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Abstract

Prescriptive Maintenance (PsM) transforms industrial asset management by enabling au-
tonomous decisions through simultaneous failure anticipation and optimal maintenance
recommendations. Yet, despite increasing research interest, the conceptual clarity, techno-
logical maturity, and practical deployment of PsM remains fragmented. Here, we conduct a
comprehensive and application-oriented Systematic Literature Review of studies published
between 2013–2024. We identify key enablers—artificial intelligence and machine learn-
ing, horizontal and vertical integration, and deep reinforcement learning—that map the
functional space of PsM across industrial sectors. The results from our multivariate meta-
synthesis uncover three main thematic research clusters, ranging from decision-automation
of technical (multi)component-level systems to strategic and organisational-support strate-
gies. Notably, while predictive models are widely adopted, the translation of these capabili-
ties to PsM remains limited. Primary reasons include semantic interoperability, real-time
optimisation, and deployment scalability. As a response, a structured research agenda is
proposed to emphasise hybrid architectures, context-aware prescription mechanisms, and
alignment with Industry 5.0 principles of human-centricity, resilience, and sustainability.
The review establishes a critical foundation for future advances in intelligent, explainable,
and action-oriented maintenance systems.

Keywords: prescriptive maintenance; predictive maintenance; systematic literature review;
Industry 4.0; Industry 5.0; maintenance decision-support; meta-synthesis; cyber–physical systems

1. Introduction
The introductory section provides background and contextual information on Prescrip-

tive Maintenance (PsM) within the modern industrial analytics and Industry 4.0 domains.
Subsequently, previous systematic reviews on PsM are critically appraised to establish
a rationale for the study. Lastly, the section defines the explicit research questions and
objectives that guide the systematic review.

1.1. Background

The growing demand for intelligent and automated decision-making positioned Pre-
scriptive Analytics (PsA) [1] as crucial in next-generation operational strategies, especially
for modern maintenance strategies [2]. As a fusion of data analytics, simulation, and AI
(Artificial Intelligence), PsA reduces human intervention by transforming historical and
real-time data into optimal decisions [3], considering factors such as time, cost, safety,
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and energy [3]. Using descriptive and diagnostic logic to detect anomalies, identify root
causes, and anticipate failures, PsA enables organisations to move beyond forecasting to
recommend concrete, contextual, and automation-oriented actions with minimal human in-
tervention. Consequently, PsA formed analytical groundwork for Prescriptive Maintenance
(PsM), translating data-driven insights that directly support operational excellence [4].

As industrial systems grow more complex and interconnected, maintenance strategies,
such as Condition-Based Maintenance (CBM) [5] and Predictive Maintenance (PdM) [6],
evolved to keep pace with growing operational demands. However, although PdM is
beneficial for forecasting failures, it falls short in determining what actions should be
taken, when to take them, and how to optimise decisions under limited resources and
environmental uncertainty [7]. In response, PsM emerged as the next evolutionary step,
offering targeted and optimised interventions that align with business objectives [8–11].

The strategic relevance of PsM is amplified by its alignment with Industry 4.0 (I4.0)
technologies (e.g., Internet of Things (IoT) [12], Cyber Physical Systems (CPS) [13], Digital
Twins [14]), providing the technical infrastructure for implementing intelligent, distributed,
and real-time operational decision-making. Simultaneously, the emergence of Industry
5.0 (I5.0) [15] reinforces human-centricity, resilience, and sustainability as core industrial
values [16] and encourages the development of decision-support systems that prioritise
collaborative intelligence, environmental awareness, and social responsibility [17].

Understanding that these transformations do not occur in a policy vacuum, several
strategic policy frameworks directly shape the scope and deployment of PsM technologies.
Namely, the Green Deal [18] places explicit emphasis on energy efficiency and resource op-
timisation, indirectly promoting the PsM approach, stressing the importance of minimising
waste and energy in asset management. The Digital Europe Programme [19] incentivises
research and innovation in AI-driven maintenance, which is essential for scalable PsM de-
ployment. Rhetorically, the Artificial Intelligence Act [20] establishes a legal framework to
assure trustworthy use of AI in high-risk environments, including industrial systems, guid-
ing PsM development towards transparency and explainability. Despite the convergence of
technology and policy, the industrial implementation of PsM remains fragmented.

To facilitate PsM maintenance actions in a sustainable and context-aware manner [21],
it is essential to resolve challenges in model integration, real-time decision-making, se-
mantic operability, data quality, and alignment with production goals under resource
constraints. Nowadays, such decisions are often neglected due to the current state of
demands, productivity paranoia, and energy constraints, especially with organisational
silos between maintenance and production planning [22] and the limited scalability of PsM
frameworks [23]. Consequently, the full potential of PsM remains largely untapped across
industrial settings. To address this gap, we conduct a Systematic Literature Review (SLR)
to examine the current research discourse on PsM.

1.2. Related Reviews

Before performing SLR, the overview of related PsM reviews is provided. Although
literature reviews on PdM are extensive, comprehensive reviews focusing solely on PsM are
sparse and fragmented. For searching related systematic reviews, we performed a search
on Scholar using the search strings (“prescriptive maintenance” AND (“systematic literature
review” or “systematic review”). However, although not mainly dealing with PsM, we extract
several review studies that partially introduce the PsM aspect.

A study by Lepenioti et al. [1] was the first foundational review of PsA; however, it was
not in the business context. While they contributed to understanding PsA with AI-based
prescriptions, their review did not cover industrial applications. Even so, the primary
constructs and functional descriptions seem to serve as groundwork for introducing the
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analogy into the industrial domain. Some of the early reviews, like [24], examined post-
prognostic decision-making models, identifying early-stage prescriptive functions; however,
they lack in-depth discussion on the relevance of the prescriptive aspect of PsM practice.
Moleda et al. [25] reviewed the evolution of maintenance in the power industry, recognising
that PsM integration with Digital Twin significantly improves performance; however, PsM
is minimally addressed and without action-based taxonomies. Carvalho et al. [26] reviewed
PsM in the biopharmaceutical industry, highlighting challenges of data silos, algorithmic
opacity, and low deployment readiness. Although extensive, their contribution is domain-
specific and with limited generalisability.

Mallioris et al. [27] systematically mapped PdM under the Industry 4.0 (I4.0) domain, but
only acknowledged PsM as a natural extension. Similarly, Shadi et al. [28] tackled the role of
Explainable AI (XAI) in energy systems maintenance and included PsM only as a component.
Although their work mapped PsM models in the energy context, the focus was primarily on
the interpretability rather than the functionality of PsM practice. Burggraf et al. [29] reviewed
intelligent maintenance and remanufacturing, highlighting that PsM research is scarce and
typically focuses on failure prevention rather than performance assurance.

Recently, Souza et al. [30] examined the association of I5.0 and PsM, suggesting that
key challenges companies face are related to human–machine collaboration, Operator
4.0 integration, and sociotechnical transformation. Wesendrup et al. [31] proposed a
framework to integrate PsM with production planning and control; however, although
their review emphasised planning models and decision variables, the scope was narrow
regarding sectors and real-world deployments. Santiago et al. [32] and Fox et al. [33]
reviewed data-driven maintenance models in Wind Turbines. While PsM was discussed,
their retrieved studies mainly cover renewable energy systems and health prognosis. Lastly,
a study by Giacotto et al. [34] is the first review to perform a comprehensive PsM-specific
review to date. Their work developed a taxonomy of prescriptive outputs, methods, and
architectures while identifying enablers and limitations. However, the review focused
heavily on methodological classification, while not sufficiently examining implementation
maturity or industry-specific applications.

Collectively, these reviews offer valuable contributions to specific aspects of PsM,
including analytics, explainability, planning, and decision-making. However, none have
offered a fully integrated synthesis of prescriptive actions and enabling technologies, nor
have they clustered PsM knowledge into thematic research areas grounded in practical
deployment. This review addresses the gap by providing an application-oriented and
decision-centric mapping of the PsM body of expertise with industrial relevance. Hence,
infrastructure maintenance, i.e., railway tracks [35], pipeline corrosion [36,37], concrete
bridges [38], etc., are described elsewhere [39].

1.3. Research Questions and Objectives

This SLR aims to advance the theoretical clarity of PsM by (i) systematically iden-
tifying PsM studies published in the post-I4.0 period; (ii) critically appraising studies
dealing specifically with prescriptive aspects and post-prognostic (and diagnostic) rec-
ommendations and decision-making; and (iii) identifying research areas and challenges
to recommend solution space in PsM practice. To do so, we set the following Research
Questions (RQs):

RQ1: What applications, methods, and tools are utilised within the PsM body of
knowledge?

Understanding the diversity of practical applications, methods, and tools, the motiva-
tion behind RQ1 is to enable researchers and practitioners to benchmark existing solutions
and recognise areas for improvement. By identifying prevalent practices, technological
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bottlenecks, and knowledge gaps, the question aims to determine the breadth of real-world
use cases, analytical methods, and tools deployed in practical PsM scenarios.

RQ2: What activities characterise the prescriptive part of PsM?
A precise characterisation of PsM activities is crucial for delineating PsM from other

maintenance practices. By systematically mapping core activities, their automation levels,
and operational context, RQ2 aims to clarify what uniquely constitutes PsM. Consequently,
RQ2 supports theoretical differentiation and practical operationalisation, which in turn
helps practitioners to make better decisions.

