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Replication and diversification are commonly used fault-tolerance techniques to mask accidental faults or
malicious behavior of compromised nodes in cyber-physical systems. In event-driven systems, executing
diversified replicated tasks across multiple nodes can result in their different execution orders. Implementing
a total order protocol for job execution across all nodes ensures consistency and facilitates recovery in case
of failures. However, achieving total order comes with significant costs due to the high communication and
coordination demands among nodes. Existing solutions require coordination either before each job execution
or at each job release. Moreover, some total order protocols may lead to unbounded priority inversion on
certain nodes in order to maintain a global execution order. Malicious nodes can deliberately exploit these
protocols to launch priority inversion attacks, thereby jeopardizing the timeliness of tasks on healthy nodes in
time-critical applications. We propose a total order execution protocol that guarantees bounds on the priority
inversion tasks experience and ensures that tasks meet their deadlines in real-time systems. Our approach
withstands priority inversion attacks and leverages common knowledge among nodes rather than relying
on communication, allowing them to progress independently while still ensuring a consistent execution
order of job replicas across nodes upon their release. Although inter-node communication is not required, the
method can benefit from exchanged progress data to reduce job response times. It is compatible with coarsely
synchronized clocks and, unlike other total order approaches, which are for non-preemptive scheduling, uses
progress milestones to enable task preemption. We evaluate our method against existing approaches based on
acceptance ratio and response times, and study how job response times vary with increasing communication
delays when the approach is used.
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1 Introduction
Real-time systems are frequently exposed to harsh environments where they have to operate
safely through accidentally induced faults. Furthermore, increasingly, application domains, such as
industrial automation [29, 30, 41], telecommunication [3], the power grid [11, 39], and cooperative
driving [2, 8], face cyberattacks aimed at jeopardizing system safety. One way to operate safely
through such node failures is active replication (i.e., the execution of the same tasks across multiple
nodes). Active replication masks the arbitrary behavior of up to 5 faulty nodes behind a majority
of at least 5 + 1 healthy nodes. It has also been shown effective against targeted attacks [7, 12, 47]
where adversaries have managed to compromise nodes, even at RTOS level.1 To ensure that replicas
do not share the same vulnerabilities, diversification techniques can be employed, such as =-version
programming [9, 51], diverse compiling [28], and the use of different operating systems [19].

In the event-triggered real-time systems we focus on in this article, jobs of tasks are released in
response to their respective events. Subsequent releases of the jobs of a task g8 occur only after the
minimum inter-arrival time)8 . When a task is released, its processing can take up to itsWorst-Case
Execution Time (WCET) �8 , and it must be completed within its deadline �8 ; otherwise, it might
lead to system failure. In systems employing replication, diversified replicas of the same jobs are
executed across all nodes. Variation in the time taken to complete these replicas results in different
execution orders on nodes, as nodes execute released jobs only after those that have already been
executed. In certain applications, it is required to execute replicated jobs in the same order across
all nodes. Total order in execution might be required in systems with data dependencies [24, 26]
to guarantee comparable results on nodes. Additionally, ensuring a consistent execution order
facilitates checkpointing in distributed systems to recover from faults or inconsistencies [15].

Rodrigues et al. [53] and Wang et al. [58] address the problem of queuing prioritized messages to
ensure total order in their processing. We consider these messages as events and their processing as
the execution of non-preemptive jobs released by these events. Implementing the methods proposed
by Rodrigues et al. [53] and Wang et al. [58] in real-time systems may lead to deadline misses due
to unbounded priority inversions. Moreover, these methods cannot guarantee the timeliness of
tasks in the presence of priority inversion injection attacks [43]. Naghavi and Navet [43] addressed
the problem of unbounded priority inversion when using total order protocols in real-time systems
by introducing a method we refer to as Limited Priority Inversion Total Order based on
Front-Runner Progress (LPI-FRP). However, all these approaches rely on communication and
become ineffective in meeting timing requirements when there are high communication delays or
when occasionally messages are not delivered.

Another approach to guarantee total order is to leverage the time characteristics of tasks known
across nodes, rather than relying on communicated progress. For example, a straightforward
approach, referred to as the Simple method by Naghavi and Navet [43], waits until the WCET
of each job has elapsed before executing subsequent jobs. Therefore, when a high-priority job is
released, it can be inserted at the earliest position in the queue based on its priority, following the

1Vulnerabilities have been reported in Zephyr (CVE-2021-3625, -3835, -3861), Azure RTOS (CVE-2022-41051, -39343, -39344),
FreeRTOS (CVE-2021-42553), and Tizen RT (CVE-2021-22684).
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completion of the non-preemptive execution of the currently running job (if any). However, this
approach requires precise synchronization and cancels out all the benefits of completing jobs early.
Therefore, we propose our method that allows nodes to progress independently without waiting
for their peers.

Our method is not dependent on communication. Similar to the Simple method, it also utilizes
the time characteristics of tasks to determine the position of released tasks in the queue (i.e., their
insertion point). This insertion point is calculated based on the slack time and the earliest arrival
time of unreleased jobs, as well as the WCET and release time of jobs already in the queue. By
ensuring that no job is executed beyond these insertion points—enforcing idle time if necessary—our
approach also eliminates the need for rollbacks.

Although our method ensures that nodes can independently determine insertion points and
schedule jobs without requiring communication, integrating a non-blocking communication mech-
anism can reduce job response times. Upon the release of a job, each node broadcasts its execution
progress using a real-time reliable broadcast protocol such as the ones proposed in [13, 20]. If all
nodes receive progress updates from every other node before a predefined timeout, they can use
this shared data to execute more released jobs without needing to wait for other nodes to catch up.

Since non-preemptive scheduling often reduces the number of schedulable task sets, we propose
a mechanism that makes our method compatible with limited preemptive scheduling as well. We
consider progress milestones [10] within each task, ensuring that when a milestone is completed
on one node, equivalent progress can be achieved on other nodes. We assume that tasks can only
be preempted at these milestone boundaries.

We evaluate our approach using acceptance ratio and response time, comparing it against the
methods proposed by Rodrigues et al. [53], Wang et al. [58], the LPI-FRP approach by Naghavi and
Navet [43], and the Simple method. Our approach significantly outperforms Rodrigues and Wang in
terms of acceptance ratio and, unlike LPI-FRP, remains effective under high communication delays.
Furthermore, by allowing independent progress, our method improves response times compared to
the Simple method, even under fairly high communication delays.

The rest of the article is organized as follows. After discussing the background and related work
in Section 2 and examining the shortcomings of other total order protocols for prioritized tasks
in Section 3, we introduce the system and threat model in Section 4. In Section 5, we propose our
method, present the detailed algorithms in Section 6, and discuss their compatibility with coarsely
synchronized clocks in Section 7. We evaluate our method in Section 8 and conclude the article in
Section 9.

2 Background and Related Work
Accidental Faults. Accidental faults can occur during runtime due to non-malicious causes (e.g.,
alpha and gamma particles, wear-out, design flaws). These faults can temporarily cause incor-
rect or missing outputs or messages (transient faults) or result in a crash failure, where a node
stops functioning and communicating with other nodes (permanent faults) [52]. Fault-tolerant
mechanisms, such as replication and checkpointing, prevent faults from causing system failures. In
active replication with diversification, different versions of task replicas are executed on separate
nodes to mitigate common vulnerabilities and design faults. In such cases, to mask 5 faults, at least
25 + 1 replicas must be executed across nodes, enabling fault masking through majority voting. In
checkpointing, the system state is saved at specific points, allowing it to roll back to the last stored
checkpoint and re-execute tasks upon fault detection [18].

Some works have focused on tolerating permanent [44] and transient accidental faults [1, 33,
46], including a survey by Reghenzani et al. [52] that reviews software-implemented hardware
fault-tolerance methods.
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Byzantine Faults and Time-Domain Attacks. Due to malicious targeted cyberattacks or software
errors, faulty nodes may exhibit Byzantine behavior, where they act unpredictably or arbitrarily.
This means they may send conflicting information to different parts of the system, provide incorrect
data, or fail to respond entirely [35]. In time-domain attacks on real-time systems, an adversary
may attempt to disrupt the timely execution of tasks or exploit the system’s time predictability to
steal information [43, 45].

To address such threats, securing real-time systems against cyberattacks has become a critical
focus. For instance, Hasan et al. [27] investigate the allocation of security tasks. Nasri et al. [45]
analyze conditions for successful time-domain attacks. Li et al. [40] extend the crash-fault tolerant
coordination service Zookeeper to include real-time recovery. Yoon et al. [62], and Krüger et al. [37]
investigate schedule randomization in event- and time-triggered systems, respectively, including
for replicated tasks [38]. Zhang et al. [64] investigate recovery from sensor attacks.
Consistency and Total Order. Nodes may execute task replicas in different orders than other

nodes due to varying processing speeds or actual execution times of diversified task replicas. This
can lead to inconsistent states among nodes [53]. It may also cause divergent outputs when tasks
have cause-effect relationships or data dependencies [32], as task replicas may receive inputs from
different instances of their preceding tasks.

Several approaches have been proposed to address this issue by managing message delivery,
coordinating voting, or synchronizing node states using datastores. Poledna et al. [50] ensure that
all replicas deliver the same messages in the same order by introducing timed messages, using
which tasks accept messages from other tasks only after their deadline or their worst-case response
time. Additionally, Fara et al. [17] coordinate distributed voting on nodes either through passive
waiting until the voting data is received or via Logical Execution Time. Gujarati et al. [23] enable
interactive consistency in Byzantine fault-tolerant key-value datastores for reliable real-time control
applications with task dependencies. They also address replica coordination over switched Ethernet
under non-malicious Byzantine errors in [22], by dividing processes into tasks and executing them
after periodic runs of the protocol proposed by Pease et al. [48].

Total order execution protocols ensure consistency in replica outputs by enforcing the same
execution order across nodes. Nodes also maintain uniform state transitions, which simplifies the
consistent rollback of task executions in case of faults [18]. Coordinating the execution order of
replicas has been studied for replicated state machines [55] and primary/backup systems [67].
Rodrigues et al. [53] and Wang et al. [58] extend total order execution to prioritized tasks.

Priority Inversion Injection. Priority inversion occurs when a high-priority task is delayed because
of a lower-priority task [14]. In real-time systems, this typically happens due to the non-preemptive
execution of a lower-priority task [61]. Wang et al. [58] identify group priority inversion in systems
using total order protocols, such as those proposed by Rodrigues et al. [53], where high-priority tasks
may be delayed to enforce the same execution order across nodes.When priority inversion on a node
is due to enforcing the execution order on another node, we refer to it as injected priority inversion.

Wang et al. [58] address the group priority inversion problem by enforcing the execution order
of replicas completed by at least 5 + 1 nodes in a system where up to 5 nodes may crash, while
rolling back the execution of replicas that have been completed only by some nodes. Unfortunately,
Rodrigues’ and Wang’s methods are not designed for hard real-time systems, as they may fail to
guarantee task timeliness on healthy nodes due to priority inversion injected by the total order
protocol. When exploited by a malicious node to induce deadline misses, this is called a priority
inversion injection attack, a time-domain attack introduced by Naghavi and Navet [43]. Naghavi
and Navet [43] also propose a solution to ensure task timeliness while maintaining total order by
bounding the priority inversion experienced by tasks according to their available slacks. However,
their method requires highly reliable real-time communication that must never fail to deliver
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messages on time, with delays shorter than the WCET of the smallest task. Additionally, it is
applicable only to non-preemptive task models.

The approach presented in this article ensures the total execution order of replicated prioritized
tasks across all nodes when inserting them into the nodes’ queues, while allowing each node to
progress independently by executing jobs from its queue. To improve job response times, we use
non-blocking communication and make no assumptions about the underlying network, except that
it must support real-time reliable broadcast.
Reliable Broadcast. A reliable broadcast protocol ensures all correct nodes eventually deliver

the same messages sent by a correct node [7]. A real-time reliable broadcast adds timeliness,
delivering messages only if all nodes received them before a timeout [34, 35]. We use this protocol
for communication while accounting for potential message omissions.

Reliable and atomic broadcasts have been widely studied [7, 12, 57, 66], with atomic broadcast
ensuring both reliability and agreement on the order of message delivery. Some works focus on
bounding delivery delays in atomic broadcast [13, 31]. Kozhaya et al. propose a real-time Byzantine
reliable broadcast using time-triggered [34] and event-triggered protocols for atomic broadcast in
arbitrary networks [35]. Roth and Haeberlen [54] discuss optimizations for systems with broadcast
channels like Bus and Ethernet, leveraging the inherent reliability properties these channels provide.

Preemption and Milestone. In real-time systems, a schedule can be non-preemptive, meaning a task
utilizes the processor until completion once it starts execution, or preemptive, where the scheduler
can interrupt a lower-priority task to execute a higher-priority one. In the limited preemptionmodel,
high-priority tasks can only preempt lower-priority tasks at specific points, called preemption
points.

Yao et al. [60] and Bertogna et al. [5] calculate the maximum blocking allowed before executing
a task (i.e., slack) to facilitate schedulability tests for various preemption models and to place
preemption points in tasks. Phan et al. [49] incorporate task release overhead in schedulability
analysis. Task slack is used in other state-of-the-art works to schedule aperiodic tasks, handle
self-suspension, and tolerate overrun in mixed-criticality systems [25]. We leverage task slack to
ensure total order in execution.

Milestones can be placed within a task during the offline phase to track execution progress at
runtime. While Kritikakou et al. [36] and Sinha et al. [56] insert milestones using a compiler or
source-to-source translation, Chen et al. embed them directly into the task binary. These milestones
can be used to detect timing violations or switch between modes in mixed-criticality systems. In
this article, we enable limited preemption by leveraging milestones as preemption points, marking
common states in replicated tasks. Our method is also compatible with non-preemptive task models,
considering only a single milestone at the end of each task.

3 Total Execution Order of Prioritized Tasks
In event-triggered systems with prioritized tasks, variations in task execution times can result
in different execution orders. This is shown in Figure 1(a), which illustrates three nodes—%1, %2,
and %3—and five tasks, g0 (highest priority) through g4 (lowest priority). In this example, consider
two healthy nodes, %2 and %3. When the nodes insert the released task g0 into their queues, %2 has
already executed g1 , g2 , and g3 , whereas %3 has executed only g1 . In this case, %2 inserts g0 before
the lower-priority task g4 , while %3 inserts g0 before g2 in its queue. Although the task deadlines are
guaranteed in this case, the replicas of the tasks will be executed in a different order on different
nodes. Therefore, for example, if there is an implicit data dependency between the tasks g0 and g2 ,
then the task g2 on %2 and %3 will have different outputs. In the following, we discuss existing total
order protocols, which are dependent on the communication, and explain how priority inversion
resulting from these protocols can cause deadline misses in real-time systems.

