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A B S T R A C T

Deep neural networks are highly susceptible to adversarial perturbations: artificial noise that corrupts input
data in ways imperceptible to humans but causes incorrect predictions. Among the various defenses against
these attacks, adversarial training has emerged as the most effective. In this work, we aim to enhance
adversarial training to improve robustness against adversarial attacks. We begin by analyzing how adversarial
vulnerability evolves during training from an instance-wise perspective. This analysis reveals two previously
unrecognized phenomena: robust shortcut and disordered robustness. We then demonstrate that these phenomena
are related to robust overfitting, a well-known issue in adversarial training. Building on these insights, we
propose a novel adversarial training method: Instance-adaptive Smoothness Enhanced Adversarial Training
(ISEAT). This method jointly smooths the input and weight loss landscapes in an instance-adaptive manner,
preventing the exploitation of robust shortcut and thereby mitigating robust overfitting. Extensive experiments
demonstrate the efficacy of ISEAT and its superiority over existing adversarial training methods. Code is
available at https://github.com/TreeLLi/ISEAT.
1. Introduction

Deep neural networks (DNNs) are well known to be very vulnerable
to adversarial attacks [1]. Adversarial attacks modify (or ‘‘perturb’’)
natural images (clean examples) to craft adversarial examples in such
a way as to fool the target network to make predictions that are
dramatically different from those for the corresponding clean examples
even when the class of the perturbed input appears unchanged to a
human observer. This raises severe security concerns for DNNs, espe-
cially as more and more real-world applications are dependent upon
such models.

To date, adversarial training (AT) has been the most effective de-
fense against adversarial attacks [2]. It is typically formulated as a
min–max problem:

ar g min
𝜽

E[ar g max
𝜹

(𝒙 + 𝜹;𝜽)], (1)

where the inner maximization searches for the strongest adversarial
perturbation 𝜹 and the outer optimization searches for the model pa-
rameters 𝜽 to minimize the loss on the generated adversarial examples.

One particular limit of vanilla AT [3] is that all samples in the data
set are treated equally during training, neglecting individual differences
between samples. Several previous works have made improvements to
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AT by customizing regularization in an instance-adaptive way. Regu-
larization here can be implemented either by modifying the method
used to generate the training-time adversarial sample or by modifying
the strength of regularization applied to the loss function. Instance-
adaptive techniques often modify the strength of the attack used for
individual training samples by scaling the magnitude of the pertur-
bations found by the attack, or by changing the perturbation budget
used by the attack, or by changing the number of steps used by the
attack. For example, one popular strategy is to enhance the strength
of the training-time adversarial attack for hard-to-attack (adversarially
benign) samples and/or to diminish the strength of the attack at
those easy-to-attack samples [4–8]. Other strategies are discussed in
detail in Section 2. We extend this line of works to improve AT, but
propose a different strategy to distinguish instances (that particularly
contrasts with the aforementioned popular method), and propose a new
regularizer.

The proposed approach is motivated by our identification of two
novel issues in AT: robust shortcut and disordered robustness. We begin
by theoretically analyzing the existence of the robust shortcut, which
occurs when the reduction in overall adversarial loss during AT is
achieved by allowing some gradients to increase in order to decrease
others more significantly, leading to an uneven distribution of robust-
ness across the data. This issue is prevalent across various AT methods
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Pattern Recognition 163 (2025) 111474 
and is related to overfitting in AT [9]. Furthermore, a large proportion
f training samples with low vulnerability exhibit excessively large
argins (as defined in Eq. (6)) along the adversarial direction. For

instance, even when perturbed with a magnitude approximately 30
imes the perturbation budget, these samples can still be correctly
lassified. Such samples are described as having disordered robustness.
hese insights suggest that training data should be treated unequally.
pecifically, the vulnerable samples that are sacrificed should be reg-

ularized to prevent AT from exploiting the robust shortcut, thereby
mitigating robust overfitting.

To achieve this, we propose a new approach called
nstance-adaptive Smoothness Enhanced Adversarial Training (ISEAT).
his method jointly enhances both input and weight loss landscape
moothness in an instance-adaptive manner. In particular, it extends
anilla AT by enforcing logit stability against both adversarial input and
eight perturbations, with the strength of regularization for each in-

tance adapting to its adversarial vulnerability. Extensive experiments
ere conducted to evaluate the performance of the proposed method
cross various datasets and models. ISEAT significantly improves upon
he baseline AT method and outperforms previous related methods.
dditionally, a detailed ablation study was conducted to elucidate the
echanism behind the effectiveness of the proposed approach.