RQ3: What clusters of research can be identified within the existing PsM?
The motivation behind this approach is to identify thematic areas within PsM re-

search and provide an integrative overview of the field, offering researchers and industry
professionals a structured understanding of major research trends, focal areas, and theoreti-
cal contributions.

RQ4: What are the current challenges and future research agenda for PsM?
Lastly, exploring the current challenges and identifying future research directions

are essential for bridging the gap between theoretical advancements and practical sce-
narios. Namely, by systematically extracting evidence from prior research, RQ4 aims to
translate findings into actionable research agendas aligned with I5.0 objectives. RQ4 will
drive industry leaders and policymakers in prioritising research investments and strategic
decision-making for broader PsM adoption.

The rest of the paper is structured as follows: The Section 2 provides a methodological
description of the research protocol and search strategy; the Section 3 analyses metadata,
content-based data, and qualitative data. The Section 4 offers an in-depth analytical
description of the meta-synthesis results. The Section 5 presents concluding remarks,
implications, limitations, and future research directions.

2. Methodology
The methodology section describes the search strategy, retrieval of studies, data syn-

thesis, and data analysis of retrieved evidence. The methodological framework consists
of six modules (Figure 1). The first module explains the study retrieval process via a
Systematic Literature Review (SLR), leveraging the PRISMA (Preferred Reporting in Sys-
tematic Reviews and Meta-Analyses) protocol [40]. The second module builds upon an
ORS (Objective Review Strategy) [41,42] in order to assure an objective retrieval of studies.

The data extraction module synthesises metadata (titles, abstracts, and keywords),
content-based categorical data (e.g., industrial domain, data sources), and qualitative data
(e.g., challenges, findings, PsM activities). The following module, i.e., metadata analysis,
includes a descriptive analysis of metadata, including word n-grams for bibliographic anal-
ysis. This is primarily carried out to gain a general overview of the PsM research discourse.

The analysis of content data includes detailed multivariate and cross-sectional analyses,
leveraging factor analysis for allocating clusters of research within the PsM domain. The
last module provides an exhaustive discussion of findings in response to the proposed RQs.
Based on identified research clusters from content-based analysis, functional descriptions of
PsM are provided, contributing to the understanding and development of the PsM research
field. Lastly, considering that PsM practice is applied differently across various industrial
domains, we exemplify PsM characteristics in four main industrial sectors. Below, we
provide a detailed description of each module.
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Figure 1. Research framework describing the analytical procedure of study retrieval, data acquisition,
and meta-synthesis. The framework consists of six modules.

2.1. Systematic Literature Review

The search strings are defined per the proposed RQs (Table 1). Only primary (original)
studies are included to respect the PRISMA-SLR protocol. Since PsM is implemented in
various industrial applications (e.g., manufacturing, aerospace, energy), there were no
limitations in terms of determining the search strings. However, we specifically targeted
industrial maintenance, and did not cover facility, infrastructure, and building mainte-
nance. Given the research settings, we considered the PCC (Population–Concept–Context)
framework (Table 1) as the most suitable option for constructing search strings.

Table 1. The PCC question framework defines the focus of the research question.

PCC Item PCC Features Explanation

Population PsM features based on RQ Includes applications, tools,
methods, actions, etc.

Concept Prescriptive maintenance Studies explicitly deal with the
PsM body of research.

Context Industrial maintenance Facility and infrastructure
maintenance are excluded.

Given the topic’s rise and to avoid missing essential studies, we set the following
search strings: “prescriptive maintenance”. The search strategy was limited to titles, abstracts,
and keywords to avoid excessive and irrelevant papers. This approach aimed to exclude
studies that only cite or reference prescriptive maintenance, ensuring that our studies
explicitly address the concept of prescriptive maintenance. In addition, a search alert was
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set on Google Scholar and SCOPUS for the search string “prescriptive maintenance” in
case new articles emerged during the analysis and writing of the paper. The PRISMA flow
diagram (Figure 2) explains the process of study retrieval.

 

Figure 2. PRISMA flow diagram.

Firstly, the search was performed using Harzing’s Publish or Perish software (Windows
GUI Edition, v. 8.9.4554.8721) to ensure replicability and transparency. Given that Web of
Science and SCOPUS APIs (Application Programming Interfaces) could not be obtained,
the search within these index bases was performed manually. The eligibility criteria used
for the research are explained in Table 2.

Table 2. Eligibility criteria for selection and study retrieval.

Criteria Sub Criteria Description of Criteria

Isolation Criteria
(IC)

Full-Text Papers (FTP). Editorials, posters, or similar
records are excluded.

English Language (ENG). Only articles written in English.

Only Original (OR) studies. Only primary (not review)
studies.

Time Frame-Abstract
(TF-ABS) The time frame spans 2013–2024.

Exclusion Criteria
(EC)

Loosely Related (LR). Theoretical, opinion, or roadmap.

Partially Related (PR). Only refers to PsM and lacks
depth.

Non-Related (NR). Not industrial (e.g., facility,
buildings).

The rationale for proposing FTP’s IC (Isolation Criteria) is to include all relevant
articles. This includes peer-reviewed original journal articles, conference papers, and book
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chapters. However, we covered reports and theses if they were deemed valid in rigour by
the review panel. Studies written in English were included to avoid misunderstandings in
reporting findings. Only primary (original) studies were included, meaning that review
(theoretical, systematic, or scoping) studies were excluded. The time frame and abstract
criteria consider using only studies from 2013 to capture the evaluation of the Industry
4.0 era. Also, we limited the search to 2024 for the sake of completeness. Lastly, consider-
able efforts were dedicated to studies conflating PsM with PdM maintenance unless they
explicitly address prescriptive actions (e.g., decision-making, optimisation).

The initial search through the index bases resulted in 580 records. After extracting the
records and inputting them into Mendeley, we performed duplicate removal on 390 stud-
ies. During the screening phase, 57 records were removed due to non-eligibility criteria
(FTP = 11, ENG = 10, OR = 23, TF-ABS = 13). The removed records included an extensive
list of grants and projects. These records comprise dissemination results of articles and
reviews that are currently under review or are expected to be published in the upcoming
years. The remaining studies (n = 133) were subjected to EC criteria, and 59 records were
removed (NR = 17, PR = 21, LR = 21). Ultimately, 61 studies were included in the final
assessment and extraction of pertinent evidence.

2.2. Objective Review Strategy

The assessment of included studies was performed by measuring interrater agreement
of included studies using Fleiss’ κ (at least moderate agreement κ = 0.61–0.80) [43]. After
the screening, the interrater agreement was κ = 0.67. Given that the search was performed
independently by two authors, all studies were recorded in Mendeley. After the removal of
duplicates, 190 records were analysed and discussed to maintain consistency concerning
isolation criteria (Table 2). Following the screening, 133 studies underwent an in-depth
analysis. In the event of disagreement, the third author intervened to make a final decision.
After the screening stage, all three authors provided studies that should be included,
eventually reaching an interrater agreement of κ = 0.83.

Considering that 27 studies were unavailable for complete textual analysis, several
methods were used to contact the authors of the papers that were not accessible. We first
tried searching for preprint versions of the paper, and then we contacted the first author at
least twice. After the second time, we tried reaching out to the co-authors of unavailable
studies. After reaching out, we also kindly asked the authors to share PsM studies or
preprints that were potentially missed or omitted by our search strategy, which the authors
provided. However, none of the studies were deemed relevant per our eligibility criteria.

During the entire process of retrieving studies, RSS notifications from SCOPUS and
Google Scholar identified additional studies; however, all of these studies were published
after 2024, and including them would not have ensured the completeness of the SLR. Hence,
those studies were recorded and will be extended in our living SLR at the end of 2025.
Ultimately, 13 papers were unable to be included due to a closed-access publication policy
and a lack of response from the authors. The complete list of both included and excluded
studies, including the complete search records in screening, is provided alongside the
article in Supplementary Materials.

2.3. Data Extraction

The evidence used for the analysis consists of three types of data. Firstly, we rely on
the article’s metadata to extract word n-grams for bibliometric analysis, which describes
the existing PsM research. The word n-grams (e.g., bigrams, trigrams) are constructed from
titles, abstracts, and keywords. The content-based data is in categorical form, comprising
(i) Research Design (e.g., simulation, case study, survey, framework); (ii) Data Source (e.g.,
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sensor data, synthetic data, maintenance log-data, fault data); (iii) Industrial Sector (e.g.,
manufacturing, railways, aerospace); (iv) Application Scope (e.g., unit/component, fleet,
machine, process, organisation); (v) Condition Monitoring Parameters (e.g., temperature,
vibration, pressure, power); (vi) Power Domain (e.g., electrical, mechanical, hydraulic);
(vii) Study Focus (e.g., diagnosis, prognosis, risk assessment, strategy selection); (viii) Pre-
diction Data Analysis (e.g., exploratory analysis, Machine Learning); (ix) Optimization
Data Analysis (e.g., Reinforcement Learning, Linear Programming); (x) Industry 4.0 Tech-
nologies (e.g., IoT, Cloud Computing, Big Data); (xi) Decision Variables (e.g., operational
costs, maintenance costs, time); (xii) Systemic and Sustainability Aspects (e.g., economic,
environmental, social, technical); and (xiii) hierarchical decision-making level (e.g., strate-
gic, tactical, operational). Lastly, qualitative data comprising challenges, implications,
limitations, and conclusions from study findings are included.