ACM Transactions on Cyber-Physical Systems, Vol. 9, No. 4, Article 39. Publication date: November 2025.



39:6 A. Naghavi and N. Navet

Fig. 1. Different execution orders of replicas without a total order execution protocol (left), deadline misses
under the Rodrigues et al. [53] and Wang et al. [58] protocols (middle-left and middle-right), and communi-
cation dependency in LPI-FRP by Naghavi and Navet [43] (right).

3.1 Unbounded Priority Inversion
Rodrigues et al. [53] address the problem of guaranteeing total order in scenarios where nodes may
fail silently. To achieve total order, nodes communicate upon the arrival of each event by sending the
set of jobs they have already executed. The nodes then insert the released job into their queues after
all jobs that have been executed by at least one node—that is, after the jobs in the union of all received
sets. Using this method to ensure total order execution can lead to unbounded priority inversion,
potentially causing missed deadlines in real-time systems. Moreover, in the presence of Byzantine
faults, an attacker could exploit the protocol to jeopardize the timeliness of jobs on healthy nodes.

Figure 1(b) shows how a node that has completed more of the released jobs than other nodes can
inject significant priority inversion on other nodes, resulting in deadline misses when Rodrigues’
total order protocol is used. In this figure, the node %1 has executed all the released jobs g1 , g2 , g3 ,
and g4 at the release of g0 . At the time of the release, the node %2 just finished the execution of
g3 while %3 was executing g1 . Hence, all nodes insert the job g0 (released at A0) after g4 , which is
already executed by %1. Although %2 met the deadline for g0 after catching up with %1’s reported
progress, %3 experienced execution times close to task WCETs, requiring�1 +�2 +�3 +�4 to finish
the jobs in its ready queue up to g4 before executing g0 . Consequently, %3 missed g0’s deadline at
A0 + �0 . A similar situation can occur if %1 is malicious and performs a priority inversion injection
attack by falsely claiming to have executed enough jobs to cause other nodes to miss deadlines of
their tasks.

Wang et al. [58] prevent group priority inversion in the total order protocol of Rodrigues et al.
[53] in fault-tolerant systems where 5 nodes are susceptible to crash failures. They use Local
Execution Progress (LEP), representing the number of completed jobs per node, and Group
Execution Progress (GEP), which is the minimum LEP among the 5 + 1 nodes with the highest
progress. This ensures that at least one of the 5 + 1 nodes, which have executed jobs up to the GEP,
will not crash. When an event occurs, its released job, e.g., g0 , is placed in the queue after the GEP,
with its priority determining its execution order among the rest of the jobs in the queue. Nodes
whose LEP has exceeded the insertion point of g0 must roll back to the previous consistent state
and execute g0 first. This requires undoing the effects of jobs executed after g0 in the queue and
re-executing them once g0 has been completed.

Wang’s method ensures that at least one healthy node avoids priority inversion, even if up to
5 nodes crash. However, in event-triggered real-time systems, other healthy nodes may still face
unbounded priority inversion, leading to deadline misses. This occurs when 5 + 1 nodes execute
jobs earlier and advance the GEP beyond the progress of other healthy nodes, forcing them to catch
up before scheduling jobs based on their priorities.
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Figure 1(c) illustrates a scenario where g0 misses its deadline on the healthy node %3 when using
Wang’s method. The progress of nodes %1 and %2 causes the GEP to advance to the progress of %2,
which has already completed the execution of g3 . Consequently, the back-runner node %3 inserts
the released job g0 after g3 , but before the lower-priority job g4 . The time required for %3 to execute
g1 , g2 , and g3 to catch up with the GEP ultimately results in g0 missing its deadline.

Wang et al. claim to mitigate group priority inversion, even with malicious faults, by requiring
additional valid responses and a voting mechanism. Figure 1(c) illustrates that Wang’s method
requires more than 25 + 1 nodes to effectively tolerate 5 Byzantine faults. In the scenario shown, if
%1 is faulty and produces an incorrect output, node %3 is unable to complete g0 before its deadline.
Consequently, even though both %2 and %3 are healthy and eventually produce the correct output,
the voter cannot determine the correct result in a timely manner.

Additionally, although in the example in Figure 1(c), adding another healthy node might provide
the voter with enough timely responses from g0 , %3 would still miss the deadline of g0 . Therefore, in
the case of malicious faults, regardless of the number of nodes, 5 malicious nodes can exploit Wang’s
protocol to launch a priority inversion injection attack targeting healthy nodes. Malicious nodes
can take advantage of the progress of healthy nodes that executed jobs earlier to advance the GEP,
inducing sufficient priority inversion on other healthy nodes to cause jobs to miss their deadlines.

3.2 Limitations of Communication-Based Methods
The LPI-FRP method proposed by Naghavi and Navet [43] guarantees deadlines even in the case
of priority inversion injection attacks. Nodes enforce a scheduling protocol to ensure that any
priority inversion injected through their progress on other nodes is bounded by the slack of tasks.
Nodes communicate at each release to determine the insertion point based on the progress of the
front-runner (the node that completed jobs earlier than others) that has not been faulty, meaning it
respected priority inversion bounds. Similar to Rodrigues and Wang, this method heavily relies on
communication, as it requires knowledge of other nodes’ progress to determine a task’s insertion
point in the queue. This communication also requires locking the ready queue and delaying job
insertion until a Timeout which bounds the communication delay as shown in Figure 1(d). In the
figure, the insertion of g0 is delayed on %1 and %2 until A0 + Timeout, leaving these nodes idle.
Furthermore, to guarantee total order and meet task deadlines, communication must neither fail
nor exceed the Timeout, otherwise the algorithm cannot decide about the insertion point of the
job. In addition, the Timeout must not exceed the WCET of the smallest task (i.e., Timeout <

min8∈{0,1,2,3,4 } �8 ). If the Timeout is not bounded by the WCET of the tasks, communication may not
occur in parallel with task execution on the back-runner, and task deadlines cannot be guaranteed.
These limitations restrict the applicability and robustness of this method.

The method proposed in this article ensures deadlines of tasks on all healthy nodes, even in the
presence of priority inversion injection attacks, and inserts jobs into nodes’ queues without relying
on communication. It allows the communication timeout to be arbitrarily large and tolerates missed
or delayed messages that arrive after the timeout.

4 System, Task, and Fault Model
System and Task Model. We consider event-triggered systems, where tasks are sporadic. We charac-
terize sporadic tasks g8 ∈ T of the task set T = {g1, g2, . . . , g=} through a minimal inter-release time
)8 , a relative deadline �8 ≤ )8 , and a WCET �8 . Each task g8 generates a sequence of jobs where the
9th job of task g8 , denoted by g8, 9 , has a release time A8, 9 . We may omit the job index 9 when it is
clear from the context.

Tasks (and the RTOS) are replicated over< ≥ 25 + 1 nodes %1, %2, . . . , %< to tolerate up to 5

faults (or malicious attacks). We assume each node executes all tasks in T. Nodes may correspond
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to separate processors in multiprocessor systems or to individual cores in multicore systems. To
reduce the likelihood of common-mode faults and vulnerabilities, we assume that different nodes
execute distinct versions of replicas of the same tasks [51], potentially using different algorithms,
data structures, and timing characteristics. To compare the progress of these variants, we use
milestones within a task [10] to mark global points of progress across all variants. We assume
limited preemption where tasks are preemptive at least at these milestones. We denote !8 as the
maximum number of milestones that need to be completed from any variant of the task to finish
its execution. We call each portion of task g8 between two milestones as a chunk, denoted by g;8 ,
with WCET �;

8 , defined as the maximum time any variant may take to progress from milestone
; − 1 to ; . We consider the WCET of a task to be the sum of the WCETs of its chunks, expressed as
�8 =

∑!8
;=1�

;
8 , which represents an upper bound on the WCET across all its variants.

We do not impose any assumptions on the control flow of tasks. Instead, we treat a chunk as an
indicator of progress in the execution of a task. Additionally, we allow for milestones to be skipped,
meaning chunks may complete with zero execution time. For example, the code block within the
body of an “if” statement can be considered one or more chunks, which may be skipped if the
condition is not met. Furthermore, a chunk g;8 may represent the set of instructions within both
the “if” block and its corresponding “else” block. In such cases, �;

8 is determined by the maximum
WCET of executing either set of instructions. In a loop, each iteration can be treated as a chunk
(or multiple chunks). If the loop terminates early, some milestones may be skipped. For example,
when searching in an array, each comparison can be considered a milestone. Here, !8 equals the
length of the array. In the worst case, a variant may find the element in the last cell, requiring �8

execution time. Conversely, another variant may find the element earlier, bypassing the remaining
milestones and completing their respective chunks without consuming any time.

We first assume a fixed priority scheduling where ℎ?8 and ;?8 are the sets containing all the
higher and lower-priority tasks than g8 , respectively. Later, we show that our method also works
well with dynamic priority scheduling. The B;02:8 , which can be computed in the design time,
represents the maximum blocking time that any job of task g8 (when released) can tolerate due to
the execution of a lower-priority job while still meeting its deadline.

Execution Model. In our method, we assume that each node %: initially inserts released jobs into
its local priority-sorted queue, called the ReadyQueue ('&: ). The job with the lowest priority in
'&: is always placed at the tail of the queue. A node %: moves the chunks (according to their
execution order) from the job at the head of the ready queue to the tail of another queue, called
the ChunkQueue (�&: ). A job is removed from '&: once all its chunks have been moved to �&: .
Once chunks are placed in the chunk queue, their execution order is finalized and will not change.
Each entity in the ready queue, denoted by g=4GCG ,_G , represents a job gG and the smallest ID of the
chunks of gG that have not yet been moved to the chunk queue (i.e., =4GCG ). If g=4GC0,_0 is at the head
of the ready queue, the next chunk to be moved from the ready queue to the chunk queue is g=4GC00 .

For simplicity of the presentation, we assume that once chunks are moved to the chunk queue,
they remain there and are not removed.2 Consequently, the position of each chunk in the chunk
queue (starting from the head) is referred to as a progress, representing the total number of chunks
in the chunk queue immediately after the chunk is inserted. At any time C , we denote the progress
of the tail of the �&: of a node %: as ?A>6C08;

:
and the current progress of the node as ?A>62DA

:
. The

current progress of a node (?A>62DA
:

) is the progress of the most recent chunk in the chunk queue
that the node started executing. A node executes a chunk only if it is in the chunk queue (i.e.,
?A>62DA

:
≤ ?A>6C08;

:
).

2As detailed in Appendix A, chunks need not remain in the chunk queue indefinitely and are removed after execution in
practice.

ACM Transactions on Cyber-Physical Systems, Vol. 9, No. 4, Article 39. Publication date: November 2025.



Total Order Execution of Replicated Sporadic Tasks 39:9

We refer to tasks whose jobs are not in the ready queue as imminent. These include tasks that
have already been released but are not yet inserted into the ready queue, as well as those that may
be released in the future. At time C , assuming A last8 is the release time of g8 ’s last released job, the
earliest possible release time of the next job of an imminent task g8 is d8 (C) = max(A last8 + )8 , C).
During runtime, each node tracks imminent tasks using a set ISk .
Synchronization Model. We assume a synchronous system model in which at any instance of

actual time, the local time of different nodes may differ by at most X . This means that if one
node reads time C , another node might read time C ± G , where G ≤ X . Events are delivered to all
nodes within a maximum delay of Δ after generation, where we assume X ≤ Δ. However, for
simplicity of explanation, we first describe the algorithm under the assumption of synchronized
clocks, where nodes receive events simultaneously. In Section 7, we demonstrate that by leveraging
timestamped events, with some minor adjustments, our method performs effectively even with
coarsely synchronized clocks.
Communication Model. In multicore systems, nodes can communicate in negligible time using

shared memory. In multiprocessor systems, however, where communication delays are larger, we
assume that communication occurs in parallel with task execution using co-processors or DMA-
based Network Interface Controllers (NICs) [6] integrated into the processing units. Nodes are
connected through a network that may experience failures or excessive delays. However, a real-time
reliable broadcast protocol [34, 35] guarantees that messages are either delivered unchanged to
all healthy nodes within a maximum time )8<4>DC or not delivered to any nodes at all. )8<4>DC

consists of two delay parameters:�<B6 and�B4=3 .The value of�<B6 , which is the maximum expected
network delay, can be determined at design time based on a conservative estimate.�B4=3 represents
the estimated maximum delay for a node to detect the release of any task and dispatch its progress
information. Our method can be implemented in two ways: upon receiving a release event, (1)
nodes immediately send their progress to other nodes (as assumed in [43]), or (2) nodes send
progress only after completing the currently executing chunk. In the second case, �B4=3 must
exceed the WCET of each chunk, as progress transmission is delayed until the current chunk
is completed.

Threat Model. We allow up to 5 nodes to become faulty in a Byzantine manner, where the node
behaves arbitrarily. This includes intentionally malicious attacks such as cyberattacks. We make
no assumptions about the behavior of faulty nodes and consider the possibility that the RTOS
may be compromised. A malicious node can execute jobs out of order or may not execute them
at all. It can also report false progress data to other nodes or withhold communication about its
progress. However, we assume that a malicious node cannot interfere with healthy nodes in any
other way. In multicore systems, it is necessary to implement appropriate isolation techniques to
prevent faulty cores from directly interfering with healthy ones. This includes memory isolation
techniques such as a bank-aware memory allocator [63] or cache partitioning for shared caches
[42], which help mitigate interference from compromised cores.

5 Coordinating Replicated Execution in Event-Driven Systems
In this section, we present our method for maintaining total order in task execution across all nodes,
which bounds priority inversion and is resilient to priority inversion injection attacks. Our method
dynamically coordinates the execution order of jobs without requiring communication. However,
communication is used solely to improve job response times. The non-blocking communication
does not delay job execution, and late or lost messages are tolerated. This method satisfies the
following properties: Uniform Agreement : If a replica of a job is completed by a node %G , its other
replicas will eventually be completed by all correct nodes %~ . No Re-Execution: Each replica of a job
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executes exactly once. Total Order : For any two chunks g 9
8
and g;

:
, if g 9

8
is executed before g;

:
on one

node, then g 9
:
will be executed before g;8 on every other node. Limited Priority Inversion: The delay a

job experiences before its execution due to lower-priority jobs is bounded. Timeliness: All replicas
of all jobs on healthy nodes complete their execution before their designated deadlines.

5.1 Overview of Method Components and Their Interactions
The proposed method in this article operates within predefined bounds on priority inversion
to ensure timeliness and maintain total order. These bounds correspond to task slacks, and the
method ensures that the priority inversion each task experiences never exceeds its slack. This
method consists of two main components: the Scheduling and Release algorithms, which execute
on every node.

