronic systems, the analogy is readily established by replacing the speed

of light by the Fermi velocity vF , and the black hole radius is a parameter rt given by the tilt

profile, rH → rt , which marks the boundary between a type I and an overtilted type II region.

In the main text, in contrast to the spherical Schwarzschild blakc hole, we considered tilt

profiles with axial symmetry. However, as far as the motion projected onto the plane perpen-

dicular to the axis, the motion described by the geodesic equation is identical to that given

by the semi-classical equations of tilted Weyl node, if the Berry curvature term is neglected.

Specifically, we shall demonstrate the equivalence between Hamilton’s equations given by the

dispersion relation coincides with the geodesic equation, which is the equation of motion for

a particle moving under gravity. The key lies in the fact that in the Hamiltonian approach to

study a general relativistic particle, the appropriate Hamiltonian to be used is [33]

H({xα(τ)}, {kβ(τ)}) =
1

2
gµν({xα(τ)})kµ(τ)kν(τ), (B.1.5)

where {xµ(τ)} and {kµ(τ)} are the canonical coordinates and momenta, and τ is an affine

parameter, which in general is not the time coordinate. We shall justify the relativistic

Hamiltonian by first deriving the geodesic equation from it, and then establish the mapping

by showing that it also gives the equations of the tilted Weyl node. We have that the

Hamilton’s equations read

dxµ

dτ
=
∂H
∂kµ
= gµνkν, (B.1.6)

dkµ
dτ
= −

∂H
∂xµ
= −
1

2
(∂µg

νσ)kνkσ, (B.1.7)
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where ∂µgνσ = ∂gνσ

∂xµ
. By multiplying both sides of the first equation with the metric tensor,

and using gµνgνα = δαµ , we obtain the relation

kµ = gµν
dxν

dτ
, (B.1.8)

namely, the four-momenta is just the four-velocity. Taking a further derivative of the first

equation with respect to τ , we have

d2xµ

dτ2
= gµν

dkν
dτ
+ (∂λg

µν)
dxλ

dτ
kν = g

µν dkν
dτ
+ (∂λg

µν)
dxλ

dτ
gνσ

dxσ

dτ
.

Substituting in Eq. (B.1.7), we get

d2xµ

dτ2
= −
1

2
gµν(∂νg

σλ)kσkλ + (∂λg
µν)gνσ

dxλ

dτ

dxσ

dτ
. (B.1.9)

We eliminate kσ by using Eq. (B.1.8) and arrive at

d2xµ

dτ2
= −
1

2
gµν(∂νg

σλ)gσαgλβ
dxα

dτ

dxβ

dτ
+ (∂λg

µν)gνσ
dxλ

dτ

dxσ

dτ
. (B.1.10)

From gµνg
νσ = δσµ follows ∂σgµν = −gµα(∂σgαβ)gβν, which leads to

d2xµ

dτ2
=
1

2
gµνgσγgσα(∂νgγκ)g

κλgλβ
dxα

dτ

dxβ

dτ
− gµα(∂λgαβ)gβνgνσ

dxλ

dτ

dxσ

dτ
(B.1.11a)

=
1

2
gµν(∂νgαβ)

dxα

dτ

dxβ

dτ
− gµα(∂λgασ)

dxλ

dτ

dxσ

dτ
(B.1.11b)

=
1

2
gµν

(
(∂νgαβ)− 2(∂αgνβ)

)
dxα

dτ

dxβ

dτ
(B.1.11c)

=
1

2
gµν

(
(∂νgαβ)− (∂αgνβ)− (∂βgνα)

)
dxα

dτ

dxβ

dτ
(B.1.11d)

= −Γµαβ
dxα

dτ

dxβ

dτ
, (B.1.11e)

where Γµαβ = gµν(∂αgνβ + ∂βgνα − ∂νgαβ)/2 are the Christoffel symbols. This is precisely

the geodesic equation [33, 160]. Acceleration in general relativity is defined in terms of the

covariant derivative ∇α as

aµ(τ) =
dxα

dτ
∇α

dxµ

dτ
≡
dxα

dτ

(
∂α
dxµ

dτ
+ Γµαβ

dxβ

dτ

)
. (B.1.12)
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And we see that the geodesics, i.e. trajectories xα(τ) are solutions to the geodesic equation

satisfy

aµ(τ) =
d2xµ

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0. (B.1.13)

That is geodesics are exactly those curves with with a vanishing acceleration aµ(τ) = 0,

which is just the weak form of general equivalence [160].