2.4. Metadata Analysis and Data Coding

The metadata analysis is performed by exporting RIS (Research Information System)
data from the Mendeley library. Hence, no coding was required for metadata, as it can
be automatically processed by VosViewer (v.1.6.20) for bibliographic analysis. However,
it is essential to note that different combinations of word n-grams are used to obtain the
most essential insights using word n-grams. Here, different combinations of word n-grams
from titles, abstracts, and keywords are used, and no apparent clusters were observed.
Additionally, given the exponential rise of the topic, even after using reference co-citation
analysis, we have still not been able to obtain cluster similarity. Only after using 10-word
co-citation analysis in VosViewer were we able to cluster properties that are used for
the discussion.

2.5. Content Data Analysis

Factor Analysis (FA) is performed to uncover research clusters in the PsM domain.
Although different FA methods exist, most are designed for continuous-type data (e.g.,
Principal Component Analysis). Given that content data is categorical, Multiple Corre-
spondence Analysis (MCA) is used as the most suitable alternative for handling categorical
data [44,45]. The analysis is conducted in RStudio (v2024.04.2) of R (v.4.3.3) using Fac-
toMineR and Factoshiny packages [46]. The first step includes forming an indicator matrix,
such that rows correspond to studies n = 61 and Q = 32 (16 variables with outcomes [1, 0],
i.e., [present, not present]). The indicator matrix Z of size n × Q is constructed as:

ziq =

{
1 study i has a category q
0 study i does not have q

. (1)

After forming the Z matrix, the Correspondence matrix P is created to normalise Z
by N = ∑i,q zi,q = 16 · 61 = 976, obtaining row and column mass. For row mass (studies),
we calculate ri = 1/n (studies weighted equally), and for column mass (variables), we
calculate cq = category count q/N. Before performing SVD (Singular Value Decomposi-
tion), a standardised residual matrix S needs to be obtained by computing deviations
from independence:

siq =
piq − ricq
√ricq

, (2)

where piq is the element of P. Performing SVD on S is as follows:

S = UΣVT , (3)
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where Σ contains singular values σk and U and V are left and right singular vectors,
respectively. Lastly, estimating the coordination for studies from Principal Components
(PCs) m is performed as follows:

F = D−1/2
r UΣ, (4)

where Dr is the diagonal matrix of row (studies) masses. Coordinates for categories is
performed as follows:

G = D−1/2
c VΣ, (5)

where Dc is the diagonal matrix of column (categories) masses. Calculating total inertia T
is as follows:

T = ∑ σ2
k , (6)

while the first selected m (PCs) explains inertia (variance):

m =
∑m

k=1 σ2
k

T
. (7)

Estimating total inertia is crucial to explain the dataset’s variation (heterogeneity).
It can be viewed as analogous to the PCA variance but adjusted for categorical data.
Additionally, it is essential to consider this when analysing the quality representation of
categories per inspected PC in discussing the factor map. As a final step, we utilise the first
two m (PCs) components, as they capture the most variance in terms of performing cluster
analysis and grouping similar studies. To do so, we use the Euclidean distance between i
and j studies by computing the following:

di,j =

√√√√ 2

∑
k=1

(
fik − f jk

)2
, (8)

where fik is the coordinate of study i on PC k. Lastly, to perform HCPCs (Hierarchical
Clustering on Principal Components), Ward’s linkage method is used to minimise within-
cluster variance:

∆(A, B) =
nAnB

nA + nB
∥µA − µB∥2 , (9)

where µA, µB are centroids of clusters A and B and nA, nB are their sizes. To ensure
transparency and replicability of the findings, we recommend that the reader perform the
analysis using the FactoMineR (v.2.12) R package to obtain the same results.

The context of implementation (Application Scope), the functional objectives (Study
Focus), the broader value-driven and systemic implications (Systemic and Sustainability
Aspects), and the decision-making levels (Hierarchical Levels) are used to map a complex
ecosystem in which PsM operates. To do so, we rely on the HCPC-MCA method. This
enabled us to offer valuable insights about the evolving field of PsM research.

2.6. Analysis of Findings

This subsection includes the extraction and discussion of qualitative data from re-
trieved studies. This qualitative data consists of the following: definitions used (or refer-
enced) in the paper; PsM type of actions proposed for post-prognostic or post-diagnostic
analysis; challenges/problems addressed in the study; implications of the study; future
research directions; and study limitations presented by the authors. All of the mentioned
qualitative data are extracted and are available in the Supplementary Materials. The PsM
actions proposed in the paper are directly used to answer RQ2 and to offer a characterisa-
tion of the PsM overall. In addition, the evidence regarding challenges and future research
directions is used to answer RQ4, while the definitions used, implications, and limitations
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are employed to provide a coherent understanding of the perspectives and contextual
settings of the findings within the retrieved studies.

3. Results
This section provides a comprehensive bibliometric and exploratory analysis to iden-

tify trends and thematic areas within PsM literature. Meta-data descriptive analysis (3.1)
reveals a notable increase in PsM publications. Bibliometric analysis identifies four distinct
clusters, highlighting research interests in maintenance strategy integration, cost–benefit
analysis, and integrating Industry 4.0 technologies. Content data analysis (3.2) reveals
a shift from purely technical optimisation towards incorporating sustainability metrics.
Lastly, the cluster analysis (3.3) distinguishes between operational, managerial, and strategic
research discourse within PsM studies, suggesting an evolving and increasingly sustainable
research approach.

3.1. Meta-Data Descriptives

Analysis of the PsM publication trend is depicted in Figure 3. Two primary studies
were mentioned before 2017 [47,48]. Since then, there has been a lack of primary research
explicitly providing practical applications of PsM, and most studies published have been
theoretical. The trend suggests a rise of at least 50% in PsM publications (R2 = 0.6925) via
journal articles (n = 29, 47%) and conference proceedings (n = 25, 41%).

Figure 3. Type of publications by year (x-axis) and the number of publications (y-axis).

The word co-occurrence analysis (Figure 4) was performed in VosViewer (v. 1.6.20).
The method involves extracting word n-grams from the title and abstract fields, while
ignoring structured abstract labels and copyright statements if they appear. The counting
method was complete counting, meaning all term occurrences in a document are counted,
i.e., titles and abstracts. A minimum of 10 word co-occurrences was set, and we ended
up with 45 terms that met the threshold criteria. The co-occurrence map suggests the
presence of four clusters. However, due to the limited word co-occurrence and the use of
generic terms, such as strategy, challenge, problem, and control, it was difficult to determine
what each cluster could represent regarding the generalisation of existing PsM research.
For instance, the yellow cluster (Figure 4) suggests that the research on PsM is centred
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around production planning and control with maintenance strategy integration. The red
cluster suggests general PsM implementations and associated effects, particularly fitting
under the domain of Knowledge-Based Maintenance (KBM) [49]. In contrast, the blue
cluster suggests a more technical approach to analysing the benefits of PsM in terms of
economic costs or optimisation based on decision variables, specifically performed on
equipment and component levels. Lastly, the green cluster suggests the high dependability
of I4.0 technological aspects in adopting PsM, such as digital twins, the Internet of Things,
and sensor and condition-monitoring technology, particularly in prognostics (e.g., RUL
estimation) and post-prognostic activities.

Figure 4. Co-occurrence mapping of titles and abstracts (threshold > 10-word co-occurrence).

Although the metadata provided insights about the current body of research on the
PsM, the analysis did not offer much in terms of an understanding of PsM research. Conse-
quently, this necessitated an in-depth and exhaustive meta-synthesis of the corpus of studies,
employing a study-by-study approach. We first performed descriptive and exploratory
analysis, which was followed by factor mapping and clustering of research studies.

3.2. Content-Based Data Descriptive and Exploratory Analysis

The descriptive statistics suggest that most of the PsM studies (Figure 5A) are ded-
icated to manufacturing (32%), energy (23%), and aerospace (13%), followed by other
domains. Accordingly, this suggests that most of the research (69%) is situated around
these domains. Next, the research design indicates that 57% (n = 35) of studies rely on a
single case study, followed by simulation (n = 33%) and the simultaneous application of
PsM frameworks (n = 33%). Looking at specific domains, the evidence shows that 30%
of studies in manufacturing (Figure 5A1) rely on theoretical frameworks with validation
through a simulation or a case study. In the energy sector, most of the work is performed
similarly to that in manufacturing; however, there are more surveys and observational
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studies (7%). In contrast, the proposed frameworks in the aerospace domain are predomi-
nantly based on numerical simulations with case studies (31%). This suggests that scalable
PsM applications are still in an infant phase, and more practical study designs are yet to
be explored.

Figure 5. Descriptive statistics considering (A) the industrial sector, including (A1) the research design
of manufacturing studies; (A2) energy studies; and (A3) the research design of aerospace studies.
(B) Overall key performance metrics considered in the optimisation and decision-making. (C) Sys-
tematic and sustainability aspects considered for optimising of maintenance activities. (D) Condition
Monitoring Parameters are functional energy (green) and waste energy (red).

