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Abstract. Quantum computers allow a near-exponential speed-up for specific applications
when compared to classical computers. Despite recent advances in the hardware of quantum
computers, their practical usage is still severely limited due to a restricted number of available
physical qubits and quantum gates, short coherence time, and high error rates. This paper lays
the foundation towards a metric independent approach to quantum circuit optimization based
on exhaustive search algorithms. This work uses depth-first search and iterative deepening
depth-first search. We rely on ZX calculus to represent and optimize quantum circuits through
the minimization of a given metric (e.g. the T-gate and edge count). ZX calculus formally
guarantees that the semantics of the original circuit is preserved. As ZX calculus is a non-
terminating rewriting system, we utilise a novel set of pruning rules to ensure termination
while still obtaining high-quality solutions. We provide the first formalization of quantum
circuit optimization using ZX calculus and exhaustive search. We extensively benchmark our
approach on 100 standard quantum circuits. Finally, our implementation is integrated in the
well-known libraries PyZX and Qiskit as a compiler pass to ensure applicability of our results.

Keywords: Quantum Circuit Optimization · ZX Calculus · Exhaustive Search.

1 Introduction

Quantum computers allow a near-exponential speed-up for specific applications when compared
to classical computers. Typical examples that are benefitted by quantum computing include the
simulation of quantum systems, solving combinatorial problems, performing machine learning and
breaking cryptography [23]. However, current quantum computers lack the resources to address
complex real-world problems. These restrictions concern the number of available physical qubits
and quantum gates, high error rates, and a short coherence time. Quantum error correction aims
to mitigate these challenges at the cost of a higher resource demand [9].

Similarly to classical computing, quantum circuits describe quantum programs within the quan-
tum gate model. These circuits are independent of an underlying architecture and allow universal
computation [10]. Users typically use Clifford gates with the T-gate as the chosen universal gate
set because it can be efficiently simulated on classical computers [1]. However, different types of
gates require varying amounts of resources, with the T-gate requiring more physical qubits and
error correction code than Clifford gates to be implemented in a quantum device [19].

Inherent limitations in quantum architecture are the number of available physical qubits and
quantum gates, as well as a short coherence time. These limitations can be addressed by architecture-
dependent optimization that improves the mapping of a quantum circuit onto a specific quantum
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hardware. Architecture-dependent quantum circuit optimization can be treated as a classical op-
timization problem that can be solved exactly [41]. Other methods include heuristics and deep
learning [30,20].

In this paper, we target architecture-independent optimization which aims to simplify a quantum
circuit by reducing general and common limitation factors across architectures such as the number
of quantum gates, logical qubits and the circuit depth. Despite the existence of infinite universal
gate sets, common methods employ gate commutation rules [26] and circuit simplification [35] for
frequently used universal gate sets. These heuristic approaches suffer from several drawbacks. First,
it is necessary to prove that each new simplification rule is correct, to make sure that the semantics
of the original circuit is preserved. Second, there is no guarantee of optimality, even for small circuits.
And finally, the heuristics are tailored to optimize one particular objective and must be redesigned
when the requirements change. To tackle these challenges, several optimization methods based on
ZX calculus (Section 2) recently emerged [15,38].

ZX calculus is a universal, compact and complete rewriting system [11,13]. An object in ZX
calculus is depicted graphically and called a ZX diagram. Quantum circuits and ZX diagrams both
represent a linear map between qubits. ZX calculus is universal because every quantum circuit can
be converted to a ZX diagram. It is complete because applying any rule preserves semantics, which
means that the linear map of qubits remains unchanged [3,4,27]. Finally, ZX calculus is compact
because it consists only of two generators and eight rules. A ZX diagram can be converted back to
a quantum circuit, which is a non-trivial process known as the circuit extraction problem [6].

However, some characteristics of ZX calculus make the design of an optimization algorithm
challenging:

– High memory requirements: Real-world quantum circuits result in large ZX diagrams with
high memory requirements for every state.

– Non-terminating: Infinite rewriting sequences exist.
– Failed states: The extraction of ZX diagrams to quantum circuit might fail (or be prohibitively

long) with current algorithms. Checking if a diagram is extractable is time consuming and
prevents us from exploring a large number of nodes.

