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1 Curves and Surfaces

Aim of the present section is to introduce curves and surfaces; their tangent spaces, and
normal vectors. Solid understanding of those elementary concepts in differential geometry
comes to use in the method of characteristic curves for solving first order linear PDE-s. We
begin by recalling the notion of a C1-function within the context of vector calculus:

1.1 C1 functions

A multivariable function is a function f : Ω → R, where Ω ⊆ Rn is an open set. In
physics, it is commonly referred to as a scalar field: indeed, it assigns a single number (ex.
temperature, electric or gravitational potential, etc.) to each point of a region in space. A
multivariable function f is called a C1 function if all the partial derivatives

∂kf, 1 ≤ k ≤ n

exist and are continuous as functions from Ω to R.

A vector-valued multivariable function is a function f⃗ : Ω → Rm. In the language
of physics, we speak of vector fields: to each point in a region of space, they assign a
vector. In coordinates, vector-valued functions are determined by m multivariable functions
f1, . . . , fm : Ω → R. A multivariable vector-valued function f⃗ = (f1, . . . , fm) is called a C1

function if for every 1 ≤ l ≤ m, the function fl : Ω → R is C1.

Next, we define curves and surfaces in two ways: as parametric objects, and as level sets.

1.2 Parametric curves and surfaces

Parametric curves are best understood through kinematics. In fact, using the language
of physics, parametric curves are trajectories of a point particle. Indeed, they are defined as
C1 functions γ(t) = (x(t), y(t), z(t)) : I → R3 from an interval (call it a time interval) to the
3-dimensional space. During the course, we also consider parametric plane curves which are
valued in R2. Tangent vector to a parametric curve γ at the point γ(t) is the velocity of the
point particle, i.e. the vector

γ⃗′(t) = (dx
dt

(t), dy
dt

(t), dz
dt

(t)).

Parametric curve is called regular if γ⃗′(t) ̸= 0 for all t ∈ I.
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Example 1.1. 1. For real parameters x0, y0, z0, a, b, and c such that at least one of the
numbers a, b, c is non-zero,

x(t) = x0 + at, y(t) = y0 + bt, z(t) = z0 + ct,

defines the straight line which passes through the point (x0, y0, z0) in direction of the
vector (a, b, c).

2. For R > 0,
x(t) = x0 +R cos(t), y(t) = y0 +R sin(t)

defines a circle in R2 around the point (x0, y0) of radius R.

Similarly, parametric surfaces are defined as C1 functions ϕ : Ω → R3, for Ω ⊂ R2 open.
A parametric surface is called regular if the Jacobian matrix of ϕ is of maximal rank at every
point of the curve, that is, denoting ϕ(r, s) = (x(r, s), y(r, s), z(r, s)), the matrix

Jac(ϕ)(r, s) =


∂x
∂r

(r, s) ∂x
∂s

(r, s)
∂y
∂r

(r, s) ∂y
∂s

(r, s)
∂z
∂r

(r, s) ∂z
∂s

(r, s)


has linearly independent columns for every (r, s) ∈ Ω.

1.3 Curves and surfaces as a level-sets

Another way to define a curve in R2 is by specifying its equation. For example,

Ax+By + C = 0, for A,B,C ∈ R

specifies a straight line if at least one of the parameters A and B is non-zero. Similarly,

(x− x0)2 + (y − y0)2 −R2 = 0, for x0, y0,∈ R, and R ∈ R>0

defines a circle around the point (x0, y0) of radius R. In general, a C1 function F : Ω → R,
where Ω ⊂ R2 is an open set, specifies a level curve as the set of all the points in Ω where F
vanishes:

γF = {(x, y) ∈ Ω : F (x, y) = 0}.

A level curve is regular if it is a non-empty set, and

∇⃗F (x, y) = (∂xF (x, y), ∂yF (x, y)) ̸= 0, ∀(x, y) ∈ γF . (1)
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Importantly, the regularity condition (1) guarantees that a tangent line to a curve at
(x, y) is well-defined. In fact, as shown in the following section, ∇⃗F (x, y) is perpendicular
to the tangent line of γF at the point (x, y). Points on a curve at which regularity condition
is not satisfied are called singularities. They include cusps, self-intersections, and isolated
points.

Example 1.2 (cusp). Given

F : R2 → R, F (x, y) = x3 − y2,

∇⃗F (x, y) = (3x2,−2y). Hence, ∇⃗F (x, y) vanishes at the origin. As origin is contained in γF ,
it is a singularity. This is an example of a cusp (see Figure 1).

Example 1.3 (self-intersection). Given

G : R2 → R, G(x, y) = x3 + x2 − y2,

∇⃗G(x, y) = (3x2 + 2x,−2y). Hence, ∇⃗G(x, y) vanishes at the origin. As origin is contained
in γG, it is a singularity. This is an example of a self-intersection (see Figure 2).

Figure 1: x3 − y2 = 0 Figure 2: x3 + x2 − y2 = 0

Similarly to curves in R2, surfaces in R3 can be defined by their equation. For example,

Ax+By + Cz +D = 0, for A,B,C,D ∈ R

specifies a plane if at least one of the parameters A,B and C is non-zero. Similarly,

(x− x0)2 + (y − y0)2 + (z − z0)2 −R2 = 0, for x0, y0, z0 ∈ R, and R ∈ R>0

defines a sphere around the point (x0, y0) of radius R, and

(x− x0)2 + (y − y0)2 −R2 = 0, for x0, y0 ∈ R, and R ∈ R>0
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defines a vertical cylinder of radius R centered at the vertical line which intersects the xy
plane at the point (x0, y0). In general, a C1 function F : Ω → R, where Ω ⊂ R3 is an open
set, specifies a level surface

SF = {(x, y, z) ∈ Ω : F (x, y, z) = 0}.

SF is regular if it is a non-empty set, and

∇⃗F (x, y, z) = (∂xF (x, y, z), ∂yF (x, y, z), ∂zF (x, y, z)) ̸= 0 ∀(x, y, z) ∈ SF .

Notably, any regular level surface can be locally parametrized. We will prove this us-
ing the implicit function theorem. In short, the theorem gives sufficient conditions for an
equation F (x1, . . . , xn, y) = 0 to have a local solution y = f(x1, . . . , xn). In other words, it
provides conditions for a level surface (if n = 2) or a level curve (if n = 1) to be the graph
of a function. For example, the circle x2 + y2 = 1 is the graph of a function locally around
any point (x0, y0) of the circle other than (±1, 0): if y0 > 0 the function is y =

√
1 − x2, and

if y0 < 0 the function is y = −
√

1 − x2.

Theorem 1.4. (Implicit function theorem) Let F : Ω → R, for Ω ⊂ Rn+1 open, be a C1

function. Given a point (x, y) = (x1, . . . , xn, y) ∈ Ω such that F (x, y) = 0 and ∂nF (x, y) ̸= 0,
there exists U ⊂ Rn open which contains x, and a function g : U → R such that g(x) = y

and F (x, g(x)) = 0.

Let’s come back to the proof that every surface can be locally parametrized! Assume
the regularity condition to be satisfied at a point (x0, y0, z0) of the level surface Sf . By the
regularity condition, at least one partial derivative of F is non-zero. Permuting the variables
if necessary, assume ∂zF (x0, y0, z0) ̸= 0. For g : U → R provided by the implicit function
theorem, a parametrization of SF in the neighborhood of (x0, y0, z0) is given by

x(r, s) = r, y(r, s) = s, z(r, s) = g(r, s).

1.4 Tangent spaces and normal vector fields

Let SF be a regular surface and x = (x, y, z) ∈ SF a point. Let I ⊂ R be an interval,
and let

γ : I → R3, γ(0) = x, γ(I) ⊂ SF
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be a parametric curve through x, whose image is contained in the surface SF . As F ◦ Γ ≡ 0
is a constant function, by the chain rule for multi-variable functions,

0 = (F ◦ γ)′(0) = ∇⃗F (γ(0)) · γ⃗′(0).

Hence, the tangent vector at x to an arbitrary parametrized curve in SF which passes through
x is perpendicular to the gradient ∇⃗F (x).

The set of tangent vectors at x of all such curves

T (SF ,x) = {γ⃗′(0) : γ : I → R3 is a curve s.t. γ(0) = x, γ(I) ⊂ SF }

is called the tangent space to SF at x. A vector field which is at each point x ∈ SF an
element of the tangent space is called a tangent vector field. On the other side, a vector
field which is at every point x ∈ SF perpendicular to the tangent space T (SF ,x) is called
a normal vector field. In particular, ∇⃗F is a normal vector field. We end the section by
proving that

T (SF ,x) = {v⃗ ∈ R3 : v⃗ · ∇⃗F (x) = 0}. (2)

Recall that for two vector spaces V and W of
the same dimension, V ⊆ W implies V = W .
As the right-hand-side of the equation (2) is a 2-
dimensional vector space which contains T (SF ,x), it
suffices to find a two-dimensional vector space con-
tained in T (SF ,x). Let

g : U → R3, (r, s) 7→ (x(r, s), y(r, s), z(r, s))

be a parametrization of SF in a neighborhood of x. Let (r0, s0) ∈ U be such that g(r0, s0) = x.
Given a parametrized curve γ : I → U with γ(0) = (r0, s0), g ◦ γ is a parametrized curve in
SF . By the chain rule for multi-variable functions,

(g ◦ γ)′(0) = Jac(g)(r0, s0) · γ′(0) =


∂x
∂r

(r0, s0) ∂x
∂s

(r0, s0)
∂y
∂r

(r0, s0) ∂y
∂s

(r0, s0)
∂z
∂r

(r0, s0) ∂z
∂s

(r0, s0)


r′(0)
s′(0)



Thus, the set T (SF ,x) contains the image of Jac(g)(r0, s0), which is by the regularity con-
dition a two dimensional subspace of R3.
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1.5 Curves and surfaces as graphs of functions

Important examples of level-sets are graphs of C1 functions. Given a C1 function u :
R → R, its graph is the set of all the points (x, y) ∈ R2 such that y = u(x); equivalently,
such that the function F : R2 → R defined by F (x, y) = y − u(x) vanishes. As ∇⃗F is
nowhere-vanishing, graph of u is a regular curve.

Similarly, graphs of C1 functions from R2 to R define regular surfaces. Indeed, let

u : Ω → R, Ω ⊆ R2

be a C1 function. The graph of u is defined as

Γu = {(x, y, z) ∈ Ω × R : z = u(x, y)}.

Proposition 1.5. Γu is a regular surface and n⃗ = (∂xu, ∂yu,−1) is its normal vector field.

Proof. Define
F : Ω × R → R, F (x, y, z) = u(x, y) − z.

Clearly, Γu = SF . The gradient ∇⃗F = (∂xu, ∂yu,−1) is nowhere-vanishing, and it is a normal
vector field to SF .

2 First order partial differential equations: method of
characteristic curves

2.1 Linear equations

Let Ω ⊂ R2 be open, and let a, b, c : Ω → R be continuous functions. Equation

a(x, t)∂xu+ b(x, t)∂tu = c(x, t) (3)

is called a first order linear PDE. Its local solution is a C1 function

u : U → R, U ⊂ Ω open

which satisfies the equation (3). It is a global solution if U = Ω.
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Given a local solution u, its graph Γu is called the solution surface. Observe that the
scalar product

(a, b, c) · (∂xu, ∂tu,−1) = a∂xu+ b∂tu− c

vanishes if and only if equation (3) is satisfied. Thus, the vector field (a, b, c) is tangent to
the solution surface. To solve the equation (3) amounts to reconstruct the solution surface
from its tangent vector field (a, b, c) and the appropriate initial condition.

As the first step, starting from a vector field v⃗ and a point x0 ∈ R3, one would like to
reconstruct a parametric curve γ : I → R3 which passes through x0 and to which the vector
fields v⃗ is tangent; meaning that γ⃗′(s) = v⃗(γ(s)) for every s ∈ I. Such curves are called
integral curves of the vector field v⃗, and they always exist. In fact, under additional mild
conditions on the vector field v⃗ they are even unique. Indeed:

Theorem 2.1. For V ⊂ R3, given a continuous vector field v⃗ : V → R3 and a point x0 ∈ V ,
there exists an open interval I ∋ 0, and a curve γ : I → V such that γ(0) = x0 and
γ⃗′(t) = v⃗(γ(t)).

Proof. Denote v⃗(x) = (a(x), b(x), c(x)), x0 = (x0, t0, z0). A parametrized curve γ(s) =
(x(s), t(s), z(s)) which satisfies the theorem is a local solution of the system of ordinary
differential equations

x′ = a(x, t, z) t′ = b(x, t, z) z′ = c(x, t, z)
x(0) = x0 t(0) = t0 z(0) = z0.

(4)

By the fundamental theorem of ordinary differential equations, the system has a solution,
which is unique if v⃗ is Lipschitz continuous (whatever it might mean).

We are now ready to solve the initial value problem posed by the equation (3), together
with the initial condition u(x, 0) = f(x), where f : I → R, with I × 0 ⊂ Ω, is a given
function. For every x0 ∈ I, there exists a (unique) integral curve

γx0 : I → Ω × R, γx0(s) = (x(x0, s), t(x0, s), z(x0, s))

of the continuous vector field

(a, b, c) : Ω × R → R, (x, t, z) 7→ (a(x, t), b(x, t), c(x, t))

which passes through the point (x0, 0, f(x0)). Those curves (for different x0) are called
characteristic curves of the equation. Their projections to Ω are integral curves or the
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vector field (a, b), and are called projected characteristic curves. The solution surface is the
union of all characteristic curves. All that remains is to determine if the solution surface is
a graph of a function, and, if so, to compute the function in question.