Furthermore, the optimisation metrics (Figure 5B), particularly decision variables
used for optimisation of maintenance activities and scheduling, primarily rely on time
(85%), maintenance costs (84%), and operational costs (80%), followed by degradation
metrics (62%) and resource efficiency (61%) metrics. It becomes apparent that social and
environmental aspects are still neglected. For that reason, we performed an analysis of
Systemic and Sustainability Aspects (Figure 5C), such as economic (ECO), environmental
(ENV), social (SOC), Technical/Technological (TEC), and TBL (Triple Bottom Line—studies
that consider economic, ecological, and social aspects). The evidence suggests that, before
2020, there was a lack of TBL and environmental considerations in PsM’s decision-making,
while a limited number of studies incorporated social aspects (e.g., safety).

Post-2020 studies show that environmental and social elements are being considered
in decision-making steps, while TBL aspects are being integrated into optimisation frame-
works. This suggests that green initiatives imposed by, for instance, the EU (e.g., the Green
Deal) may indicate the presence of this effect. Rhetorically, a rise in sustainable considera-
tion and a drop in technical performance indicators (e.g., availability metrics) are significant.
This presumably marks the shift from purely technical performance metrics (e.g., reliability,
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availability) to product- and user-centric design (e.g., product quality, customer satisfaction,
user experience).

Lastly, inspired by the p-f curve proposition in the Energy-Based Maintenance (EBM)
domain regarding primary (functional) and secondary (waste) energy indicators (see [50]),
we devise functional condition monitoring indicators of power variables (e.g., hydraulic,
electrical, mechanical) and secondary (waste) emission energy monitoring (e.g., tempera-
ture, vibration, sound) parameters (Figure 5D). This distinction aligns with growing interest
in leveraging energy signals for condition assessment, as demonstrated in studies dealing
with hydraulic power (i.e., pressure and flow) [51] and electrical power (i.e., current and
voltage) [52] for estimating the state of the machine or at least comparing input and output
signals, such as energy consumption profiles [53].

Across the literature, data-driven condition monitoring often employs degradation
metrics (e.g., wear, corrosion) and comparative metrics (e.g., anomaly detection, pattern
changes) to estimate remaining useful life (RUL). In PsM research discourse, temperature
remains the most frequently used condition monitoring parameter for assessing system
health. This is followed by system-specific data (“Others” 43%), energy/power consump-
tion (34%), pressure (30%), speed (18%), flow (18%), load (18%), and others. The preference
for emission-based signals, such as vibration, heat, and acoustics, is likely due to their
sensitivity and the maturity of the available sensing technologies.

While data-driven approaches dominate the current landscape, there is an emerging
body of work emphasising the integration of physics-based models and causal machine
learning [54,55]. This shift reflects a broader rationale for evolving from purely data-centric
to process- and energy-driven causal decision-making frameworks in PsM. Such integration
is expected to enhance decision reliability, reduce model opacity, and improve prescrip-
tive accuracy by incorporating domain knowledge and causal inference mechanisms. A
study [56] demonstrates the superiority of causal knowledge graphs over non-parametric
ML models in failure classification.

3.3. Prescriptive Maintenance Research Clusters

The MCA uncovered latent thematic structures (Figure 6) established by categories
of Application Scope, Study Focus, Sustainability Aspects, and Hierarchical Scope. The
MCA biplot analysis (Figure 6A) suggest that the first three PCs account for 40% of the
total inertia (Figure 6B). Such low variance is common in MCA [57,58], given the high
variability of data. To handle low inertia (variance), the correlation coefficient η2 (Figure 6C)
is introduced. The criteria explain the degree of association between variables and PCs.
For the analysis of individual components, we set η2 > 0.200. Class categories (red points)
below the threshold are marked transparent in the biplot (Figure 6A), suggesting a poor
contribution in terms of explaining the PC. Lastly, we use R2 to indicate how well the
particular PC represents the category. Additionally, estimates (category coordinates) that
describe the location of a modality (category) in reduced space are utilised. The sign and
magnitude indicate how a category relates (i.e., influences) to a specific PC.

PC1 explains analytical depth and functional enhancement (e.g., predicting failures,
optimising maintenance plans), considering technical and organisational aspects. PC2
reflects the implementation level and managerial scope of PsM practice, i.e., PC2 links large-
scale, fleet-, or organisational-level applications with strategic and tactical maintenance
planning, particularly dealing with decision-making and strategy selection problems (e.g.,
resource allocation, maintenance planning). PC3 addresses multi-level integration, where
strategic decision-making is informed by operational considerations, reflecting vertically
integrated decision-making. The emergence of social aspects suggests that some studies
are shifting towards cross-functional collaboration, reflecting the challenges of aligning
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top-down policies with shop-floor execution. For interpreting PCs, specifically the positive
and negative sides of individual PCs, the description of R2 and estimates is provided in
Appendix A, considering only statistically significant contributions (p < 0.05).

Figure 6. Multiple Correspondence Analysis with Agglomerative Hierarchical Clustering on Principal
Components. MCA biplot of PC1-PC2 (A) positions subcategories (red) and individual studies (light
blue). The scree plot (B) illustrates the eigenvalues (left y-axis) and the percentage of variance (inertia)
for each separate component (right y-axis). The bar plot (C) explains PCs’ contribution (measured by
η2). The η2 explains the proportion of inertia of the categorical variable on the PCs. The η2 > 0.200
is a threshold (η2 < 0.200 is transparent). The AHC (D) represents clusters of research studies. The
categories (E) used for the analysis show the frequency of class categories and their contribution in
terms of explaining the research clusters.

Subsequently, Hierarchical Clustering on Principal Components (Figure 6D) was
applied using the first three PCs. For robustness, extended clustering was performed using
seven components (cumulative inertia >70%), which yielded no additional substantive
differentiation. The analysis suggests clear separability among the clusters, which were
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further analysed based on their mass contributions and class modalities. Full content-
based descriptions of each cluster are detailed in Appendix B and visualised via a line
bubble chart.

Cluster 1 (blue) and Cluster 2 (red) exhibit partial overlap, indicating a degree of struc-
tural similarity in the configuration of categorical variables. Despite its visual proximity,
their internal composition, reflected through class category frequencies (see Figure 6E), re-
veals substantive differences if we consider alignment with the positive side of PC2 and the
negative side of PC1, suggesting Cluster 1’s tendency towards operational/material hierar-
chical level risk assessment with machine and component application scopes, highlighting
a bottom-up approach. Cluster 2, on the other hand, aligns more closely with managerial
and system-level concerns, centring on fleet-level prognosis and post-prognostic optimi-
sation. Cluster 3 diverges notably from the others, adopting a strategic and conceptual
approach to PsM. Dominant modalities include organisational planning, strategic formu-
lation, and survey-based analysis, often detached from technical aspects. Rather than
proposing algorithmic and sensor-based solutions, Cluster 3 typically frames PsM with
broader discussions on digital transformation, business model innovation, or long-term
organisational objectives. This top-down orientation suggests a vision of PsM as a strategic
enabler rather than a purely operational function.

4. Discussion
This section synthesises the review findings designed to answer each RQ. Section 4.1

examines the range of applications, methods, and tools underpinning PsM. Section 4.2
characterises prescriptive actions and operational decision-making of PsM across a range of
industrial sectors. Section 4.3 describes research clusters derived from multivariate factor
analysis to form a structured thematic landscape of PsM research. Finally, Section 4.4 iden-
tifies prevailing challenges and proposes a solution space to enhance the implementation
and scalability of PsM.

4.1. Applications, Methods, and Tools

The review reveals that PsM is concentrated primarily within manufacturing, en-
ergy, aerospace, and railway domains, where downtime is costly and asset longevity is
critical. The prominence of these sectors reflects the maturity of the condition monitor-
ing infrastructure and increased convergence of maintenance with production planning
and control [22,59–61]. Although heavily relying on expensive waste–energy sensor data
(e.g., temperature, vibration), many are considering alternatives of inexpensive functional–
primary power sensors (e.g., flow, pressure) [56]. This translation aligns with an increased
focus on physics-driven modelling and causal machine learning, provoking renewed de-
bates on the value of interpretable, context-aware decision models in maintenance [55]. Still,
current applications remain anchored in data-driven frameworks, particularly predictive
models for prognosis and optimisation of subsequent maintenance actions.

In terms of methods, the PsM landscape is dominated by supervised ML models
(Table 3), such as Random Forest (RF), Support Vector Machines (SVMs), and Artificial
Neural Networks (ANNs) [62–64]. RF is especially prevalent due to its high classification
accuracy and ability to perform feature importance, making it well-suited for root cause
analysis and anomaly detection. The models are typically trained on historical failure data
or sensor data, which is commonly required to forecast remaining useful life (RUL) or
classify failure types.
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Table 3. Supervised and unsupervised machine learning algorithms used in PsM applications.

Study SVM ANN RF DT kNN NB AdaB kM XGB PCA

[65] ✓ ✓ ✓ ✓ ✓
[66] ✓ ✓
[67] ✓
[68] ✓ ✓
[69] ✓
[70] ✓
[71] ✓
[72] ✓ ✓
[62] ✓ ✓ ✓ ✓ ✓
[73] ✓ ✓ ✓ ✓
[74] ✓
[63] ✓ ✓ ✓ ✓ ✓
[54] ✓
[75] ✓ ✓ ✓
[76] ✓ ✓ ✓ ✓
[77] ✓
[64] ✓ ✓ ✓
[78] ✓ ✓
[79] ✓ ✓
[80] ✓
[61] ✓ ✓ ✓ ✓ ✓
[81] ✓ ✓ ✓ ✓ ✓

SVM (Support Vector Machine); ANN (Artificial Neural Network); RF (Random Forest); DT (Decision Tree); kNN
(k-Nearest Neighbour); NB (Naïve Bayes); AdaB (AdaBoost); kM (k-Means); XGB (eXtreme Gradient Boosting);
PCA (Principal Component Analysis).