In light of these challenges, we contribute a proof of concept to quantum circuit optimization
by employing iterative deepening depth-first search (IDDFS) to systematically explore the rewritten
ZX diagrams. IDDFS is a well-known state-space search strategy, which is simple, memory efficient
and provides a good trade-off between exploration and exploitation [33]. Our approach is general
in the sense that the same search strategy can be employed to optimize different metrics. A metric
can be defined on the basis of characteristics of the ZX diagram or its corresponding quantum
circuit. In particular, we aim to find a ZX diagram that minimizes the T-gate count due to its high
impact on the practicability of current quantum architectures. Furthermore, we demonstrate the
metric independence of our approach by optimizing the edge count of the ZX diagram. In sum, the
contributions of this paper are as follows:

1. A formal description of ZX diagram optimization and the first state-space search algorithm
applied to ZX diagram optimization (Section 3).

2. Proof of concept implementation that is extensively benchmarked on 100 standard quantum
circuits that is equating the state-of-the-art full reduce algorithm on 89% of the circuits within
1.5 hours. (Section 4.1).

3. A PyZX and Qiskit based transpiler pass to support the practical adoption of our results.
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Fig. 1: The basic rewriting rules of ZX calculus.
2 Preliminaries

2.1 ZX Calculus

ZX calculus, introduced by Coecke and Duncan in 2008, is a universal framework for diagrammatic
reasoning between linear maps of qubits [12,13]. It provides a complete set of sound semantic-
preserving rewriting rules, even for arbitrary real phases [3,4,27,28]. Completeness signifies that
the linear map of a ZX diagram remains unchanged after modifications through a rewriting rule.
ZX calculus is universal and allows users to represent any quantum circuit as a ZX diagram. The
elementary building blocks of quantum circuits are quantum gates and wires. Analogously, the
elementary building blocks in ZX calculus—called generators—are spiders, wires, swap and Bell
states.

A spider is a tensor which operates on qubits in either the Z-basis {|0⟩ , |1⟩} (green) or X-basis
{|−⟩ , |+⟩} (red). Spiders possess n inputs, m outputs and carry a phase α. The linear map of a
spider for phase α = 0 results in the identity matrix 1l

2m×2n
and therefore acts as a wire. Spiders

with phases that are multiples of π
2 can implement all Clifford gates. The T-gate corresponds to a

Z-spider with a phase of π
4 . Clifford gates and the T-gate form a universal gate set together.

n ... α
...m = |0, ..., 0⟩ ⟨0, ..., 0|+ eiα |1, ..., 1⟩ ⟨1, ..., 1|

n ... α
...m = |+, ...,+⟩ ⟨+, ...,+|+ eiα |−, ...,−⟩ ⟨−, ...,−|

Wires connect the outputs of one spider with the inputs of other spiders. The identity matrix 1l
implements the linear map of wires.

= |0⟩ ⟨0|+ |1⟩ ⟨1|

A yellow box connected by wires indicates a Hadamard generator. Euler decomposition, known as
the Hadamard rule (hd), splits a Hadamard generator into a sequence of Z and X spiders [16].

= π
2

π
2

π
2

The swap generator swaps the spiders on a wire and implements the identical linear map as the
swap gate in the quantum circuit notation.

= |00⟩ ⟨00|+ |01⟩ ⟨10|+ |10⟩ ⟨01|+ |11⟩ ⟨11|
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In ZX calculus, bent wires depict the Bell state and the Bell effect and are known as cup and cap.

= |00⟩+ |11⟩
= ⟨00|+ ⟨11|

A typical ZX diagram consists of many connected spiders and Hadamard generators. Matrix mul-
tiplication composes the linear map of sequentially connected spiders. The tensor product composes
the linear map between non-sequential connected spiders and Hadamards, meaning that generators
are parallel to each other.

Only topology matters is an important concept in ZX calculus. It states that the linear map
between qubits of a ZX diagram remains unchanged as long as its connectivity stays the same.
As a consequence, bending wires (e.g. cups and caps) and moving spiders do not change the ZX
diagram [13].

2.2 Rewriting Rules

This section introduces the basic rewriting rules of ZX calculus that are outlined in Figure 1 [13,40].
All rules remain valid under colour inversion. We give an example of the application of successive
rewriting rules, explained below, on a simple ZX diagram in Figure 2.

Spider fusion (f) Connected spiders of the same colour fuse through modulo-2π addition of their
phases. The reverse unfusing operation is always possible, because connecting additional spiders
with a phase of α = 0 will not change the modulo-2π addition. As a consequence, infinite spiders
can be unfused. Figure 2 highlights the fusion of two green non-phase-carrying spiders with their
neighbouring phase-carrying spiders.

