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Abstract. Automated defect detection in photovoltaic (PV) modules is
essential for their maintenance and efficiency, yet challenges such as lim-
ited and imbalanced datasets hinder the adoption of high-accuracy sys-
tems. This study evaluates six semantic segmentation architectures based
on U-Net and SegNet, paired with VGG16, MobileNet, and ResNet50 en-
coders, and trained on the 29-class dataset of PV module electrolumines-
cence (EL) images. To address dataset imbalance, custom class weights
were applied for all the feature and defect classes. VGG16-UNet out-
performed other architectures, achieving a mean intersection over union
(ToU) of 0.663 for feature classes and 0.326 across defect classes. In par-
ticular, it improved the detection of rare defects, such as dead cell, by
0.129 IoU. While previous research focused on a specific subset of classes,
this study is the first to provide a comprehensive performance evalua-
tion across all classes. It establishes a baseline for multi-class semantic
segmentation in PV defect detection, laying the groundwork for further
industrial applications such as in-field defect detection integrated into
solar panel cleaning robots. Our implementation is publicly available at
https://github.com /sntubix/pv-defect-segmentation, facilitating further
research and development.

Keywords: Photovoltaic defects - Semantic segmentation - Electrolu-
minescence imaging.

1 Introduction

Energy is central to addressing the climate crisis, serving as both a significant
challenge and a key solution. Solar energy, the widely adopted renewable technol-
ogy, accelerates clean energy transitions, fueling rapid expansion in solar photo-
voltaics (PV) [3]. This growth drives demand for efficient cleaning, monitoring,
and maintenance of PV modules, the core components of PV systems. These
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modules are prone to defects caused by aging and environmental factors, which
reduce energy efficiency, shorten panel lifespan, and elevate operational costs.
Advanced monitoring techniques, particularly imaging modalities such as elec-
troluminescence (EL), have emerged as essential tools for detecting and localizing
such degradation [I5IT9).

In this context, advancements in robotics and artificial intelligence (AI), par-
ticularly in computer vision (CV), increasingly align with PV system initia-
tives. The multidisciplinary capabilities of these technologies—providing pre-
cision, productivity, and intelligence—make them practical for manufacturing,
installation, and inspection [12]. However, current CV-based defect detection
approaches face critical bottlenecks, notably limited availability of large-scale,
design-agnostic datasets encompassing diverse defect types. Moreover, the under-
representation of specific defect categories results in severe dataset imbalances,
limiting the generalization capability of trained deep learning models. As a con-
sequence, fully automated, high-accuracy, in-field defect detection systems have
not yet been widely adopted in industrial PV system practices [4J5123].

This study presents our preliminary work on integrating CV-based defect de-
tection into solar panel cleaning robots. In this initial phase, we utilize an existing
dataset to train and evaluate semantic segmentation models for defect detection
in electroluminescence (EL) images. To the best of our knowledge, this study
is the first to comprehensively evaluate the performance on 29 distinct classes
covering both defect and feature categories. An implementation of six semantic
segmentation models is provided to ensure reproducibility and accessibility for
future research, with the trained models establishing baselines for subsequent
fine-tuning. By conducting a comprehensive evaluation across a diverse range of
classes and progressing toward the development of a large-scale, design-agnostic
dataset along with robust deep learning methodologies, this research addresses
a critical gap in the automated maintenance and monitoring of photovoltaic
modules.

The rest of the paper is organized as follows: Section [2| reviews the state-of-
the-art advancements in datasets and deep learning architectures for PV mod-
ule defect detection. Section [3] details the proposed methodology, and Section
[] presents a comprehensive quantitative and qualitative evaluation of our ap-
proach. Finally, Section [5] summarizes the key findings and explores promising
directions for future research.

2 Related Work

This section provides an overview of prior research concerning two core aspects of
CV-based PV module defect detection: datasets and deep learning architectures.
2.1 Datasets

Modern industrial defect detection utilizes imaging modalities such as electrolu-
minescence (EL), photoluminescence (PL), infrared (IR), ultraviolet (UV), RGB,
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and thermal imaging. Each modality differs in specifications, operational condi-
tions, and suitability for specific PV cell types and defects [19/26]. Although sev-
eral EL imaging datasets have recently emerged, large-scale, balanced datasets
encompassing diverse defect types for all modalities remain scarce.