2. Related works

Adversarial training. AT is usually categorized as single-step and
multi-step AT according to the number of iterations used for crafting
training adversarial examples. The common single-step and multi-step
adversaries are Fast Gradient Sign Method (FGSM) [1] and Projected
Gradient Descent (PGD) [3]. FGSM uses the sign of the loss gradients

.r.t. the input as the adversarial direction. PGD can be considered as
n iterative version of FGSM where the perturbation is projected back
nto the 𝓁∞-norm 𝜖-ball at the end of each iteration. AT is prone to
verfitting, which is known as robust overfitting [9]. Specifically, test

adversarial robustness degenerates while training adversarial loss de-
clines during the later stage of training. Robust overfitting significantly
impairs the performance of AT.

Loss smoothing. It has been shown that adversarial robustness
s related to the smoothness of the model’s loss landscape w.r.t. the

input [10,11] and the model weights [12]. Therefore, we summarize
existing methods for adversarial robustness in two categories: input
oss smoothing and weight loss smoothing. For input loss smoothing,
ne approach is explicitly regularizing the logits [13] or the gradi-
nts [11] of each training sample to be the same as any of their

neighbor samples within a certain distance. Besides, AT can be con-
cerned as an implicit input loss smoothness regularizer and the strength
of regularization is controlled by the direction and the size of per-
turbation [13]. Regarding weight loss smoothing, Adversarial Weight
Perturbation (AWP) [12] injects adversarial perturbation into model
weights to implicitly smooth weight loss. RWP [14] found that applying
adversarial weight perturbation to only small-loss samples leads to
an improved robustness compared to AWP. Alternatively, Stochastic
Weight Averaging (SWA) [15] smooths weight by exponentially averag-
ng checkpoints along the training trajectory. Our regularizer combines
ogit regularization and AWP together to jointly smooth both input and
eight loss in a more effective way.
Instance-adaptive adversarial training. Many strategies have

been proposed to improve AT by regularizing instances unequally.
ne popular strategy is to adapt the size of the adversarial input
erturbation, and so the strength of regularization, to the difficulty
f crafting successful adversarial examples. Typically, large pertur-
ations are assigned to hard-to-attack samples in order to produce
uccessful adversarial examples for more effective AT. In tandem,

small perturbations are assigned to easy-to-attack samples in order to
alleviate over-regularization for a better trade-off between accuracy

and robustness. The size of perturbation can be controlled by the

2 
number of steps [6], the perturbation budget [4,7,8] or an extra scaling
factor [5]. Furthermore, this strategy has been also applied to weight
loss smoothing in RWP [14]. We argue that this strategy contradicts
our finding that hard-to-attack (low-vulnerability in our terms) samples
ave already been over-regularized so their regularization strength

should not be further enlarged.
The most similar methods to ours are MART [16] and GAIRAT [17].

MART regularizes KL-divergence between the logit of clean and corre-
sponding adversarial examples, weighted by one minus the prediction
confidence on clean examples. Hence, instances with lower clean pre-
diction confidence receive stronger regularization. GAIRAT directly
weights the adversarial loss of instances based on their geometric
distance to the decision bound, which is measured by the number
of iterations required for a successful attack. Instances closer to de-
cision bound (less iterations) are weighted more. Although there is a
connection among prediction confidence, geometric distance and ad-
versarial vulnerability (ours), they are essentially different metrics and
the weight schemes based on them thus perform differently. Regarding
GAIRAT, the computation of geometric distance deeply depends on the
training adversary, and hence, severely limits its application, e.g., it
cannot be applied to single-step AT without using an extra multi-step
adversary. Another similar work is InfoAT [18] which like the proposed
method uses logit stability regularization, but weights regularization
according to the mutual information of clean examples.

In contrast to the manually crafted strategies described above, LAS-
AT [19] customizes adversarial attack automatically for each instance
in a generative adversarial style. The parameters of the attacker, such
s the perturbation budget for each instance, are generated on-the-
ly by a separate strategy network, which is jointly trained alongside

the classification network to maximize adversarial loss, i.e., produce
stronger adversarial examples. This approach is more complicated than
the alternatives, including ours, and potentially suffers from similar
instability issues to GANs [20].

Data augmentation for adversarial training. AT can benefit from
sing more training data to enhance robust generalization. This was
heoretically proved for simplified settings like Gaussian models [21].

For complicated but realistic settings, training with extra data from
either real [22], or synthetic [23], sources dramatically boosts the
robust performance of AT and thus becomes a necessary ingredient
for achieving state-of-the-art results. However, extra data is usually
ery expensive or even infeasible to acquire in many tasks, so [24]

proposes a new data augmentation method, IDBH, specifically designed
for AT. Our method is complementary to using extra data and data
augmentation and a further boost in robustness is observed when they
are combined together (see Section 6.1).