Assume the function
(x0, s) 7→ (x(x0, s), t(x0, s))

to be invertible, and denote its inverse by (x0(x, t), s(x, t)). With this, the solution surface
is indeed the graph of function u(x, t) = z(x0(x, t), s(x, t)).

Example 2.2. (transport equation) Solve the initial value problem

c∂xu+ ∂tu = 0, a ∈ R, u(x0, 0) = f(x0).

The unique integral curve γx0(s) = (x(x0, s), t(x0, s), z(x0, s)) of the constant vector field
(c, 1, 0) which passes through the point (x0, 0, f(x0)) is the solution to the system of ordinary
differential equations (x0 is a parameter whose derivations do not enter the system, compare
with (4))

∂sx(x0, s) = c ∂st(x0, s) = 1 ∂sz(x0, s) = 0
x(x0, 0) = x0 t(x0, 0) = 0 z(x0, 0) = f(x0).

which is clearly
x(x0, s) = x0 + cs t(x0, s) = s z(x0, s) = f(x0).

Inverting the function (x(x0, s), t(x0, s)), we get s = t, x0 = x − ct. Hence, u(x, t) =
z(x0(x, t), s(x, t)) = f(x− ct). Conceptually, the graph of function f travels in the positive
direction at speed c. Hence the name transport equation.

Next, we determine, in a slightly greater generality, conditions under which the function
(x0, s) → (x, t) is invertible. So-far, the initial condition was determined by the values of
u over the x-axis. Now, we specify the initial condition over any parametrized regular C1

curve Γ : I → Ω, called the non-characteristic curve, by setting u ◦ Γ(r) = f(r). As before,
for each r ∈ I, there exists a unique integral curve

γr : Ir → Ω × R, γr(s) = (x(r, s), t(r, s), z(r, s))

of the vector field (a, b, c) – a characteristic curve of the equation – such that γr(0) =
(Γ(r), f(r)). As above, the union of those characteristic curves determines the solution
surface if the function

(r, s) 7→ (x(r, s), t(r, s))
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Figure 3: The blue line is the curve specified by the initial condition. The non-
characteristic curve (its projection to the (x, t)-plane) is the red line (x-axis). In green
are the characteristic curves and projected characteristic curves – their projections
to the (x, t)-plane.
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is invertible.

A sufficient condition for this is that the vector field (a, b) in the (x, t) plane is nowhere
tangent to non-characteristic curve. Indeed, recall the inverse function theorem:

Theorem 2.3. Let Ω ⊂ Rn be an open subset, and F : Ω → Rn a C1 function, whose
Jacobian

JF =


∂F1
∂x1

· · · ∂F1
∂xn

...
. . .

...
∂Fn

∂x1
· · · ∂Fn

∂xn


is regular at a point x ∈ Ω. Then there exists an open an open set U ⊂ Ω containing x and
an open set V ⊂ Rn containing F (x) such that F |U : U → V is invertible and whose inverse
is a C1 function.

Applying to F (r, s) = (x(r, s), t(r, s)), we find that F is locally invertible in a neighbor-
hood of a point (r, 0) if vectors

(∂rx(r, 0), ∂rt(r, 0)) = Γ⃗′(r), and (∂sx(r, 0), ∂st(r, 0)) = (a(Γ(r)), b(Γ(r))

are linearly independent.

Example 2.4. Solve the differential equation

3∂xu− 2∂tu = x,

if u(x, t) is zero when restricted to the line x+ t = 1.

The non-characteristic curve in the example is determined by the equation x+ t = 1. A
parametrization is given by Γ(r) = (r, 1 − r), and the initial condition is given by u ◦ Γ(r) =
0. The unique integral curve γr(s) = (x(r, s), t(r, s), z(r, s)) of the vector field (3,−2, x)
which passes through the point (Γ(r), 0) is the solution to the system of ordinary differential
equations

∂sx(r, s) = 3 ∂st(r, s) = −2 ∂sz(r, s) = x(r, s)
x(r, 0) = r t(r, 0) = 1 − r z(r, 0) = 0,

which is

x(r, s) = 3s+ r t(r, s) = −2s+ 1 − r, z(r, s) = z(r, 0) +
∫ s

0 x(r, s′)ds′ = 3
2s

2 + rs.

Inverting the function (x(r, s), t(r, s)), we get r = −2x − 3t + 3, s = x + t − 1. Hence,
u(x, t) = z(r(x, t), s(x, t)) = 3

2(x + t − 1)2 + (−2x − 3t + 3)(x + t − 1). The projected
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characteristic curves are the parametric curves s 7→ (x(r, s), t(r, s)). Their level-set equations
are obtained by eliminating the variable s in the system of linear equations x = 3s + r,
t = −2s+ 1 − r, and read t = −1

3x− 5
3r+ 1. Clearly, projected characteristic curves are not

tangent to the non-characteristic curve.

Another generalization of the method is to allow the function c to depend on the inde-
terminate. Concretely, assume the equation is given by

a(x, y)∂xu+ b(x, y)∂tu = c(x, t, u).

As before, denote the integral curves of (a, b, c) by γr(s) = (s(r, s), t(r, s), z(r, s)). Since
they lie on the solution surface, z(r, s) = u(x(r, s), t(r, s)). Consequently, the curves γr are
solutions of the following system:

∂sx = a(x, t) ∂st = b(x, t) ∂sz = c(x, t, z).

2.2 Shock waves

Figure 4: Projected characteristic
curves and the solution surface for
the shock wave equation with ini-
tial condition f(x) = 1

4ae−x2
.

Shock waves appear when one allows the functions a
and b to depend on the indeterminate. An example of such
equation is a simple model of road traffic. Assume that the
traffic flows in one line, with the density of ρ(x, t) cars per
meter. The number of cars within a short road segment
∆x is given by ρ(x, t)∆x. Denote by j(x, t) the flux –
number of cars which pass during one second through the
point x at time t. Total amount of cars passing through
x during a short period of time ∆t is ρ(x, t)∆t. Since the
number of cars in the segment ∆x can change only if cars
enter or leave the segment through endpoints, assuming
that the traffic flows in the positive direction, we get

ρ(x, t+ ∆t)∆x− ρ(x, t)∆x = j(x, t)∆t− j(x+ ∆x, t)∆t.

Dividing both sides of the equation by ∆x∆t, and taking
the limit ∆x,∆t → 0, we get

∂tρ(x, t) = −∂xj(x, t). (5)

In physics, this equation is referred to as the continuity equation.
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Observe that if the traffic density at a point x is m cars per meter, and if their velocity
in n meters per second, then mn cars pass through the point x per the second. Denoting by
v(x, t) the velocity of the cars at the position x and time t, we have

j = vρ. (6)

Equations 5 and 6 yield
∂tρ = −∂x(ρv).

In a simple model, the velocity depends only on the traffic’s density. When the density
approaches zero, the velocity approaches a constant value c0 (for example 120 km/h). On
the other side, when the density becomes critical (ρ = 1/a for an appropriately determined
constant a), the traffic stops. Linear interpolation between the two extremes gives

v(ρ) = c0(1 − aρ).

Using the product rule and chain rule for derivations we get

∂tρ = −∂x(ρv) = −v∂xρ− ρ(∂ρv)(∂xρ) = −c0(1 − 2aρ)∂xρ.

Hence, differential equation which models the trafic floow is

c0(1 − 2aρ)∂xρ+ ∂tρ = 0.

Assume the initial condition is given as ρ(x, 0) = f(x). Characteristic curves are solutions
of the system

∂sx(x0, s) = c0(1 − 2az) ∂st(x0, s) = 1 ∂sz(x0, s) = 0
x(x0, 0) = x0 t(x0, 0) = 0 z(x0, 0) = f(x0)

which is

t(x0, s) = s; z(x0, s) = f(x0); and x(x0, s) = c0s(1 − 2af(x0)) + x0. (7)

From here we get x0 = x− c0t(1 − 2az), and finally

ρ = f(x− c0t(1 − 2ρ)). (8)
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Figure 5: Propagation of the wave
front and shock fitting.

By the implicit function theorem 1.4, there exists a
unique locally defined function ρ which satisfies the
equation as long as

∂ρ(f(x− c0t(1 − 2ρ)) − ρ) ̸= 0.

As an illustration, for f(x) = x, ρ = x− c0t(1 − 2aρ),
hence ρ(x, t) = x−c0t

1−2ac0t
. Notice that the solution u is

well-defined only for t < 1/2ac0 – even though the
formula itself makes sense for t > 1/2ac0, solutions
to initial value problems are considered as valid only
before the singularity. The singularity itself is no co-
incidence. By (7), projected characteristic curves are
the straight lines whose equations are

x = x0 + c0(1 − 2af(x0))t.

Unless f is a constant function, they are bound to intersect. As the z-coordinate is constant
along each characteristic curve and differs among different characteristic curves, the solution
is not uniquely determined over the intersection. Hence, the parametric surface (x0, s) 7→
(x(x0, s), t(x0s), z(x0, s)) is no longer the graph of a function ρ(x, t).

An instructive initial condition is the bump function f(x) = 1
4a
e−x2 . Projected character-

istic curves and parametric solution surface for this initial condition are visualized in Figures
4a and 4b. Conceptually, the equation that we are dealing with

∂tρ+ c0(1 − 2aρ)∂xρ = 0

is a transport equation, in which the propagation speed of the wave-front depends on its
height: denser the traffic, slower it moves. Consequently, the top of the bump f(x) = 1

4a
e−x2

"drags behind" and eventually gets "overpassed" by other parts of the wave-front (Figure 5
up). Nevertheless, the solution can be extanded beyond the breaking point with the help
of a conservation law: the total amount of cars on the road (the integral

∫ ∞
−∞ ρ(x, t)dx, or

the area under the wave-front) is constant. This law can be proven if the function f is
well behaved. In particular, a bounded C1 function |f(x)| < M1 which is zero outside of a
sufficiently large segment [−M2,M2] will do the job. Indeed, by the triangle inequality, at
any time t,

|x− ct(1 − 2ρ)| ≥ ||x| − |ct(1 + 2M1)||.
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Thus,
ρ(x, t) = f(x− ct(1 − 2ρ)) = 0 for |x| > M2 + |ct(1 + 2M1)|.

Denote M = M2 + |ct(1 + 2M1)|. The continuity equation (5) implies

∂t

∫ ∞

−∞
ρ(x, t)dx = ∂t

∫ M

−M
ρ(x, t)dx =

∫ M

−M
∂tρ(x, t)dx = −

∫ M

−M
∂xj(ρ(x, t))dx

= −j(ρ(M, t)) + j(ρ(−M, t)) = −j(0) + j(0) = 0

Beyond the braking point, we apply the procedure called shock fitting, which is visualized
in the Figure (5 below): We remove a segment from the wave-front to obtain the graph of
a single-valued function with one discontinuity, without changing the area below. Obtained
solution is globally well-defined, satisfies the equation away from the discontinuity, and keeps
the conservation law valid.

Physically, the discontinuity should not come as a surprise. In fact, traffic density on a
highway is rarely continuous, especially during rush hours.

Infinitesimal version of the conservation law can be used to determine the speed at which
the discontinuity (shock) propagates: Assume that at time t, the function ρ(x, t) has a single
discontinuity at x = ξ(t). Left (resp. right) of the shock, u is a continuous function denoted
by ρ− (resp. ρ+). Let ∆t be a small time interval, and ∆x = ξ′(t)∆t the distance covered by
the discontinuity in time ∆t. The change in the number of cars within the interval [x,∆x]
from time t to t+ ∆t is on one hand equal to ∆x(ρ− − ρ+) and on the other hand equal to
the number of cars that passed through the end-points of the segment ∆t(j− − j+). Finally,

dξ

dt
(t) = ∆x

∆t = j− − j+

ρ− − ρ+
.

This equation is known as Rankine-Hungoniot formula.

We conclude the section by noting that all the conclusions made for the simple traffic
model in fact apply to a general PDE of type

∂tu+ c(u)∂xu = 0, (9)

where c(u) is a continuous function. Indeed, denoting by j the primitive of c, equation (9)
becomes the continuity equation

∂tu = −c(u)∂xu = −j′(u)∂xu = −∂xj(u),

which is, together with the method of characteristic curves, all we ever used.
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2.3 Exercises

Exercise 2.5. Solve the initial value problem

∂tu+ c∂xu+ au = 0, u(x, 0) = g(x)

Why is this equation called transport with decay?

Exercise 2.6. Solve
x∂yu− y∂xu = 0, u(x, 0) = f(x) for x>0.

Draw the projected characteristic curves, and draw the curve on which the initial condition
is specified.

Exercise 2.7. Solve
x∂yu+ y∂xu = 0, u(x, 0) = e−x2

.

Draw the projected characteristic curves, and draw the curve on which the initial condition
is specified. Determine the domain of the solution.

3 Wave equation

We derive the wave equation from the elastic string model.

Consider a flexible homogeneous elastic string of linear density ρ, taut between two walls,
subject exclusively to the transversal vibrations. Assume that at a given moment t in time,
the shape of the string is the graph of a function x 7→ u(x, t). Observe the short string
segment whose endpoints are (x, u(x, t)) and (x + ∆x, u(x + ∆x, t)). Forces that act on it
(see Figure ??) are the elastic forces on its endpoint. As by the assumption, vibrations are
exclusively transversal, the horizontal components of the elastic forces must cancel out, that
is,

T1 cos θ1 = T2 cos θ2 =: T0. (10)

By the second Newton law, the difference of its vertical components is the product of seg-
ment’s mass and vertical acceleration

T2 sin θ2 − T1 sin θ1 = ρ∆x∂2
t u(x, t). (11)

Equations (10) and (11) give

T0 tg θ2 − T0 tg θ1 = ρ∆x∂2
t u(x, t). (12)
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As tg θ = ∂xu(x, t), dividing the Equation 12 by ∆x, and taking the limit ∆t → 0, we arrive
to the wave equation

T0∂
2
xu(x, t) = ρ∂2

t u(x, t).