Local complementation (lc) The local complementation rule [34] originates from graph theory.
For all directly connected spiders of a target spider, local complementation connects previously
unconnected spiders and disconnects previously connected spiders. Local complementation of the
highlighted red spider in the bottom qubit row is illustrated in Figure 2. The two green spiders
connected to the highlighted red spider connect via local complementation. Performing a second
local complementation at the same red spider would disconnect the two green phase-carrying spiders
again. Pivoting describes a series of local complementations.

Colour change (h) Adding Hadamard generators to each input and output inverts the colour of
a spider. In Figure 2, all red spiders turn green with the addition of Hadamard generators.

Identity removal (i1, i2) Non-phase-carrying spiders that are directly connected to other spiders
function as wires and leave the linear map of qubits unchanged. The identity matrix 1l

2m×2n
represents

the linear map of such spiders. A single wire replaces a phaseless spider with n = 1 and m = 1.
Similarly, two directly connected Hadamard generators cancel each other out and act as a wire.
Applying the identity removal rule on the fused diagram in Figure 2 removes all non-phase-carrying
spiders that possess one input and one output. Furthermore, identity rules are used to convert a
ZX diagram to be graph-like (see Definition 1) by ensuring that spiders always connect with each
other through Hadamard generators and by the addition of potentially missing spiders at the input
and output.
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Bialgebra (b) The bialgebra rule originates from the algebraic commutation relation between the
copy and the or gate. It allows connected and opposite-coloured spiders to move through each other
at the cost of potentially adding spiders.

Copy (π, c) π copying moves an input spider that carries the phase α = π through an opposite
coloured spider to all connected wires while multiplying the phase by −1. If the input spider does
not have any input wire (n = 0) and the phase is a multiple of π, the opposite coloured spider
vanishes. This second rule is referred to as the state copying, because it copies the computational
basis through an opposite-coloured spider.
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Fig. 2: Successive applications of rewriting rules to a simple ZX diagram (to be read from left to
right and top to bottom).

2.3 ZX-based Circuit Optimization

Recent advances in quantum circuit optimization combine the ZX calculus with algorithmic, heuris-
tic or deep learning approaches [15,42,38]. PyZX is a popular Python library to work with ZX
calculus and supports state-of-the-art circuit optimization with a focus on T-gate reduction [31,32].
To simplify ZX diagrams using basic rewriting rules, PyZX assumes that the ZX diagrams are
graph-like.

Definition 1. Graph-like ZX diagrams are only composed of Z spiders (green) that are connected
by Hadamard wires. Input / Output possesses at most one wire that can only connect to one spider.

The final diagram in Figure 2 is graph-like. Every ZX diagram can be converted to be graph-like
using the h-rule and the identity rules i1 and i2.

Reducing the number of T-gates in a given quantum circuit is crucial because implementing
the required quantum error correction on quantum hardware demands significantly more resources
compared to Clifford gates [9,14].

The full reduce algorithm is the main optimization algorithm of PyZX. It aims to decrease the
number of T-gates of a given graph-like ZX diagram by targeting spiders that carry phase a multiple
of π

2 and π [32,15].
After optimizing a ZX diagram, the corresponding quantum circuit needs to be extracted. While

converting a quantum circuit into ZX diagram is a straightforward process, the opposite is #P-
hard (at least as hard as NP-complete problems) and is known as the circuit extraction problem [6].
Polynomial time algorithms exist for ZX diagrams that are graph-like and preserve the generalized
flow [5]. The disadvantage of current circuit extraction algorithms is that the connectivity of spiders
in the ZX representation is replicated by two-qubit gates in the resulting quantum circuit.
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Recent advances optimize two-qubit gates by reducing the number of edges in a given ZX
diagram. Staudacher et al. proposed a heuristic that calculates the cost based on the number of
edges after rule application and uses a greedy or stochastic algorithm to select the next rule [40].

This paper focuses on ZX diagram optimization and not on the circuit extraction problem.
Therefore, the standard PyZX extraction algorithm is used for all experiments [15].