Having shown the Hamiltonian Eq. (B.1.5) does indeed give the geodesic equation, we shall

now also show that the Hamilton equations can be re-written as the semiclassical equations

of motion of the tilted Weyl node. For this we need to change the parameterization of the

dynamical variables from τ to t.

In fact, besides Hamilton’s equations, for Eq. (B.1.5) to describe the general dynamics

of a massless relativistic particle with the correct energy-momentum relation, one has to

impose as an on-shell constraint that H
(
{x i}, {ki}

)
= 0, where xµ and kµ are solutions to

Hamilton’s equations [33]. Recall the definition of the four-momentum kµ = (−E/c,k),
and we may write out the relativistic Hamiltonian explicitly as

H
(
E, {x i}, {ki}

)
=
E2

2c2
g00 −

E

c
g0iki +

1

2
g i jkikj . (B.1.14)

In the main text it is remarked that there are two solutions of energy E({x i}, {ki}) which

satisfy this equation, and are exactly the tilted dispersion relation of the tilted Weyl node.

Upon taking the derivative of H
(
{x i}, {ki}

)
= 0 with respect to ki , and noting that the

Hamilton’s equation of the 0-component of xµ reads

dt

dτ
=
1

c

dx0

dτ
=
1

c

∂H
∂k0
= −

∂H
∂E

, (B.1.15)

we have

0 =
∂H
∂E

∂E

∂ki
+
∂H
∂ki
= −

dt

dτ

∂E

∂ki
+
∂H
∂ki

. (B.1.16)

Or, using Eq. (B.1.6),

dx i

dτ
=
∂E

∂ki

dt

dτ
. (B.1.17)
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From this we immediately obtain the semiclassical equations of motion

dx i

dt
=
dx i

dτ

(
dt

dτ

)−1
=
∂E

∂ki
. (B.1.18)

Similarly, we may obtain the semi-classical equation for the momentum by taking the partial

derivative of Eq. (B.1.14) with respect to x i , where we get

0 = −
∂E

∂ki

dt

dτ
+
∂H
∂x i

. (B.1.19)

Again using the Hamilton’s equation, we obtain for the momenta

dki
dt
=
dki
dτ

(
dt

dτ

)−1
= −

∂E

∂x i
. (B.1.20)

This then completes the mapping between the Weyl node to the particle in curved space-

times.
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B.2 Deflection angle

In this appendix, we shall discuss the calculation of the deflection. For this, we shall derive

the so-called trajectory equation, which expresses the angular coordinate φ as function of r .

First, let us check a claim that we made in the main text, where we stated that the in-

plane dynamics (θ = π/2) in the Schwarzschild spacetime with u(r) = u(r)r̂ is the same as

that of the axially symmetric case. To show this, we first transform the metric to spherical

coordinates. This can be effected by acting on the metric matrix with the Jacobian matrix

of the coordinate transformation (x, y , z) → (r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)). We

have

JTgJ =



u(r)2/c2 − 1 −u(r)/c 0 0

−u(r)/c 1 0 0

0 0 r 2 0

0 0 0 r 2 sin2(θ)

 , (B.2.1)

which defines the transformed metric g′µν ≡ (JTgJ)µν. Using the transformed inverse metric,

the relativistic energy-momentum relation reads

H =
1

2

(
k21 +

k22
r 2
+

k23

r 2 sin(θ)2
−
(E − k1u(r))2

c2

)
, (B.2.2)

where the ki ’s are the momenta in the transformed coordinates, and not the Euclidean ones.

These are of course related to the spherical coordinates components of k: kr , kθ and kφ.

