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= Dynamic Sparse Training (DST) [1] Question 2
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X What is the difference between the optimization trajectories in
— il static sparse and dynamic sparse weight spaces?
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ritisl Sparse Mode  deve lExp.ore Hypothesis: DST helps to jump over a local minimum.
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e Starting from a sparse network and the sparse topology
and weights are jointly optimized.
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* Applications In various domains, such as continuous ) )
learning, reinforcement learning, feature selection, Genelization

and network architecture design, etc. ), N
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Research Goal Question 3

’ . . | Does the reduced parameter count during DST lead to improved
Comprehensive exploration of DST, through the three fundamental generalization of SNNs?

pillars of machine learning theory for supervised learning:
representation, optimization, and generalization.

Hypothesis: DST induces the implicit regulation helps to
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Question 1

What specific knowledge is encoded In sparse neural
networks (SNNs) during DST?
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« Spatial domain

» DST effectively generates a diverse Effective Receptive Field
(ERF) when using large kernels [2]. Conclusion
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