3.1 Wave equation on infinite string

Denoting c2 = T0/ρ, the wave equation on infinite strings becomes

∂2
t u(x, t) − c2∂2

xu(x, t) = 0, (x, t) ∈ R2. (13)

Figure 6:

As
∂2

t u− c2∂2
xu = (∂t − c∂x)(∂t + c∂x)u = 0,

any solution to the transport equation (∂t + c∂x)u = 0 is also
a solution of the wave equation. Similarly,

∂2
t u− c2∂2

xu = (∂t + c∂x)(∂t − c∂x)u = 0

implies that any solution of (∂t − c∂x)u = 0 is a solution of the
wave equation as well. Recalling the general solution of the transport equation (Example 2.2),
we conclude that for any C2 functions ϕ and ψ, u1(c, t) = ϕ(x+ ct) and u2(c, t) = ψ(x− ct)
both solve the wave equation. Notice further that the set of solutions of the wave equation
is a vector space:

∂2
t (a1u1 + a2u2) − c2∂2

xu(a1u1 + a2u2) = a1(∂2
t u1 − c2∂2

xu1) + a2(∂2
t u2 − c2∂2

xu2) = 0 + 0 = 0.

In conclusion, u(x, t) = ϕ(x + ct) + ψ(x − ct) is a solution of the wave equation. In fact, it
can be shown that every solution of the wave equation is of the latter form:

Theorem 3.1. General solution of the wave equation 13 is given by u(x, t) = ϕ(x + ct) +
ψ(x− ct), where ϕ and ψ are arbitrary C2 functions.

3.2 Initial value problem

Since the wave equation is in fact the Newton’s second law of motion applied to a string,
it is reasonable to expect that the motion is uniquely determined by the initial position and
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velocity of the string. In other words, the initial value problem

∂2
t u− c2∂2

xu = 0, (x, t) ∈ R2

u(x, 0) = f(x), ∂tu(x, 0) = g(x)
(14)

should have unique solution. There are multiple approaches to the above problem available
in the literature. For example, one could start from the general solution u(x, t) = ϕ(x −
ct) + ψ(x + ct) of the wave equation, and determine the unknown functions ϕ and ψ from
the initial conditions. Alternatively, the method of characteristic curves can be used. Let us
follow the latter approach.

Substituting v(x, t) = (∂t − c∂x)u, we get the initial value problem

(∂t + c∂x)v = 0;
v(x, 0) = ∂tu(x, 0) − c∂xu(x, 0) = g(x) − c∂xf(x).

The solution is clearly v(x, t) = g(x− ct) − c∂xf(x− ct). With this, u(x, t) is the solution of
the initial value problem

(∂t − c∂x)u = v = g(x− ct) − c∂xf(x− ct) = g(x− ct) − cf ′(x− ct)
u(x, 0) = f(x).

Using the method of characteristic curves, we reduce to the system of ODE-s

∂sx(x0, s) = −c ∂st(x0, s) = 1 ∂sz(x0, s) = g(x− ct) − cf ′(x− ct)
x(x0, 0) = x0 t(x0, 0) = 0 z(x0, 0) = f(x0).

Solution of the first two equations is x(x0, s) = x0 − cs, t(x0, s) = s, and its inverse is
x0(x, t) = x+ ct, t(x0, s) = s. As for the third equation, we have

∂sz(x0, s) = g(x(x0, s) − ct(x0, s)) − cf ′(x(x0, s) − ct(x0, s))
= g(x0 − 2cs) − cf ′(x0 − 2cs).

Integrating, we get

z(x0, s) − z(x0, 0) =
∫ s

0
g(x0 − 2cs′) − cf ′(x0 − 2cs′)ds′

= 1
2(f(x0 − 2cs′) − f(x0)) +

∫ s

0
g(x0 − 2cs′)ds′

Finally,

u(x, t) = z(x0(x, t), s(x, t)) = f(x− ct) + f(x+ ct)
2 +

∫ t

0
g(x0 − 2cs′)ds′.
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Figure 7: Solution to the wave equation for the initial displacement f(x) = e−x2 and
no initial velocity is two wave front traveling in the opposite direction

Substituting ξ = x0 − 2cs′, we arrive to d’Alambert’s solution of the wave equation

u(x, t) = f(x− ct) + f(x+ ct)
2 + 1

2c

∫ x+ct

x−ct
g(ξ)dξ. (15)

A classical solution of the wave equation is a C2 function. For this, f has to be a C2

function, and g a C1 function. However, d’Alambert’s solution makes sense as long as g is
an integrable function. In this case, we speak of weak solutions.

3.3 Inhomogeneous wave equation

If g(x) = 0, d’Alambert’s solution consists of two waves, each of the shape f(x)/2, travel-
ling in opposite directions at the constant speed c (see Figure 7). If the initial displacement
f(x) is localized, wave front is localized as well, and each point of the string returns to the
equilibrium position after the wave passes. In contrary, for f(x) = 0, even if the initial
velocity is localized, it leaves the string permanently deformed (see Figure 8).

When the vibrating string is subject to external forcing, the wave equation acquires an
additional inhomogeneous term:

∂2
t u− c2∂2

xu = F (x, t). (16)

Using the method of characteristic curves, we now solve the inhomogeneous wave equation
16 for the initial conditions

u(x, 0) = ∂tu(x, 0) = 0.
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Figure 8: Solution of the wave equation for initial velocity g(x) = e−x2 without initial
displacement leaves the string permanently deformed.

Substituting v(x, t) = (∂t + c∂x)u, we get the initial value problem

(∂t − c∂x)v = F (x, t), v(x, 0) = 0

Using the method of integral curves, we reduce to the system of ODE-s

∂sx(x0, s) = −c ∂st(x0, s) = 1 ∂sz(x0, s) = F (x, t)
x(x0, 0) = x0 t(x0, 0) = 0 z(x0, 0) = 0.

Solution of the first two equations is x(x0, s) = x0 − cs, t(x0, s) = s, and its inverse is
x0(x, t) = x+ ct, t(x0, s) = s. As for the third equation, we get

∂sz(x0, s) = F (x(x0, s), t(x0, s)) = F (x0 − cs, s)

Integrating and inverting, we get

v(x, t) = z(x0(x, t), s(x, t)) = z(x0, 0) +
∫ s

0
F (x0 − cs′, s′)ds′ =

∫ t

0
F (x+ c(t− s′), s′)ds′

With this, u(x, t) is the solution of the initial value problem

(∂t + c∂x)u =
∫ t

0
F (x+ c(t− s′), s′)ds′, u(x, 0) = 0.

Using once again the method of integral curves, we get

∂sx(x0, s) = c ∂st(x0, s) = 1 ∂sz(x0, s) =
∫ t

0 F (x+ c(t− s′), s′)ds′

x(x0, 0) = x0 t(x0, 0) = 0 z(x0, 0) = 0.
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Solution of the first two equations is x(x0, s) = x0 + cs, t(x0, s) = s, and its inverse is
x0(x, t) = x− ct, t(x0, s) = s. Substituting in the third equation, we get

∂sz(x0, s) =
∫ s

0
F (x0 + c(2s′′ − s′), s′)ds′.

Integrating and inverting, we arrive at

u(x, t) = z(x0(x, t), s(x, t)) = z(x0, 0) +
∫ s

0

∫ s′′

0
F (x0 + c(2s′′ − s′), s′)ds′ds′′

=
∫ t

0

∫ s′′

0
F (x+ c(2s′′ − s′ − t), s′)ds′ds′′.

Finally, we simplify the integral. First, one changes the order of integration. The area
over which we integrate is determined by the system of inequalities

0 < s′ < s′′, 0 < s′′ < t,

and it is the triangle whose vertices in the (s′, s′′) plane are (0, 0), (t, 0) and (t, t). The same
triangle is determined by the system

0 < s′ < t, s′ < s′′ < t.

Thus,

u(x, t) =
∫ t

0

∫ t

s′′
F (x+ c(2s′′ − s′ − t), s′)ds′′ds′.

Substituting τ(s′, s′′) = s′, χ(s′, s′′) = x+ c(2s′′ − s′ − t), the integral area becomes

0 < τ < t, x− c(t− τ) < χ < x+ c(t− τ),

while the Jacobian determinant of the function (s′, s′′) 7→ (τ, χ) is

Det(J) = det
 1 0
−c 2c

 = 2c.

Hence,

u(x, t) = 1
2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)
F (χ, τ)dχdτ.

From here it is easy to deduce the solution of the general initial value problem for inhomo-
geneous wave equation.
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Theorem 3.2. The solution to the initial value problem

∂2
t u− c2∂2

xu = F (x, y), (x, t) ∈ R2

u(x, 0) = f(x), ∂tu(x, 0) = g(x)
(17)

is given by

u(x, t) = f(x− ct) + f(x+ ct)
2 + 1

2c

∫ x+ct

x−ct
g(ξ)dξ + 1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)
F (χ, τ)dχdτ.

Proof. Denoting

u1(x, t) = f(x− ct) + f(x+ ct)
2 + 1

2c

∫ x+ct

x−ct
g(ξ)dξ

and
u2(x, t) = 1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)
F (χ, τ)dχdτ,

u = u1 + u2. Thus,

∂2
t u− c2∂2

xu = (∂2
t u1 − c2∂2

xu1) + (∂2
t u2 − c2∂2

xu2) = 0 + F (x, y),
u(x, 0) = u1(x, 0) + u2(x, 0) = f(x) + 0,
∂tu(x, 0) = ∂tu1(x, 0) + ∂tu2(x, 0) = g(x) + 0.

3.4 Causality

Given a point (x, t) in space-time, the triangle whose vertices are (x− ct, 0), (x+ ct, 0),
and (x, t) is called the domain of dependence of the point (x, t). This is because for t > 0,
the solution u(x, t) of the initial value problem (17) depends only on the values of the initial
data and forcing function at points within the triangle. Indeed, in the solution formula,
the first term requires only the initial displacement at the vertices (x − ct, 0), (x + ct, 0);
the second term requires only the initial velocity at the edge which joins those two vertices;
while the final term requires the value of the force in the entire triangular region.

Similarly, initial position at the point (x0, 0) influences the solution only along the rays
x− ct = x0 and x+ ct = x0 (for t > 0), whereas the initial velocity and forcing at the same
point influence only the region between those two rays, called the domain of influence. In
other words, the effects of initial displacement propagate at the speed c, while those of initial
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velocity and forcing persist, but none of the effects propagate faster than the speed c. Similar
observations hold in two dimensions. However, in the three-dimensional wave equation, the
effects of initial velocity and forcing do not persist, making the causality principle is sharper.
This sharp form is called Huygens’s principle.

Figure 9: Domain of dependence (above), and
domain of influence (below).

A legitimate question to ask is if in one
dimension - a concrete example is the propa-
gation of sound along a railway track - each
noise that a train makes would automati-
cally mix with the “echoes” of the noise cre-
ated by trains which passed before it, and
the answer is no. Namely, a localized im-
pulse does keep the string permanently de-
formed, but it doesn’t keep it permanently
vibrating. After the time at which the ini-
tial localized impulse traveling at speed c

surpasses the point of the observation x,
d’Alambert’s solution at x remains constant
in time, equal to the integral of the entire im-
pulse, scaled by 1/2c (see the Exercise 3.4).

3.5 Exercises

Exercise 3.3. Find the week solutions to the initial value problem

∂2
xu− ∂2

x = 0, u(x, 0) =


2x+ 1 for − 1

2 < x ≤ 0
−2x+ 1 for 0 < x < 1

2

0 otherwise

, ∂tu(x, 0) = 0.

in successive times t0 = 0, 1
8 ,

1
4 ,

1
2 , 1, and sketch the graphs u(x, t0).

Exercise 3.4. The point x = 0 of an infinite string of tension T and density ρ (recall that
c2 = T

ρ
) is hit by a hammer whose head diameter is 2a, so that initial conditions are

u(x, 0) = 0, ∂tu(x, 0) =

1 if − a < x < a

0 otherwise.
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A flea is sitting at a distance l from the point x = 0. (Assume that a < l; otherwise, poor
flea!) How long does it take for the disturbance to reach the flea? At what time will the
point where the flea is sitting be still again?

Exercise 3.5. Solve the initial value problem

∂2
t u− 3∂x∂tu− 4∂2

x = sin(x+ t), u(x, 0) = ∂tu(x, 0) = 0.

Exercise 3.6. Solve the equation

∂2
t u− c2∂2

xu = sin(ωt)sin(kx), u(x, 0) = ∂tu(x, 0) = 0

for both kc ̸= ω, and kc = ω,

Exercise 3.7. Prove the following facts:

1. If initial conditions for the wave equation u(x, 0) = f(x), and ∂tu(x, 0) = g(x) are both
even functions (f(x) = f(−x), g(x) = g(−x)), at any time t ∈ R, d’Alambert solution
u(x, t) is also an even function in the x-variable.

2. If initial conditions for the wave equation u(x, 0) = f(x), and ∂tu(x, 0) = g(x) are
both odd functions (f(x) = −f(−x), g(x) = −g(−x)), at any time t ∈ R, d’Alambert
solution u(x, t) is also an odd function in the x-variable.

3. If initial conditions for the wave equation u(x, 0) = f(x), and ∂tu(x, 0) = g(x) are both
periodic functions of period l (f(x) = f(x + l), g(x) = g(x + l)), at any time t ∈ R,
d’Alambert solution u(x, t) is also a periodic function of period l in the x-variable.

4 Diffusion or heat equation

Imagine a straight horizontal tube filled with motionless liquid. Our aim is to deduce
a differential equation which governs diffusion (movement) of a chemical substance – for
instance dye – through the liquid-filled tube. Transfer of heat through a motionless liquid is
governed by the same differential equation, hence the name heat equation.