Before executing a chunk, the scheduling algorithm on a node %: ensures that finalizing its
execution order across nodes does not jeopardize the deadlines of tasks on any node. In other words,
if every node processes the chunk in the order that %: intends to execute it, it is guaranteed that
tasks will not experience priority inversion beyond their slacks. If this condition is not met, node
%: remains idle. When node %: determines that the execution order of a chunk can be finalized,
it moves the chunk from its respective job in the ready queue '&: to the chunk queue �&: and
executes it.

The release algorithm of node %: inserts a released job into the ready queue, ensuring the
execution order of all chunks potentially executed by other nodes is finalized before insertion.
This assumes each healthy node executed the scheduling algorithm before processing each chunk.
Consequently, as long as the priority inversion imposed on each task remains within its slack,
the algorithm finalizes the execution order of chunks in '&: by moving them to �&: . Thus, it
ensures the ready queue contains only jobs that have not yet been executed by any node, before
inserting the released job in '&: . Since slack bounds are known by all nodes, they derive the same
ready and chunk queues at each release, ensuring the released job is inserted in the same position.
Additionally, by meeting slack bounds, our method ensures deadlines.

While the release and scheduling algorithms are interdependent, they operate without requiring
communication between nodes. Each node accounts for two extreme scenarios: one for the back-
runner and another for the front-runner. It assumes that a back-runner may take up to the jobs’
WCETs to complete them, whereas a front-runner finishes jobs as early as possible while respecting
the bounds on the priority inversion that it is allowed to inject on the back-runner. However, our
method can integrate a third algorithm, Update, which leverages communication to improve job
response times. At each release, nodes share their progress information with others, and the update
algorithm, executed upon receiving this communication, updates each node’s knowledge of the
back-runner’s progress. This helps reduce the idle time imposed by the scheduling algorithm.

In the following, we define key terms used throughout the article and provide a more detailed
explanation of the Release, Scheduling, and Update algorithms.

5.2 Terms and Definitions
Worst-Case Projection (WCP). LetminProg represent the most recent update of the back-runner’s
progress available to nodes, and let CD?30C4 denote the time at which this update occurred (serving
as an upper bound on when the back-runner may begin executing the chunk corresponding to
progress minProg + 1). Assuming the back-runner always takes up to the WCET of chunks to
complete them and has not been idle since CD?30C4 , the following provides a pessimistic estimate of
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when the back-runner will complete the chunk at the progress ?A>6 (where ?A>6 > minProg):

l (?A>6) = CD?30C4 +
∑

�;
0

g;0∈�&: [<8=%A>6+1:?A>6]

. (1)

We call this the Worst-Case Projection (WCP) of progress ?A>6. The WCP of ?A>6 =minProg is
set to CD?30C4 . Each node updates the variables minProg and CD?30C4 either upon inferring that the
back-runner has been idle (without communication) or upon receiving a progress update from the
healthy back-runner through communication.
Maximum Allowed Progress (MAP). We define a progress threshold at any time C , called

the MAP, which the ?A>6C08;
:

of any healthy node %: must never exceed. If ?A>6C08;
:

never exceeds
the MAP, it is guaranteed that even the back-runner, by executing chunks up to ?A>6C08;

:
before

executing imminent tasks, will not cause these tasks to experience priority inversion beyond their
slacks.

Chunks can be moved from the ready queue '&: to the chunk queue �&: without ?A>6C08;
:

exceeding the MAP, as long as the following condition holds for every imminent task g8 ∈ �(: ∩ℎ?0 :

l (?A>6C08;
:

) +�=4GC0
0 ≤ d8 (C) + B;02:8 . (2)

Here, g=4GC00 represents the next chunk of the job at the head of '&: that will be moved to the chunk
queue.

The MAP can be determined by moving chunks from the ready queue to the chunk queue. The
Map is equal to ?A>6C08;

:
when the ready queue is empty or when Equation (2) no longer holds for

at least one imminent task.

Lemma 1. Equation (2) guarantees that an imminent task g8 meets its deadline even on the back-
runner if all nodes execute all chunks in �&: as well as g=4GC00 before executing g8 .

Proof. In the worst case, an imminent task g8 may be released exactly at its earliest release
time d8 (C). In such a scenario, it must not be delayed by lower-priority jobs beyond its slack.
This implies that if a lower-priority job is executing, it must be completed before d8 (C) + slack8 to
guarantee the deadline of g8 . Since ?A>6C08;:

is the last progress in �&: , and based on the definition
of WCP, l (?A>6C08;

:
) represents the latest time at which the back-runner finishes all chunks in the

chunk queue. By adding g=4GC00 to the chunk queue, the latest time this chunk will complete on the
back-runner is l (?A>6C08;

:
) +�

=4GC0
0 , which may delay the execution of g8 until that point. However,

if this completion time is less than d8 (C) + B;02:8 , the delay caused by executing g
=4GC0
0 will not

cause g8 to miss its deadline on the back-runner. Thus, moving gnext00 to �&: does not cause g8 to
miss its deadline, if the inequality in Equation (2) holds. �

Illustrative Example. Figure 2 illustrates how our scheduling, release, and update algorithms
operate.The example considers a scenario with two healthy nodes, %1 and %2, and limited preemptive
scheduling, where we assume that chunks cannot be preempted by either other tasks or our
algorithms. Task indices are sorted based on their priorities, from the highest priority task (g0) to
the lowest priority task (g5 ). In this figure, the jobs of tasks g2 , g3 , g4 , and g5 are released at A2 . At A2 ,
it is assumed that both %1 and %2 have finished their last job, g6 , and are idle at A2 , where the release
algorithm sets minProg to the progress of the last chunk of g6 and CD?30C4 to the release time A2 , as
we will explain in Section 5.4. We presented the chunk queue and the ready queue for node %1 at
times C1, C3, and C5, and for node %2 at times C2, C4, and C6. To demonstrate the WCP of each progress
after minProg, the gray box in each illustration depicts the WCET of chunks in the chunk queue
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Fig. 2. Example of the interaction between our scheduling (left), release (middle), and update (right) algorithms
on two nodes.

and the ready queue, arranged in their execution order after CD?30C4 . In this illustration, the end of
the WCET block of each chunk in the chunk queue represents the WCP of its respective progress.

We also showed the imminent tasks g0 and g1 in Figure 2(a) and (b), while in Figure 2(c), only g0
is imminent. The earliest release times of the imminent tasks g0 and g1 are A ;0BC0 +)0 and A ;0BC

1
+)1 ,

respectively, while the subsequent releases of other tasks are significantly later and not shown. A
red dashed line in each figure represents the WCP of the MAP. As illustrated, the MAP marks the
progress point at which Equation (2) no longer holds for the next chunk in the ready queue, as
adding its WCET to the WCP of the MAP would exceed the slack of higher-priority imminent tasks.

5.3 Scheduling: Executing Chunks Under Priority Inversion Bounds
The scheduling algorithm determines whether a node should execute the next chunk or remain idle.
This decision ensures that all nodes can agree on the insertion point for a released task during the
next release. In this subsection, we explain how the scheduling algorithm manages chunk execution
and determines the required idle time.

The main role of the scheduling algorithm is to ensure that the progress of a node %: and ?A>6C08;
:

remain less than or equal to the MAP. This ensures that if a release occurs at any time, all nodes
construct the same ready queue by finding the MAP and inserting the task into their ready queues
in the same order. The scheduling algorithm executes chunks only when they are in the chunk
queue, and before moving any chunk from the ready queue to the chunk queue to execute, it
verifies that Equation (2) holds for all imminent tasks (therefore, for the resulting chunk queue,
%A>6C08;

:
≤ "�% ). If no chunk is available in the chunk queue for execution and Equation (2) is not

satisfied for an imminent task, the node remains idle to keep its progress within the MAP limit.
Finding the Required Idle Time. During the idle period dictated by the scheduling algorithm, if no

imminent tasks are released, the scheduling algorithm runs again at time C ′ where the Equation
(2) holds for all imminent tasks with higher priority than the first job in the ready queue (i.e.,
?A>6C08;

:
< MAP). To find C ′ for a node %: that completed the final chunk in its chunk queue, the

algorithm first calculates \ (g8 ) for each imminent task g8 for which the Equation (2) does not hold.
Here, \ (g8 ) represents the earliest time such that if C = \ (g8 ), Equation (2) is satisfied. Therefore,
g8 ’s deadline is guaranteed if it is released at \ (g8 ) and executed after gnext0 , even when executed on
the back-runner. According to Equation (2), \ (g8 ) can be calculated as follows:

\ (g8 ) = l (?A>6C08;
:

) +�=4GC0
0 − slack8 . (3)
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To guarantee that a node never exceeds the MAP, C ′ is determined as the maximum \ (g8 ) among all
imminent tasks g8 , for which inequality (2) does not hold. At C ′, it is permissible to move a chunk
from the ready queue to the chunk queue.

Illustrative Example. Figure 2(a) illustrates how our scheduling algorithm operates at time C1 on
%1 and at time C2 on %2. At C1, after completing the execution of g2 , node %1 runs the scheduling
algorithm. Since Equation (2) holds for all imminent tasks with higher priority than g3 , chunks of
the job g3 were moved to the chunk queue, and the execution of g3 is started. The node %2 remained
idle at C2 upon completing job g4 because ?A>6C08;2 had already reached the MAP, and moving the
first chunk of g5 to the chunk queue was not allowed. This restriction was enforced due to the fact
that the addition of the WCET of g1

5
to l (?A>6C08;2 ) exceeds the earliest release time (d1 (C2)) plus

the slack (B;02:1 ) of the higher-priority imminent task g1 . Consequently, the algorithm calculated
\ (g1), and since g1 is the only higher-priority task for which Equation (2) does not hold at C2, the
node must remain idle until C ′ = \ (g1), waiting for the release of g1 .

5.4 Release: Coordinating Job Insertion with Limited Priority Inversion
The release algorithm of each node determines the execution order of jobs upon their release while
ensuring that all nodes insert them at the same position in their ready queues. Additionally, it
updates minProg and CD?30C4 once all nodes have been confirmed to be idle after completing all
released jobs.

At each task release, the release algorithm on each node ensures a consistent ready queue across
healthy nodes, regardless of their progress, before inserting the released task. Since nodes are
unaware of each other’s progress, they assume that a front-runner node may have completed
jobs up to the MAP. The MAP represents the maximum progress a healthy node can achieve, as
the scheduling algorithm ensures the progress of healthy nodes remains at or below the MAP.
By moving every chunk up to the MAP to the chunk queue based on Equation (2), all nodes can
construct the same ready queue. Therefore, once the MAP is found, they insert the newly released
job into the ready queue based on its priority, ensuring consistent job order across all nodes.

Determining WCP Parameters. The WCP of a progress is calculated based on the assumption that
a back-runner executing chunks with their WCETs has never been idle since CD?30C4 . However, if
no tasks are released for some time, even such a node would complete all released jobs and remain
idle, at which point the values of minProg and CD?30C4 must be updated. The release algorithm can
confirm whether the back-runner has been idle without communication.

Lemma 2. If at any time C , on a healthy node %: , '&: is empty andl (?A>6tail
:

) ≤ C , then it is ensured
that the back-runner has completed the execution of all released jobs and is idle, even if it executed
chunks with their WCETs.

Proof. l (?A>6tail
:

) represents an upper bound on when the back-runner would finish progress
?A>6tail

:
. If '&: is empty, this implies that all chunks of the released jobs have been moved to the

chunk queue. Therefore, l (?A>6tail
:

) provides an upper bound on when the back-runner completes
all released jobs. Consequently, the condition l (?A>6tail

:
) ≤ C ensures that the back-runner has

executed all released jobs by time C and has been idle. �

When a task g4 is released as A4 , if the conditions in Lemma 2 hold for C = A4 , the release algorithm
updates minProg to ?A>6C08;

:
and CD?30C4 to A4 , as the back-runner starts executing the next chunk

(i.e., the chunk at minProg + 1) at A4 .
Illustrative Example. Figure 2(b) depicts the release algorithm. In this example, task g1 is released

at A1 , when %1 was executing g3 and %2 was idle due to the scheduling decision at C2. At C3, after
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running the release algorithm, node %1 transferred g4 to the chunk queue to align ?A>6C08;1 with
the "�% , followed by the insertion of g1 into the ready queue. Node %2, at C4 = A1 , inserts the
released job into the ready queue since ?A>6C08;2 already aligns with the "�% , and the node is idle.
As shown, both nodes %1 and %2 had identical ready queues after %1 transferred chunks from '&1

to �&1. Thus, they inserted the released task g1 into the ready queue in the same position, ahead of
the lower-priority job g5 .

In Figure 2(a), we observe how the release algorithm updates minProg and CD?30C4 upon the
release of g2 . At time A2 , all chunks of the released jobs before g2 would have completed execution,
even if they had taken their WCETs (as shown in the hashed gray area). Thus, the release algorithm
on both nodes %1 and %2 updates minProg to the progress corresponding to the completion of the
last chunk of g6. It also sets CD?30C4 to the release time A2 , ensuring that CD?30C4 indicates when the
chunk at minProg + 1, which is g12 , starts executing on the back-runner. These values are then used
by both the release and scheduling algorithms to calculate the WCP for each progress, as shown in
Figure 2(a) and (b).

5.5 Update: Reducing Pessimism via Communication
During runtime, nodes often complete chunks earlier than theirWCETs,making theMAP calculation
based on the WCP overly pessimistic. While our method inserts and executes released jobs without
communication, using communication with an update algorithm reduces WCP pessimism and
improves job response times.

By leveraging communication, nodes can track the healthy back-runner’s actual progress to
update <8=%A>6 and CD?30C4 . At each release of a task g4 at A4 , nodes initiate a non-blocking
communication, allowing the update algorithm to use the received information at the timeout
A4 + Timeout. Depending on the communication delay, nodes can use the received progress from
the healthy back-runner to estimate a less pessimistic WCP for each progress. In such cases,
the update algorithm sets minProg to the progress of the healthy back-runner and CD?30C4 to
A4 + Timeout, confirming that the healthy back-runner has reached the reported progress by the
timeout. This reduces theWCP for each progress beyondminProg, increasing the MAP and enabling
the scheduling algorithm to execute more chunks before forcing a node to idle.