3 ZX Diagram Optimization

Let ZX be the infinite set of all finite ZX diagrams, QC the set of quantum circuits and LM the
set of linear maps of qubits. We have two functions α : QC → ZX and extract : ZX → QC ∪ {⊥}
that convert a quantum circuit into a ZX diagram and conversely. The function extract can map
to a special element ⊥ when it fails to extract a quantum circuit from a diagram. Additionally, we
have a function γ : QC → LM that maps a quantum circuit to its linear map of qubits.

A quantum circuit optimization algorithm is a function f : QC → QC that optimizes some
properties of the quantum circuit. We say that f is semantic-preserving whenever, for all q ∈ QC,
we have γ(q) = γ(f(q)).

Let R = {h, b, lc, f, i1, i2, π, c, hd} be the set of rewriting rules presented in Section 2.2. A ZX
rewriting rule r ∈ R is a function ZX → ZX such that the function extract ◦ r ◦ α is semantic-
preserving when the extraction succeeds.

A ZX-based quantum circuit optimization algorithm is searching for an extractable ZX diagram
that optimizes one or more properties of the quantum circuit. Let q ∈ QC be a quantum circuit
and opt : ZX → Z∪ {⊥} be the optimization function mapping a ZX diagram to a metric (e.g. the
number of T-gates, edges or two-qubit gates). The function opt can map the special element ⊥ when
it fails to compute a metric from a ZX diagram. Without loss of generality, we consider that we aim
at minimizing opt . The ZX state-space of q is a set W ⊆ ZX such that w ∈ W if there exists a finite
sequence of rewriting rules r1, . . . , rn such that w = (rn ◦ . . .◦r1 ◦α)(q). The set of solutions S ⊆ W
are all the extractable ZX diagrams in W , that is, ∀w ∈ W, extract(w) ̸= ⊥ ⇔ w ∈ S. The set of
optimal solutions is the largest set O ⊆ S such that for all o ∈ O, s ∈ S, we have opt(o) ≤ opt(s).

There are challenges pertaining to the exploration of the ZX state-space. Firstly, real-world
quantum circuits result in large ZX diagrams with a high memory demand for every state. Secondly,
the state-space to explore is infinite because the ZX rules rewriting system is non-terminating, e.g.
unfusing phaseless spiders and colour changing is always possible. Thirdly, to find a solution we
must extract a circuit, which is a computationally expensive operation that may fail if the general
flow is not preserved [5]. Although it is possible to optimize a metric completely defined on the
ZX diagram (e.g. number of T-gates, vertices and edges), other metrics of interest (e.g. number of
two-qubits gates, circuit depth and overall gate count) are defined on the extracted circuit. Even
though we focus in our experiments on the T-gate and edge count, our approach is general and can
be reused for any of those metrics.

In this paper, we rely on iterative deepening depth-first search (IDDFS), which is a simple
and efficient optimization algorithm, to tackle these challenges [33]. More advanced optimization
algorithms are difficult to use in the context of ZX optimization. For example, constraint-based
combinatorial optimization such as linear programming and constraint programming require ex-
plicitly encoding the rewriting rules as constraints and do not usually support unbounded rewriting
sequences out of the box. Dynamic programming is an interesting approach to avoid re-exploring
the same state multiple times, but it requires to store a prohibitively high number of states. We
would need to find a more compact representation of states, which we leave for future work.
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An interesting aspect of IDDFS is to strike the right balance between exploration and exploita-
tion. It is based on depth-first search (DFS) which is a backtracking algorithm applying rules in
sequence until it finds a leaf node, at which point it backtracks to the previous decision made.
The problem with DFS is that wrong decisions taken early in the search tree condemn the search
strategy to explore large uninteresting subtrees. In the worst-case scenario, DFS reaches a deep leaf
node with a state that is unextractable. Instead, IDDFS applies DFS with a depth bound, explor-
ing successive search trees of increasing depth. It is especially useful when we do not have a good
heuristic to select the next node to explore, which is the case here, since it is hard to predict which
rules might lead to a better solution. Another advantage of IDDFS is to use as much memory as
DFS while exploring the search tree in breadth as well. Note that for completeness, we experiment
with DFS when evaluating our approach.

A leaf node is a ZX diagram d ∈ ZX such that one of these conditions is true:

– For all rules r ∈ R \ {h} we have r(d) = d, that is, no rule besides colour change is able to
rewrite the diagram.

– One of the pruning conditions is true.

When we reach a leaf node, we test whether opt(d) is better than the previously found solution,
if any. In case of improvement, we check whether the ZX diagram is extractable or not using
extract(d) = ⊥. If it is extractable, we save the ZX diagram as the current best solution.