Denote by u(x, t) the concentration of dye in terms of the amount of substance per meter,
at the distance x from the first end of the tube, at the time t. By Flick’s law, flux of the

https://en.wikipedia.org/wiki/Amount_of_substance
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substance in a motionless fluid goes from regions of high concentration to regions of low
concentration, with a magnitude that is proportional to the concentration gradient. In one
dimension (inside the tube) we have

j(x, t) = −k∂xu(x, t),

where k is the diffusion coefficient. Flick’s law, together with the continuity equation

∂xj(x, t) = −∂tu(x, t),

yields the diffusion equation
∂tu(x, t) − k∂2

xu(x, t) = 0.

Initial value problem for the diffusion equation inside an infinite tube is given by

∂tu(x, t) − k∂2
xu(x, t) = 0, −∞ < x < ∞, t > 0,

limt→0 u(x, t) = f(x).
(18)

Observe a fundamental difference between (18) and initial value problem for either wave
equation, or first order PDE-s. In first order PDE-s, a local solution to the initial value
problem is specified in an open neighborhood of the x-axis, which includes negative time.
Initial value problem for wave equation has a globally defined solution, again in both positive
and negative time. In contrast to this, we aim to solve the diffusion equation only in
strictly positive time, assigning the initial condition at the limit t → 0. This is not a
mere computational convenience. Instead, it is rooted in the physical fact that diffusion is
an irreversible process. Although for a certain class of initial conditions, it is possible from
the mathematical point of view to determine solutions to the diffusion equation in negative
time, such solutions are ill-behaved, in the sense that they are numerically unstable under
small perturbations of the initial condition, and can have singularities even if the initial
condition is a smooth function.

4.1 Fundamental solution of the diffusion equation

In this section, we study diffusion of the unit amount (1 mol) of the substance (dye)
initially placed at one single point x = 0. The corresponding initial condition is given by
the Dirac delta function: concentration of the dye is zero away from the origin and infinite
at the origin, whereas the total amount of dye is one:

δ(x) =

∞ for x = 0, and
0 for x ̸= 0

;
∫ ∞

−∞
δ(x)dx = 1.
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The solution to the initial value problem in hands

∂tS(x, t) − k∂2
xS(x, t) = 0, −∞ < x < ∞, t > 0,

limt→0 S(x, t) = δ(x).
(19)

is called the fundamental solution to the diffusion equation. As we will see in the next
section, solution of the general initial value problem (18) is deduced from the fundamental
solution.

On the face of it, the initial value problem (19) looks hopeless, as Dirac delta function is
not a function at all (in fact, it is a distribution, see Appendix A). However, we can use to
our advantage the fact that its "antiderivative" is a function:

H(x) =
∫ x

−∞
δ(x′)dx′ =

0 for x < 0, and
1 for x > 0.

Observe that the partial derivative ∂xu(x, t) of a solution u(x, t) to the diffusion equation
is itself a solution:

∂t(∂xu)(x, t) − k∂2
x(∂xu)(x, t) = ∂x(∂tu(x, t) − k∂2

xu(x, t)) = 0.

Hence, if Q(x, t) solves the initial value problem

∂tQ(x, t) − k∂2
xQ(x, t) = 0, −∞ < x < ∞, t > 0,

limt→0 Q(x, t) = H(x).
(20)

one expects the function
S(x, t) := ∂xQ(x, t)

to solve the initial value problem (19). Again, the reasoning can be formalized in the language
of distributional derivatives, but we will not go deep into this. Instead, the Corollary A1.3
of the Theorem 4.2 directly establishes the convergence limt→0 S(x, t) = δ(x) in the space of
distributions.

Let’s now solve (20)! The strategy is to eliminate one variable (and hence reduce to
an ordinary differential equation) by the use of symmetry: a parametrized family of trans-
formations (x, t) 7→ (χ(x, t), τ(x, t)) such that Q(χ(x, t), τ(x, t)) solves a given initial value
problem as long as Q(x, t) does. As a physical process is uniquely determined by the initial
condition, the (unique) physical solution must be invariant under symmetry:

Q(x, t) = Q(χ(x, t), τ(x, t)).
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In the initial value problem (20), it is reasonable to search for a symmetry of type
(x, t) 7→ (λx, µt), where λ, µ > 0 are real parameters. Indeed, let Q be a solution to 20, and
set χ(x) = λx, τ(t) = µt. By the chain rule

∂xQ(λx, µt) = ∂xχ(x)∂χQ(χ, τ) = λ∂χQ(χ, τ),
∂2

xQ(λx, µt) = λ∂x∂χQ(χ, τ) = λ∂xχ(x)∂2
χQ(χ, τ) = λ2∂2

χQ(χ, τ), and
∂tQ(λx, µt) = ∂tτ(t)∂τQ(χ, τ) = µ∂τQ(χ, τ).

As Q is a solution to the diffusion equation,

0 = ∂τQ(χ, τ) − k∂2
χQ(χ, τ) = 1

µ
∂tQ(λx, µt) − ( 1

λ
)2k∂2

xQ(λx, µt).

For µ =
√
λ,

∂tQ(λx,
√
λt) − k∂2

xQ(λx,
√
λt) = λ2(∂τQ(χ, τ) − k∂2

χQ(χ, τ)) = 0,

so Q(λx,
√
λt) satisfies the diffusion equation. As

limt→0+ Q(λx,
√
λt) = H(λx) = H(x),

Q(λx,
√
λt) is a solution of (20). Hence, symmetry of our problem is the λ-parametrized

family of transformations (x, t) 7→ (λx,
√
λt).

Denote g(ξ) = Q(ξ, 1). For any fixed x ∈ R and t, λ > 0, Q(x, t) = Q(λx,
√
λt). In

particular, for λ = 1/
√
t,

Q(x, t) = Q( x√
t
, 1) = g( x√

t
).

As the above equality holds for all x ∈ R and t > 0, it is an equality of functions. By the
chain rule,

∂tQ(x, t) = − x

2t
√
t
g′( x√

t
), ∂xQ(x, t) = 1√

t
g′( x√

t
), ∂2

xQ(x, t) = 1
t
g′( x√

t
).

The diffusion equation now reads

x

2t
√
t
g′( x√

t
) + k

1
t
g′′( x√

t
) = 0.

Multiplying by t, and substituting ξ = x/
√
t, g′ = h, we get

1
2ξh(ξ) + kh′(ξ) = 0.
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By the separation of variables
1
2

∫
ξdξ = −k

∫ dh

h
,

and hence
h(ξ) = C0e

−ξ2/4k.

Since g′ = h,

g(ξ) = C0

∫ ξ

0
e−r2/4kdr +D = [s = r/

√
4k, ds = dr/

√
4k] =

√
4kC0

∫ ξ√
4k

0
e−s2

ds+D.

For C =
√

4kC0,

Q(x, t) = g( x√
t
) = C

∫ x√
4kt

0
e−s2

ds+D.

Evaluating at the initial condition, for x > 0,

limt→0+ Q(x, t) = C
∫ ∞

0
e−s2

ds+D = C
√
π

2 +D = 1,

and for x < 0,

limt→0+ Q(x, t) = C
∫ −∞

0
e−s2

ds+D = −C
∫ 0

−∞
e−s2

ds+D = −C
√
π

2 +D = 0.

From here, C = 1√
π
, and D = 1

2 .

Finally, we calculate the fundamental solution S(x, t) = ∂xH(x, t). By the Leibniz inte-
gral rule1,

S(x, t) = ∂xQ(x, t) = ∂x( 1√
π

∫ x√
4kt

0
e−s2

ds+ 1
2) = 1√

π
e− x2

4kt∂x
x√
4kt

= 1√
4kπt

e− x2
4kt .

There are a few observations to be made about the solution:

• Even though the initial condition is singular, the solution in positive time is a smooth
(or C∞) function, meaning that its partial derivatives of any order are well-defined.
Physically, diffusion "smooths out" the initial distribution, making it more uniform as
particles spread throughout the space.

1Given a continuous function f(x, t) which is differentiable in x, and C1 functions a(x) and b(x),

∂x

∫ b(x)

a(x)
f(x, t)dt = f(x, b(x))b′(x) − f(x, a(x))a′(x) +

∫ b(x)

a(x)
∂xf(x, t)dt

https://en.wikipedia.org/wiki/Leibniz_integral_rule
https://en.wikipedia.org/wiki/Leibniz_integral_rule
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• Although the initial condition is non-zero only at the point x = 0, in all the positive
times, it is non-zero everywhere. This means that in the model, speed at which sub-
stance diffuses is not bounded by the speed of light. We say that, in contrast with the
wave equation, diffusion equation is non-relativistic.

Figure 10: Solution S(x, t) for different t.

4.2 Solution to the general initial value problem, and non homo-
geneous diffusion equation

To determine the solution of 18, we first approximate the initial continuous distribution
limt→0 u(x, t) = f(x) by a discrete one, where at the points xn which are distributed along

the x-axis at the distance ∆x we place f(xn)∆x amount of substance. The initial value
problem in hands is

∂tu(x, t) − k∂2
xu(x, t) = 0, −∞ < x < ∞, t > 0,

limt→0 u(x, t) =
∑

n

δ(x− xn)f(xn)∆x.

Lemma 4.1 below implies that the solution is given by

u(x, t) =
∑

n

S(x− xn, t)f(xn)∆x.

Physically, the substance initially placed at each point xn spreads out in time and contributes
to the distribution u(x, t) by the term S(x− xn, t)f(xn)∆x. In the limit ∆x → 0, we get

u(x, t) =
∫ ∞

−∞
S(x− y, t)f(y)dy. (21)
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Theorem 4.2 below provides a rigorous mathematical proof that the solution (21) which we
derived using physical arguments is correct as long as the function f sastisfies certain mild
conditions.

Lemma 4.1. 1. The set of solutions to the diffusion equation is a vector space. That is, if
un(x, t) are solutions, and an real numbers, then u(x, t) = ∑

n un(x, t)an is a solution.

2. If u(x, t) is a solution to the diffusion equation, then u(x − y, t) is also a solution for
any y ∈ R.

Proof. Part 1 is a simple calculation:

∂t(
∑

n

un(x, t)an) − k∂2
x(

∑
n

un(x, t)an) =
∑

n

(∂tun(x, t) − k∂2
xun(x, t))an = 0.

For part 2, denote χ = x− y. We have

∂xu(x− y, t) = ∂xχ∂χu(χ, t) = ∂χu(χ, t), and
∂2

xu(x− y, t) = ∂x∂χu(χ, t) = ∂2
χu(χ, t).

Since u(x, t) satisfies the diffusion equation,

∂tu(x− y, t) − k∂2
xu(x− y, t) = ∂tu(χ, t) − k∂2

χu(χ, t) = 0. (22)

A similar strategy can be used to determine the solution of the initial-value problem for
the non-homogeneous diffusion equation

∂tu(x, t) − k∂2
xu(x, t) = F (x, t), −∞ < x < ∞, t > 0,

limt→0 u(x, t) = 0.

Physically, the non-homogeneous diffusion equation describes diffusion in the presence of a
source. Again, we can approximate the continuous source with a discrete one. At points xn

(distributed along the x-axis at the distance ∆x) at times tm (distributed on the t-axis at
the distance ∆t), we place F (xn, tm)∆x∆t amount of substance. The amount of substance
placed at a point (xn, tm) diffuses in time t > tm, and contributes to the distribution u(x, t)
by the term S(x−xn, t−tm)F (xn, tm)∆x∆t. Summing over all the contributions, and taking
the limit ∆x,∆t → 0 we get

u(x, t) =
∫ t

0

∫ ∞

−∞
S(x− y, t− s)F (y, s)dyds.
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A mathematical proof that the obtained solution is correct is rather simple, and it is the
content of exercise 4.5.

Finally, just as with wave equation, the solution to the general intial-value problem

∂tu(x, t) − k∂2
xu(x, t) = F (x, t), −∞ < x < ∞, t > 0,

limt→0 u(x, t) = f(x)

is the sum of the solution of the non-homoegenous equation with the trivial initial condition,
and the homogeneous equation with the given initial condition

u(x, t) =
∫ ∞

−∞
S(x− y, t)f(y)dy +

∫ t

0

∫ ∞

−∞
S(x− y, t− s)F (y, s)dyds.

Theorem 4.2. Given a function f : R → R which is bounded (there exists M > 0 s.t
|f(x)| < M for all x ∈ R) and compactly supported (there exists N > 0 s.t. f(x) = 0 if
|x| > N), formula (21) defines an infinitely derivable (smooth) function, which is a solution
of the initial value problem (18).

Remark 4.3. For the theorem to hold it suffices for the function f to be bounded. However,
the proof in this general case requires the use of certain tools from analysis such as uniform
convergence, which we prefer to avoid, in order to keep the exposition as simple as possible.
Be it mentioned, by the Weierstrass theorem from Analysis 1, continuous compactly supported
functions are automatically bounded, hence the latter condition is obsolete in the (weaker)
theorem that we intend prove.

Remark 4.4. Interestingly, the solution (21) is not the unique solution to the diffusion
equation. However, it is the unique solution for which there exist constants C,D > 0 such
that |u(x, t)| < CeDx2. This result, called Tychonoff’s uniqueness theorem, is outside the
scope Analysis 4b. Clearly, the non-unique highly divergent solutions are non-physical.