To guarantee consistency, nodes use a real-time reliable broadcast protocol ensuring either all
nodes receive a message sent after the release time A4 before A4 + Timeout, or no correct replica
delivers it. A node must receive progress information from all other nodes before the timeout to
execute the update algorithm; otherwise, no healthy node will execute it. Additionally, nodes run
the update algorithm according to A4 +Timeout to ensure all nodes follow the same execution order
for the release and update algorithms, maintaining consistency in minProg and CD?30C4 at all times.
Detecting Faulty Back-Runners. Faulty nodes may attempt to exploit the update algorithm to

establish incorrect WCP parameters, disrupting the correct operation of the scheduling and release
algorithms. To prevent this, the update algorithm uses progress information to detect and dismiss
faulty back-runners, as described in the following lemma:

Lemma 3. Assume that ?A>6sent
:

represents the progress reported by a healthy node %: to other nodes
at the release of a task g4 . Node %: identifies another node, %1 , as a faulty back-runner if the progress
reported by %1 , ?A>6sent1

, is smaller than ?A>6sent
:

and the WCP of %1 ’s progress is less than A4 (i.e.,
l (?A>6sent

1
) < A4 ).

Proof. The WCP represents the time when the back-runner completes a progress if chunks
execute up to their WCETs. At time A4 , if l (progB4=C

1
) < A4 , the node has either idled (Lemma 2) or

exceeded the chunks’ WCETs. A healthy node idles only if it is about to exceed the MAP or has
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Algorithm 1: Release of Task g4 at Time A4 on %:

finished all released jobs. However, since %: is healthy and ?A>6B4=C
1

< ?A>6B4=C
:

≤ "�% , it means
%1 idled without its next progress exceeding the MAP while jobs were pending. Therefore, %1 is
faulty. Additionally, %1 is faulty if exceeding the chunks’ WCETs during execution. �

Illustrative Example. In the example depicted in Figure 2(c), after A1 is released, the back-runner
%1 broadcasts its progress following the completion of g3 . After the timeout, the update algorithm
is executed on %1 at C5 and on %2 at C6. Upon exchanging progress data, nodes %1 and %2 check each
other’s progress. Since %1 has smaller progress and the WCP of %1’s progress before the update is
greater than A1 , it is detected as the healthy back-runner. Consequently, the nodes update minProg
based on the progress broadcast by %1 and CD?30C4 based on A1 + Timeout. As a result, the updated
WCP considers only the WCET of chunks from g14 and subsequent chunks. This less pessimistic
WCP increases the MAP, enabling nodes to move more chunks to the chunk queue for execution
without idling.

6 Detailed Algorithms
In this section, we detail the algorithms that coordinate the execution order of tasks among
nodes. The pseudo-codes for the three components of our method are outlined in Algorithms 1–4.
Algorithm 2 serves as a supplementary function, reducing repetition. These algorithms address job
releasing, scheduling chunks, and updating minProg and CD?30C4 based on communicated informa-
tion. Depending on the system model, the release and update algorithms can run either immediately
after receiving an event and after the communication timeout, respectively, or be deferred until
the currently executing chunk completes. The scheduling algorithm, however, always runs before
executing chunks.
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Algorithm 2: Slack Check to Move Chunks of a Chunk from the Ready Queue to the Chunk Queue

Algorithm 3: Scheduling the Next Chunk on %:

We will discuss the compatibility of our method with coarsely synchronized clocks in Section
7 and Appendix B, elaborate on the implemented optimizations in Appendix A, and analyze the
runtime overhead of the algorithms in Appendix C.1.

6.1 Release Algorithm
Algorithm 1 shows the pseudo-code for releasing a task g4 at time A4 on a node %: . The release
algorithm performs the following at the release of each task:

—Updates<8=%A>6 and CD?30C4 if it can be verified that the back-runner is idle (lines 8–9).
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Algorithm 4: Updating the Information of the Back-Runner Node on %:

—Initiates the non-blocking communication to send the node’s progress to other nodes
(lines 11–12).

—Moves chunks from the jobs in the ready queue to the chunk queue until finding MAP
(lines 13–18).

—Inserts the released job into the resulting ready queue based on the job’s priority (line 19)

First, the algorithm computes the WCP of ?A>6C08;
:

(line 7) to determine whether the back-runner
has been idle and, if so, updates"8=%A>6 and CD?30C4 . If the conditions in Lemma 2 hold for C = A4 , the
algorithm updatesminProg and CD?30C4 to reflect ?A>6C08;

:
and A4 respectively (lines 8–9). Otherwise,

the algorithm broadcasts the current progress of %: to all other nodes while setting a timeout to
A4 + Timeout for invoking the update algorithm (lines 11–12).

After initiating the communication, the algorithm finds the MAP by transferring the chunks of
the jobs from the ready queue to the chunk queue. To find the MAP, first, the algorithm calculates
SlackBound as the minimum of d8 (A4 ) + B;02:8 for all imminent tasks g8 with higher priority than
the first job in the ready queue g0 (line 15). Then it moves the chunks of g0 to the chunk queue
(line 16) using the function depicted in Algorithm 2. The descending order of priorities in '&:

enables Algorithm 1 to calculate SlackBound efficiently by leveraging the previously computed
value of SlackBound obtained from the last iteration. For example, to calculate the (;02:�>D=3
for ℎ?1 , after moving g0 to the chunk queue, the algorithm just needs to update the (;02:�>D=3
to include the minimum of d8 (A4 ) + B;02:8 for ℎ?1 in the set of �) which only contains �(:\ℎ?0
(line 17). Algorithm 1 continues moving chunks to the chunk queue until the moveChunks function
is unable to remove a job from the ready queue which means Equation (2) does not hold for g=4GC00 .
At this point, the release algorithm exits the loop (line 18) as the final progress in the chunk queue
(?A>6C08;

:
) is the MAP. Therefore, the algorithm inserts the released job based on its priority in the

ready queue and sets the ID of its first chunk to 1 (line 19). At line 20, the time of the last release of
g4 is updated to A4 .

Moving Chunks. The moveChunks function shown in Algorithm 2 moves the chunks of a job g0 at
the head of the ready queue to the chunk queue as long as Equation (2) holds. Initially, it finds the
maximum ID, safe0 , among the chunks of g0 , such that adding the WCET of chunks from =4GC0 until
safe0 to the WCP of ?A>6C08;

:
does not exceed the earliest release plus the slack of higher-priority

imminent tasks (line 6). Subsequently, it enqueues the chunks of g0 up to g safe00 at the tail of the
chunk queue (line 7). It also updates the WCP of ?A>6C08;

:
after each modification (line 8). =4GC0
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is updated based on safe0 , or job g0 is removed from the ready queue if all its chunks have been
moved to the chunk queue (lines 9–10).

6.2 Scheduling Algorithm
Algorithm 3 illustrates the pseudo-code for our schedule function. This function executes only
when there are no pending releases or updates (otherwise, these algorithms will be executed first).
It runs in response to any of the following events: (1) when a node switches to a new job after
finishing a chunk, (2) when imminent tasks have not been released by the end of an idle period, or
(3) when the node is idle after running the release or update algorithm. In a nutshell, the scheduling
algorithm performs the following operations before starting the execution of a chunk:

—Executes the next chunk in the chunk queue that has not yet been executed (line 8).
—If Equation (2) holds for all g8 ∈ �(: ∩ ℎ?0 , moves chunks of the next job of '&: to �&: and
executes (lines 13–16).

—If no chunk is awaiting execution in�&: , enforces idle time until when the Equation (2) holds
again (lines 18–19).

First, the algorithm checks for any unexecuted chunks in �&: . If there are chunks in �&: after
?A>62DA

:
(i.e., ?A>62DA

:
< ?A>6C08;

:
), the algorithm executes the next chunk in�&: (line 8). Otherwise,

the algorithm checks '&: . If '&: is empty, the node remains idle (line 9). If there are jobs in
'&: , the algorithm checks whether Equation (2) holds (lines 11–14). If true, the algorithm calls
moveChunks function to transfer chunks from the job at the head of '&: to �&: (line 15) and
proceeds to execute the next chunk (line 16). Otherwise, the node calculates the time C ′ by which
the next chunk of the first job in '&: can be moved to �&: for execution. C ′ is determined by the
maximum of \ (g8 ), calculated using Equation (3), for each imminent task g8 ∈ ℎ?0 that Equation (2)
does not hold for. The node remains idle until C ′ (line 19), awaiting the release of any task. If no
task is released by C ′, the scheduling algorithm will be executed again.

Note that, although it is not explicitly illustrated in Algorithm 3, there are instances where the
first chunk in '&: is moved to�&: without needing to check the slack of higher priority imminent
tasks. This occurs when all of the chunks in the �&: after "8=%A>6 have been completed close to
their WCETs, meaning that the WCP of ?A>6C08;

:
is close to the current time. Moving the first chunk

of the '&: to �&: in this scenario is always possible since the schedulability test ensures that the
slack of any task is at least as large as the maximum length of any chunk of any lower-priority task.

6.3 Update Algorithm
Nodes broadcast their progress when a task g4 is released at A4 and the conditions of Lemma 2 do not
hold for C = A4 . Once a node receives progress information from all other nodes and the broadcast
timeout is triggered at A4 + Timeout, the node runs the update algorithm. The main functions of the
Update algorithm are the following:

—Finding faulty back-runners (lines 8–11).
—Updating MinProg and Cupdate based on the progress of the non-faulty back-runner and the
time of update (line 12).

Before executing the update algorithm, while node %: is receiving progress information, it
constructs the set PROG, which contains progress data sent by other nodes (?A>6B4=C9 ) before
A4 + �B4=3 , along with its own progress (?A>6B4=C

:
). Initially, the update algorithm identifies the

progress of faulty back-runners.The algorithm chooses the minimum progress in PROG for checking
the conditions in Lemma 3 while removing it from the set (lines 8–9). If a progress is found faulty,
the node evaluates the next back-runner progress in the remaining PROG until it identifies the
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non-faulty back-runner (lines10–11). If there is no non-faulty progress less than the node’s own
progress (i.e., 1A? = ?A>6B4=C

:
), the node considers its own progress as the non-faulty back-runner’s

progress.
Finally, the algorithm updates minProg to the non-faulty back-runner’s progress. It updates

CD?30C4 to the minimum of the time of the timeout and,1A , which is the WCP of the non-faulty
back-runner’s progress computed based on the previously set minProg and CD?30C4 . This ensures
that the WCP always reflects the behavior of a back-runner that requires the WCET of chunks to
execute them, and prevents the late update at A4 + Timeout from increasing the WCP.

6.4 Guaranteeing Timely Execution
Our method ensures that tasks meet their deadlines under both fixed and dynamic priority schedul-
ing algorithms, provided that the task set is schedulable on a single node using the same scheduling
algorithm. This assumes tasks are only preemptible at chunk boundaries, and that the WCET of
each chunk is defined as the maximum WCET of the chunk among all its replicas. For dynamic
priority scheduling algorithms such as EDF, job priorities are determined at runtime. Once a job is
released, its absolute deadline—and consequently its priority under the EDF algorithm—is fixed.
Similarly, for an imminent task (g8 ), we can calculate its earliest possible absolute deadline at time (C )
by adding its earliest possible release time (d8 (C)) to its relative deadline (�8 ). This earliest absolute
deadline is then used to establish the task’s priority.

We calculate the slack for each task g8 based on [43], which employs the method from [5] and
incorporates the release overhead as described in [49]. If (8 is defined as the set of lower-priority
tasks than g8 for RM (i.e., (8 = ;?8 ), or as the set of tasks with a larger (or equal) relative deadline
than �8 for EDF (i.e., (8 = {∀g 9 ∈ T| 9 ≠ 8 ∧ �8 ≤ � 9 }), then the task set is schedulable using RM or
EDF, respectively, if:

∀g 9 ∈ (8 ,max
:≤!9

(�:
9 ) ≤ slack8 . (4)

This guarantees that the slack of each task exceeds the WCET of the non-preemptive chunks of
tasks in (8 , which is a sufficient condition for a task set to be schedulable by our method. We will
now describe how our release, scheduling, and update algorithms ensure that no job misses its
deadline.

Lemma 4. Inserting a released job after all chunks until the MAP and before the lower-priority jobs
remained in the ready queue does not lead to deadline misses.

Proof.The release algorithm, when finding the MAP, ensures the slack of imminent tasks exceeds
the maximum priority inversion from executing chunks until the MAP (lines 15–16 in Algorithm 1
and lines 6–7 in Algorithm 2). Also, after moving chunks until the MAP to the chunk queue and
inserting a task before its lower-priority jobs in the ready queue (line 19 in Algorithm 1), no
other lower-priority task is inserted before the insertion point. Therefore, it is always ensured
that the priority inversion is less than the slack of the tasks and the deadlines of the tasks are
guaranteed. �

Lemma 5. The idle time enforced by the scheduling algorithm does not cause any deadline miss.

Proof.This idle time is only introduced when a node completes chunks earlier than their WCETs.
If a node finishes the execution of chunks close to their WCETs, then C ≈ l (?A>62DA

:
). In this case,

if ?A>62DA
:

< ?A>6C08;
:

, the next chunk will be executed (line 8 in Algorithm 3). If ?A>62DA
:

= ?A>6C08;
:

,
since the condition in Equation (4) guarantees that the WCET of the chunks of each task is less
than the slack of its higher-priority tasks, the condition in Equation (2) is satisfied, allowing the

ACM Transactions on Cyber-Physical Systems, Vol. 9, No. 4, Article 39. Publication date: November 2025.



39:20 A. Naghavi and N. Navet

next chunk to be moved to the chunk queue for execution (lines 14–15 in Algorithm 3). Therefore,
our scheduling algorithm never imposes idle time on a back-runner executing chunks near their
WCETs and only utilizes dynamic slack created by the early completion of jobs. �

Communication for updating minProg and CD?30C4 does not cause idle time, as nodes broadcast
progress information either in parallel with job execution (using DMA-based NICs or co-processors)
or when the node is already idle. Neither the release nor the scheduling algorithms wait for
communication results, so communication never impacts timeliness or delays job execution. Instead,
the update algorithm leverages the received information to reduce idle time by decreasing WCP
pessimism and increasing MAP, allowing nodes to execute more chunks from the released jobs
without remaining idle. Furthermore, no node can cause deadline misses on others by sending faulty
or malicious progress information, making the method immune to priority inversion injection
attacks.

Lemma 6. Assuming the WCP of each progress already provides a correct upper bound on when a
back-runner reaches a given progress, timeliness can still be guaranteed after an update even if a node
sends malicious progress information.

Proof. In our method, nodes determine chunk execution order without relying on others’
progress. Instead, they use the WCP, slack, and task release times to compute MAP, fix chunk order
in the chunk queue, and insert jobs into the ready queue. Although the update algorithm assigns
<8=%A>6 and CD?30C4 based on communicated data, a malicious node cannot disrupt WCP from
being a correct upper bound. If the WCP is already correct before the update, Lemma 3 ensures
that malicious back-runners—those reporting progress lower than what is achievable by executing
chunks at their WCETs—are dismissed.Thus,minProg remains safely bounded between the progress
of a node executing chunks at WCETs (still a healthy node) and the progress of the healthy node
running the update algorithm. Similarly, CD?30C4 is determined based on the WCP before the update
and the time of the timeout, rather than by communicated data. These ensure the WCP remains a
correct upper bound, preventing malicious information from causing deadline misses. �

7 Extension to Coarsely Synchronized Clocks
Although we assumed synchronized clocks for simplicity, our method also works with coarsely
synchronized clocks if events are timestamped before being sent to nodes. In this section, we
account for Δ, the maximum difference between an event’s timestamp and its reception time
according to a node’s local clock, and X , the maximum difference between time values read by
nodes from their respective clocks. We then outline the modifications required for each algorithm
to operate under coarse synchronization. As shown in the Appendix B, these changes do not affect
timeliness when Δ is treated as release jitter in the schedulability test.