Let us again solve for E that satisfies H = 0, which gives

E± = k1u(r)± c
√
k21 + (k

2
2 + k

2
3 csc

2(θ)) /r 2. (B.2.3)

For this to agree with Eq. (B.1.4), we then need to identify k1 = kr and k22 + k
2
3 csc(θ) =

r 2(k2θ + k
2
φ), where kr = k · r̂, kθ = k · θ̂, kφ = k · ϕ̂. We also used that by definition,

k2x + k
2
y + k

2
z = k2r + k

2
θ + k

2
φ, and u(r) · k = u(r)kr . We may restrict the motion onto

the xy -plane, by imposing the constraint L = Lz ẑ = rkφẑ, namely the angular momentum

points perpendicularly to the plane of motion. This then implies the momentum also lies

on the xy -plane. Note a planar motion also implies that dθ/dτ = k2/r 2 = 0, and thus k2

as well as kθ vanish. By our discussion above, this leads to that the angular momentum is

k3 = Lz , and is a conserved quantity. With these considerations, the equations of motion of
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the φ, r coordinates read

dφ

dτ
=
k3
r 2
, (B.2.4)

dr

dτ
= kr

(
1−

u(r)2

c2

)
+ E

u(r)

c2
= ±
1

c

√
E2 −

k23
r 2

(
c2 − u(r)2

)
. (B.2.5)

Transforming to real time by multiplying both sides of the above equations by the factor

(dt/dτ)−1 = (∂H/∂E)−1 = ±c/
√
k2r + L

2
z/r

2, we recover the plane semi-classical equa-

tions of motion Eq. (4.3.6), except for different tilt profiles u are being used.

We may now immediately obtain the trajectory equation by dividing the two equations using

quotient rule of total derivative, which gives

dφ

dr
= ±

c Lz

r 2
√
E2 − εp,eff(r)

. (B.2.6)

This is Eq. (4.3.8) in the main text, with the mere differences being the replacement c → vF

and r → ρ.

Finally re-arranging the differentials, we may then calculate the deflection angle by (we

now use the notations as in the main text)

∫
dφ = ±

∫
vF Lz dρ

ρ2
√
E2+ − εp,eff(ρ)

. (B.2.7)

We need to determine the signs. Recall the periapsis is the point of closest approach to the

center of the tilt profile on the trajectory. Let it be at ρ = ρp, and denote the tilt at the

periapsis as u2p = u(ρp)
2 = v 2F (ρt/ρp)

2α. When the particle is approaching from far away

up to the periapsis, the angular component measured from the tilt center decreases due to

attraction, and thus we shall the − sign. Conversely, when it shoots off leaving the periapsis,

we shall take the + sign.

The periapsis is completely determined by the impact parameters Lz and E+, since by defi-

nition we have

dρ

dφ

∣∣∣∣∣
ρ=ρp

= 0, (B.2.8)
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which implies that

0 =

(
dρ

dφ

)2 ∣∣∣∣∣
ρ=ρp

=

(
E+
Lz

)2
ρ4p − ρ2p(v 2F − u2p), (B.2.9)

and thus

(
E+
Lz

)2
=
1

ρ2p
(v 2F − u2p). (B.2.10)

Substitute this into Eq. (B.2.6) and thus eliminating E and Lz , the deflection angle is then

given by

π + ϕ =
∫ φ1+π+ϕ
φ1

dφ =

(
−
∫ ρp
∞
+
∫ ∞
ρp

)
vF√

1
ρ2p
(v 2F − u2p)ρ4 − ρ2(v 2F − u(ρ)2)

dρ

= 2
∫ ∞
ρp

vF√
1
ρ2p
(v 2F − u2p)ρ4 − ρ2(v 2F − u(ρ)2)

dρ, (B.2.11)

where ϕ = φ1−φ2 is the deflection angle as shown in Fig. 4.4. This Eq. (4.3.9) in our main

text. This integral can be numerically evaluated, but lacks an analytical expression. However,

for ρt/ρp ≪ 1, we may perform an asymptotic expansion in ρt/ρp. To leading order, we find