Complementing ML, the DL models (Table 4) have significantly expanded the scope
of prescription for PsM. Namely, based on reviewed studies, key DL architectures—LSTM,
CNN, GAN, ESN, and Reinforcement Learning (RL) variants—have been deployed to meet
operational targets in PsM frameworks: (i) temporal dependencies and prognosis (LSTM,
RNN, ESN) for practical RUL estimation and the ability to model long-term dependencies
in time-series data. Dual-LSTM architectures demonstrate high accuracy and real-time
feasibility in complex machinery, such as turbofan engines and batteries [72,75]. In contrast,
ESNs are suitable for adaptive modelling in environments with noise and constraints of
real-time systems [62]. (ii) Spatial–Temporal Feature Extraction (CNN, DNN) is used in
extracting spatial features from vibration and thermal data processing for early detection
and RUL prediction [64,78]. (iii) Causality and Reasoning (MLP-ANN, ML causal learning)
are gaining significant prominence. Causal ML, addressed by Vanderschueren et al. [55],
leveraged MLPs in combination with causal inference to predict individualised effects and
optimise maintenance schedules, thus handling heterogeneity across datasets. (iv) Genera-
tive Learning and Anomaly Detection (e.g., GAN) in the PsM domain are usually employed
to simulate rare failure events and generate synthetic training data for imbalanced datasets.
GAN is beneficial in classification problems, particularly in cases where failure samples
are rare or costly to collect [55,81]. (v) Action-oriented Optimisation (Deep RL)—Deep RL
and Transformer networks are becoming an integral part of PsM applications, specifically
decision-making layers, by recommending optimal maintenance actions by balancing cost,
settings, and operational constraints [9,82–85]. Although commonly used for making cost-
effective decisions, Sun et al. [64] demonstrate the applicability of adopting sustainability
in PsM decision-making.
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Table 4. Deep learning algorithms used in PsM applications.

Study MLP-ANN LSTM DNN CNN VAE TRN RNN GAN ESN

[81] ✓
[78] ✓ ✓ ✓ ✓
[55] ✓
[64] ✓ ✓ ✓
[86] ✓
[75] ✓
[87] ✓ ✓ ✓ ✓
[63] ✓ ✓
[83] ✓
[62] ✓ ✓
[72] ✓ ✓
[65] ✓

NOTE: MLP-ANN (MultiLayer Perceptron ANN); LSTM (Long Short-Term Memory); DNN (Deep Neural Net-
work); CNN (Convolutional Neural Network); VAEs (Variational AutoEncoders); TRNs (Transformer Networks);
GAN (Generative Adversarial Network); ESN (Echo State Network).

Although Deep RL has been established as a core component in PsM, the interpretabil-
ity of models, particularly in safety-critical and industrial applications, becomes a signifi-
cant challenge. Only a few studies address the challenge by introducing XAI for effective
human–machine collaboration. Eider et al. [72] proposed a context-aware recommendation
system for battery management that integrates XAI principles through natural language.
Prescriptive actions, like advising a lower charging rate, are paired with contextual cause
(e.g., high state of charge) and human-readable rationale, enhancing user compliance and
understanding. Similarly, Petroutsatou et al. [88] emphasise integration of XAI to ensure
technical validation and inform replacement versus repair decisions under economic and
environmental constraints. Gordon [73] highlights that interpretable ML methods help
operators understand when and why specific maintenance actions are recommended,
reinforcing decision accuracy.

A significant body of PsM relies on correlation-based ML models for the prediction.
These models are often used to answer business-relevant questions, such as “If we perform a
certain maintenance action, how will it affect our operational goals?”, to inform subsequent
decisions. However, the approach has a fundamental challenge, and that is, most of the AI
(and ML) approaches in PsM used for classification and regression are purely associative;
they can recognise patterns and associate them with a particular label but are unable to
distinguish cause from effect. This limitation is critical because the goal of PsM is inherently
causal—it attempts to intervene in a system to achieve a desired outcome. To put it in
perspective, in a technical value chain, a process fault can originate long before it is detected.
The ML algorithm that only detects a fault after it has occurred is far less valuable than one
that predicts it from the earliest process step. Hence, this limits the true detection period
and delays preventive actions. The need for a dual-layer architecture, i.e., “Predict-and-
Prescribe,” combined with causally grounded explainability, positions PsM as a pillar for a
sustainable, safe, and cost-effective asset management strategy. Although this depicts the
future of PsM, given that it converges neural–symbolic learning, causal inference, and a
human-in-the-loop approach to ensure technically robust and socially acceptable solutions,
the work is still theoretical.

4.2. Prescriptive Maintenance Actions

The prescriptive dimension of PsM is characterised by the ability to convert predictive
insights (e.g., failure diagnosis, RUL) into actionable recommendations. These recommen-
dations outline what activities should be taken, when, by whom, and under what constraints.
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In contrast to traditional maintenance strategies, PsM extends this pipeline by embedding
decision-making logic into the maintenance execution process. This marks a decisive shift
from mere prognostics to prescriptive intelligence. To capture this dimension, we show
how PsM is operationalised in practice (Table 5).

Table 5. Characterisation and exemplification of PsM activities.

PsM Activity Characterisation Example I4.0 Tools References

Component-level
Repair vs. Replace.

Deciding whether to replace or
repair a specific part based on

degradation and resource
constraints.

The compressor blade of a
turbofan engine is evaluated
using RUL; if degradation is
within tolerance, the part is
repaired instead of replaced.

AI/ML. [62,71,73,82,
86,87,89]

Spare Parts and
Workforce Planning.

Spare parts pre-ordering,
resource allocation, technician

dispatching, and alarm
adjustment.

Automate work orders and
spare part requests based on

sensor anomalies, and dispatch
a technician based on their

skill and profile.

AI/ML. IoT. Big
Data.

[39,54,62–
64,75,78,90–

93]

Prioritisation and
Planning.

Workforce optimisation and
intelligent scheduling to

maximise OEE.

Maintenance tasks are
reprioritised dynamically due

to unexpected failures.

AI/ML. H&VI.
Cloud. [66,68]

Decision Support for
Strategic Management.

Selection of alternative
strategies (e.g., preventive vs.

corrective, outsourcing vs.
in-house, scheduled vs.

condition-based).

Recommends outsourcing the
turbine overhaul based on risk

thresholds, technician
shortages, or a cost–benefit

analysis of the repair.

AI/ML. H&VI. DT. [60,78]

Maintenance-
Production

co-optimisation.

Synchronising operation and
maintenance schedules (e.g.,

control sequencing, load
balancing).

Aligning maintenance with
production changeover to

minimise disruptions;
optimising load to reduce

failures.

AI/ML. Edge.
H&VI. IoT. Big

Data.
[62,66,78]

Automated Execution
and Self-Regulation.

Self-regulating workflows,
feedback loops, and minimal

human intervention to prevent
stoppages.

The battery management
system automatically reduces

the charging rate when
thermal thresholds are reached,

eliminating the need for
operator input.

AI/ML. H&VI. Big
Data. IoT. Edge.

[62,64,75,78,
92]

Fleet- and
Mission-Level
Prescriptions.

Mission planning for fleets,
coordinated scheduling, and

downtime optimisation.

Scheduling maintenance for an
aircraft fleet considering

mission, availability windows,
and component fatigue.

AI/ML. Cloud.
H&VI. Big Data.

IoT.

[66,68,81,83,
91,92,94]

Note: AI/ML = Artificial Intelligence/Machine Learning; IoT = Internet of Things; H&VI = Horizontal and
Vertical Integration; Edge = Edge Computing; Cloud = Cloud Computing and Connectivity; Big Data = Big Data
and Analytics.

The spectrum of PsM activities spans from localised decisions—component repair
versus replacement—to systemic interventions including fleet-level scheduling and co-
optimisation. This is supplemented by prioritising and planning necessary tools and
resources to resolve specific failures using optimal strategies (e.g., corrective vs. preven-
tive). Consequently, the prescriptive part aims to execute actions that will be self-regulated
with minimal human interventions. These can be within the operational segment (e.g.,
adjusting machine settings, reducing speed, or load) [9,95,96], input segment (e.g., re-
source allocation, spare parts supply, workforce prioritisation) [65,66,68,97], environmental
segment (e.g., adjusting env. temperature) [72], and output segment (e.g., modifying pro-
duction targets or quality criteria) [3]. In contrast to traditional maintenance practices that
focus solely on machine-level availability, PsM considers other elements of overall equip-
ment effectiveness, enabled by I4.0 technologies such as AI, ML, and H&VI (Horizontal
and Vertical Integration), which are crucial for automating PsM actions. Thus, switching
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from system-oriented to process-oriented reasoning replaces discrete (static) decisions with
continuous (dynamic) prescriptive response actions.