Instance weighting in other scenarios. Instance weighting has
also been explored in backdoor attacks [25,26] to improve the effi-
iency of poisoning. Similar to our approach, these studies assume

that different data samples contribute unequally to training and aim to
enhance attack efficiency through optimized sample selection. This sug-
gests that our proposed analysis and instance weighting scheme could
potentially be applied in this context. For example, a straightforward
idea would be to use our AV metric to select poisoned samples and
evaluate whether this improves sample efficiency compared to baseline
methods. However, as backdoor attacks are not the focus of this work
and these two research areas have traditionally been studied separately,
we leave this exploration for future research.

3. Robust shortcut: A shortcut to robust optimization

This section identifies a shortcut in AT that minimizes overall
adversarial loss by sacrificing the loss for some data to be large to
enable the loss for other samples to be reduced. We refer to this phe-
nomenon as the ‘‘robust shortcut ’’. We begin with a theoretical analysis
of adversarial vulnerability and the robust shortcut in Section 3.1. Next,
in Section 3.2, we demonstrate that, in practice, AT tends to converge
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to this problematic shortcut. In Section 3.3 we provide evidence that
the robust shortcut is associated with robust overfitting, a well-known
issue in AT. Finally, Section 3.4 demonstrates that the robust shortcut
is prevalent across various advanced AT methods.

The following notations are adopted. 𝒙 ∈ R𝑑 is a 𝑑-dimensional
ample whose ground truth label is 𝑦. 𝒙𝑖 refers to 𝑖th sample in dataset

and 𝑥𝑖,𝑗 refers to the 𝑗th dimension of 𝒙𝑖. Similarly, 𝑥𝑗 refers to the 𝑗th
imension of an arbitrary sample 𝒙. 𝐷 is split into two subsets, 𝐷𝑡 and
𝑒, for training and testing respectively. 𝜹𝑖 ∈ (𝒙𝑖, 𝜖) is the adversarial
erturbation applied to 𝒙𝑖 to fool the network. (𝒙, 𝜖) denotes the 𝜖-ball

around the example 𝒙 defined for a specific distance measure like 𝓁∞-
norm. 𝛿𝑖,𝑗 is the perturbation applied along the dimension 𝑥𝑖,𝑗 , and 𝛿𝑗 is
the perturbation applied along the 𝑗th dimension of an arbitrary sample
𝒙. The network is parameterized by 𝜽. The output of the network before
the final softmax layer (i.e., the logits) is 𝑓 (𝒙;𝜽). The class predicted
by the network, i.e., the class associated with the highest logit value,
is 𝐹 (𝒙;𝜽). The predictive loss is (𝒙, 𝑦; 𝜃) or (𝒙) for short. The size of
a training batch is 𝑚 and the indexes of the samples in a batch is 𝑀 .

The preliminary experiments in the remainder of this section were
conducted using the default settings with CIFAR10 as defined in Sec-
tion 6 unless specified otherwise. The model architecture was PreAct

esNet18 [27]. Robustness was evaluated against PGD50.

3.1. Adversarial vulnerability and robust shortcut

Adversarial loss can be approximated by the sum of clean loss and
dversarial vulnerability [13]:

(𝒙 + 𝜹) ≈ (𝒙) +
𝑑
∑

𝑖
∇𝑥𝑖(𝒙)𝛿𝑖 +

1
2

𝑑
∑

𝑖,𝑗
∇2
𝑥𝑖𝑥𝑗

(𝒙)𝛿𝑖𝛿𝑗 , (2)

where ∇𝑥𝑖(𝒙), or ∇𝑥𝑖 for short, is the first-order gradient of (𝒙) w.r.t.
the input dimension 𝑥𝑖 corresponding to the slope of the input loss
landscape. Similarly, ∇2

𝑥𝑖𝑥𝑗
(𝒙), or ∇2

𝑥𝑖𝑥𝑗
for short, denotes the second-

order gradient w.r.t. 𝑥𝑖 and 𝑥𝑗 corresponding to the curvature of the
loss landscape.

The adversarial vulnerability (AV) of 𝒙 against a particular attack
is defined as the loss increment caused by the attack:

AV = (𝒙 + 𝜹) − (𝒙). (3)

A higher vulnerability means that adversarial attack has a greater
mpact on the loss value for that sample, and hence, is more likely
o corrupt the model’s prediction for that sample. From this perspec-
ive, loss gradients in Eq. (2) constitute the source of AV. Adver-

sarial attacks exploit input loss gradients to enlarge adversarial loss
by aligning the sign of the perturbation and corresponding gradient,
i.e., 𝑠𝑖𝑔 𝑛(𝛿𝑖) = 𝑠𝑖𝑔 𝑛(𝑥𝑖). Gradients with small magnitude (a flat loss
landscape) therefore indicate low AV.