π + ϕ ≈ 2
∫ ∞
ρp
dρ

 ρp

ρ
√
ρ2 − ρ2p

+
ρp
(
u2p ρ

2 − u2 ρ2p
)

v 2F ρ
(
ρ2 − ρ2p

)3/2
 (B.2.12)

= π + 2
∫ ∞
ρp
dρ
ρp
(
u2p ρ

2 − u2 ρ2p
)

v 2F ρ
(
ρ2 − ρ2p

)3/2 (B.2.13)

The second term may be evaluated by changing the integration variable to the dimensionless

s = ρ/ρp, and from the integral table we obtain a final expression for the lensing angle in

terms of the gamma function

ϕ ≈
u2p
v 2F

∫ ∞
1
ds

s2 − s−2α

s (s2 − 1)3/2
=
u2p
v 2F

√
π Γ

(
3
2
+ α

)
Γ (1 + α)

. (B.2.14)
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B.3 Transverse shift

In this appendix, we shall give the details for calculating the transverse shift ∆z . As in the

main text, without loss generality we set kz = 0. Similar to the calculation of deflection

angle, we divide the equations of motion Eq. (4.3.4) and Eq. (4.3.5a), and use quotient to

obtain

dz

dρ
=
ż

ρ̇
= −

χ

2 k3

k·ρ̂
ρ

(
∂u
∂ρ
− u
ρ

)
Lz

u + vF
k·ρ̂
k

. (B.3.1)

We eliminate k · ρ̂ and k in favor of the conserved impact parameters E+ and Lz by using

E+ = u k · ρ̂+ vF k, (B.3.2)

k2 = (k · ρ̂)2 + L2z/ρ2. (B.3.3)

There are two solution, which we shall label as (k · ρ̂, k)→ (k (σ)ρ , k (σ)) with σ = ±1. These
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Figure B.15. Coordinates of an arbitrary lensing trajectory. Spatial coordinates are plotted in panel
(a), while panel (b) displays the two roots k(σ)ρ , together with kρ of the trajectory. At the periapsis
(marked by a black line), kρ switches between the two branches.

solutions read

k (σ)ρ =
E+ u − σ

√
L2z u

2 v2
F
−L2z v4F+E

2
+ v
2
F
ρ2

ρ

u2 − v 2F
, (B.3.4)

k (σ) =

√(
k
(σ)
ρ

)2
+
L2z
ρ2
. (B.3.5)
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The two signs of σ determine which one of the solution we shall take in evaluating the shift

angle. While approaching the periapsis ρp, we shall use the one with σ = +1, and when

escaping, σ = −1. see also Fig. B.15. Substituting this in Eq. (B.3.1), we then have the

integral expression of the transverse shift

∆z = −
∫ ρp
∞
dρ

χ

2 (k (−))3

k
(−)
ρ

ρ

(
∂u
∂ρ
− u
ρ

)
Lz

u + vF
k
(−)
ρ

k(−)

−
∫ ∞
ρp
dρ

χ

2 (k (+))3

k
(+)
ρ

ρ

(
∂u
∂ρ
− u
ρ

)
Lz

u + vF
k
(+)
ρ

k(+)

=
∫ ∞
ρp
dρ

 χ

2 (k (−))3

k
(−)
ρ

ρ

(
∂u
∂ρ
− u
ρ

)
Lz

u + vF
k
(−)
ρ

k(−)

−
χ

2 (k (+))3

k
(+)
ρ

ρ

(
∂u
∂ρ
− u
ρ

)
Lz

u + vF
k
(+)
ρ

k(+)

 . (B.3.6)

Again these integrals admit no analytic solutions. Howver, for lensed trajectories that stay

far from the tilt center, i.e., trajectories for which ρt/ρ ≪ 1, which implies u, up ≪ vF , we

may obtain an analytic expression by expanding the integrand in ρt/ρ. To leading order, the

integral can then be approximated as

∆z ≈ χ
∫ ∞
ρp
dρ
u2 (1 + α) ρ2p (ρ

2 − 2 ρ2p)
Lz v

2
F ρ
3
√
ρ2 − ρ2p

. (B.3.7)