Moreover, the activities are highly dependent on the industrial domain. For instance, in
manufacturing (Figure 7), actions are oriented to preventing disruptions in production flows
by minimising downtime and aligning maintenance with operational schedules [22,60,98].
Consequently, many have begun integrating maintenance with planning systems that
support decisions such as workforce assignment, spare parts forecasting, and production
(re)configuration. Implicitly, using H&VI seems crucial for determining the quality of
products (or services).

Figure 7. Characterisation of prescriptive maintenance activities within four dominant industrial
sectors. Industry 4.0 technologies are added based on their presence in the industrial sector.

Unlike manufacturing, the use of PsM in the energy sector exhibits a higher level of
autonomy and intelligence, where self-optimising systems rely on real-time data inputs and
ML algorithms that trigger early warnings for adapting operations. Prescriptive actions
here are sensor-driven and embedded within broader strategic management goals, such as
grid stability, load balancing and/or emission reduction. Therefore, sequencing mainte-
nance and operation activities is critical for preventing disruptions. Here, PsM facilitates
intelligent and real-time interventions to maintain safety, reliability, and sustainability in
volatile operational environments.

In aerospace, PsM actions are driven by mission-critical priorities with a focus on field
service engineers [99], flight delay minimisation [100,101], and safety-aware recommenda-
tions [91,102]. Prescriptive activities include integrating data from onboard diagnostics,
flight history, and sensor logs to offer real-time, adaptive decisions for field repair. This
usually considers proactive decisions that align operational goals with maintenance needs
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to ensure continuity and regulatory compliance. The aerospace domain highlights the
importance of synchronising operation and maintenance planning, considering that the
cost of failure is exceptionally high [99].

The railway sector shows that PsM activities prioritise user experience, infrastructure
safety, and service reliability. Prescriptions are primarily determined by the prioritisation
of critical assets and the spatial targeting of high-risk or high-use infrastructure segments.
These actions often align with real-time data usage, enabling strategic asset management
and user-centric improvement. As with the aerospace domain, PsM activities in railways
shift from simple performance metrics (e.g., reliability, availability) to aligning with service
quality and safety.

4.3. Research Clusters

Exploring latent thematic structures leveraging MCA-HCPC (Figure 6), we identified
three distinguishable clusters. Each cluster encapsulates a coherent line of research focus
and mainly reflects varying levels of technical maturity, organisational engagement, and
systematic integration. The characterisation of each cluster and references are provided in
Table 6. Technical integration and real-time diagnostics primarily characterise Cluster 1
and focus mainly on machine- and (multi)component-level analysis. The studies in this
cluster primarily focus on the manufacturing and energy sectors, and the prescriptive part
of PsM mainly relies on reinforcement learning models and IoT deployments. Applications
typically demonstrate the use of AI’s potential in operational settings for identifying and
preventing failures, ultimately avoiding unnecessary downtime. Another characteristic is
that PsM applications, such as frameworks and decision-support systems, thrive in sensor-
rich operational settings. However, the enterprise-scale integration and generalisability
remain limited, which is where H&VI I4.0 technology plays a crucial role in enabling a
Cyber Physical Production System (CPPS).

Cluster 2 mainly focuses on tactical and strategic decision-making. This includes
enterprise-level decision-support systems, primarily relying on probabilistic modelling,
fuzzy logic, Monte Carlo simulations, and optimisation frameworks. Unlike Cluster 1, the
scope is dedicated to fleets and process-wide systems. This considers incorporating not
only technical and organisational but also human factors. Here, studies extend beyond
operational efficiency to address decision-making at the higher levels and planning under
uncertainty, which usually builds upon prognosis models. This cluster fills the gap between
operational-level and enterprise-wide decision frameworks by considering the complex-
ities and uncertainty of operational settings. Typical examples are PriMa (Prescriptive
Maintenance Model) models [2,103], which comprise multiple functional dimensions and
encompass multiple hierarchical decision-making levels.

Cluster 3 primarily describes studies that focus on conceptual frameworks, organi-
sational enablers, and strategic transformation for adopting PsM practices. The methods
typically include conceptual models, case-based reasoning, and survey analysis. Primarily,
the work here describes socio-technical endeavours and lifecycle thinking. Theoretically,
the work discusses the role of human factors, such as workforce dynamics, upskilling, and
knowledge management, on organisational and PsM performance. While technically less
engaged studies, the studies here mainly focus on broader industrial transformation and
analysing the readiness of PsM.
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Table 6. Cluster characterisation.

Cluster Cluster Characterisation References

Cluster 1

Component-level prescriptive decision-making. Use of Deep
Reinforcement Learning. Real-time (partially) edge/IoT

integration. Multicomponent systems modelling. Hybrid
physical-data modelling. Partial consideration of

sustainability objectives.

[55,64,73,78,79,84,104,105]

Cluster 2

Focus on prescriptive decision-making at tactical and strategic
levels. Incorporates human and organisational factors.

Decision-making is considered under uncertainty using
data-driven and probabilistic modelling. Strong emphasis on

economic (cost) optimisation. Introduction of reference
models and maturity frameworks (e.g., PriMa). Scalability

through simulation and optimisation for real industrial
applications under resource constraints.

[3,7,9,23,49,54,59–63,65–
69,71,72,74,75,80–83,85–

87,89,91–95,99–101,103,106–
112]

Cluster 3

Prescriptive maintenance is considered a strategic enabler,
focusing on ecosystem and organisational readiness. It

integrates with design (e.g., Design for Maintenance) and
planning (e.g., Production Planning and Control). The

importance of human and workforce dynamics is emphasised.
Stresses PsM as a strategic business enabler.

[22,39,76,88,90,96,97,113,114]

In summary, the clustering analysis reveals distinctive properties. Firstly, the
cluster-based differentiation reveals a pathway from operational PsM (Cluster 1) towards
enterprise-level integration (Cluster 2) and ecosystem-level consideration (Cluster 3). It is
essential to note that clusters are not hierarchical but complementary. Advanced analyt-
ics, as observed in Cluster 1, are ecosystem-level and necessary but insufficient without
organisational alignment (Cluster 2) and social–technical support structures (Cluster 3). Ad-
ditionally, the integration of PsM models across verticals (from shop floor to management)
and horizontals (across departments and ecosystems) highly depends on I4.0 horizon-
tal and vertical integration technologies. Rhetorically, for an industrial organisation to
manage these I4.0 technological solutions, achieving such a high level of success depends
heavily on its organisational digital capacities. It has been reported that the adaptation
of metrics outside of the purely technical sphere, like availability (e.g., Maintenance Sus-
tainable Responsibility metric), highly depends on the digital capabilities of maintenance
personnel [115].

Still, it remains limited in the literature, which was evident in the PC3 of MCA analysis
(Figure 6E), which connects operational insights with strategic decision-making. Lastly,
there is a need for causal and prescriptive validation. While prediction is a standard,
rigorous, and practical approach, prescriptive validation is underrepresented. This also
holds for sustainable and human-centric prescriptions, where contemporary PsM literature
considers environmental and social factors (e.g., safety, upskilling) in addition to economic
criteria. As a response, we provide a Description Matrix (Table 7) for understanding
characteristics and features of each research cluster.

4.4. Current Challenges and Research Agenda

Several challenges affect the full-scale adoption of PsM. Although economic con-
siderations dominate optimisation efforts, a notable issue is the underrepresentation of
sustainability aspects, namely, environmental and social dimensions. Many studies focus
on specific machines or processes without addressing broader organisational or cross-
industry applications. Another critical challenge is the low maturity of PsM applications,
particularly in manufacturing, where exploratory research and propositional frameworks
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predominate. Enhancing the human–AI interface through trust-building mechanisms and
workforce training will facilitate the adoption of PsM. To bridge the gap between theo-
retical models and industrial deployment, we translate challenges into targeted research
opportunities by offering practical scenarios and solutions.

Table 7. Description Matrix of clusters.

Feature Cluster 1 Cluster 2 Cluster 3

Focus Deep learning for real-time
actions and risk optimisation.

Maturity models. Prescriptive
decision-making rules.

Ecosystem analysis for
adoption of PsM. Surveys

and interviews.

Methods Deep RL. Neural networks. Deep RL. Fuzzy logic. Monte
Carlo simulation.

Reference modelling.
Multicriteria analysis.

Granularity
Component and

machine-level operational
settings.

System/process-level under
uncertainty. Integration with

production planning and
control.

Enterprise-level planning,
control, and design

integration.

PsM Contribution Prescribes technical actions to
prevent degradation.

Prescribes actions based on
imperfect/limited

observations.

Aligns prescriptions with
people, processes, and assets.

Data Operational data.
Maintenance logs. Sensors.

Operational data. Failure data.
Maintenance logs. Sensors.

Synthetic datasets.

Questionnaires and surveys.
Qualitative data.

Human Factors
Minimal to moderate.

Neglect of knowledge in the
analysis.

High (technical variability,
inspection quality).
Knowledge-based

maintenance.

Considering (e.g., workforce
skill gap, learning, task

allocation).

Strategic
Perspective

Operational efficiency and
automation.

Maintenance maturity.
Risk–cost trade-off.

Strategic transformation.
PsM’s role in advancing

operational effectiveness.

Key Challenges Data scarcity, generalisation,
and explainability.

Partial observations, both
simulations and limited case

studies. Imperfection.

Knowledge feedback.
Workforce scaling.

Organisational aspects.