Proof. We begin by proving that u(x, y) is a well-defined smooth function. The integral (21)
is convergent as f(x) is compactly supported. Indeed,

u(x, t) =
∫ ∞

−∞
S(x− y, t)f(y)dy =

∫ N

−N
S(x− y, t)f(y)dy

is well-defined for all x ∈ R, t > 0. By the Leibniz integral rule, the same holds for partial
derivatives of first order

∂xu(x, t) =
∫ N

−N
∂xS(x− y, t)f(y)dy; ∂tu(x, t) =

∫ N

−N
∂tS(x− y, t)f(y)dy.
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By induction, higher partial derivatives

∂k
x∂

l
tu(x, t) =

∫ N

−N
∂k

x∂
l
tS(x− y, t)f(y)dy

are also well-defined, and u(x, t) is a smooth function.

Next, we prove that u(x, t) satisfies the diffusion equation. By Lemma 4.1, S(x − y, t)
satisfies the diffusion equation for every y ∈ R, hence

k∂tu(x, t) − k∂2
xu(x, t) =

∫ N

−N
(k∂tS(x− y, t) − k∂2

xS(x− y, t))f(y)dy = 0.

It remains to verify that limt→0 u(x, t) = f(x). The first observation to be made is that∫ ∞
−∞ S(x− y, t)dy = 1. Indeed,

∫ ∞

−∞
S(x− y, t)dy = 1√

4kπt

∫ ∞

−∞
e− (x−y)2

4kt dy = [χ = y − x√
4kt

, dχ = dy√
4kt

]

= 1√
π

∫ ∞

−∞
e−χ2

dχ = 1.

Consequently,
f(x) =

∫ ∞

−∞
S(x− y, t)f(x)dy.

By the triangle inequality for integrals,

|u(x, t) − f(x)| = |
∫ ∞

−∞
S(x− y, t)(f(y) − f(x))dy| ≤

∫ ∞

−∞
S(x− y, t)|f(y) − f(x)|dy.

Proving that limt→0 u(x, t) = f(x) amounts to showing that for any given ϵ > 0, and small
enough t > 0, we get |u(x, t) − f(x)| < ϵ.

Fix ϵ > 0. As f is continuous, there exists δ > 0 such that |f(y) − f(x)| < ϵ/2 for all
y ∈ (x− δ, x+ δ). We have

|u(x, t) − f(x)| ≤
∫ ∞

−∞
S(x− y, t)|f(y) − f(x)|dy

=
∫ x+δ

x−δ
S(x− y, t)|f(y) − f(x)|dy +

∫
R\(x−δ,x+δ)

S(x− y, t)|f(y) − f(x)|dy

<
ϵ

2

∫ x+δ

x−δ
S(x− y, t)dy + 2M

∫
R\(x−δ,x+δ)

S(x− y, t)dy.

As
ϵ

2

∫ x+δ

x−δ
S(x− y, t)dy < ϵ

2

∫ ∞

−∞
S(x− y, t)dy = ϵ

2 ,
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it remains to prove that for small enough t > 0,

2M
∫
R\(x−δ,x+δ)

S(x− y, t)dy < ϵ

2 .

The latter condition is satisfied as long as∫
R\(x−δ,x+δ)

S(x− y, t)dy t→0−−→ 0.

We have∫
R\(x−δ,x+δ)

S(x− y, t)dy = 1√
4kπt

∫
R\(x−δ,x+δ)

e− (x−y)2
4kt dy = [χ = y − x√

4kt
, dχ = dy√

4kt
]

= 1√
π

∫
R\( −δ√

4kt
, δ√

4kt
)
e−χ2

dχ
t→0−−→ 0,

as limt→0(±δ/
√

4kt) = ±∞, and the integral
∫ ∞

−∞ e−χ2
dχ is convergent (the integral over the

"tail" |ξ| > A of the Gaussian distribution is arbitrarily small for sufficiently large A).

Exercise 4.5. Let F (x, t) be a bounded continuous function such that there exists M > 0
with f(x, t) = 0 if |x| > M . Using the Leibniz integral rule and Theorem 4.2, show that the
formula

u(x, t) =
∫ t

0

∫ ∞

−∞
S(x− y, t− s)F (y, s)dyds

defines a C∞,1 function (smooth in the x variable, and C1 in the t variable) which is a
solution to the initial valuse problem

∂tu(x, t) − k∂2
xu(x, t) = F (x, t), −∞ < x < ∞, t > 0,

limt→0 u(x, t) = 0.

4.3 Maximum and minimum principle

Assume that a function u(x, t) solves the homogeneous diffusion equation in the rectangle
0 ≤ x ≤ l, 0 ≤ t ≤ T . Physically, u(x, t) describes diffusion in positive time within the
segment [0, l], and in absence of a source. As substance diffuses from the areas of higher
concentration towards the areas of lower concentration, a local maximum of u(x, t) can occur
either at the edges of the segment (in the presence of a source outside the segment [0, l],
form which the substance diffuses through the edges), or initially at t = 0. This property of
the diffusion equation is known as the maximum principle. Analogous minimum principle is
also satisfied.
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Theorem 4.6. Given u(x, t) as above, its maximal and minimal values are assumed either
initially (t = 0), or on the lateral sides (x = 0 or x = l).

Proof. Observe that it suffices to prove the maximum principle, as the minimum principle
of u(x, t) is equivalent to the maximum principle of −u(x, t).

Let M be the maximal value of u(x, t) on the three sides (t = 0, x = 0, and x = l) of
the rectangle [0, l] × [0, T ]. We need to show that u(x, t) ≤ M in the entire rectangle. For a
fixed ϵ > 0, define

uϵ(x, t) = u(x, t) + ϵx2.

On the three sides of the rectangle,

uϵ(x, t) ≤ M + ϵl2.

If we can prove that this inequality holds on the entire rectangle, it would follow that on the
entire rectangle

u(x, t) ≤ uϵ(x, t) ≤ M + ϵl2

for arbitrarily small ϵ > 0, which is possible only if u(x, t) ≤ M.

Assume the opposite, namely that there is a point (x0, t0) either in the interior of the
rectangle (x0, t0) ∈ (0, l) × (0, T ) or on the upper side of the rectangle away from the edges
(t0 = T , x0 ̸= 0, x0 ̸= l), where uϵ attains a local maximum. For any (x, t) ∈ [0, l] × [0, T ] of
the rectangle,

∂tuϵ(x, t) − k∂2
xuϵ(x, t) = ∂tu(x, t) − k∂2

xu(x, t) − 2kϵ = −2kϵ < 0.

If (x0, t0) is in the interior, t0 must be a local maximum of the one-variable function
t 7→ uϵ(x0, t), hence its first derivative at t0, ∂tuϵ(x0, t0) must vanish; and x0 must be a
local maximum of the one-variable function x 7→ uϵ(x, t0), hence its second derivative at x0,
∂2

xuϵ(x0, t0) must be non-positive. From here,

∂tuϵ(x0, t0) − k∂2
xuϵ(x0, t0) > 0

which is a contradiction.

If (x0, t0) = (x0, T ) is on the upper side of the rectangle away from the edges, the one-
variable function t 7→ uϵ(x0, t) must be non-decreasing at T , hence ∂tuϵ(x0, T ) ≥ 0, and the
one-variable function x 7→ uϵ(x, T ), must have a local maximum at x0, hence ∂2

xuϵ(x0, T ) ≤ 0.
We again conclude that

∂tuϵ(x0, T ) − k∂2
xuϵ(x0, T ) > 0,

which is a contradiction.
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Figure 11

5 Boundary problems

In the final chapter of the course, we deal with heat and wave equations on a finite interval
0 ≤ x ≤ l, subjected to constraints on the boundary (x = 0, x = l), called the boundary
conditions. We begin by a review of the most common boundary conditions together with
their physical interpretations. Let u(x, t) be a solution to either wave equation or heat
equation on the interval 0 ≤ x ≤ l.

1. Solution u(x, t) satisfies the Dirichlet boundary condition if at all times

u(0, t) = u(l, t) = 0.

In the case of heat transfer on a rod of length l, it is realized when its end-points are
kept at constant temperature. For transverse vibrations of a taut string (governed by
the wave equation), Dirichlet boundary condition is realized when the end-points are
fixed; example is a guitar string. For longitudinal vibrations of air pressure in a tube
(also governed by the wave equation), it is realized when both ends of a tube are open,
in which case the pressure at the ends is fixed to the atmospheric pressure; example is
a flute.

2. Solution u(x, t) satisfies the Neumann boundary condition if at all times

∂xu(0, t) = ∂xu(l, t) = 0.

In the case of heat transfer on a rod, it is realized when the endpoints are isolated.
Indeed, by the Fourier’s law, heat flux is proportional to the negative gradient of the
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temperature, that is to −∂xu in one dimensional case. If the end points are isolated,
there is no flux through them, hence ∂xu(0, t) = ∂xu(l, t) = 0.

For transverse vibrations of a taut string, ∂xu(l, t) = tg θ, where θ is the angle which
the right end (x = l) of the vibrating string closes with the horizontal axis (see Figure
11). Denoting by T⃗ the force by which the right wall acts on the string, and by Th and
Tv its vertical and horizontal components, we get tg θ = Tv

Th
. As vibrations are purely

transverse, Th is constant, hence ∂xu(l, t) is proportional to Tv. Neumann boundary
condition is hence satisfied when there is no vertical force acting on the string at the
endpoints. We speak of free endpoints, which can be physically realized by attaching
both ends of the string to a massless ring which is free to slide on a frictionless poles
situated at x = 0 and x = l.

For longitudinal vibrations of air pressure in a tube, Neumann boundary condition
models the tube whose endpoints are closed. Namely, by the Bernoulli’s principle flux
of air is proportional to the negative gradient of the air pressure −∂xu. If the ends of
a tube are closed, air flux through them is zero, hence ∂xu(0, t) = ∂xu(l, t) = 0.

3. Solution u(x, t) satisfies the Robin boundary condition if at all times

∂xu(0, t) − a0u(0, t) = ∂xu(l, t) + alu(l, t) = 0 a0, al ∈ R.

Let us return to the above examples Dirichlet boundary condition. How can one assure
that the ends of a rod are kept at a constant temperature, and to which extent is this
even possible? The best that I can do (maybe you can do better as young physicists)
is to keep them in contact with a liquid of constant temperature T . In this situation,
we get transfer of heat due to convection, so that the flux from the end-points is
proportional to the negative difference between the temperature of the liquid and of
the rod. For x = l, we have J(l, t) = −c(T − u(x, l)) where c is the convection
coefficient. Applying Fourier’s law, we arrive to the Robin boundary condition

∂xu(l, t) = −J(l, t) = −c(u(x, l) − T0).

For transverse vibrations of a taut string with fixed end-points, one can ask what
happens if the end-points are not perfectly rigid. In this case, there is a harmonic
vertical force acting on the endpoints of the vibrating string Tv(l, t) = −ku(l, t). Tv(l, t)
being proportional to ∂xu(l, t), we again arrive to Robin boundary condition.
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4. Solution u(x, t) satisfies the circular boundary condition if at all times

u(0, t) = u(l, t), and ∂xu(0, t) = ∂xu(l, t).

As the name suggest, this boundary condition is used to model vibrations or heat
transfer on a circular domain, such a ring of circumference l. Indeed, in this case,
x = 0 and x = l determine the same point.

5. When different boundary conditions are satisfied on the two ends of the interval
0 ≤ x ≤ l, we speak mixed boundary conditions. Common combination is Neumann
boundary condition on one end, and the Dirichlet boundary condition on the other.
There is a number of wind instruments that obey this mixed boundary condition. For
example, in the clarinet, mouthpiece is a closed end, and bell is an open end. In some
traditional instruments such as Irish uilleann pipes and Slovak koncovka, the foot end
of the instrument is kept open for some notes, and closed for other.

5.1 Separation of variables

Our next task is to find general solutions to the boundary value problems for both wave
and heat equation. Here, we will focus on Dirichlet and Neumann boundary conditions.
Other boundary conditions are dealt with in the exercises section.

Dirichlet boundary condition

We start with the wave equation

∂2
t u− c2∂2

xu = 0, 0 ≤ x ≤ l

u(0, t) = u(l, t) = 0.
(23)

The strategy is to first determine those solutions which are products of a function which
depends only on x and a function which depends only on t

u(x, t) = X(x)T (t).

Such solutions are called separated solutions. It turns out that every solution is a superpo-
sition of separated solutions.

Substituting u(x, t) = X(x)T (t) into the wave equation, we get XT ′′ − c2X ′′T = 0.
Dividing by c2XT ,

X ′′

X
= T ′′

c2T
= λ.
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This defines a quantity λ which doesn’t depend on t as the first expression doesn’t, and
doesn’t depend on x as the second expression doesn’t. Hence, it is a constant. As X(0)T (t) =
u(0, t) = 0, and X(l)T (t) = u(l, t) = 0, either X(0) = X(l) = 0, or T is identically zero.
In the latter case, u(x, t) is also identically zero. A nontrivial separated solution is hence
determined by the system of ODEs

X” = λX, X(0) = X(l) = 0; (24a)
T ′′ = c2λT. (24b)

For λ = 0, X(x) = Ax+B. Evaluating at the boundaries, we get A = B = 0, hence u is
again a trivial solution.

For λ ̸= 0,
X(x) = Ae

√
λx +Be−

√
λx.

Evaluating at the boundary x = 0, we get A+B = 0, and evaluating at x = l,

A(e
√

λl − e−
√

λl) = 0.

Multiplying by e
√

λl/A, we get
e2

√
λl = 1,

which is satisfied if and only if 2
√
λl = 2nπi for an integer n, that is, if λ = −(nπ

l
)2. As for

any z ∈ C, (eiz − e−iz)/2i = sin(z), renaming the constant (A′ = 2Ai), we get for each n a
solution to the Equation (24a)

Xn(x) = A′ sin(nπ
l
x).

For λ = −(nπ
l

)2, general solution of the Equation (24b) is

Tn(t) = A sin(ncπ
l
t) +B cos(ncπ

l
t).