Changing the integration variable to dimensionless s = ρ/ρp, we have the asymptotic value

of the shift angle as

∆z ≈ χ
(1 + α)

Lz
ρp

(
ρt
ρp

)2α ∫ ∞
1
ds
s−3−2α (s2 − 2)√

s2 − 1

= −χ
(1 + α)

Lz
ρp

(
ρt
ρp

)2α √
π α

2

Γ
(
α+ 1

2

)
Γ(2 + α)

= −χ
u2p
v 2F

ρp
Lz

√
π Γ

(
α+ 1

2

)
2 Γ(α)

, (B.3.8)

valid for ρt/ρp ≪ 1.
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Chapter 5
Conclusion

In the two parts of this thesis, we have explored role of geometry in the semi-classical equa-

tions of motion of electrons in crystalline solids. They are directed at two aspects: the

momentum space quantum geometric contributions to effective electron dynamics, and the

remarkable analog gravitational lensing phenomena in tilted Weyl semi-metals.

In Part I, we developed a systematic operator algebra formalism to study the quantum ge-

ometric contributions to the semi-classical equations of motion when an inhomogeneous

external electromagnetic field is applied. We demonstrated how band projection plays a

fundamental role in the emergence of such corrections, since it substantially modifies the

commutation relations and is the origin of such geometric terms. This observation high-

lights the fact that such corrections to the semi-classical equations of motion as the familiar

Berry curvature induced anomalous velocity are fundamentally multi-band effects. Given the

generality of our approach, this may prove to be useful in the study of quantum geometry

in other physical systems as well, and not just electronic systems. Furthermore, let us also

mention that the momentum generating operator M̂B(a) =
(
e−ia·r̂

)
B

may be viewed as the

Fourier components of the density operator δ(r− r̂), if we take a to be a crystal momentum

and not just a parameter to be differentiated with. It is recently realized that [159], if their

commutators close to form an algebra, namely [M̂B(a), M̂B(b)] = f (a, b; c)M̂B(c), then

the resultant algebra is necessarily of the so-called Girvin-MacDonald-Platzman(GMP) form

[50, 51]. The GMP algebra was first found in the fractional quantum Hall effect (FQHE),

where the projection is onto the lowest Landau level. It was argued that the density operators

forming a GMP algebra is a key signature of fractional Chern insulators [115, 117], systems

which have the FQHE in a topological band without magnetic field. It is then possible that

the operator formalism and operator form of quantum geometric quantities introduced in

this thesis may be of use in understanding the band structure of such novel phases of matter.
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In Part II, we transitioned from momentum space geometry to real-space phenomena by

examining electron dynamics in in-homogeneously tilted Weyl semi-metals. Here we explored

a remarkable analogy between the semiclassical trajectories of electrons near Weyl nodes and

gravitational lensing effect of massless particles moving in curved space-times. Using both a

low-energy effective continuum description and microscopic lattice model, we studied vari-

ous aspects of the lensing effects, including the scaling behavior of deflection angles, particle

capture by the "photon cylinder", and transverse shifts due to the Berry curvature. These

findings bridge concepts from condensed matter physics and general relativity, paving a way

to the study of relativistic physics using topological semi-metals. In outlook, we envision

that such spatially-varying tilt profiles in Weyl semi-metals may be can be experimentally

realized using a magnetization texture or locally applied strain, which might lead to a field of

"tiltronics". That is by engineering different tilt profiles in topological semi-metals, we may

be able to produce devices that have a manipulatable electronic transport behavior. In fact

note how the separatrix has a similar role of a high- pass filter in electronics [67]. This then

also leads to the question of how such spatially-varying tilt profiles can be realized in the

lab. We have already mentioned the possibility of applying strain. Another, probably more

easily engineered, option is to use a magnetization texture [93]. Regardless of its origin, the

presence of such spatial in-homogeneity requires one to consider the effect of impurity and

disorder that may affect the bulk electron transport. On top of that, it is also natural to

ask whether the geometric contributions to electron dynamics in in-homogeneous external

fields studied in Part I of the thesis would also show up. We shall leave all such questions

for future research.
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