7.1 Accounting for Event Latency at Release
Delays in receiving events can postpone task execution, requiring an adjustment to the WCP
parameters. To account for this delay, we incorporate it into Cupdate by setting Cupdate = A4 +Δ at line
9 in Algorithm 1. This ensures that the WCP of a progress remains an upper bound on the point in
time when the back-runner finishes that progress, even when the events are delayed. Despite using
coarsely synchronized clocks, the release algorithm requires no further modifications, as it relies
on event timestamps rather than the local time of individual nodes to determine the MAP.

Note that the release algorithm executes only when the node’s local time reaches or exceeds the
event’s timestamp (A4 ). This ensures that a node never reports a progress lower than what it has at
A4 , nor executes a job before its release time according to its local clock.
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7.2 Maintaining Correct Interaction of Scheduling and Release Algorithms
The scheduling algorithm requires specific adjustments to handle coarsely synchronized clocks
effectively. These adjustments ensure that if the scheduling algorithm moves some chunks to the
chunk queue before a job’s release, all other nodes also transfer those chunks to their respective
chunk queues before inserting the released job into the ready queue. Consider a scenario where an
event to release g4 with timestamp A4 is received immediately after a node executes the scheduling
algorithm. It might be the case that due to the coarsely synchronized clock or late arrival of the
event, the local time C of the node during scheduling which happened just before the release, is
ahead of A4 . As in the scheduling algorithm the next release of imminent tasks is evaluated based
on the local time of the nodes, it is crucial to restrict the chunks moved by the scheduling algorithm
to the chunk queue. This ensures that when inserting g4 into the ready queue, the MAP computed
by the release algorithm based on A4 is always greater than or equal to ?A>6C08;

:
, allowing all nodes

to construct identical ready queues and insert g4 in the same position.
The following modifications to the scheduling algorithm make it compatible with coarsely

synchronized clocks:

Lemma 7. The scheduling algorithm at time C on node %: ensures ?A>6C08;
:

never exceeds the MAP
calculated at a job’s release A4 by the release algorithm, if it considers the earliest release of imminent
tasks from C − Δ (≤ A4 ) instead of C .

Proof. In the scheduling algorithm for coarsely synchronized clocks, the next release time of
each imminent task g8 is calculated as the maximum of A ;0BC4 +)8 and C − Δ. Before the release of a
task g4 , the earliest release time of every imminent task g8 , determined based on C − Δ, is always
earlier than or equal to its earliest release time determined at A4 (i.e., d8 (C − Δ) ≤ d8 (A4 )). Therefore,
the chunks that are moved to the�&: by the scheduling algorithm based on C −Δ and Equation (2),
never exceed the chunks that are moved by the release algorithm based on A4 , even if A4 < C due
to the coarse synchronization. As a result, the scheduling algorithm ensures that ?A>6C08;

:
never

exceeds the MAP, which is determined at the time of the next release (A4 ). �

Note that, if the scheduling algorithm fails to move any chunk to the chunk queue, the node %:
will remain idle until C ′ + Δ, at which point it can proceed with moving a chunk from the first job
in the '&: to �&: .

7.3 Safeguarding Consistent WCP Updates
With coarsely synchronized clocks, two key adjustments are needed regarding the update algorithm.
First, the release and update algorithmsmust be called in the correct order based on their timestamps.
Second, nodes must use the same progress data when updating minProg and CD?30C4 to ensure
identifying the same healthy back-runner across all nodes.

To maintain the execution order of the release and update algorithms based on their timestamps,
the update algorithm only executes after A4 + Timeout + Δ. This guarantees that no event with a
timestamp earlier than A4 + Timeout remains pending before running the update algorithm. As a
result, at line 12 of Algorithm 4, we must set CD?30C4 to A4 +Timeout+Δ instead of A4 +Timeout. This
ensures that if all nodes are fast and are being idle to avoid exceeding MAP, the next WCP starts at
A4 + Timeout + Δ, the earliest time at which they can resume executing chunks after the update.
Consequently, WCP remains an upper bound on the time when a node completes a progress.

The update algorithm relies on both the event’s timestamp, A4 , and a Timeout value known across
all nodes. Therefore, since it is not reliant on the local time of individual nodes, the rest of the
algorithm remains unchanged even with coarsely synchronized clocks. However, to ensure that
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the algorithm updates minProg and CD?30C4 to identical values on all nodes, we modify �B4=3 and
Timeout.

Lemma 8. Let�B~=2

B4=3
denote the maximum delay before a node begins sending its progress information

after receiving an event in a fully synchronized system, where all nodes receive events simultaneously.
In a system with coarsely synchronized clocks, all nodes will consider the same progress information
when executing the update algorithm after the timeout, provided that�B4=3 ≥ �

B~=2

B4=3
+Δ and Timeout ≥

�B4=3 +�<B6 + X .

Proof. For an event timestamped at A4 , if �B4=3 includes Δ, it can be ensured that every healthy
node receives the event and sends its progress before A4 +�B4=3 even if it experiences the maximum
delay in receiving the event. Any progress information timestamped after A4 +�B4=3 is disregarded
by all nodes. Additionally, every healthy node receives and delivers progress information from
others within �B4=3 +�<B6 + X , despite clock differences up to X . If a node does not receive this
information within this time, all nodes discard the information, since the delay cannot be attributed
to clock deviation, which has already been accounted for. Therefore, for any Timeout greater than
this value, we ensure that all healthy nodes consider the same set of progress values, or they all
discard the progress information. �

Since all nodes execute the release and update algorithms in the same order and receive identical
progress information, they can calculate the same WCP for each progress based on the previous
minProg and CD?30C4 and also update minProg and CD?30C4 to the same values, using the non-faulty
back-runner’s progress and the timeout timestamp.

8 Evaluation
We implemented our approach, referred to in this section as Limited Priority Inversion Total
Order based on Maximum Allowed Progress (LPI-MAP), and compared it with the method by
Rodrigues et al. [53], the approach by Wang et al. [58], and LPI-FRP by Naghavi and Navet [43].
We compare these methods based on their acceptance ratio and analyze job response times using
each approach. To ensure a fair comparison of response times, we modified all methods to support
limited preemption and work with chunks. Additionally, we compare our approach with a variant
of the Simple method mentioned in Naghavi and Navet [43]. This method is non-work-conserving
and always idles until a chunk’s WCET, when the chunk is completed before its WCET. To maintain
the same total execution order, Simple requires either precisely synchronized clocks to ensure that
preemptions occur simultaneously across all nodes, or the nodes must remain idle after finishing
each chunk long enough to offset the clock imprecision. Notice also that while Rodrigues and Wang
are concerned with the total order in the processing of prioritized events, these works do not claim
to achieve any real-time guarantees.

We evaluate the ratio of schedulable task sets, as well as the impact of the aforementionedmethods
on both average and worst-case response times. Additionally, we demonstrate that Rodrigues and
Wang fail to meet task deadlines and measure the effect of communication delay on the performance
of our method. The overhead of our solution, along with the impact of each method on the response
time for individual tasks are explored in the Appendix C.2 of this article.

8.1 Experimental Setup
We implemented all the approaches evaluated in this study in C++,3 considering synchronized
clocks to simulate the execution of jobs and obtain their response times using different methods.
3Available at https://github.com/aminnaghavi/TOFT-RTS, released under AGPL v3.0 license. Results are reproducible via
the provided code and instructions.
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Additionally, we used a Raspberry Pi 4B running Linux at a frequency of 1.5 GHz to measure the
WCET of the TACLeBench benchmark [16] tasks. We used the same platform to assess the overhead
of our method, which is reported in the Appendix C.1.

We generated tasks using the Dirichlet-Rescale algorithm [21]. For each task set, we obtained 100
uniformly distributed random utilization values D8 , which collectively sum up to the targeted total
utilization * . We then calculate minimum inter-release times from these D8 values, as )8 =�8/D8
where �8 is derived from the TACLeBench tasks, with WCET ranging between 0.1 and 100 ms. We
generate chunks with a minimum worst-case execution time equivalent to WCET of the smallest
task and ensure that chunk sizes are closely similar. Thus, the WCETs for the chunks are uniformly
and randomly selected from the interval [2<8=, 2<0G ], where we set 2<8= = 0.1 ms and 2<0G = 0.12
ms. We allow some chunks (chosen randomly) to uniformly exceed 2<0G to ensure that the sum

of WCETs of chunks of a task g8 equals �8 (i.e.,
!8
Σ
;=1
�;
8 = �8 ). Therefore, the number of chunks

of a task g8 , depending on the WCET of the task and the WCET of the chunks, ranges between
max(b�8/2<0G c , 1) and

⌊
�8/2<8=

⌋
.

We set �8 =)8 , though our method works for any �8 ≤ )8 . We assume the Best-Case Execution
Time (BCET) of each task, representing the minimum time for its jobs to complete, is 20% of its
WCET, as in [4, 65]. The choice of BCET influences the range from which chunk execution times are
selected, which in turn impacts the variation in execution times across different replicas of a job.
The period adjustment method proposed by Xu [59] was implemented to mitigate the occurrence
of extreme hyperperiods. For each task set, we generate 100,000 jobs. The release times of jobs are
generated randomly so that between two successive jobs of a task g8 , there is a gap between )8
and 2)8 .

We use RM and EDF scheduling algorithms and simulate job execution in two scenarios: Normal
and Worst-Case. Normal scenario is defined as a scenario where jobs’ actual execution times are
chosen randomly using a uniform distribution between their BCETs and WCETs. We consider
worst-case scenario on the other hand as a scenario in which

⌊
=
2

⌋
malicious nodes mimic the progress

of a healthy front-runner that executes jobs at their BCETs, while another healthy node executes
jobs at their WCETs. We randomly choose the execution time between each two milestones from
[0,�;

8 ] so that they sum up to the actual execution time of the job.
We added synthetic communication delays to measure response times. We set )8<4>DC =

20 `s as the upper bound of the communication delays to send the progress information. Even
though our LPI-MAP method remains effective even under increased communication delays (see
Section 8.4), we chose this small delay to ensure a fair comparison with Wang, Rodrigues, and
LPI-FRPmethods, as their effectiveness heavily relies on communication (see Section 3).We also per-
formed a parameter study to understand how our approach works under different communication
conditions.

8.2 Acceptance Ratio
We determine the acceptance ratio of different methods for various total utilizations using RM
and EDF scheduling. We used the settings described in Section 8.1 to generate 1,000 task sets,
each containing 100 tasks, for each total utilization value. Figure 3 shows the acceptance ratio
for our LPI-MAP approach, LPI-FRP, and simple methods (under both limited preemptive and
non-preemptive scheduling), along with the approaches of Rodrigues and Wang. It also includes
the acceptance ratio of unmodified preemptive RM/EDF on a uniprocessor for reference.

The non-preemptive and limited preemptive versions of our method use the same criteria for
accepting tasks as the non-preemptive and limited preemptive versions of LPI-FRP and the Simple
methods, respectively. Note that the limited preemptive version of LPI-FRP can only guarantee
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Fig. 3. Fraction of schedulable task sets under our LPI-MAP approach, LPI-FRP, and the Simple approaches
(limited or non-preemptive), compared with Rodrigues’ and Wang’s methods, as well as fully preemptive
uniprocessor scheduling for RM (left) and EDF (right).

deadlines if the communication timeout is smaller than the WCET of the smallest chunk, as is the
case in the selected experimental settings.

Assuming a plausibility check ensures jobs are not released earlier than their minimum inter-
release times, malicious nodes can exploit Rodrigues’ method and RM by falsely claiming to have
executed one job from each lower-priority task upon g8 ’s release. This can delay g8 ’s execution
significantly, potentially causing a deadline miss. Similarly, under EDF, malicious nodes may
claim to have executed one job from each released task with a larger deadline to inject priority
inversion. Additionally, in Wang’s method, malicious nodes may exploit a front-runner’s progress
by pretending to execute jobs at their BCETs while a healthy node executes them at their WCETs. In
this scenario, a newly released job on the back-runner will be delayed until the back-runner finishes
all jobs completed by the front-runner, potentially causing a deadline miss. If tasks have sufficient
slacks, they can neutralize such attacks in both Rodrigues’ and Wang’s methods. According to this,
Naghavi and Navet [43] presented a schedulability test for these methods. Since Rodrigues’ and
Wang’s methods remain vulnerable to these attacks evenwith limited preemption, the schedulability
test in [43] can assess whether a task set remains schedulable under these methods, regardless of
the preemption model.

As shown in Figure 3, Wang and Rodrigues relatively quickly (after a total utilization of 0.05)
run into sets for which not all tasks can be guaranteed to meet their deadlines. In contrast, our
solution, along with the modified versions of Simple and LPI-FRP methods that work with limited
preemption, stays close to the bound for fully preemptive RM and EDF, accepting task sets with
utilization up to 0.91 for RM and 0.98 for EDF. Note that the unmodified LPI-FRP method, which
only supports non-preemptive scheduling, would yield a lower acceptance ratio, as shown in
Figure 3.

8.3 Response Times
Although real-time systems are primarily concerned with guaranteeing task deadlines, there are
several secondary concerns where the actual response times of jobs play a crucial role (e.g., power
management, aperiodic tasks, background load, mixed-criticality applications).

To investigate response times, we generated 100 task sets for each total utilization using param-
eters mentioned in Section 8.1 and simulated the execution of 100,000 jobs per task set, replicated
on five nodes (i.e., 500,000 jobs in total for each task set). Each of these task sets is schedulable
based on the criteria mentioned in Equation (4).

Figures 4(a) and 5(a) depict, for different total utilization values, the normalized average and
worst response times of tasks averaged across all tasks and task sets in the normal scenario. The
normalized average and worst response time for each task represent the average and maximum
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Fig. 4. The impact of different methods on the average response time of tasks normalized by their deadlines.
Results are shown for all nodes in the normal scenario (left), for the front-runner node (middle), and the
back-runner node (right) in the worst-case scenario. Results for RM are displayed at the top and for EDF at
the bottom.

response time, respectively, across all jobs of the task on all nodes, normalized by the task’s deadline.
Figures 4(b) and 5(b) illustrate the normalized average and worst response times of tasks averaged
over all tasks and task sets for the healthy front-runner node in the worst-case scenario, while
Figures 4(c) and 5(c) show the same for a healthy back-runner. We present the results for both RM
and EDF in Figures 4 and 5.