Pruning conditions reduce the search tree effectively and ensure that the search terminates in
finite time. The pruning conditions used throughout this paper are the following:

– No spider unfusion. It is always possible to separate one spider into multiple spiders as long as
the mod π sum of all involved spiders remains unchanged.

– Rule bundling. If a rule can rewrite a given ZX diagram more than once, all possible modifica-
tions are performed in a batch, hence generating only one node in the search tree.

– No colour cycle. Disallowing consecutive colour changing rule application avoids infinite paths
that consist only of recolouring spiders.

– Global time limit. After a set time limit is exceeded, the search is terminated and the best
solution found so far is returned.

4 Computational Experiments

The proposed DFS and IDDFS approaches are implemented in Python and evaluated against
PyZX’s implementation of full reduce using a diverse set of quantum circuits [15,37].

Although the search algorithms employed are fairly simple and well-known, their combination
with ZX-calculus and the pruning condition implemented in a reproducible and integrated frame-
work is not straightforward. A tight integration with PyZX and Qiskit, as well as the contribution
of a Qiskit transpiler pass, ensures the reusability of our approach. The overall project is 7000 lines
of code.

Every search instance was executed on a Xeon Gold 6132 clocked at 2.6 GHz and 64 GB of 2400
MHz DDR4 of available RAM running Rocky Linux 8.10 with Python 3.12.

We evaluated the performance of the various algorithms on the complete set of 100 standard
quantum circuits using the pruning conditions introduced in Section 3. A global timeout of 1.5 hours
is set for every instance. The rules are ordered such that a change connectivity (e.g. pivoting and
local complementation) takes priority over spider count reduction (e.g. fusion and identity removal).
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Upon completion of an instance, the optimized quantum circuit can be fed into a transpilation
pipeline for further processing. In a first set of experiments, we minimized the T-gate count of
ZX diagrams. To demonstrate the generality of our approach, a second set of experiments that
minimizes the edge count of ZX diagrams is executed. The full results for every instance, including
a comparison with full-reduce and the algorithm runtimes, are available in the supplementary
material.

4.1 T-gate Reduction

Solution comparison of IDDFS and DFS

(a) Time evolution against the solution of full reduce. (b) Time evolution of the best solution found.

The DFS search exhibits poorer performance, only equating full reduce in 46% of the instances,
compared to IDDFS search. IDDFS equates full reduce in 89% of the instances. Neither DFS nor
IDDFS approaches are able to outperform full reduce within the 1.5 hour time limit. Nevertheless,
it should be noted that the DFS search is able to equate full reduce on three circuits on which
IDDFS leads to poorer results.

Figure 3a shows the time evolution of the best solution of DFS (red) and IDDFS (blue). As
neither DFS nor IDDFS outperform full reduce, only solutions that equate full reduce are shown.
DFS almost immediately equals full reduce in 41% of the instances and only equating full reduce on
additional 5% of the instances for the remaining 1.5 hours. In contrast, IDDFS requires 16 minutes
to level the performance of DFS and equals full reduce in 80% of the instances within the first 60
minutes. Overall, IDDFS equals full reduce on 89% of the instances within the 1.5 hour time limit.

4.2 Edge Reduction

Figure 3b visualizes the time evolution of the best solution of DFS (red) and IDDFS (blue). Within
the 1.5 hour time limit, IDDFS is able to find the best solution in 86% of the instances.

DFS results only in the best solution exclusively in 1% of the instances and shares the best solu-
tion in 31% of the instances. IDDFS improves the performance of DFS and leads to an exclusively
best solution for 54% of the instances and shares its best solution in 32% of the instances.
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It should be noted, that despite being designed to reduce the T-gate count, full reduce achieves
the exclusively best solution on 13% of the instances and shares a best solution in an additional 2%
of the instances.

Compared to the unoptimized quantum circuit, DFS improves the edge count on average by 11%.
IDDFS exhibits better performance and reduces the edge count by 22% within the 1.5 hour time
limit. Full reduce improves the edge count by 3%. We optimized the edge count to demonstrate the
applicability of our algorithm to other metrics. Furthermore, optimizing the edge count is interesting
because current state-of-the-art circuit extraction algorithms replicate the connectivity of spiders
with two-qubit gates, therefore potentially increasing the circuit depth and two-qubit gate count.