EL datasets are most prevalent, exhibiting significant variations in size and
annotation types. The ELPV dataset, including 2,624 EL images and four de-
fect classes, served as the first benchmark [2I[4]. Its extension, E-ELPV, further
expands the classification to five defect classes [6]. The SDLE dataset includes
1,028 EL images for classifying good, cracked, and corroded cells [27]. PVEL-AD
provides 36,543 EL images with bounding box annotations for object detec-
tion [32]. The UCF dataset features 11,851 annotated EL images and 17,000
test images for segmenting ten defect classes [5]. The SCDD dataset is among
the most comprehensive, encompassing 29 classes, 13 features corresponding to
intrinsic components of the PV module design and 16 defects representing ex-
trinsic faults. It includes segmentation masks for 765 EL images, sourced from
a diverse range of PV module types [24].

Beyond EL datasets, the Infrared Solar Modules dataset comprises 20,000
low-resolution IR images for classification tasks, with 12 classes that include
11 anomaly types and one class for normal modules [20]. RGB images, widely
used in aerial imaging for defect detection, lack comprehensive publicly available
datasets. A notable exception is a global collection of solar installation images
[26].

For the initial phase of this study, we selected the SCDD dataset to facilitate
the training and evaluation of various deep learning architectures.

2.2 Deep-learning Architectures

Deep learning techniques have been widely applied for PV module defect detec-
tion in EL images, focusing on classification, object detection, and binary seg-
mentation [S9I25133]. For multi-class semantic segmentation tasks, models such
as U-Net [28] and SegNet [I] have demonstrated strong performance [I3I1824].

While earlier studies, such as [31] and [5], predominantly concentrated on
a restricted subset of defect classes, the introduction of the SCDD dataset fa-
cilitated the investigation of a broader spectrum of classes. Pratt et al. in [24]
have trained four models, including two U-Net variants, on a 24-class version of
SCDD dataset. They have optimized and reported their model performances for
a subset of the five most common defects (crack, gridline, inactive) and features
(ribbons, spacing). SEiPV-Net [13], another model trained on SCDD, integrates
Dense and Successive Features (DSF), Hierarchical Feature Precision and Ex-
traction (HFPE), Contextual Characteristics Extraction and Attribute Fusion
(CCEAF), and attention gate blocks to enhance segmentation accuracy. The
same subset of most common classes is used for the evaluation and optimization
of SEiPV-Net. Similarly, Attention-Based SegNet [I8] combines a SegNet with
a VGG16 [30] encoder and Convolutional Block Attention Module (CBAM) to
enhance fine-grained segmentation, surpassing the performances reported in [24]
and [I3] on the same subset of classes.
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Fig.1: Overview of the model architecture: Six models—ResNet50-UNet,
MobileNet-UNet, VGG16-UNet, ResNet50-SegNet, MobileNet-SegNet, and
VGG16-SegNet—trained on EL images and annotation masks from the SCDD
dataset [24].

Emerging Directions: Semi-supervised and self-supervised learning tech-
niques offer promising approaches to address the scarcity of large-scale annotated
datasets [22]. The state-of-the-art includes studies employing self-supervised
learning for solar panel segmentation and for solar cell classification [14129].
A recent study applies momentum contrast-based self-supervised learning for
module classification on the ELPV dataset, categorizing modules as typical or
irregular [I1]. Despite these developments, the application of such techniques to
PV defect detection considering a wide range of defects remains largely unex-
plored, highlighting a significant opportunity for future research.

3 Methods

In this study, we prioritized multi-class semantic segmentation due to its ability
to localize and quantify multiple classes within a single image, thereby preserving
the maximum amount of information from EL images. We trained and evaluated
six semantic segmentation architectures based on the U-Net and SegNet models,
utilizing three distinct encoder backbones: VGG16, MobileNet, and ResNet50.
This approach leveraged the unique strengths of each backbone in feature ex-
traction, enabling a comparative analysis of their performance [1I7]. An overview
of the employed architectures and the pipeline is provided in Fig.
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(a) CSIR00391 (b) ribbon (c) sp multi (d) corrosion cell

(e) CFVS00027 (f) crack (g) inactive (h) sp mono

Fig.2: Representative ground truth annotations from the SCDD dataset [24].
The first row shows (a) EL image CSIR00391 with annotated features ((b)ribbon,
(c)sp multi) and defect ((d)corrosion). The second row shows (e) EL image
CFVS00027 with defects ((f)crack, (g)inactive) and feature ((h)sp mono).