Renaming the constants as An = A′A, and Bn = A′B,

un(x, t) := Xn(x)Tn(t) = (An sin(ncπ
l
t) +Bn cos(ncπ

l
t)) sin(nπ

l
x).

Clearly, solutions of 26, and the same is true for the other boundary value problems listed
above, form a vector space. In particular, superposition (linear combination) of finitely many
separated solutions un(x, t) is again a solution. However, this is not enough to deal with
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general initial value problems. Instead, we must consider superpositions of infinitely many
separated solutions, that is the convergent function series

u(x, t) =
∞∑

n=1
(An sin(ncπ

l
t) +Bn cos(ncπ

l
t)) sin(nπ

l
x). (25)

Next we solve the heat equation for Dirichlet boundary condition

∂tu− k∂2
xu = 0, 0 ≤ x ≤ l

u(0, t) = u(l, t) = 0,
(26)

also using separation of variables. Assume that

u(x, t) = X(x)T (t)

is a separated solution. Substituting in the heat equation, we get XT ′ −kX ′′T = 0. Dividing
by kXT ,

X ′′

X
= T ′

kT
= λ.

A nontrivial separated solution is hence determined by the system of ODEs

X” = λX, X(0) = X(l) = 0; (27a)
T ′ = kλT. (27b)

Equation for X is the same as above, so we already know that it a has non-trivial solution
only for λ = −(nπ

l
)2, in which case,

Xn(x) = A′ sin(nπ
l
x).

For the same λ, general solution to the Equation (27b) is

Tn(t) = Ae−( nπ
l

)2kt.

Renaming the constants,

un(x, t) := Xn(x)Tn(t) = Ane
−( nπ

l
)2kt sin(nπ

l
x).

General solution is again the superposition of separated solutions

u(x, t) =
∞∑

n=1
Ane

−( nπ
l

)2kt sin(nπ
l
x). (28)

Observe that in the time limit, limt→∞ u(x, t) = 0. Indeed, if both ends of a heated rod are
kept at the zero temperature, the heat initially present in the rod will gradually leave the
rod through its ends.
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Neumann boundary condition

We now solve the wave equation for Neumann boundary condition

∂2
t u− c2∂2

xu = 0, 0 ≤ x ≤ l

∂xu(0, t) = ∂xu(l, t) = 0,
(29)

again using separation of variables. Let

u(x, t) = X(x)T (t)

be a separated solution. Substituting in the equation, we get

X ′′

X
= T ′′

c2T
= λ.

A nontrivial separated solution is hence determined by the system of ODEs

X ′′ = λX, ∂xX(0) = ∂xX(l) = 0; (30a)
T ′′ = c2λT. (30b)

For λ = 0, X0(x) = Ax + B, T0(t) = A′t + B′. Evaluating at the boundaries, we get
A = 0. Renaming the constants as A0 = 2BA′, B0 = 2BB′, we get

u0(x, t) := X0(x)T0(t) = 1
2(A0t+B0).

For λ ̸= 0,
X(x) = Ae

√
λx +Be−

√
λx.

X ′(0) =
√
λ(A−B) = 0, and X ′(l) =

√
λ(Ae

√
λl −Be−

√
λl).

First equation implies A = B. Substituting into the second equation and multiplying by
e

√
λl/A

√
λ, we get

e2
√

λl = 1,

which is satisfied if and only if 2
√
λl = 2nπi for an integer n, that is, if λ = −(nπ

l
)2. As for

any z ∈ C, (eiz + e−iz)/2 = cos(z), renaming the constant (A′ = 2A), we get for each n a
solution to the Equation (30a)

Xn(x) = A′ cos(nπ
l
x).
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For λ = −(nπ
l

)2, general solution of the Equation (30b) is again

Tn(t) = A sin(ncπ
l
t) +B cos(ncπ

l
t).

Renaming the constants as An = A′A, and Bn = A′B,

un(x, t) := Xn(x)Tn(t) = (An sin(ncπ
l
t) +Bn cos(ncπ

l
t)) cos(nπ

l
x).

General solution is the superposition of separated solutions

u(x, t) = 1
2(A0 +B0t) +

∞∑
n=1

(An sin(ncπ
l
t) +Bn cos(ncπ

l
t)) cos(nπ

l
x). (31)

As for the heat equation with Dirichlet boundary condition

∂2
t u− k∂2

xu = 0, 0 ≤ x ≤ l

∂xu(0, t) = ∂xu(l, t) = 0,
(32)

the same method yields the solution

u(x, t) = 1
2A0 +

∞∑
n=1

Ane
−( nπ

l
)2kt cos(nπ

l
x). (33)

In the following section, we determine constants An and Bn from the initial conditions.

5.2 Initial-boundary value problem and Fourier series

Evaluating the solution of Dirichlet boundary value problem for the heat equation (25)
at initial the condition u(x, 0) = f(x), we get

f(x) =
∞∑

n=1
An sin nπ

l
x. (34)

The series on the right-hand side is called Fourier sine series. Thus, to solve this initial-
boundary value problem, one is required to calculate the Fourier sine expansion of the
function f(x).

In Dirichlet initial-boundary value problem for wave equation (25), the first initial con-
dition u(x, 0) = f(x) gives the same series as above, and the second initial condition
∂tu(x, 0) = g(x) gives

g(x) =
∞∑

n=1

ncπ

l
Bn sin nπ

l
x. (35)
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This is again a Fourier sine series, but with re-scaled coefficients.

Similarly, to solve Neumann initial-boundary value problem, we must calculate the
Fourier cosine series. Indeed, evaluating the solution (33) of the heat equation at the initial
condition u(x, 0) = f(x), we get

f(x) = 1
2A0 +

∞∑
n=1

An cos nπ
l
x. (36)

Evaluating the solution (33) of wave equation at the first initial condition u(x, 0) = f(x) gives
the same series as in the heat equation, whereas the second initial condition ∂tu(x, 0) = g(x)
gives

g(x) = 1
2B0 +

∞∑
n=1

ncπ

l
Bn cos nπ

l
x. (37)

To derive the formula for coefficients in Fourier sine and cosine series, we first recall a
similar computation that we encountered in linear algebra. Let V be a finite dimensional
vector space equipped with a scalar product ⟨−|−⟩. Let {e⃗1, . . . , e⃗n} be an orthogonal basis
for V (meaning that for every i ̸= j, ⟨e⃗i|e⃗j⟩ = 0). Given a vector v⃗ ∈ V , we wish to determine
its expansion in the basis {e⃗i} in terms of the scalar product. Assume

v⃗ =
n∑

i=1
Aie⃗i.

For 1 ≤ m ≤ n, applying the scalar product ⟨−|e⃗m⟩ on both sides of the above equation,
and using the fact that the basis is orthogonal, we get

⟨v⃗|e⃗m⟩ = Am⟨e⃗m|e⃗m⟩.

Finally, the formula for the coefficient Am yields

Am = ⟨v⃗|e⃗m⟩
⟨e⃗m|e⃗m⟩

.

With this in mind, we return to Fourier sine series. In this case, the vector space V
consists of (sufficiently well behaved) functions f : [0, l] → R which satisfy the Dirichlet
boundary condition f(0) = f(l) = 0. Scalar product on V is given by the formula

⟨f |g⟩ =
∫ l

0
f(x)g(x)dx,
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and the orthogonal "basis2" of V is the set of functions {sin nπ
l
x : n ∈ N>0}. Concerning

orthogonality, a direct verification shows that

∫ l

x=0
sin nπ

l
x sin mπ

l
xdx =

l/2, if m = n;
0 otherwise.

The question if the space V is spanned by those functions, i.e. whether a function f :
[0, l] → R which satisfies the Dirichlet boundary conditions is the sum of a Fourier sine
series, is postponed. In fact, when it comes to function series, there are different types of
convergence (pointwise, uniform, L2 etc.) and for each of them to be guaranteed, there are
conditions that the function f needs to satisfy.

Assuming that the series

f(x) =
∞∑

n=1
An sin nπ

l
x

converges, we wish to compute the coefficients An by mimicking the above reasoning for
finite dimensional vector spaces with a scalar product. Applying on both sides of the above
series expansion the scalar product with sin mπ

l
x, we get

∫ l

0
f(x) sin mπ

l
xdx = Am

∫ l

0
sin2 mπ

l
xdx = l

2Am.

From here,

Am = 2
l

∫ l

0
f(x) sin mπ

l
xdx.

Similarly, coefficients Bm in (35) are

Bm = 2
mcπ

∫ l

0
g(x) sin mπ

l
xdx.

The same method is employed to deal with Fourier cosine series. In this case, the vector
space V consists of functions f : [0, l] → R which satisfy the Neumann boundary condition
f ′(0) = f ′(l) = 0. Scalar product on V is the same as before

⟨f |g⟩ =
∫ l

0
f(x)g(x)dx.

2In linear algebra, a set B of linearly independent vectors in a vector space V , be it finite or infinite
dimensional, forms a basis if every v ∈ V is a finite linear combination of the elements in B. As we intend
to express functions from V as convergent series of its elements, the word basis is used in a loose sense.
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The orthogonal "basis" of V is the set of functions {1, cos nπ
l
x : n ∈ N>0}. Indeed, its elements

are orthogonal as

∫ l

x=0
cos nπ

l
x cos mπ

l
xdx =

l/2, if m = n;
0 otherwise.∫ l

x=0
1 · cos mπ

l
xdx = 0.

Convergence issues are once again postponed for later.

In the series
f(x) = 1

2 +
∞∑

n=1
An cos nπ

l
x,

we once again apply scalar products with the basis elements on both side to get

Am = 2
l

∫ l

0
f(x) cos mπ

l
xdx

for m > 0, and
A0 = 2

l

∫ l

0
f(x)dx.

Coefficients Bm in (37) are

Bm = 2
mcπ

∫ l

0
g(x) cos mπ

l
xdx

for m > 0, and
B0 = 2

l

∫ l

0
g(x)dx.

Denote by u(x, t) be the solution of the heat equation with Neumann boundary condi-
tions, which satisfies the initial condition u(x, t) = f(x). In the time limit,

u(x, t) t→∞−−−→ 1
2A0 = 1

l

∫ l

0
f(x)dx.

Indeed, if both ends of the heated rod are isolated, in time the heat will spread evenly
throughout the rod, with the total amount of heat preserved (

∫ l
0 u(x, t)dx =

∫ l
0 f(x)dx).

5.3 Convergence

In all the considered initial-boundary value problems (including Robin, circular, and
mixed boundary conditions which are dealt with in the exercise section), solution is deter-
mined by expanding initial condition(s) in a function series. Terms in that series are the
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solutions to the differential equation

X ′′ = λX,

subject to the respective boundary conditions. A coefficient λ for which such solution exists is
an eigenvalue of the differentiation operator d2/dx2 with the respective boundary condition,
and the solution itself is the corresponding eigenfunction. Recall that with all the considered
boundary conditions, eigenfunctions corresponding to different eigenvalues were orthogonal.
There are deep reasons for this. Namely, it turns out that the differentiation operator d2/dx2

with all the considered boundary conditions is symmetric3, and eigenfunctions of a symmetric
operator corresponding to different eigenvalues are always orthogonal. Let us prove these
facts!

Given functions f, g : [0, l] → l,∫ l

0
f ′′(x)g(x)dx = f ′(x)g(x)

∣∣∣l
0
−

∫ l

0
f ′(x)g′(x)dx = (f ′(x)g(x)−f(x)g′(x))

∣∣∣l
0
+

∫ l

0
f(x)g′′(x)dx,

hence the operator d2/dx2 is symmetric if and only if

(f ′(x)g(x) − f(x)g′(x))
∣∣∣l
0

= 0. (38)

Boundary conditions which satisfy the condition (38) are called symmetric boundary condi-
tions. Clearly, all the boundary conditions which we consider are symmetric.

Now we prove that eigenfunctions of a symmetric operator corresponding to different
eigenvalues are orthogonal. Let A : V → V be a symmetric operator, and v1, v2 ∈ V such
that Av1 = λ1v1, and Av2 = λ2v2, for λ1 ̸= λ2.

(λ1 − λ2)⟨v1, v2⟩ = ⟨λ1v1, v2⟩ − ⟨v1, λ2v2⟩ = ⟨Av1, v2⟩ − ⟨v1, Av2⟩ = ⟨Av1, v2⟩ − ⟨Av1, v2⟩ = 0.

As λ1 − λ2 ̸= 0, it follows that ⟨v1, v2⟩ = 0.

With all the boundary conditions that we studied, we obtained an infinite sequence
of eigenvalues of the differentiation operator d2/dx2. This was also not an accident. It
turns out (and this time we will skip the proof) that this is the case with any symmetric
boundary conditions. As for any given λ ∈ R, the space of solutions to the differential
equation X ′′ = λX is two dimensional, the eigenspace of any given eigenvalue is at most two
dimensional. Fixing an orthogonal basis of every eigenspace, we get an orthogonal sequence

3Given a vector space V with a scalar product, a linear operator A : V → V is symmetric if ⟨Ax, y⟩ =
⟨x, Ay⟩ for all x, y ∈ V
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of eigenfunctions (Xn)n∈N. Given any function f : [0, l] → R which satisfies the symmetric
boundary condition in hands, we define its Fourier coefficients by the same formula as before

An = ⟨f |Xn⟩
⟨Xn|Xn⟩

=
∫ l

0 f(x)Xn(x)dx∫ l
0 X

2
n(x)dx

.

The Fourier series of the function f is the series ∑∞
n=1 AnXn(x).