Industrial Validation: Many studies suffer from limited real-world deployment,
heavily relying on synthetic datasets and parameters (e.g., HackTheMachine [68], LMS
Amesim [54]). Thus, existing work suggests that frameworks remain conceptual and the-
oretical. As a response, a solution space can be a practical deployment and validation of
the PsM model, for instance, on a simple CNC machine, given that it is one of the most
utilised industrial assets [116]. Validation setup could include remote sensor condition
monitoring (e.g., vibration, current), which is input into the prediction layer (PdM). This
model forecasts RUL of the cutting tool using time-series ML (e.g., LSTM). The prescription
layer (PsM), relying on DRL, recommends when to change the tool, how to adjust cutting
parameters (e.g., speed), and whether to continue to operate or interrupt the batch based
on tool performance. Validation would include comparison of two scenarios: (a) with pro-
posed PsM (model) actions and (b) without PsM (e.g., standard preventive maintenance).
Relying on tool life extension (%), number of unplanned stoppages, production throughput,
and maintenance cost savings as key performance metrics, the proposed PsM model or
framework is quantitatively established as valid. As a final step, the outcome can be deter-
mined by measurable improvements and by operators’ feedback on the interpretability and
trust in prescriptions, which can serve as an optional XAI layer. Rhetorically, by combining
predictive and prescriptive logic, this approach will demonstrate decision quality, provide
quantitative metrics for comparison, and support human-in-the-loop feedback.
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Scalability and Complexity: Scalability issues persist when transferring frameworks
from experimental to complex systems with many components and dynamic constraints.
This is often observed in applications where studies demonstrate the PsM application on
a single-unit system, which limits the scalability of the PsM model to multi-unit, interde-
pendent systems, using a modular and interoperable design. To demonstrate a potential
solution, we exemplify a scenario of a food manufacturing facility that operates a fully au-
tomated packaging line comprising interconnected subsystems (bottle filling station → cap
screwing unit → label applicator → quality inspection → palletizer). Each subsystem has
unique failure modes but is interdependent—a failure in one affects the following. Consider
the proposed architecture of a packaging line that is modelled using a microservices-based
PsM framework, such as those proposed in [2,103]. However, unlike previous models,
here each subsystem has its own containerised PsM module, such as Dockerised service
(see [117,118]), handling health monitoring (e.g., vibration, temperature), local fault pre-
diction (e.g., ML trained per subsystem), and local prescriptive action (e.g., adjusting
speed, triggering technician alert). A central orchestration layer (e.g., Kubernets) with
machine-to-machine support (e.g., MQTT broker—Message Queue Telemetry Transport)
coordinates cross-system dependencies, such that it synchronises downtime and reallocates
line capacity. Exchanging data using ontology-based semantic models, such as OPC UA
(Open Platform Communications Unified Architecture), facilitates interoperability, along-
side standardised messaging protocols that ensure communication between subsystems
and MES (Manufacturing Execution System). Here, the causal inference layer could identify
how failure in one subsystem affects downstream performance (e.g., the capping unit has
torque drift). In practical scenarios, this would allow PsM frameworks to be deployed
and compared similarly to previous propositions by inspecting states with no PsM (base-
line), isolated PsM (per machine), and integrated PsM (full orchestration). This would
demonstrate scalability across subsystems, show that causal and semantic integration pre-
vents local optima, which is often observed in isolated PsM models, and would ultimately
validate how distributed PsM logic can adapt to system-wide scenarios.

Prediction-Optimisation Integration: A critical barrier is the seamless integration of
the fault prediction (PdM) and decision-support (PsM) modules, which often encompasses
the PsM practice. Nevertheless, the existing body of work usually addresses fault prediction
(e.g., RUL estimation) or optimisation separately. To put it in context, we exemplify the
case of an end-to-end PsM framework, similar to one proposed by [68], but for the HVAC
(Heating, Ventilation, and Air Conditioning) system in a pharmaceutical cleanroom. A
central HVAC system, in this case, ensures compliance with air purity, humidity, and
temperature. Failures in such environments could potentially lead to production stoppages,
batch rejections, regulatory non-compliance, and other issues. A challenging situation arises
when standard HVAC systems operate as separate models. One model predicts RUL (PdM
model) for estimating the lifespan of HVAC filters and fans. At the same time, another is a
static rule-based system for scheduling preventive replacements every t hours of operation
(PsM model). The models operating in isolation would lead to suboptimal outcomes
(e.g., premature filter replacements, unexpected breakdowns during production peaks).
A potential solution space would include an infrastructure of sensors (e.g., monitoring
air pressure differentials and airflow velocity), historical data logs (e.g., fault logs), and
an operational knowledge base (e.g., technician availability). Integrated architecture in
this case would comprise a predictive module, such as an LSTM, for RUL estimation
and uncertainty bounds to inform risk-aware decisions. The prescriptive optimisation
module could consider MILP (Mixed-Integer Linear Programming) that co-optimises filter
replacement schedules, technician availability, and other factors, with various constraints
(e.g., regulatory limits, cost of downtime). The last layer, the coordination layer, connects



Appl. Sci. 2025, 15, 8507 24 of 36

the management system (e.g., MES, CMMS) to ensure the real-time synchronisation of
prescriptions with operational constraints, allowing decisions to be made on whether to
delay or expedite filter replacement, switch to a backup fan, or resequence batch production.
Ultimately, linking asset health with production and maintenance scheduling offers direct
feedback to planners/operators with explainable recommendations.

Data Quality and Infrastructure Readiness: As often encountered in transitioning
from conventional to advanced I4.0 technologies, data-related barriers frequently inhibit
PsM implementation. This suggests that sensors generate incomplete, noisy, or unlabelled
data; incompatibility exists between legacy systems and outdated infrastructure; and, most
notably, the need for edge processing and robust data fusion across maintenance, logistics,
and operations. One possible research direction for addressing these issues is the recent
development of plug-and-play IoT (see [119]), edge AI tools, and data standardisation
protocols across value chains, eliminating the need for manual configurations. Leverag-
ing edge-enabled anomaly detection and semantic interoperability frameworks offers a
pathway to PsM adoption, particularly in smaller manufacturing enterprises with limited
digital infrastructure.

Human-Centric and Sociotechnical Issues: Human expertise and sociotechnical fac-
tors remain under-addressed in the literature. Specifically, the lack of operator trust and
the skills required for the successful adoption of PsM are the reasons why many have
initiated discussions on XAI and bypassing the need for human–machine understanding,
thereby potentially circumventing the need for upskilling by relying on DRL algorithms.
Additionally, the existing body of work overlooks human-in-the-loop feedback and domain
knowledge within the Prescriptive Maintenance domain. Consequently, human–machine
co-decision environments, training simulators, and XAI-PsM could bridge digital and
human reasoning. Validating PsM models in operator-in-the-loop settings, such that rec-
ommendations are accompanied by human-readable information, will enable progressive
workforce integration without compromising system autonomy.

Causal Prescriptive Maintenance: The existing PsM research primarily focuses on
correlation-based ML modelling. The work must move beyond associative ML models,
which often contain spurious correlations, towards integrating domain knowledge, often
in the form of a causal graph. This way, building a PsM system that is more capable of
robust interventions and counterfactual reasoning will add more value to the production
chain in terms of precision and resource efficiency. Moving from simple predictions to
causally optimised decisions, overcoming the limitations of associative models paired with
post hoc explanations, will certainly bridge this gap. Validating causal models through
real-world scenarios where maintenance actions are triggered by identified root causes,
rather than correlation-based symptoms, would certainly demonstrate superior decision
reliability. This has been recently shown by [56], where predicting root cause analysis using
knowledge graphs offered a more nuanced understanding of failures, rather than simply
relying on the data visualisation outcomes of machine learning models.

Sustainable- and Energy-Based Prescriptive Maintenance: Although numerous
studies outside the PsM domain address the sustainable aspect of industrial maintenance,
most PsM models focus solely on cost optimisation or uptime. The existing work in PsM
pays little attention to sustainability metrics, energy usage, and lifecycle costs, as evidenced
by the absence of green and circular economy objectives. Some of the possible solutions
could include assessing the sustainability aspect, including both environmental–sustainable
and social aspects that constitute the I5.0 pillars [56,64,120,121]. Validating psM models
using sustainability-aware KPIs, such as CO2 emissions, energy consumption, and material
waste, will provide tangible evidence that supports arguments about their contribution
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beyond operational efficiency, aligning prescriptive actions with broader environmental
and social goals.

5. Conclusions
5.1. Concluding Remarks

The study performs a Systematic Literature Review with a meta-synthesis of prescrip-
tive maintenance research. Here, we have extracted relevant metadata and qualitative
evidence comprising applications, methods, tools, and prescriptive actions to describe
the existing work of prescriptive maintenance. In addition, meta-synthesis is performed
using content-based data, leveraging multiple correspondence analyses with hierarchical
clustering. The results identified three major research clusters that characterise the role
of PsM in operational (Cluster 1), enterprise-level (Cluster 2), and ecosystem (Cluster
3) contextual settings. The review shows that while data-driven predictive techniques
are well-established, the prescriptive layer—aimed at transforming predictive insights
to actionable intelligence—lacks empirical validation. In particular, the scalability and
generalizability of theoretical models suffer from a lack of practical demonstrations and
applicability. Although not to a full extent, we infer that the lack of end-to-end holistic
frameworks requires dedicated work on horizontal (across functional areas) and vertical
(across decision-making levels) integration. Furthermore, PsM efforts are increasingly
aligned with product/service quality and lifecycle performance, rather than traditional
maintenance metrics (e.g., availability or downtime alone).