We used the SCDD dataset [24] for model training, systematically restruc-
turing it after a comprehensive pixel-count analysis of annotated classes. This
restructuring aimed to achieve a balanced distribution of class samples across
the training, validation, and test sets. However, certain underrepresented classes,
such as crack rbn edge, meas artifact and clamp, were present in fewer than three
images, making it infeasible to include samples from these classes in all dataset
splits. All models were trained and evaluated using the modified SCDD dataset,
comprising a total of 2204 augmented EL frames for training, 67 frames for
validation, and 77 frames for testing, each accompanied by mask annotations
corresponding to 16 classes of defects and 13 classes of features. A detailed de-
scription of all the classes within the SCDD dataset is available in [22]. In Fig.
we present two representative frames, showcasing a subset of six feature (ribbon,
sp multi, sp mono) and defect classes (corrosion, crack, inactive).

The SCDD dataset exhibits significant class imbalance, with the number
of pixels annotated for the feature category outnumbering those in the defect
category by a factor of 40. Specifically, the most frequent feature class, bck-
gnd, contains 400,633,766 annotated pixels, whereas the least frequent defect
class, crack rbn edge, comprises only 589 pixels. To address this challenge, we
employed a weighted categorical cross-entropy loss function for model training.
This approach incorporated class-specific weighting to ensure a more balanced
representation of all semantic classes. The mathematical expression for the loss
function is provided in Equation [I} where C' denotes the total number of classes,
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Table 1: Overview of 29 classes from the SCDD dataset [24], including annotated
pixel counts and custom class weights to address the imbalance.

Feature Pixel Count Class Weight Defect Pixel Count Class Weight
bekgnd 400,633,766 0.8 gridline 3,480,582 5.0
padding 129,806,535 0.7 material 2,847,203 4.0
ribbons 26,422,710 5.0 edge dark 2,639,518 3.0
border 13,219,690 2.0 crack 1,338,385 7.0
sp multi 12,917,390 3.0 inactive 1,173,418 5.0
S$p mono 10,006,547 3.0 brightening 1,098,871 5.0
frame edge 5,470,904 2.0 corrosion cell 1,009,479 5.0
busbars 1,157,116 6.0 corrosionrbn 539,090 6.0
sp dogbone 675,711 6.0 scuff 291,468 6.0
sp mono halfcut 159,871 8.0 splice 224,002 7.0
text 40,250 4.0 dead cell 140,401 7.0
jbox 25,842 8.0 belt mark 117,387 6.0
clamp 4,952 4.0 rings 36,908 9.0
star 34,739 7.0
meas artifact 788 9.0
crackrbn edge 589 10.0

and w, represents the custom weight assigned to class c. The term ¢; . refers to
the true label for sample i and class ¢, which takes the value of 1 if the sample
belongs to class ¢, and 0 otherwise. Additionally, v; . represents the predicted
probability for sample ¢ and class ¢, and log(y; ) is the natural logarithm of the
predicted probability for class c.

c-1
L= — Z We - tic - 1og(yi,c) (1)
c=0

The defect and feature classes, along with their respective annotated pixel
counts and assigned class weights, are summarized in Table

The assignment of class-specific custom weights was determined through a
comprehensive analysis of prior work [I3[T724], and our experiments, considering
three key factors: 1) Addressing the impact of class imbalance to ensure rare de-
fects are not overlooked; 2) Enhancing detection accuracy for challenging defects
while minimizing the risk of overfitting to more dominant or easily detectable
classes; and 3) Prioritizing defects that are crucial to the performance and safety
of PV modules. These factors were integral to optimizing the model’s ability to
detect critical defects effectively while maintaining generalization. Overall, as
feature classes are more represented in the dataset, they have been assigned
lower weights compared to defect classes.

All models were trained on an NVIDIA GeForce RTX 4090 GPU, using a
batch size of 8. The Adam optimizer was used with a learning rate of 0.001.
To ensure robust training and prevent overfitting, an early stopping was imple-
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Table 2: Training and computational characteristics of segmentation models.

Model Architecture Trainable Parameters Epochs Runtime

ResNet50-UNet 16,356,509 27 22m 54s
MobileNet-UNet 6,314,461 21 16m 21s
VGG16-UNet 12,336,605 30 27m 41s
ResNet-SegNet 14,845,085 30 24m 9s
MobileNet-SegNet 5,540,317 23 16m 58s
VGG16-SegNet 11,562,461 42 36m 31s

mented to monitor validation loss, with a patience parameter set to 10 epochs.
Additionally, the steps per epoch parameter was calculated as the total number
of input images divided by the batch size. Runtime information, the number of
trainable parameters for each model, and the number of epochs they took to
train considering the early stopping are reported in Table

Finally, the models were evaluated across all 29 classes included in the dataset.
Class-wise intersection over union (IoU) values, representing the overall IoU for
each class, were computed for both feature and defect categories and are illus-
trated in Fig. [3] Model performance was further assessed regarding mean IoU
for defects, features, and all classes. Additionally, frequency-weighted IoU, which
accounts for class occurrence frequencies, was reported to provide a nuanced
evaluation of model performance, particularly useful for imbalanced datasets
like SCDD. Table 3] provides a comprehensive comparison of model performance
including the above mentioned metrics.