With this, we can move on to the issue of convergence. When it comes to functions,
there are various type of convergence that one may encounter. Given a sequence of functions
(fn : [0, l] → R)n∈R, we say that a function series (∑∞

n=1 fn : [0, l] → R)n∈N converges towards
the limit f

1. pointwise, if at each point x ∈ [0, l],

N∑
n=1

fn(x) N→∞−−−→ f(x);

2. uniformly, if

supx∈[0,1] |
N∑

n=1
fn(x) − f(x)| N→∞−−−→ 0;

3. and in the L2 norm, if

∫ l

0
(

N∑
n=1

fn(x) − f(x))2dx
N→∞−−−→ 0.

We state the convergence theorem for Fourier series without a proof.

Theorem 5.1. Given any symmetric boundary conditions, the Fourier series of a function
f : [0, 1] → R which satisfies the boundary conditions converges to f(x)

1. uniformly, provided f is a C2 function; and

2. in the L2 norm provided
∫ l

0(f(x))2dx exists.

Fourier sine series (34), Fourier cosine series (36), and full Fourier series (40) of a
function f which satisfies the respective boundary conditions converge pointwise if the func-
tion f is continuous, and the function f ′ is piece-wise continuous (has at most finitely many
discontinuities).
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Finally, observe that we have so far studied the convergence only at the initial condition
t = 0. A priori, there is no guarantee that a solution given by a function series in variables
x and t which converges for t = 0 also converges for t ̸= 0. This issue is simply ignored in
most of the textbooks, and I also tend to ignore it in the class. However, for the sake of
completeness, it is addressed in the following section which deals with the uniqueness of the
solution for initial-boundary value problems.

5.4 Energy and uniqueness

The aim of this section is to prove that with Dirichlet, Neumann, and circular boundary
conditions, initial value problems for both heat and wave equation have unique solutions. We
already have candidates for the solutions, which are the function series (25,28,31,33,41,42).
It remains to prove that, with coefficients calculated from the initial conditions, those series
converge; that their sum solves the boundary value problem in hands; and that the resulting
solution is unique. A common method for proving uniqueness is called the energy method.

Given a solution u(x, t) of the wave equation, its energy is defined as

E[u](t) = 1
2

∫ l

0
((∂tu(x, t))2 + c2∂xu(x, t))2dx.

It is preserved for all the boundary conditions which satisfy

∂tu(x, t)∂xu(x, t)
∣∣∣l
x=0

= 0, (39)

in particular for all the boundary conditions listed above. Indeed, in this situation
dE[u]
dt

(t) = 1
2
d

dt

∫ l

0
((∂tu(x, t))2 + c2(∂xu(x, t))2)dx

= 1
2

∫ l

0
(∂t(∂tu(x, t))2 + c2∂t(∂xu(x, t))2)dx

=
∫ l

0
(∂2

t u(x, t)∂tu(x, t) + c2∂t∂xu(x, t)∂xu(x, t))dx

=
∫ l

0
(∂2

t u(x, t)∂tu(x, t) − c2∂tu(x, t)∂2
xu(x, t))dx+ ∂tu(x, t)∂xu(x, t)

∣∣∣l
x=0

=
∫ l

0
(∂2

t u(x, t) − c2∂2
xu(x, t))∂tu(x, t)dx+ ∂tu(x, t)∂xu(x, t)

∣∣∣l
x=0

= 0.

Theorem 5.2. Assume f : [0, l] → R to be a C2 function, and g : [0, l] → R to be C1

function. Initial value problems for wave equation

∂2
t u(x, t) − c2∂2

xu(x, t) = 0, 0 ≤ x ≤ l, t ∈ R,

u(x, 0) = f(x); ∂tu(x, 0) = g(x)
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with Dirichlet, Neumann, and circular boundary conditions have unique solutions given re-
spectively by the series (25,31,41), with the coefficient determined from the initial conditions.

Proof. First we prove that the considered initial value problems have at most one solution.
Assume u1(x, t), and u2(x, t) are two solutions. Then v = u1 − u2 is a solution of the same
boundary value problem, with the initial condition v(x, 0) = 0, ∂tv(x, 0) = 0. Consequently,
the energy is initially zero, but being constant, it is zero at all times∫ l

0
((∂tv(x, t))2 + c2(∂xv(x, t))2)dx = 0.

Observe that the integrand is a non-negative continuous function. However, integral of
such function is zero if and only if the function itself is zero. This in turn implies that
∂tv(x, t) = ∂xv(x, t) = 0, hence v(x, t) is a constant function. Since v(x, 0) = 0, this
constant value must be zero as well. We conclude that u1(x, t) = u2(x, t).

We now prove the existence of the solution. Assume that the initial conditions u(x, 0) =
f(x), ∂tu(x, 0) = g(x) (for 0 ≤ x ≤ l) satisfy the boundary condition in hands. We extend
f and g to functions f̃ , g̃ : R → R (in the sense that f̃ |[0,l] = f , g̃|[0,l] = g) as follows:

1. for Dirichlet boundary condition they are the unique odd periodic extensions of period
2l;

2. for Neumann boundary condition they are the unique even periodic extensions of period
2l;

3. for circular boundary conditions, extend f and g to periodic functions of period l.

In all the above cases, f̃ is still a C2 function, and g̃ is still a C1 function (assuming that
that f(x) and g(x) satisfy the boundary condition in hands, check this!). d’Alambert’s
solution ũ(x, t) to the wave equation on infinite string with initial conditions ũ(x, 0) = f̃

and ∂tũ(x, 0) = g̃ is a C2 function which satisfies the wave equation. By the exercise 3.7, at
each time t, d’Alambert’s solution is again the extension (in the same sense as above) of a
function ũ(x, t) which satisfies the boundary condition in hands, hence its restriction to [0, l]
is a solution u(x, t) to the respective initial-boundary value problem. It is proven by direct
calculation that for any fixed t ∈ R, the Fourier expansion of u(x, t) in the variable x yields
respectively the function series (25,31,41), with the coefficients determined from the initial
conditions. The computations are rather tedious and perhaps not as interesting.
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We now move our attention to the heat equation. Energy is defined as

E[u](t) =
∫ l

0
u2(x, t)dx.

We have

dE[u]
dt

(t) =
∫ l

0
2u(x, t)∂tu(x, t)dx = 2k

∫ l

0
u(x, t)∂2

xu(x, t)dx

= 2ku(x, t)∂xu(x, t)dx
∣∣∣l
x=0

− 2k
∫ l

0
(∂xu)2(x, t)dx.

Hence, for all the symmetric boundary conditions dE[u](t)/dt < 0.

Theorem 5.3. Initial value problems for heat equation

∂tu(x, t) − k∂2
xu(x, t) = 0, 0 ≤ x ≤ l, t > 0,

limt→0 u(x, 0) = f(x)

with Dirichlet, Neumann, and circular boundary conditions have unique solutions given re-
spectively by the series (28,33,42), with the coefficient determined from the initial condition.

Proof. First we prove that with any symmetric boundary conditions, initial value problem for
the heat equation has at most one solution. Assume that u1(x, t) and u2(x, t) are solutions.
Then v = u1 −u2 is a solution of the same boundary value problem, with the initial condition
v(x, 0) = 0. Consequently, the energy is initially zero, but being decreasing and positive, it
is zero at all times. Once again, energy is the integral of a non-negative continuous function,
so it is zero if and only if the function itself is zero. Hence, v(x, t) = 0 for all x ∈ [0, l], t > 0.

It remains to prove the existence of a solution. We do this for Dirichlet boundary condi-
tions, other cases are analogous. Let f(x) be a continuous function on [0, l] which satisfies
Dirichlet boundary conditions, and whose Fourier sine series

f(x) =
∞∑

n=1
An sin nπ

l
x

converges pointwise. We will prove that the function series (28) with coefficients An con-
verges, and that its sum solves the considered initial-boundary value problem. Observe that
the sequence of numbers (An) is bounded. Indeed,

|An| = |2
l

∫ l

0
f(x) sin(nπ

l
x)dx| ≤ 2

l

∫ l

0
|f(x) sin(nπ

l
x)|dx ≤ 2

l

∫ l

0
|f(x)|dx =: M.
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With this,

|Ane
−( nπc

l
)2t sin(nπ

l
x)| ≤ M(e−( πc

l
)2t)n2

.

As for t > 0, e−( πc
l

)2t < 1, and for all positive y < 1, the series ∑∞
n=1 y

n2 converges (prove
this!), the series (28) converges pointwise (absolutely).

Next we wish to verify that its sum satisfies the heat equation. As this is the case with
each separated solution (i.e. each term of the series), it suffices to show that the series can
be derived term-wise in both variables. That is the true as long as the series of its term-
wise partial derivatives is uniformly convergent in a neighborhood of any given point. In
particular, it suffices to show uniform convergence on the sets (0, l) × (t0,∞) for t0 > 0. Let
us prove the statement for ∂tu(x, y). First and second order derivatives with respect to x are
dealt with analogously. For y = e−( πc

l
)2t0 , the series ∑∞

n=1 n
2yn2 converges (prove this using

the ratio test). Take ϵ > 0, and let N0 > 0 be such that ∑∞
n=N0+1 n

2yn < ϵ/(πc
l

)2M . For
t > t0, N ≥ N0,

|
∞∑

n=N+1
∂tAne

−( nπc
l

)2t sin(nπ
l
x)| = (πc

l
)2|

N∑
n=1

n2Ane
−( nπc

l
)2t sin(nπ

l
x)|

≤ (πc
l

)2M
∞∑

n=N+1
n2yn2

< ϵ,

hence the series of termwise partial derivatives with respect to time converges uniformly as
required.

The obtained solution u(x, t) of the heat equation clearly satisfies the boundary condi-
tions. It satisfies the initial condition due to the Abel’s limit theorem. Indeed, for any fixed
x ∈ (0, l), the power series in the variable s

∞∑
n=1

An sin(nπ
l
x)sn2

has the radius of convergence grater or equal to one, and for s = 1 it converges to f(x).
Abel’s limit theorem tells us that

lims→1−

∞∑
n=1

An sin(nπ
l
x)sn2 = f(x).

However, the limit on the left is equal to limt→0+ u(x, t).
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5.5 Exercises

Exercise 5.4. [Circular boundary conditions and full Fourier series] Function f : [−l, l] → R
satisfies the circular boundary condition if f(−l) = f(l), andf ′(−l) = f ′(l).

1. Solve the eigen-value problem for the operator d2/dx2 with circular boundary con-
dition, and show that {1, sin(nπx/l), cos(nπx/l) : n ∈ N} is an orthogonal set of
eigen-functions, for the scalar product given by ⟨f |g⟩ =

∫ l
−l f(x)g(x)dx.

2. Given a function f which satisfies circular boundary coefficients, determine the coeffi-
cients An Bn in the full Fourier series

f(x) = 1
2B0 +

∞∑
n=1

An sin(nπx/l) +Bn cos(nπx/l). (40)

3. Using separation of variables, show that general solutions to the wave equation on the
interval −l < x < l with circular boundary conditions u(−l, t) = u(l, t), ∂xu(−l, t) =
∂xu(l, t) is given by the function series

u(x, t) = A0 +B0t+
∞∑

n=1
(An sin(ncπ

l
t) +Bn cos(ncπ

l
t))(Cn sin(nπ

l
x) +Dn cos(nπ

l
x)).

(41)
Determine the coefficients from the initial conditions u(x, 0) = f(x), ∂tu(x, 0) = g(x).

4. Using separation of variables, show that general solutions to the heat equation on the
interval −l < x < l with circular boundary conditions u(−l, t) = u(l, t), ∂xu(−l, t) =
∂xu(l, t) is given by the function series

u(x, t) = B0 +
∞∑

n=1
e−( nkπ

l
)2t(An sin(nπ

l
x) +Bn cos(nπ

l
x)). (42)

Determine the coefficients from the initial condition u(x, 0) = f(x).

Exercise 5.5 (Robin boundary conditions). Function f : [0, l] → R satisfies the Robin bound-
ary conditions if f ′(0) = −a0f(0), andf ′(−l) = −alf

′(l). We will focus on the case a0, al > 0.

1. Show that 0 is not an eigenvalue unless a0 = al = 0.

2. Show that the positive eigenvalues λ = β2 for the operator d2/dx2 with Robin boundary
condition are the given by the solutions of the equation

tanh βl = −(a0 + al)β
β2 + a0al

.
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For a0, a1 > 0, this equation doesn’t have a solution. Hence, all the eigen-values are
negative.

3. Show that the negative eigenvalues λ = −β2 for the operator d2/dx2 with Robin
boundary condition are the given by the solutions of the equation

tan βl = −(a0 + al)β
β2 − a0al

, (43)

including, in the case cos(√a0all) = 0, an additional eigen-value β = √
a0al. Show

that the solutions to the equation (43) form a sequence (βn)n≥0 with

nπ

l
≤ βn <

(n+ 1)π
l

,

and that the corresponding eigenfunctions are

Xn(x) = C(cos βnx+ a0

βn

sin βnx).

Exercise 5.6. 1. Using separation of variables, find (in terms of a function series) the
general solution of the wave equation with the mixed boundary conditions

∂2
t u− c2∂2

xu = 0, 0 ≤ x ≤ l

u(0, t) = 0, ∂xu(l, t) = 0.

2. Given a flute (obeys Dirichlet boundary condition) and a clarinet (obeys mixed bound-
ary conditions) of the same size, which will have the lower fundamental frequency ω1?
Which will have lower first overtone ω2?

Exercise 5.7. Find the Fourier cosine series of the function sin(x) in the interval [0, π]. Use
it to determine the sums ∞∑

n=1

1
4n2 − 1 , and

∞∑
n=1

(−1)n

4n2 − 1 .