Our LPI-MAP method enables nodes to progress independently, only requiring a node to remain
idle if executing the next chunk jeopardizes the deadline of imminent tasks on the back-runner. In
total, as can be seen in Figure 4(a), this leads to a reduction in average response times compared to
Simple in the normal scenario. For example, at a total utilization of 0.95, using our LPI-MAPmethod,
the average response time of tasks is 2.4% of their deadline intervals, while in the Simple method,
tasks respond in 4.1% of their deadlines. On average, the LPI-MAP method performs similarly to the
Rodrigues method. While the limited preemptive version of LPI-FRP and Wang methods achieve
better average response times in normal scenarios, their reliance on communication makes them
less robust.

On the front-runner in the worst-case scenario (Figure 4(b)), for the total utilization values
smaller than 0.9, our method performs closely to the limited preemptive version of the LPI-FRP
method and provides lower average response times compared to the Simple method. Furthermore,
the similarity of the response times of the Simple method in Figure 4(a) and (b) indicates the Simple
method’s inability to benefit from the early completion of jobs. Our method performs similarly to
the Simple method when total utilization reaches 0.9 or higher. This convergence occurs because a
back-runner node executes jobs at their WCET; therefore, at high utilization, due to the small slacks
of the tasks, front-runner node cannot execute many chunks ahead of the back-runner. As a result,
the front-runner often remains idle to prevent jeopardizing jobs’ deadlines on the back-runner,
leading to increased response times.
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Fig. 5. The impact of different methods on the worst response time of tasks normalized by their deadlines.
Results are shown for all nodes in the normal scenario (left), for the front-runner node (middle), and the
back-runner node (right) in the worst-case scenario. Results for RM are displayed at the top and for EDF at
the bottom.

The average response time of tasks on the front-runner in Rodrigues and Wang’s methods is very
low because the front-runner does not wait for the execution of jobs on the back-runner. However,
we will later demonstrate that this results in deadline misses on the back-runner.

Based on Figure 4(c), the Simple method achieves the lowest average response time for jobs on
the back-runner. The reason is that the Simple method does not allow priority inversion beyond
the WCET of a single chunk. This figure also demonstrates that our method is able to effectively
maintain low response times on the back-runner.

Figure 5(a)–(c) shows that the worst response time is lower in the Simple method than other
methods. This is because these methods, unlike the Simple method, might delay the execution of a
job by more than one chunk of lower-priority jobs. Nevertheless, the worst response time of our
LPI-MAP method (as well as the LPI-FRP) remains significantly below 1, even on the back-runner
in the worst-case scenario. As can be seen in Figures 5(a), Rodrigues and Wang have higher worst
response times in the normal scenario than our method and the Simple method. Especially, in high
total utilizations where Rodrigues has the worst normalized response times close to 1. This shows
that in most of the task sets with high total utilization, tasks had worst response times near their
deadlines.

In the worst-case scenario on the back-runner (Figure 5(c)), at the total utilization of 0.3 or higher,
Rodrigues’s and Wang’s normalized worst response times exceed 1. This shows the back-runner’s
worst response times are significantly impacted by the front-runner’s behavior, leading to instances
where tasks exceed their deadlines on the back-runner.

Rodrigues and Wang’s methods miss job deadlines not only in the worst-case scenario but also in
the normal scenario. We measured the percentage of jobs whose deadlines were not met across all
five nodes in the normal scenario (Figure 6(a)) and on the back-runner in the worst-case scenario
(Figure 6(b)) for RM and EDF.

At a total utilization of 0.95 with RM in the normal scenario, on average (over 100 task sets),
Rodrigues misses the deadline of 1.69% of jobs, while Wang misses the deadline of 0.25%. In the
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Fig. 6. Percentage of jobs missing their deadlines in Rodrigues and Wang using RM and EDF in the normal
(left) and the worst-case (middle) scenarios, and impact of communication delay on the average response
time of our LPI-MAP method using RM (right).

worst-case scenario, at the same total utilization and with RM, the number of jobs which missed
their deadlines on the back-runner node are 44% and 42.77% for Rodrigues and Wang respectively.
Our LPI-MAP method, as well as the simple and LPI-FRP method, never missed any deadlines and
are therefore not depicted.

8.4 Impact of Communication Delay on Average Response Times
Learning that other nodes have completed jobs earlier than their WCETs when communicating
progress information, allows nodes to process additional chunks. To evaluate how communication
delays affect our approach, we measured the normalized average response time of all jobs across
100 schedulable task sets with total utilization of 0.9 for different communication delays. In Figure
6(c), communication times are varied from 20 `s to 100 `s, then to 1,000 `s, and are increased up to
9,000 `s in 1,000 `s increments. We measured the normalized average response time of our method,
with the results from the Simple method—which is independent of communication time—serving
as the baseline.

It can be observed that, for the task specifications mentioned in Section 8.1, our LPI-MAP method
maintains a better average response time than Simple for communication delays of 4,000 `s and
below. Beyond this point, Simple begins to outperform our method. This is due to the fact that
progress updates received after such high communication delays cannot be effectively leveraged
by our method. Consequently, the pessimistic WCP parameters reduce our method’s efficiency
in executing tasks early, while delaying higher-priority tasks by executing lower-priority tasks.
Therefore, in high communication delays, our method improves the response times of lower-priority
tasks slightly compared to their deadlines at the expense of increasing the response times of higher-
priority tasks with shorter deadlines. This leads to an overall average response time higher than the
Simple method. However, our method never misses any deadline even if communication between
nodes cannot take place.

9 Conclusions
In this article, we propose a total order execution protocol that bounds priority inversion and
tolerates priority inversion injection attacks without relying on communication. Communication is
used solely to improve task response times and prevent nodes from idling.The protocol employs task
milestones to ensure compatibility with both limited preemptive and non-preemptive scheduling
and operates effectively with coarsely synchronized clocks. Our method leverages the temporal
characteristics of tasks and the actual release times of their jobs to find consistent insertion points
for the released jobs across nodes, ensuring total order. It allows nodes to progress independently
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in executing chunks of released jobs by utilizing the slack of higher-priority imminent tasks,
without requiring coordination, while still meeting task deadlines on all nodes. Additionally, to
avoid rollbacks, our approach may restrict the progress of nodes that have advanced further in
executing chunks compared to other nodes. This restriction ensures that other nodes can continue
executing chunks in the same order without jeopardizing task deadlines.

Our approach outperforms the methods proposed by Rodrigues and Wang in terms of acceptance
ratio and improves the average response times of jobs compared to the Simple method, even under
fairly high communication delays. Compared to Naghavi’s method, our new approach imposes
no restrictions on communication delay and works even without communication. Future research
directions include extending our work to scenarios where not all tasks are replicated across nodes,
but instead involve mixed workloads containing both replicated and non-replicated tasks.

References
[1] Hakan Aydin Abhishek Roy and Dakai Zhu. 2021. Energy-aware primary/backup scheduling of periodic real-time

tasks on heterogeneous multicore systems. Sustainable Computing: Informatics and Systems 29 (2021), 100474. DOI:
https://doi.org/10.1016/j.suscom.2020.100474

[2] Mani Amoozadeh, Arun Raghuramu, Chen-nee Chuah, Dipak Ghosal, H. Michael Zhang, Jeff Rowe, and Karl Levitt.
2015. Security vulnerabilities of connected vehicle streams and their impact on cooperative driving. IEEE Communica-
tions Magazine 53, 6 (2015), 126–132. DOI: https://doi.org/10.1109/MCOM.2015.7120028

[3] Alaa Askkar. 2011. PA Telecommunications Minister: Palestinian Internet under Hacking Attacks. IMENC. Retrieved
from http://www.imemc.org/article/62409

[4] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. 2001. Dynamic and aggressive scheduling techniques for
power-aware real-time systems. In Proceedings 22nd IEEE Real-Time Systems Symposium (RTSS ’01) (Cat. No. 01PR1420),
95–105. DOI: https://doi.org/10.1109/REAL.2001.990600

[5] Marko Bertogna, Giorgio Buttazzo, Mauro Marinoni, Gang Yao, Francesco Esposito, and Marco Caccamo. 2010.
Preemption points placement for sporadic task Sets. In 2010 22nd Euromicro Conference on Real-Time Systems, 251–260.
DOI: https://doi.org/10.1109/ECRTS.2010.9

[6] N. L. Binkert, L. R. Hsu, A. G. Saidi, R. G. Dreslinski, A. L. Schultz, and S. K. Reinhardt. 2005. Performance analysis of
system overheads in TCP/IP workloads. In 14th International Conference on Parallel Architectures and Compilation
Techniques (PACT ’05), 218–228. DOI: https://doi.org/10.1109/PACT.2005.35

[7] Miguel Castro and Barbara Liskov. 2002. Practical byzantine fault tolerance and proactive recovery. ACM Transactions
on Computer Systems 20, 4 (Nov. 2002), 398–461. DOI: https://doi.org/10.1145/571637.571640

[8] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, Stefan Savage, Karl Koscher,
Alexei Czeskis, Franziska Roesner, Tadayoshi Kohno, et al. 2011. Comprehensive experimental analyses of automotive
attack surfaces. In USENIX Security Symposium.

[9] Liming Chen and A. Avizienis. 1995. N-version programming: A fault-tolerance approach to reliability of software
operation. In 25th International Symposium on Fault-Tolerant Computing, ‘Highlights from Twenty-Five Years’, 113.
DOI: https://doi.org/10.1109/FTCSH.1995.532621

[10] Weifan Chen, Ivan Izhbirdeev, Denis Hoornaert, Shahin Roozkhosh, Patrick Carpanedo, Sanskriti Sharma, and Renato
Mancuso. 2023. Low-overhead online assessment of timely progress as a system commodity. In 35th Euromicro
Conference on Real-Time Systems (ECRTS ’23). Alessandro V. Papadopoulos (Ed.), Leibniz International Proceedings in
Informatics (LIPIcs), Vol. 262, Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Dagstuhl, Article 13, 1–26. DOI:
https://doi.org/10.4230/LIPIcs.ECRTS.2023.13

[11] US Federal Energy Regulatory Commission. 2016. Reliability Standards for Physical Security Measures. RD14-6-000.
[12] Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. 2013. BFT-TO: Intrusion tolerance with less replicas. The

Computer Journal 56, 6 (2013), 693–715. DOI: https://doi.org/10.1093/comjnl/bxs148
[13] Flaviu Cristian, Danny Dolev, Ray Strong, and Houtan Aghili. 1990. Atomic broadcast in a real-time environment. In

Fault-Tolerant Distributed Computing. Barbara Simons and Alfred Spector (Eds.), Springer, New York, NY, 51–71.
[14] Sadegh Davari and Lui Sha. 1992. Sources of unbounded priority inversions in real-time systems and a comparative

study of possible solutions. ACM SIGOPS Operating Systems Review 26, 2 (Apr. 1992), 110–120. DOI: https://doi.org/10.
1145/142111.142126

[15] Tobias Distler. 2021. Byzantine fault-tolerant state-machine replication from a systems perspective. ACM Computing
Surveys 54, 1, Article 24 (Feb. 2021), 38 pages. DOI: https://doi.org/10.1145/3436728

[16] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Christine Rochange, Martin
Schoeberl, Rasmus Bo Sørensen, Peter Wägemann, and Simon Wegener. 2016. TACLeBench: A benchmark collection

ACM Transactions on Cyber-Physical Systems, Vol. 9, No. 4, Article 39. Publication date: November 2025.

https://doi.org/10.1016/j.suscom.2020.100474
https://doi.org/10.1109/MCOM.2015.7120028
http://www.imemc.org/article/62409
http://www.imemc.org/article/62409
https://doi.org/10.1109/REAL.2001.990600
https://doi.org/10.1109/ECRTS.2010.9
https://doi.org/10.1109/PACT.2005.35
https://doi.org/10.1145/571637.571640
https://doi.org/10.1109/FTCSH.1995.532621
https://doi.org/10.4230/LIPIcs.ECRTS.2023.13
https://doi.org/10.1093/comjnl/bxs148
https://doi.org/10.1145/142111.142126
https://doi.org/10.1145/142111.142126
https://doi.org/10.1145/3436728


Total Order Execution of Replicated Sporadic Tasks 39:29

to support worst-case execution time research. In 16th International Workshop on Worst-Case Execution Time Analysis.
DOI: https://doi.org/10.4230/OASIcs.WCET.2016.2

[17] Pietro Fara, Gabriele Serra, Alessandro Biondi, and Ciro Donnarumma. 2021. Scheduling replica voting in fixed-
priority real-time systems. In 33rd Euromicro Conference on Real-Time Systems (ECRTS ’21). Björn B. Brandenburg
(Ed.), Leibniz International Proceedings in Informatics (LIPIcs), Vol. 196, Schloss Dagstuhl—Leibniz-Zentrum für
Informatik, Dagstuhl, Article 13, 1–21. DOI: https://doi.org/10.4230/LIPIcs.ECRTS.2021.13

[18] Neeraj Gandhi, Edo Roth, Robert Gifford, Linh Thi Xuan Phan, and Andreas Haeberlen. 2020. Bounded-time recovery
for distributed real-time systems. In 2020 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), 110–123. DOI: https://doi.org/10.1109/RTAS48715.2020.00-13

[19] Miguel Garcia, Alysson Bessani, Ilir Gashi, Nuno Neves, and Rafael Obelheiro. 2011. OS diversity for intrusion
tolerance: Myth or reality? In 2011 IEEE/IFIP 41st International Conference on Dependable Systems and Networks (DSN),
383–394. DOI: https://doi.org/10.1109/DSN.2011.5958251

[20] Ajei Gopal, Ray Strong, Sam Toueg, and Flaviu Cristian. 1990. Early-delivery atomic broadcast. In 9th Annual ACM
Symposium on Principles of Distributed Computing, 297–309.