5.2. Implications and Limitations

This study’s findings offer valuable implications for both researchers and practitioners.
The identified gaps underscore the need for interdisciplinary approaches that integrate
technical, organisational, and sustainability-focused perspectives for researchers. Devel-
oping unified conceptual frameworks and hybrid models can enhance the theoretical and
practical relevance of PsM. For practitioners, adopting PsM frameworks presents opportu-
nities for significant cost savings, improved operational efficiency, and enhanced resilience.
Addressing the identified challenges, such as limited environmental considerations and
low maturity levels, will be critical to realising the full potential of PsM in industrial appli-
cations. Contemporary PsM research requires adaptive architectures, causal learning, and
semantic interoperability to facilitate context-sensitive decision-making.

Regarding the limitations, data heterogeneity, i.e., low inertia (35%) in MCA analysis,
suggests high variability, implying that higher-dimensional patterns exist, which is exacerbated
by the reliance on simulations and synthetic datasets. However, this certainly does not downplay
our findings, given that the clustering inertia of 70% did not add additional insights in describing
existing clusters. The study’s exclusion of facility maintenance may limit generalisability to
the overall application of PsM. Manual screening of SCOPUS and Web of Science records may
introduce selection bias, despite rigorous adherence to the PRISMA guidelines. Lastly, given the
exponential number of PsM studies that emerged during the writing process, we limited the
studies to those published up to January 2025 to ensure completeness. However, incorporating
recent publications, we plan to perform a living systematic review.

5.3. Future Research

Considering the rise of PsM research, we aim to expand the clusters with contemporary
evidence. Hence, future publications will build upon recent work published, given that
many studies have emerged (as monitored by RSS feeds from Google Scholar and SCOPUS).
Additionally, our future research will focus on primary studies, particularly on post-
prognostic (prescriptive) models that consider social and environmental aspects, leveraging
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probabilistic and deep reinforcement learning algorithms for autonomous decision-making.
Lastly, the analysis will be performed from an Industry 5.0 perspective, considering resilient,
human-centric, and sustainability pillars.
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Appendix A. Description of PCs in MCA by R2

Table A1. Description of class categories for PC1.

Categorical Class-Variables R2 p Value

Hierarchical_Operational 0.60 <0.01
Study_Focus_Optimization 0.58 <0.01

SSA_Economic 0.54 <0.01
Hierarchical_Tactical 0.39 <0.01

App_Scope_Component 0.35 <0.01
SSA_Technical 0.35 <0.01

Study_Focus_Prognosis 0.21 <0.01
Study_Focus_Risk_Assessment 0.20 <0.01

Hierarchical_Material 0.20 <0.01
App_Scope_Machine 0.16 <0.01
SSA_Organizational 0.10 0.01

Study_Focus_Diagnosis 0.07 0.04

Table A2. Description of category estimation for PC1.

Categories Estimate p Value

Hierarchical_Operational = No_Operational_Level 0.39 <0.01
Study_Focus_Optimization = No_Optimization 0.38 <0.01

SSA_Economic = No_Economic_Aspect 0.39 <0.01
Hierarchical_Tactical = No_Tactical_Level 0.28 <0.01

App_Scope_Component = No_Component 0.27 <0.01
SSA_Technical = No_Technical_Aspect 0.30 <0.01

Study_Focus_Prognosis = No_Prognosis 0.22 <0.01
Study_Focus_Risk_Assessment = No_Risk_Assessment 0.23 <0.01

Hierarchical_Material = No_Material_Level 0.24 <0.01
App_Scope_Machine = No_Machine 0.19 <0.01

SSA_Organizational = No_Organizational_Aspect 0.14 0.01
Study_Focus_Diagnosis = No_Diagnosis 0.12 0.04

Study_Focus_Diagnosis = Diagnosis −0.12 0.04
SSA_Organizational = Organizational_Aspect −0.14 0.01

App_Scope_Machine = Machine −0.19 <0.01
Hierarchical_Material = Material_Level −0.24 <0.01

Study_Focus_Risk_Assessment = Risk_Assessment −0.23 <0.01
Study_Focus_Prognosis = Prognosis −0.22 <0.01
SSA_Technical = Technical_Aspect −0.30 <0.01

App_Scope_Component = Component −0.27 <0.01
Hierarchical_Tactical = Tactical_Level −0.28 <0.01
SSA_Economic = Economic_Aspect −0.39 <0.01

Study_Focus_Optimization = Optimization −0.38 <0.01
Hierarchical_Operational = Operational_Level −0.39 <0.01
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Table A3. Description of class categories for PC2.

Categorical Class Variables R2 p Value

App_Scope_Organization 0.39 <0.01
Hierarchical_Strategy 0.38 <0.01

Study_Focus_Prognosis 0.32 <0.01
Study_Focus_Risk_Assessment 0.13 <0.01

SSA_Organizational 0.13 <0.01
SSA_Social 0.12 0.01

SSA_Environmental 0.12 0.01
App_Scope_Fleet 0.11 0.01

Study_Focus_Diagnosis 0.10 0.01
Study_Focus_MDM 0.10 0.01
Study_Focus_MSS 0.09 0.02

Table A4. Description of category estimation for PC2.

Categories Estimate p Value

App_Scope_Organization = Organization 0.21 <0.01
Hierarchical_Strategy = Strategic_Level 0.20 <0.01
Study_Focus_Prognosis = No_Prognosis 0.19 <0.01

Study_Focus_Risk_Assessment =
Risk_Assessment 0.13 <0.01

SSA_Organizational =
Organizational_Aspect 0.11 <0.01

SSA_Social = Social_Aspect 0.15 0.01
SSA_Environmental =
Environmental_Aspect 0.15 0.01

App_Scope_Fleet = No_Fleet 0.14 0.01
Study_Focus_Diagnosis = No_Diagnosis 0.10 0.01

Study_Focus_MDM = No_MDM 0.10 0.01
Study_Focus_MSS = MSS 0.10 0.02

Study_Focus_MDM = MDM −0.10 0.01
Study_Focus_Diagnosis = Diagnosis −0.10 0.01

App_Scope_Fleet = Fleet −0.14 0.01
SSA_Environmental = No_Environmental −0.15 0.01

SSA_Social = No_Social −0.15 0.01
SSA_Organizational =

No_Organizational_Aspect −0.11 <0.01

Study_Focus_Risk_Assessment =
No_Risk_Assessment −0.13 <0.01

Study_Focus_Prognosis = Prognosis −0.19 <0.01
Hierarchical_Strategy = No_Strategic_Level −0.20 <0.01

App_Scope_Organization =
No_Organization −0.21 <0.01
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Table A5. Description of class categories for PC3.

Categorical Class Variables R2 p Value

App_Scope_Process 0.45 <0.01
SSA_Social 0.24 <0.01

Study_Focus_MSS 0.21 <0.01
Study_Focus_Risk_Assessment 0.17 <0.01

Hierarchical_Strategy 0.13 0.01
Study_Focus_MDM 0.12 0.01

App_Scope_Component 0.12 0.01
SSA_Environmental 0.08 0.03

Hierarchical_Material 0.07 0.03
App_Scope_Fleet 0.07 0.04

Study_Focus_Diagnosis 0.07 0.05

Table A6. Description of category estimation for PC3.

Categories Estimate p Value

App_Scope_Process = Process 0.24 <0.01
SSA_Social = Social_Aspect 0.20 <0.01

Study_Focus_MSS = No_MSS 0.15 <0.01
Study_Focus_Risk_Assessment =

Risk_Assessment 0.15 <0.01

Hierarchical_Strategy = No_Strategic_Level 0.11 0.01
Study_Focus_MDM = MDM 0.11 0.01

App_Scope_Component = No_Component 0.11 0.01
SSA_Environmental =
Environmental_Aspect 0.12 0.03

Hierarchical_Material = No_Material_Level 0.10 0.03
App_Scope_Fleet = No_Fleet 0.11 0.04

Study_Focus_Diagnosis = Diagnosis 0.08 0.05
Study_Focus_Diagnosis = No_Diagnosis −0.08 0.05

App_Scope_Fleet = Fleet −0.11 0.04
Hierarchical_Material = Material_Level −0.10 0.03

SSA_Environmental = No_Environmental −0.12 0.03
App_Scope_Component = Component −0.11 0.01

Study_Focus_MDM = No_MDM −0.11 0.01
Hierarchical_Strategy = Strategic_Level −0.11 0.01

Study_Focus_Risk_Assessment =
No_Risk_Assessment −0.15 <0.01

Study_Focus_MSS = MSS −0.15 <0.01
SSA_Social = No_Social −0.20 <0.01

App_Scope_Process = No_Process −0.24 <0.01
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Appendix B

Figure A1. Frequency of class categories in research clusters. (Note: AS = Application Scope;
CMP = Condition Monitoring Parameters; DS = Data Source; DV = Decision Variables; HA = Hier-
archical Aspect; I40 = Industry 4.0 technologies; IS = Industrial Sector; ODA = Optimisation Data
Analysis; PDA = Predictive Data Analysis; RD = Research Design; SF = Study Focus; SSA = Systemic
and Sustainable Aspects).
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