Our results are more contrasted as reducing the edge count did not necessarily translate in a
reduction of the of two-qubit gate count. On the contrary, more two-qubit gates are added for the
vast majority of instances. DFS results in a higher two-qubit gate count in 41% of the instances and
only reduces the two-qubit gate count in 1% of the instances. IDDFS yields to poorer performance
and adds two-qubit gates in 85% of the instances and reduces the two-qubit gate count in 1% of
the instances. translates in a reduction of the two-qubit gate count. Staudacher et al. showed that
they were able to translate an average reduction in the edge count by 29% in a reduction of the
two-qubit gate count by 21% [40].

5 Related Work

Recent advances have been made to optimize the T-gate count in quantum circuits. Fault tolerant
quantum computing introduces quantum error correction code that increases the resource demand,
especially for the T-gate. Improvements in the T-gate count that leverages the quantum error
code were achieved with Matroid partitioning [2]. Template based techniques improve the quantum
circuit synthesis by reducing the T-gate count and circuit depth [8].

The first proposed optimization strategy using ZX calculus is restricted to Clifford gates [18].
The state-of-the-art optimization algorithm full reduce targets Clifford and T-gates [15,32]. Other
techniques optimize the T-gate count through the treatment of Clifford gates and Pauli operators as
π
4 rotations around each other [43]. Additionally, new causal flow preserving optimization techniques
ensure the extractability of a quantum circuit from a ZX diagram [24]. An improved T-gate count
for arithmetic circuits, e.g. integer multiplication, was found by applying the ZX rewriting rules [29].
Reinforcement learning strategies based on ZX calculus that target the T-gate and two-qubit gate
count emerged in recent years [38,39]. Heuristics that target the two-qubit counts ensures the
usefulness of ZX calculus for photonic quantum computing and other quantum hardware that does
not perform error correction [40]. Other approaches combine heuristics and ZX calculus for the
architecture-aware optimization of quantum circuits [21,42].

Heuristic approaches deal with the time complexity involved in quantum circuit optimization.
In principle, a heuristic pattern matching algorithm is combined with gate commutation rules to
minimize the total gate count [25]. Boolean satisfiability is an exact approach for the optimization
of classical circuits. Despite the challenging encoding of quantum gates, advances have been made
to bring this approach to quantum circuit optimization [36,7]. Recently, reinforcement learning
techniques emerged for quantum circuit optimization and mapping of quantum circuits for specific
quantum architectures [20,17]. Gate commutation rules and templates proved also advantageous for
the mapping of quantum circuits [26].
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6 Conclusion

This paper lays the foundation to apply exhaustive search to ZX diagrams for the optimization of
quantum circuits. The combination of the semantics-preserving rewriting rule of ZX calculus with
the exhaustive search algorithms depth-first search (DFS) and iterative deepening depth-first search
(IDDFS) enables to target metrics of the ZX diagram or its corresponding quantum circuit without
being designed for one specific metric.

Our results indicate that IDDFS is a more effective approach for ZX diagram optimization than
DFS. Within the 1.5 hour time limit IDDFS is able to equate state-of-the-art algorithms that reduce
the T-gate count in 89% of the instances and competes with novel approaches that reduce the edge
count, demonstrating the applicability of our approach.

A Qiskit compiler pass that implements the DFS and IDDFS approach, with configurable prun-
ing conditions and integration with the PyZX library, is available on GitLab (https://gitlab.
com/NetForceExplorer/zx_dfs/-/releases/v1.0-OLA_2025).

Our results demonstrate that not every reduction in the edge count translates into a reduc-
tion in the two-qubit gate count. Upcoming work could focus on the enhancement of the edge
count metric to better approximate the two-qubit gate count after circuit extraction. Future efforts
should address the scalability issue for large circuits of the IDDFS and DFS based optimization.
The principal idea of ZX diagram optimization is to change the connectivity and the fusion of
spiders, hence a limited discrepancy search could improve the performance [22]. The application
of dynamic programming techniques could trade computational performance for higher memory
requirements. Finally, bridging the gap from architecture-independent optimization towards quan-
tum architecture-aware optimization could address the execution of real-world quantum circuits on
next-generation hardware.

Tobias Fischbach acknowledges financial support from the Institute for Advanced Studies of the Univer-
sity of Luxembourg through a YOUNG ACADEMICS Grant (YOUNG ACADEMICS-2022-NETCOM)
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