[21] David Griffin, Iain Bate, and Robert I. Davis. 2020. Generating utilization vectors for the systematic evaluation of
schedulability tests. In 2020 IEEE Real-Time Systems Symposium (RTSS), 76–88. DOI: https://doi.org/10.1109/RTSS49844.
2020.00018

[22] Arpan Gujarati, Sergey Bozhko, and Björn B. Brandenburg .2020. Real-time replica consistency over ethernet with
reliability bounds. In 2020 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 376–389.
DOI: https://doi.org/10.1109/RTAS48715.2020.00012

[23] Arpan Gujarati, Ningfeng Yang, and Björn B. Brandenburg. 2022. In-ConcReTeS: Interactive consistency meets
distributed real-time systems, again! In 2022 IEEE Real-Time Systems Symposium (RTSS), 211–224. DOI: https://doi.
org/10.1109/RTSS55097.2022.00027

[24] Mario Günzel, Harun Teper, Kuan-Hsun Chen, Georg von der Brüggen, and Jian-Jia Chen. 2023. On the equivalence
of maximum reaction time and maximum data age for cause-effect chains. In 35th Euromicro Conference on Real-Time
Systems (ECRTS ’23). Alessandro V. Papadopoulos (Ed.), Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 262, Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Dagstuhl, Article 10, 1–22. DOI: https://doi.org/10.4230/
LIPIcs.ECRTS.2023.10

[25] Zhishan Guo, Sudharsan Vaidhun, Abdullah Al Arafat, Nan Guan, and Kecheng Yang. 2023. Stealing static slack via
WCRT and sporadic p-servers in deadline-driven scheduling. In 2023 IEEE Real-Time Systems Symposium (RTSS),
40–52. DOI: https://doi.org/10.1109/RTSS59052.2023.00014

[26] Mario Günzel, Kuan-Hsun Chen, Niklas Ueter, Georg von der Brüggen, Marco Dürr, and Jian-Jia Chen. 2021. Timing
analysis of asynchronized distributed cause-effect chains. In 2021 IEEE 27th Real-Time and Embedded Technology and
Applications Symposium (RTAS), 40–52. DOI: https://doi.org/10.1109/RTAS52030.2021.00012

[27] Monowar Hasan, SibinMohan, Rodolfo Pellizzoni, and Rakesh B. Bobba. 2018. A design-space exploration for allocating
security tasks in multicore real-time systems. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE),
225–230. DOI: https://doi.org/10.23919/DATE.2018.8342007

[28] Andrea Höller, Tobias Rauter, Johannes Iber, and Christian Kreiner. 2015. Diverse compiling for microprocessor
fault detection in temporal redundant systems. In 2015 IEEE International Conference on Computer and Information
Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive
Intelligence and Computing, 1928–1935. DOI: https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.285

[29] Gregg Keizer. 2010. Is Stuxnet the ‘Best’ Malware Ever? Retrieved from http://www.infoworld.com/article/2626009/
malware/is-stuxnet-the--best--malware-ever-.html

[30] J. Kim, G. Park, H. Shim, and Y. Eun. 2016. Zero-stealthy attack for sampled data control systems: The case of faster
actuation than sensing. In IEEE Conference on Decision and Control (CDC), 5956–5961.

[31] K. H. Kim, Jing Qian, Zhen Zhang, Qian Zhou, Kyung-Deok Moon, Jun-Hee Park, Kwang-Roh Park, and Doo-Hyun
Kim. 2010. A scheme for reliable real-time messaging with bounded delays. In 2010 13th IEEE International Symposium
on Object/Component/Service-Oriented Real-Time Distributed Computing, 18–27. DOI: https://doi.org/10.1109/ISORC.
2010.45

[32] Leonie Köhler, Phil Hertha, Matthias Beckert, Alex Bendrick, and Rolf Ernst. 2023. Robust cause-effect chains with
bounded execution time and system-level logical execution time. ACM Transactions on Embedded Computing Systems
22, 3, Article 50 (Apr. 2023), 28 pages. DOI: https://doi.org/10.1145/3573388

[33] H. Kopetz and G. Grunsteidl. 1993. TTP—A time-triggered protocol for fault-tolerant real-time systems. In 23rd
International Symposium on Fault-Tolerant Computing (FTCS ’23), 524–533. DOI: https://doi.org/10.1109/FTCS.1993.
627355

[34] D. Kozhaya, J. Decouchant, and P. Esteves-Verissimo. 2019. RT-ByzCast: Byzantine-resilient real-time reliable broadcast.
IEEE Transactions on Computers 68, 03 (Mar. 2019), 440–454. DOI: https://doi.org/10.1109/TC.2018.2871443

ACM Transactions on Cyber-Physical Systems, Vol. 9, No. 4, Article 39. Publication date: November 2025.

https://doi.org/10.4230/OASIcs.WCET.2016.2
https://doi.org/10.4230/LIPIcs.ECRTS.2021.13
https://doi.org/10.1109/RTAS48715.2020.00-13
https://doi.org/10.1109/DSN.2011.5958251
https://doi.org/10.1109/RTSS49844.2020.00018
https://doi.org/10.1109/RTSS49844.2020.00018
https://doi.org/10.1109/RTAS48715.2020.00012
https://doi.org/10.1109/RTSS55097.2022.00027
https://doi.org/10.1109/RTSS55097.2022.00027
https://doi.org/10.4230/LIPIcs.ECRTS.2023.10
https://doi.org/10.4230/LIPIcs.ECRTS.2023.10
https://doi.org/10.1109/RTSS59052.2023.00014
https://doi.org/10.1109/RTAS52030.2021.00012
https://doi.org/10.23919/DATE.2018.8342007
https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.285
http://www.infoworld.com/article/2626009/malware/is-stuxnet-the--best--malware-ever-.html
http://www.infoworld.com/article/2626009/malware/is-stuxnet-the--best--malware-ever-.html
http://www.infoworld.com/article/2626009/malware/is-stuxnet-the--best--malware-ever-.html
http://www.infoworld.com/article/2626009/malware/is-stuxnet-the--best--malware-ever-.html
https://doi.org/10.1109/ISORC.2010.45
https://doi.org/10.1109/ISORC.2010.45
https://doi.org/10.1145/3573388
https://doi.org/10.1109/FTCS.1993.627355
https://doi.org/10.1109/FTCS.1993.627355
https://doi.org/10.1109/TC.2018.2871443


39:30 A. Naghavi and N. Navet

[35] David Kozhaya, Jérémie Decouchant, Vincent Rahli, and Paulo Esteves-Verissimo. 2021. PISTIS: An event-triggered real-
time byzantine-resilient protocol suite. IEEE Transactions on Parallel and Distributed Systems 32, 9 (2021), 2277–2290.
DOI: https://doi.org/10.1109/TPDS.2021.3056718

[36] Angeliki Kritikakou, Christine Rochange, Madeleine Faugère, Claire Pagetti, Matthieu Roy, Sylvain Girbal, and Daniel
Gracia Pérez. 2014. Distributed run-time WCET controller for concurrent critical tasks in mixed-critical systems. In
22nd International Conference on Real-Time Networks and Systems (RTNS ’14). ACM, New York, NY, 139–148. DOI:
https://doi.org/10.1145/2659787.2659799

[37] Kristin Krüger, Marcus Völp, and Gerhard Fohler. 2018. Vulnerability analysis and mitigation of directed timing
inference based attacks on time-triggered systems. In 30th Euromicro Conference on Real-Time Systems (ECRTS ’18).
Sebastian Altmeyer (Ed.), Leibniz International Proceedings in Informatics (LIPIcs), Vol. 106, Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Article 22, 1–17. DOI: https://doi.org/10.4230/LIPIcs.ECRTS.2018.22

[38] Kristin Krüger, Nils Vreman, Richard Pates, Martina Maggio, Marcus Völp, and Gerhard Fohler. 2021. Randomization
as mitigation of directed timing inference based attacks on time-triggered real-time systems with task replication.
Leibniz Transactions on Embedded Systems 7, Article 1 (Aug. 2021), 1–29. DOI: https://doi.org/10.4230/LITES.7.1.1

[39] Robert M. Lee, Michael J. Assante, and Tim Conway. 2016. Analysis of the Cyber Attack on the Ukrainian Power
Grid. E-ISAC. Retrieved from https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf

[40] Haoran Li, Chenyang Lu, and Christopher D. Gill. 2021. RT-ZooKeeper: Taming the recovery latency of a coordination
service. ACM Transactions on Embedded Computing Systems 20, 5s, Article 103 (Sept. 2021), 22 pages. DOI: https:
//doi.org/10.1145/3477034

[41] Jeanne Meserve. 2007. Mouse Click Could Plunge City into Darkness, Experts Say. Retrieved March 12, 2017 from
http://edition.cnn.com/2007/US/09/27/power.at.risk/index.html

[42] Sparsh Mittal. 2017. A survey of techniques for cache partitioning in multicore processors. ACM Computing Surveys
50, 2, Article 27 (May 2017), 39 pages. DOI: https://doi.org/10.1145/3062394

[43] Amin Naghavi and Nicolas Navet. 2025. Total execution order in fault-tolerant real-time systems. In 32nd International
Conference on Real-Time Networks and Systems (RTNS ’24). ACM, New York, NY, 12–24. DOI: https://doi.org/10.1145/
3696355.3699704

[44] Amin Naghavi, Sepideh Safari, and Shaahin Hessabi. 2021. Tolerating permanent faults with low-energy overhead in
multicore mixed-criticality systems. IEEE Transactions on Emerging Topics in Computing 10, 2 (2021), 985–996. DOI:
https://doi.org/10.1109/TETC.2021.3059724

[45] Mitra Nasri,Thidapat Chantem, Gedare Bloom, and RyanM. Gerdes. 2019. On the pitfalls and vulnerabilities of schedule
randomization against schedule-based attacks. In 2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 103–116. DOI: https://doi.org/10.1109/RTAS.2019.00017

[46] Risat Mahmud Pathan. 2014. Fault-tolerant and real-time scheduling for mixed-criticality systems. Real-Time Systems
50 (2014), 509–547. DOI: https://doi.org/10.1016/j.suscom.2020.100474

[47] P. E. Veríssimo, N. F. Neves, and M. P. Correia. 2003. Intrusion-tolerant architectures: Concepts and design. In
Architecting Dependable Systems. R. Lemos, C. Gacek, and A. Romanovsky (Eds.).Lecture Notes in Computer Science,
Vol. 2677. Springer, Berlin. DOI: https://doi.org/10.1007/3-540-45177-3_1

[48] M. Pease, R. Shostak, and L. Lamport. 1980. Reaching agreement in the presence of faults. Journal of the ACM 27, 2
(April 1980), 228–234. DOI: https://doi.org/10.1145/322186.322188

[49] Linh T. X. Phan, Meng Xu, Jaewoo Lee, Insup Lee, and Oleg Sokolsky. 2013. Overhead-aware compositional analysis
of real-time systems. In 2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS),
237–246. DOI: https://doi.org/10.1109/RTAS.2013.6531096

[50] S. Poledna, A. Burns, A. Wellings, and P. Barrett. 2000. Replica determinism and flexible scheduling in hard real-time
dependable systems. IEEE Transactions on Computers 49, 2 (2000), 100–111. DOI: https://doi.org/10.1109/12.833107

[51] Riccardo Pucella and Fred B. Schneider. 2010. Independence from obfuscation: A semantic framework for diversity.
Journal of Computer Security 18, 5 (2010), 701–749.

[52] Federico Reghenzani, Zhishan Guo, and William Fornaciari. 2023. Software fault tolerance in real-time systems:
Identifying the future research questions. ACM Computing Surveys 55, 14s, Article 306 (July 2023), 30 pages. DOI:
https://doi.org/10.1145/3589950

[53] Luís Rodrigues, Paulo Veríssimo, and Antonio Casimiro. 1995. Priority-based totally ordered multicast. In 3rd IFIP/IFAC
workshop on Algorithms and Architectures for Real-Time Control (AARTC ’95).

[54] Edo Roth and Andreas Haeberlen. 2021. Do not overpay for fault tolerance! In 27th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS ’21). DOI: https://doi.org/10.1109/RTAS52030.2021.00037

[55] FredB. Schneider.1993. Replication management using the state machine approach. In Distributed Systems (2nd Ed.).
ACM Press/Addison-Wesley Publishing Co., USA, 169–197.

[56] Soham Sinha, Richard West, and Ahmad Golchin. 2020. PAStime: Progress-aware scheduling for time-critical com-
puting. In 32nd Euromicro Conference on Real-Time Systems (ECRTS ’20). Marcus Völp (Ed.), Leibniz International

ACM Transactions on Cyber-Physical Systems, Vol. 9, No. 4, Article 39. Publication date: November 2025.

https://doi.org/10.1109/TPDS.2021.3056718
https://doi.org/10.1145/2659787.2659799
https://doi.org/10.4230/LIPIcs.ECRTS.2018.22
https://doi.org/10.4230/LITES.7.1.1
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://doi.org/10.1145/3477034
https://doi.org/10.1145/3477034
http://edition.cnn.com/2007/US/09/27/power.at.risk/index.html
http://edition.cnn.com/2007/US/09/27/power.at.risk/index.html
https://doi.org/10.1145/3062394
https://doi.org/10.1145/3696355.3699704
https://doi.org/10.1145/3696355.3699704
https://doi.org/10.1109/TETC.2021.3059724
https://doi.org/10.1109/RTAS.2019.00017
https://doi.org/10.1016/j.suscom.2020.100474
https://doi.org/10.1007/3-540-45177-3_1
https://doi.org/10.1145/322186.322188
https://doi.org/10.1109/RTAS.2013.6531096
https://doi.org/10.1109/12.833107
https://doi.org/10.1145/3589950
https://doi.org/10.1109/RTAS52030.2021.00037


Total Order Execution of Replicated Sporadic Tasks 39:31

Proceedings in Informatics (LIPIcs), Vol. 165, Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Dagstuhl, Article 3,
1–24. DOI: https://doi.org/10.4230/LIPIcs.ECRTS.2020.3

[57] Giuliana Santos Veronese,Miguel Correia, AlyssonNeves Bessani, Lau Cheuk Lung, and Paulo Verissimo. 2013. Efficient
byzantine fault-tolerance. IEEE Transactions on Computers 62, 1 (2013), 16–30. DOI: https://doi.org/10.1109/TC.2011.221

[58] Yun Wang, E. Anceaume, F. Brasileiro, F. Greve, and M. Hurfin. 2002. Solving the group priority inversion problem in
a timed asynchronous system. IEEE Transactions on Computers 51, 8 (2002), 900–915. DOI: https://doi.org/10.1109/TC.
2002.1024738

[59] Yi-wen Zhang and Rui-feng Guo. 2013. Power-aware scheduling algorithms for sporadic tasks in real-time systems.
Journal of Systems and Software 86, 10 (2013), 2611–2619. DOI: https://doi.org/10.1016/j.jss.2013.04.075

[60] Jia Xu. 2010. A method for adjusting the periods of periodic processes to reduce the least common multiple of the
period lengths in real-time embedded systems. In 2010 IEEE/ASME International Conference on Mechatronic and
Embedded Systems and Applications, 288–294. DOI: https://doi.org/10.1109/MESA.2010.5552058

[61] Gang Yao, Giorgio Buttazzo, and Marko Bertogna. 2009. Bounding the maximum length of non-preemptive regions
under fixed priority scheduling. In 2009 15th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications. IEEE, 351–360.