4 Results

This section elaborates on the quantitative and qualitative evaluation of the
trained models, with class-wise IoU serving as a representative metric for model
performance comparison across all classes. A comprehensive comparison of class-
wise IoU for both defect and feature classes across six segmentation models is
visualized as heatmaps in Fig. 8] The results indicate that all models exhibit
higher performance on feature classes compared to defect classes. This disparity
in performance can be attributed to the more balanced representation of features
in the training dataset and the greater consistency and homogeneity of their
visual characteristics.

The clamp class was excluded from the performance evaluation presented in
Fig. [3] as it was represented by a single image, which was included solely in
the training set. Consequently, performance assessment for this class was not
feasible. Moreover, the defect classes crack rbn edge and meas artifact remained
undetected by all architectures, due to severe class imbalance that persisted de-
spite the application of custom weighting. Addressing these challenges in future
research will involve the collection of more balanced datasets and the application
of advanced techniques, such as synsethic data generation.
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Fig.3: Class-wise IoU for (a) 16 defects and (b) 13 features reported for
six models: ResNet50-UNet, MobileNet-UNet, VGG-UNet, ResNet50-SegNet,
MobileNet-SegNet, and VGG-SegNe.

A compact quantitative comparison of the segmentation models based on
mean IoU for defects, features, overall 29 classes, and frequency-weighted IoU
is presented in Table Regarding the encoder backbones, VGG16 emerged
as the best-performing encoder, offering an optimal balance between deep fea-
ture extraction and fine-grained detail retention. Unlike ResNet50, VGG16 pre-
served spatial resolution by avoiding aggressive downsampling. Among decoders,
UNet outperformed SegNet by effectively restoring fine details, utilizing learned
upsampling, and achieving superior IoU scores. Overall, VGG16-UNet model
achieved the best overall mean IoU of 0.494, with strong results in mean IoU
for defects (0.326) and mean IoU for features (0.663), along with a high Fre-
quency Weighted IoU (0.879). ResNet50-UNet is the second-best, with an overall
mean IoU of 0.488, excelling in the mean IoU of features (0.681). In contrast,
MobileNet-SegNet performed the worst with an overall mean IoU of 0.410 and
lower values in both defect-related (0.254) and feature-related IoU (0.567).

Qualitative evaluation of the performance for all the models is presented in
Fig. [l A representative EL image from the SCDD test set, CR01099, is shown
with its ground truth annotation and semantic segmentations from six models.

5 Conclusion and Future Work

This study marks the initial phase of our research on CV-based PV module defect
detection with potential applications in industrial solar panel inspection robots.
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Table 3: Comparison of segmentation models based on mean IoU for features,
defects, overall 29 classes, and frequency-weighted IoU.

UNet SegNet

ResNet50 MobileNet VGG16 ResNet50 MobileNet VGG16

Mean IoU - Features 0.681 0.642 0.663 0.648 0.567 0.642
Mean IoU - Defects 0.295 0.261 0.326 0.294 0.254 0.288
Mean IoU - 29 classes 0.488 0.451 0.494 0.471 0.410 0.465
Freq. Weighted 1IoU 0.871 0.871 0.879 0.885 0.871 0.879

Fig.4: Qualitative evaluation of segmentation models, showing ground truth
annotation and model predictions for EL image CSIR01099 from the SCDD
dataset [24].

We systematically trained and evaluated six U-Net and SegNet-style architec-
tures, incorporating VGG16, MobileNet, and ResNet50 encoders, on the SCDD
dataset comprising 29 defect classes. VGG16 emerged as the best-performing en-
coder, with its combination with UNet achieving the highest performance across
evaluated metrics. To the best of our knowledge, this is the first comprehensive
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analysis of model performance across all 29 defect and feature classes, accompa-
nied by publicly available implementation code.

Building on these findings, this study outlines a threefold research focus
to advance PV module defect detection. First, we will enhance synthetic data
generation for underrepresented defect types [2I] and integrate additional imag-
ing modalities, including RGB and thermal imaging, to develop novel datasets.
These non-invasive alternatives to EL imaging are particularly suited for field-
deployed solar panels. Second, we aim to leverage existing EL datasets with
diverse annotations for object detection and segmentation in hybrid architec-
tures such as [I6]. Lastly, we will implement Domain Adaptation techniques [10]
to improve EL-informed feature detection on RGB images.
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