Exercise 5.8. Determine Fourier sine series of the function f(x) = x. Using the fact the
Fourier series can be integrated term-wise together with the Fourier cosine series of f(x) =
x2/2, compute ∑∞

n=1(−1)n+1/n2.
Exercise 5.9. Using the maximum and minimum property of the heat equation, prove that
the initial-boundary value problem for the heat equation

∂tu− k∂2
xu = F (x, t), 0 < x < l, t > 0;

u(x, 0) = ϕ(t), u(x, l) = ψ(t), limt→0 u(x, t) = f(x)

has at most one solution. Prove the same statement using the energy method.
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Exercise 5.10 (Stability). Let u(x, t) and v(x, t) be solutions to the Dirichlet bound-
ary problem for the heat equation, for the initial conditions limt→0 u(x, t) = f(x), and
limt→0 v(x, t) = g(x).

1. Using minimum and maximum property for the heat equation, show that for all t > 0,

maxx∈(0,l) |u(x, t) − v(x, t)| ≤ maxx∈(0,l) |f(x) − g(x)|.

2. Using the energy method, show that for all t > 0,∫ l

0
(u(x, t) − v(x, t))2dx ≤

∫ l

0
(f(x) − g(x))2dx.

A1 Distributions

A function ϕ : R → R is compactly supported if there exists (large enough) M > 0 such
that ϕ(x) = 0 if |x| > M . ϕ is smooth if it has derivatives of all the orders at all the points
in R.

Given smooth compactly supported functions ϕ1, ϕ2, and numbers a, b ∈ R, the function

(aϕ1 + bϕ2)(x) = aϕ1(x) + bϕ2(x)

is again smooth and compactly supported. Hence, the set of all such functions forms an
(infinite dimensional) vector space, called the space of test functions and denoted by D. A
linear function f : D → R is continuous if given a sequence (ϕn)n∈N of test functions which
converges uniformly towards a function ϕ, the sequence of real numbers (f(ϕn))n∈N converges
towards f(ϕ). A continuous linear function f : D → R is celled a distribution.
Example A1.1. Every function f : R → R which is Riemann integrable on closed intervals
[a, b], for a, b ∈ R defines a distribution

f(ϕ) =
∫ ∞

−∞
f(x)ϕ(x)dx.

Example A1.2. Dirac delta distribution is defined by δ(ϕ) = ϕ(0).

A sequence of distributions (fn)n∈N converges towards a distribution f if for any test
function ϕ ∈ D the sequence of numbers (fn(ϕ))n∈N converges towards f(ϕ).

Similarly, a given a family of distributions (ft)t>0, we say that limt→0 ft = f if for any
test function ϕ ∈ D, limt→0 ft(ϕ) = f(ϕ). With this, it is an immediate consequence of the
Theorem 4.2 that limt→0 S(x, t) = δ(x).

https://en.wikipedia.org/wiki/Uniform_convergence
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Corollary A1.3.
limt→0 S(x, t) = δ(x).

Proof. Let ϕ ∈ D be a test function. Denote ft(x) = S(x, t). Using Theorem 4.2, together
with the fact that S is an even function in the first variable, we conclude that

ft(ϕ) =
∫ ∞

−∞
S(y, t)ϕ(y)dy =

∫ ∞

−∞
S(0 − y, t)ϕ(y)dy t→0−−→ ϕ(0).

We end the appendix by introducing the distributional derivatives. The notion allows us
to make sense of another claim from the Section 18, which is that Diract delta distribution
is the derivative of step function

H(x) =

0 for x < 0, and
1 for x > 0.

.

Distributional derivatives are designed in such a way that they coincide with usual deriva-
tives for distributions determined by a derivable function. Given a derivable function f and
a test function ϕ, using integration by parts, we get

f ′(ϕ) =
∫ ∞

−∞
f ′(x)ϕ(x)dx = f(x)ϕ(x)

∣∣∣∞
−∞

−
∫ ∞

−∞
f(x)ϕ′(x)dx.

As ϕ is compactly supported, f(x)ϕ(x)
∣∣∣∞
−∞

= 0. Hence, f ′(ϕ) = −f(ϕ′). Distributional
derivative of a general distribution f is defined by the same formula f ′(ϕ) = −f(ϕ′).

With this,

H ′(ϕ) = −
∫ ∞

0
ϕ′(x)dx = −ϕ(∞) + ϕ(0) = ϕ(0) = δ(ϕ),

as claimed.

A2 Flutes and drums

Vibrations of the air pressure inside a flute of length l are governed by the wave equation
with Dirichlet boundary condition u(0, t) = u(l, t) = 0. Separated solutions are standing
waves (modes)

un(x, t) = Xn(x)Tn(t) = sin(knx)(An sin(ωnt) +Bn cos(ωnt)) (44)
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of the wave number kn = nπ
l

and angular frequency ωn = ncπt
l

= nω1. When one blows in a
flute, each standing wave un which forms in the instrument generates the sound of frequency
ωn. Overall sound consists of different frequencies ωn = nω1, that is of multiples of ω1. In
music, we speak of a harmonic series, and ω1 is called the fundamental. As it happens,
human ear associates to a harmonic series the note which corresponds to its fundamental. In
contrast to this, the spectrum of a drum-head happens to be far from the harmonic sequence
(Figure 12). Consequently, the human ear will not associate a specific note to the sound of
a drum. We say that drums are unpitched instruments. Still, a student knowledgeable in
music might notice that this is not entirely true, as there are also pitched drums, the most
notable being orchestral timpani and the Indian tabla.

Let us unpack and justify all this new information from the position of a mathemati-
cian/physicist!

Figure 12: Sound spectrum of a flute (left) and of a drum (right)

We model a drum-head by a radius r0 circular membrane of uniform tension T and
density ρ. Its vibrations are governed by the two-dimensional wave equation subject to the
Dirichlet boundary conditions, as the edge of the membrane is attached at all times to a still
rim. Denote by D(r0, 0) the circle of radius r0 centered at the origin, and by ∂D(r0, 0) its
boundary. For c2 = T/ρ, the boundary value problem in hands reads

∂2
t u− c2∇2u = 0, u|∂D(r0,0)×R ≡ 0.

In polar coordinates, the wave equation reads

∂2
t u(r, θ, t) − c2(∂2

ru(r, θ, t) + 1
r
∂ru(r, θ, t) + 1

r2∂
2
θu(r, θ, t)) = 0.

Let u(x, t) = R(r)Θ(θ)T (t) be a separated solution. Substituting in the equation, and
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dividing by c2RΘT , we get

T ′′

c2T
= R′′

R
+ 1
r

R′

R
+ 1
r2

Θ′

Θ =: λ.

An angular frequency ω = ck is included in the sound spectrum of our drum if the boundary
value problem has a separated solution for λ = −k2. For such λ, second equality (after
multiplying by r2 and reordering) reads

r2R
′′

R
+ r

R′

R
+ k2r2 = Θ′

Θ =: µ

As the variable θ is cyclic (0 = 2π), function Θ(θ) satisfies the circular boundary condition

Θ′′ = µΘ, Θ(0) = Θ(2π),Θ′(0) = Θ′(2π).

Solution of this eigenvalue problem (Exercise 5.4) is µm = −m2, for n ∈ N, and Θm(θ) =
An sin(mθ) +Bn cos(mθ) (for m = 0, Θm ≡ B0.) With, this equation for R becomes

r2R′′ + rR′ + (k2r2 −m2)R = 0, R(r0) = 0. (45)

Substituting χ = kr,
χ2R′′(χ) + χR′(χ) + (χ2 −m2)R(χ) = 0.

Figure 13: Bessel functions of the first kind (left) and of the second kind (right)

This is Bessel differential equation, and its solutions are linear combinations of Bessel func-
tions of the first kind Jm(ξ) and of the second kind Ym(ξ). Since Bessel functions of the
second kind diverge at zero, they can not be part of a solution, so R(r) = CJm(kr). From
the boundary conditions, Jm(kr0) = 0. Denoting by λmn the n-th positive root of Jm, the
boundary value problem (45) has a nontrivial solution for every n > 0, which reads

Rmn = CmbJn(λmnr/r0).
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Finally, frequency spectrum of our drum consists of angular frequencies ωmn = cλmn/r0,
for (m,n) ∈ N × N>0. General solution of the wave equation on a circular membrane is the
superposition of separated solutions

u(r, θ, t) =
∑
m,n

Rmn(r)Θm(θ)Tmn(t)

= Jm(λmnr

r0
x)(Amn sin(mθ) +Bmn cos(mθ))(Cmn sin(ωmnt) +Dmn cos(ωmnt)),

with constants AmnCmn, AmnDmn, BmnCmn, and BmnDmn determined from the initial con-
ditions.

To visualize the standing waves which correspond to all the different separated solutions,
or better, to understand their shapes which may at first seem rather chaotic, it is useful to
look at the nodal lines. Let us begin by revisiting the flute – one dimensional wave equation
with Dirichlet boundary conditions. The shape (peak amplitude) of the standing wave (44)
is, up to the re-scaling of amplitude, the graph of function Xn(x) = sin(nπx/l). Thus, the
standing wave of the fundamental ω1 does not have any fixed points except the boundaries
x = 0 and x = l; the first overtone ω2 has one fixed point in the middle of the flute; second
overtone ω2 has two fixed points at x = l/3 and x = 2l/3 and so on. For each mode, the
points in between two neighboring nodal points vibrate in the same direction, and those on
opposite sides of a nodal point move in the opposite directions.

Figure 14: Vibration modes for m = 1, 2, 3, n = 0, 1, 2 (left); their fixed lines,
and frequency ratio with respect to the fundamental ωmn/ω0,1 (right).

In the case of a drum, shape of the standing wave unm is, up to re-scaling of the amplitude,
equal to the graph of the product of functions Rmn(r)Θm(θ). A point (r, θ) is nodal if
either Rmn(r) = 0, or Θm(θ) = 0. The function Rmn has n zero points between 0 and r0,
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including the boundary r0. In the standing wave, they manifest as nodal concentric circles.
Being constant, Θ0 does not provide additional nodal lines, hence standing waves u0n have
just n nodal concentric circles. As in the one dimensional situation, the points between two
neighboring nodal circles all move in the same direction, and the points on the opposite sides
of a nodal circle move in the opposite direction. For m > 0, the function Θm is, up to re-
scaling of the amplitude and a phase-shift, equal to the function sin(mx). After identifying
0 and 2π, it has 2m evenly spaced zero points which manifest as 2m evenly spaced radial
nodal lines, or better, m evenly spaced nodal diameters in the standing wave. Again, points
in any area enclosed by neighboring diameters and neighboring nodal circles move in the
same direction, and points on the opposite sides of any nodal line (away from the crossing)
move in the opposite direction. Generally, nodal nodal lines of a vibrating membrane are
called Chladni patterns. Experimentally,they are determined by placing sand on a membrane
which is then subjected to the forcing of a resonant frequency. Look now at the front page!

Frequency spectrum of a circular membrane is far from harmonic (see the figure A2), so
how can we create a drum with a harmonic spectrum - a pitched drum? As long as our drum
is correctly modeled by the wave equation on a uniform circular membrane, this is hopeless.
So, what should we change? Indian drum makers will tell you that the membrane shouldn’t
be uniform; western classical percussionists would tell you that the surrounding air should
be used to harmonize the drum; while an African drummer will tell you that the sound of a
drum is perfect the way it is, and that you shouldn’t be obsessed by harmonizing it in the
first place. All are correct, as each design gives the sound that fits perfectly with the music
in which it is used.

The best known Indian pitched drum is called tabla. It is modeled by wave equation
on a circular membrane of uniform tension T and non-uniform density ρ(r). Consequently,
c2 = T/ρ also depends on r. In practice, this is achieved by applying a special black paste
(Syahi) on the membrane. Typically, a master craftsman would apply over 100 layers in
gradually smaller concentric circles, polishing and verifying the sound at each step, until the
drum becomes perfectly harmonic. The resulting spectrum is ω11 = 2ω01, ω21 = ω02 = 3ω01,
ω31 = ω12 = 4ω01, and ω41 = ω03 = ω22 = 5ω01. Other modes, which remain non-harmonic,
are damped by an additional layer of skin of annular shape (Keenar), attached at the very
edge of the membrane.

There is a number of published scientific papers in which the wave equation is solved on
a circular membrane of non-uniform density ρ(r), with the intention to model tabla. Inter-
estingly, none of the proposed functions ρ(r) gives harmonicity as perfect as that achieved
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by a master craftsman.

So far, wave equations by which we modeled drums (ideal membrane and tabla) did not
encode interaction with the surrounding air. As long as the diameter of the membrane is
not too large, and volume of the air-filled space that surrounds it is not too small, the model
is valid. In the case of timpani, neither of the assumptions are satisfied: the membrane is
huge, while the volume of the air enclosed in the kettle below the drum is relatively small.
Here is what happens:

The room in which the drum is situated provides a reservoir of air which interacts with the
membrane from above, while the air enclosed within the kettle interacts with the membrane
from below. Together, they alter the frequency spectrum in such a way that the frequency
ratios of modes (1, 1), (2, 1), (3, 1), and (4, 1) become 1 : 1.5 : 1.99 : 2.44, which is close
enough to the harmonic sequence (with the missing fundamental) 1 : 1.5 : 2 : 2.5 to create a
strong sense of pitch. But what happens with the other dominant modes? Answer is that
they magically disappear! It happens that the small volume of the kettle doesn’t allow the
modes (0, 1), (0, 2), and (0, 3) to resonate: those modes will receive little energy to begin
with, and they will also fade out faster than the other modes.

The system of differential equation which governs this physical process is rather complex.
On one side, difference of the air pressure on the two sides of the membrane is encoded by
an inhomogeneous term in the two dimensional wave equation which governs vibrations of
a circular membrane. On the other side, those two pressures serve as boundary conditions
of a three dimensional wave equation which governs fluctuations of the air pressure within
the two air reservoirs. There is a number of scientific papers in which that system is solved
numerically. This time, results align perfectly with the sound spectrum of the modeled
drums.
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