[62] Gang Yao, Giorgio Buttazzo, and Marko Bertogna. 2010. Feasibility analysis under fixed priority scheduling with fixed
preemption points. In 2010 IEEE 16th International Conference on Embedded and Real-Time Computing Systems and
Applications, 71–80. DOI: https://doi.org/10.1109/RTCSA.2010.40

[63] Man-Ki Yoon, Sibin Mohan, Chien-Ying Chen, and Lui Sha. 2016. TaskShuffler: A schedule randomization protocol for
obfuscation against timing inference attacks in real-time systems. In 2016 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 1–12. DOI: https://doi.org/10.1109/RTAS.2016.7461362

[64] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. 2014. PALLOC: DRAM bank-aware memory
allocator for performance isolation on multicore platforms. In 2014 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), 155–166. DOI: https://doi.org/10.1109/RTAS.2014.6925999

[65] Lin Zhang, Kaustubh Sridhar, Mengyu Liu, Pengyuan Lu, Xin Chen, Fanxin Kong, Oleg Sokolsky, and Insup Lee
.2023. Real-time data-predictive attack-recovery for complex cyber-physical systems. In 2023 IEEE 29th Real-Time and
Embedded Technology and Applications Symposium (RTAS), 209–222. DOI: https://doi.org/10.1109/RTAS58335.2023.
00024

[66] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. 2020. Byzantine ordered consensus without
byzantine oligarchy. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’20). USENIX
Association, 633–649. https://www.usenix.org/conference/osdi20/presentation/zhang-yunhao

[67] H. Zou and F. Jahanian. 1998. Real-time primary-backup (RTPB) replication with temporal consistency guarantees.
In Proceedings. 18th International Conference on Distributed Computing Systems (Cat. No. 98CB36183), 48–56. DOI:
https://doi.org/10.1109/ICDCS.1998.679486

Appendices
A Complexity and Optimization
To facilitate presentation, the Algorithms 1–4 represent a simplified version of our implemented
method.The implemented schedule algorithm has linear time complexity with respect to the number
of imminent tasks along with the maximum number of chunks within a task. The release algorithm
in addition to imminent tasks and the maximum number of chunks within a task, examines the jobs
in the ready queue to identify the MAP. Despite this additional step, its time complexity remains
bounded by the number of tasks (=) plus the maximum number of chunks within a task. Regarding
the update algorithm, it operates with an overhead of$ (<), where< denotes the number of nodes.
Throughout our implementation, we have thoroughly investigated several optimizations, which we
will detail next.

Release and Schedule. In Algorithms 1 and 3, maintaining a continuous update of the WCP for the
tail of the chunk queue eliminates the need for calculations performed at lines 7 and 11 respectively.
The insertion of multiple chunks of a job into the chunk queue in Algorithm 2 is an$ (1) operation,
where only a single record is added to the queue with each insertion. This record includes a
pointer to the job’s specifications, an index indicating the first chunk of the job, and the count
of subsequent chunks of the job moved to the chunk queue. Therefore, each element in a chunk
queue includes multiple chunks of the same job bundled together. Additionally, precalculating and
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storing the accumulated WCETs up to each task’s milestone as � [1:: ]
0 =

:

Σ
;=1
�;
0 enables us to bypass

calculating the summation at line 8 in Algorithm 2. Furthermore, a simple comparison between
Wtail + (�0 − �

[1:=4GC0−1]
0 ) and (;02:�>D=3 enables us to decide if a job g0 in the head of ready

queue can be moved to �& . Therefore, only if by this comparison the algorithm fails to move all
chunks of the job, the maximum at line 6 of Algorithm 2 will be applied to determine the eligible
chunks from g0 for moving to the chunk queue. This maximum can be calculated through either
a linear or binary search, extending between the milestones ;min =

⌊
SlackBound/max (�;

8 )
⌋
and

;max = min(
⌊
SlackBound/min(�;

8 )
⌋
, !8 ) (where min(�;

8 ) and max (�;
8 ) denote the lengths of the

smallest and largest chunks of g8 respectively).
In Algorithm 3, when calculating SlackBound at line 13, the algorithm can store and reuse the

SlackBound calculated previously in the prior schedule (similar to line 16 in Algorithm 1). The only
difference is that the SlackBound value in the previous schedule at time C?A4E might be pessimistic for
the current schedule at time C (C?A4E < C ). Therefore, the node still sometimes needs to recalculate the
SlackBound of imminent tasks with higher priority than the previously executed job (considering
their next release based on the current time) when adding the WCET of the next chunk of the job
at the head of the ready queue to the WCP of ?A>6C08;

:
exceeds SlackBound.

Update. In Algorithm 4, by sequentially inserting received progress updates into PROG in as-
cending order, we can circumvent the need for calculating the minimum within the loop at line 8.

When a bundle of chunks is executed, they are removed from the chunk queue. Each node
tracks its progress by recording the number of chunks it has completed. Additionally, it stores the
cumulative WCETs of the chunks for each recent progress update in a ring buffer. The cumulative
WCET represents the summation of the WCETs of all chunks that have been executed. The size
of this ring buffer must be sufficient to store the cumulative WCETs of all chunks executed since
minProg. This ensures constant time ($ (1)) computation of the sum at line 10.

B Ensuring Timeliness in a Coarsely Synchronized System
Given the impact of coarsely synchronized clocks on our algorithms, the following lemma explains
how incorporating late event arrivals into the schedulability test allows our method to maintain
the timeliness of tasks.

Lemma 9. If the WCET of each chunk is chosen sufficiently large such that no chunk exceeds its
WCET on any node, and the task set remains schedulable when Δ is treated as release jitter in the
schedulability test, then the coarse synchronization and release delay, along with the corresponding
changes in our algorithm, will not result in deadline misses:

(1) Delayed execution of the release algorithm and accounting for Δ when adjusting CD?30C4 at the
release of a task.
Proof. In systems where a total order protocol is not enforced, accounting for release delays
as release jitter in schedulability tests ensures that tasks do not miss their deadlines due to
such delays. In our proposed method, to establish a total order, we defer the insertion point
of tasks into the ready queue by moving chunks of jobs from the ready queue to the chunk
queue until the MAP is reached. The MAP is identified when either no jobs remain in the
ready queue or the slack of the released task would be fully utilized by the chunks in the
chunk queue on the back-runner, assuming the back-runner executes them at their WCETs.
Considering release jitter in the schedulability test reduces the available slack for tasks, which
in turn decreases the time for which our method delays a job’s execution. Additionally, by
setting CD?30C4 to A4 +Δ, we ensure that the release delay is accounted for in the WCP, thereby
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maintaining the WCP as an upper bound on the worst-case behavior of the back-runner.
Therefore, since the effects of coarse synchronization are considered in both WCP and slack,
and Equation (2) ensures that the WCP of any progress prior to MAP does not exceed the
slack of imminent tasks, the priority inversion on the back-runner always remains within
these slack bounds, guaranteeing that deadlines are met. �

(2) Additional idle time before executing a chunk when considering earlier release times for imminent
tasks in the scheduling algorithm.
Proof. The system may experience a slight decrease in performance regarding response
times when the scheduling algorithm considers the next release of imminent tasks based on
C − Δ, as this imposes additional idle time. However, this algorithm always moves the first
chunk from the ready queue to the chunk queue and executes it as soon as the WCP of the
node’s progress converges with the node’s local time, regardless of the next release time of
imminent tasks. This convergence occurs when a node finishes chunks close to their WCETs.
Thus, a node never idles unless there is dynamic slack from completing chunks earlier than
their WCETs (as mentioned in Section 6.2), ensuring that the imposed idle time never causes
deadline misses. �

(3) Delayed execution of the update algorithm by Δ, with Δ explicitly accounted for when setting
CD?30C4 .
Proof. The purpose of the update algorithm is to indicate that the healthy back-runner made
progress earlier than the time specified by the WCP of that progress. Delaying the execution
of the update algorithm reduces the efficiency of our method in terms of response times
(as discussed in Section 8.4). This is because it increases the CD?30C4 for the progress of the
healthy back-runner minProg, which in turn increases the WCP for each progress and limits
the number of chunks that can be moved to the chunk queue. However, the algorithm ensures
that CD?30C4 is always set to the minimum of the update time and the WCP of the healthy
back-runner’s progress, calculated using the previousminProg and CD?30C4 . While postponing
the execution of the release algorithm may delay the update time to A4 + Timeout + Δ, the
CD?30C4 for the progress of the healthy back-runner (minProg) remains upper-bounded by
the WCP of this progress, calculated using the previous minProg and CD?30C4 . As a result, a
delayed update never produces WCP values higher than those calculated without the update,
and the WCP continues to provide an upper bound on the time the back-runner finishes a
progress. Consequently, deadlines are still guaranteed. �

C Supplementary Results
C.1 Overhead
The overhead of our method was measured on a Raspberry Pi using the setup described in
Section 8.1, but with 3 nodes, each executing 500 task sets at a total utilization of 0.9 and 100,000
jobs per task set.

Figure C1(a) illustrates the runtime costs of executing the release algorithm and the probability
of encountering such overhead. Figure C1(b) presents similar results for the scheduling algorithm.
The overhead values shown in Figure C1(a) and (b) include all overheads, such as those from data
structures, but exclude message transmission and context switching overheads. The overhead of
the update algorithm is negligible and has not been depicted. To mitigate the impact of operating
system interference on our results, we focused on the 99th percentile of measured overheads
for measurement points that occurred at least 1,000 times (out of a total of at least 150 million
executions).
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Fig. C1. The overhead of our release (left) and scheduling (right) algorithms under different runtime conditions,
and the frequency of occurrence of each condition.

The overhead for inserting tasks (Algorithm 1) is mainly determined by the total count of the
following factors: the tasks explored in the set of imminent tasks, the jobs transferred from the
ready queue to the chunk queue, and the chunks moved to the chunk queue from the last job that
the algorithm attempted to remove from the ready queue.

Figure C1(a) illustrates the observed overhead and the corresponding likelihood of occurrence
for each sum of the mentioned values. As can be seen, most of the time, the release overhead is
negligible (with 98.5% of occurrences experiencing overhead of less than 3.35 `s), and even the
maximum observed overhead remains below 9.43 `s.

The scheduling algorithm (Algorithm 3) moves chunks to �& only from the job in the head of
the ready queue. Figure C1(b) illustrates the scheduling overhead when chunks are moved from the
ready queue to the chunk queue (otherwise, the overhead is negligible). We observed a maximum
of 6.04 `s scheduling overhead with the 99.6% of occurrences being less than 1.59 `s.

The graph in Figure C2 helps explain the trends observed in the overhead graphs
(Figure C1(a) and (b)). Figure C2(a) shows how the number of jobs transferred from the ready
queue to the chunk queue in the release algorithm affects the x-axis summation in Figure C1(a).
This variation in transferred jobs contributes to the wave-like pattern observed in the overhead
of the release algorithm. This is because the different parameters in the summation influence the
overhead results to different degrees.

Fig. C2. The relation between different factors affecting the overhead of the release (left) and the scheduling
(right) algorithms.
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Fig. C3. The normalized average response time of individual tasks averaged on the tasks with the same
priority on 100 task sets scheduled using RM (left) and EDF (right).

Fig. C4. The normalized worst response time of individual tasks averaged on the tasks with the same priority
on 100 task sets scheduled using RM (left) and EDF (right).

Furthermore, both the imminent tasks and the chunks of the final job being transferred impact
the overhead trend of the scheduling algorithm. Figure C2(b) illustrates how these factors influence
the x-axis summation in Figure C1(b). The trend depicted in Figure C1(b) is a result of the influence
of each of the factors shown in Figure C2(b) on the overhead.

It is important to note that the values in Figure C2(b) were observed during execution and are
reflective of task specifications such as the WCET of benchmark tasks and the size of chunks.

C.2 Task Response Time
Assuming that tasks have been sorted by their minimum inter-arrival time, where smaller task
indices correspond to shorter minimum inter-arrival times (and relative deadlines), Figures C3 and
C4 illustrate for RM and EDF, the average and worst response time (normalized by task deadlines)
of tasks with the same indices averaged over 100 task sets in the normal scenario. In these figures,
each task set has a total utilization of 0.9 and comprises 100 tasks generated based on the settings
mentioned in Section 8.1.

As depicted in these figures, our LPI-MAP method generally improves the response time for the
majority of tasks compared to the Simple method, albeit with a slight increase in response time
for a minority of tasks with shorter minimum inter-arrival times. This on average leads to better
average response time for tasks (illustrated in Figure 4(a) in Section 8.3), as our method benefits
from communication to reduce the idle time needed for ensuring total order while guaranteeing
deadlines.
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Figure C4 demonstrates that the approach proposed by Rodrigues andWang results in a significant
increase in the worst response time of tasks with shorter minimum inter-arrival times. This leads
to the worst response time of tasks, with the shortest minimum inter-arrival time being almost
12 times for Rodrigues and 4 times for Wang more than their deadlines. This shows how priority
inversion can cause deadline misses in tasks with shorter minimum inter-arrival times in Rodrigues
and Wang. The worst-case response time of our method, as well as the modified LPI-FRP method
by Naghavi and Navet [43], remained within the task deadlines (i.e., the normalized worst response
times of tasks are below 1), meaning neither method missed any task deadlines.

Received 16 September 2024; revised 12 March 2025; accepted 13 August 2025

ACM Transactions on Cyber-Physical Systems, Vol. 9, No. 4, Article 39. Publication date: November 2025.


	Abstract
	1 Introduction
	2 Background and Related Work
	3 Total Execution Order of Prioritized Tasks
	3.1 Unbounded Priority Inversion
	3.2 Limitations of Communication-Based Methods

	4 System, Task, and Fault Model
	5 Coordinating Replicated Execution in Event-Driven Systems
	5.1 Overview of Method Components and Their Interactions
	5.2 Terms and Definitions
	5.3 Scheduling: Executing Chunks Under Priority Inversion Bounds
	5.4 Release: Coordinating Job Insertion with Limited Priority Inversion
	5.5 Update: Reducing Pessimism via Communication

	6 Detailed Algorithms
	6.1 Release Algorithm
	6.2 Scheduling Algorithm
	6.3 Update Algorithm
	6.4 Guaranteeing Timely Execution

	7 Extension to Coarsely Synchronized Clocks
	7.1 Accounting for Event Latency at Release
	7.2 Maintaining Correct Interaction of Scheduling and Release Algorithms
	7.3 Safeguarding Consistent WCP Updates

	8 Evaluation
	8.1 Experimental Setup
	8.2 Acceptance Ratio
	8.3 Response Times
	8.4 Impact of Communication Delay on Average Response Times

	9 Conclusions
	References
	A Complexity and Optimization
	B Ensuring Timeliness in a Coarsely Synchronized System
	C Supplementary Results
	C.1 Overhead
	C.2 Task Response Time