AT improves adversarial robustness by shrinking the magnitude
f gradients. Supposing that the training adversary is theoretically

optimal [13], i.e., 𝑠𝑖𝑔 𝑛(∇𝑥𝑖,𝑗 ) = 𝑠𝑖𝑔 𝑛(𝛿𝑖,𝑗 ) ∀𝑖, 𝑗 and |

|

|

𝛿𝑖,𝑗
|

|

|

= 𝜖 ∀𝑖, 𝑗,
adversarial loss can be written (second-order gradients are ignored for
simplicity) as:

ar g min
𝜽

(𝒙) + 𝜖
𝐷
∑

𝑖

𝑑
∑

𝑗

|

|

|

∇𝑥𝑖,𝑗
|

|

|

. (4)

Note | ⋅ | denotes the absolute value. Ideally, the magnitude of every
radient is supposed to be shrunk by AT with the decrease of training

loss.
However, Eq. (4) can also be satisfied by sacrificing some gradients

o be large in order to shrink other gradients or the clean loss: as long
s the total reduction is greater than the enlargement. If some gradients
re consistently enlarged, the model may eventually converge to yield
n uneven distribution of AV among training data.

It is even more likely for the model to converge to such an uneven
tate if the training adversary is weaker than the theoretical optimum. A
3 
sub-optimal adversary causes misalignment between the sign of the per-
turbation and the corresponding gradient, i.e., 𝑠𝑖𝑔 𝑛(∇𝑥𝑖,𝑗 ) ≠ 𝑠𝑖𝑔 𝑛(𝛿𝑖,𝑗 ), in
which case training encourages the misaligned gradients to grow larger.
If some gradients are consistently misaligned by their corresponding
perturbations, they accumulate to be large.

3.2. Empirical evidence: Uneven distribution of adversarial vulnerability

This section demonstrates that, in practice, AT is prone to exploiting
he robust shortcut. To illustrate this, we track the model’s AV across
ifferent data instances throughout the training process, analyzing how
V is distributed among the data. This approach is based on the insights

from the previous section, which suggest that optimizing through the
obust shortcut results in an uneven distribution of AV across the data.

We first introduce the following metrics to quantitatively assess this
phenomenon. AV SD measures the degree of unevenness for AV via its
tandard deviation (SD) over the entire training set:

AV SD =
√

E𝑖∈𝐷𝑡
[(AV𝑖 − E𝑗∈𝐷𝑡

[AV𝑗 ])2]. (5)

Higher AV SD indicates that AV is spread out more among instances,
i.e., higher unevenness. In addition, the mean AV is computed for the
10% of samples with the lowest AV (‘‘bottom 10%’’) and the 10% of
samples with the highest AV (‘‘top 10%’’). Besides, the percentage of
amples with AV ≥ 1 and ≤ 0 within the whole training set is calcu-
ated to complement the above measures. 1 and 0 are selected as the
hresholds for high and low AV respectively as the model’s prediction,

after adversarial attack, is observed to be significantly affected if AV
1 and hardly changed if AV ≤ 0.
As shown in Fig. 1(a), AV becomes increasingly unevenly distributed

cross training samples: some become highly susceptible to attacks,
hile others remain exceptionally robust. Over the course of training,
oth the standard deviation of AV and the number of high- and low-
ulnerability samples increase. Additionally, the average AV of the top
0% rises, while the average AV of the bottom 10% decreases to even

below 0.
To further illustrate this issue, we select the checkpoint with highest

obustness found in the above experiment and visualize the distribution
of margin 𝜇 over the entire training set. The margin (𝜇) along the
dversarial direction for each sample in the training data was computed

from the adversarially-trained model using the method defined in Rade
and Moosavi-Dezfooli [28]:

ar g min
𝜇

s.t. 𝐹
(

𝒙 + 𝜇 𝜹
‖𝜹‖2

;𝜽
)

≠ 𝐹 (𝒙;𝜽), (6)

where 𝜹 is computed using PGD50 and ‖ ⋅ ‖2 is the 𝓁2-norm.
As shown in Fig. 1(b), about 20% of training data can be successfully

ttacked within the 𝜖-ball to fool the model into changing prediction,
nd among them, around 5% of training instances can be successfully
ttacked using only a third of the perturbation budget 𝜖. In contrast,
 large proportion of samples exhibit an excessive margin along the

adversarial direction. The prediction of the model remains constant
under an attack with double the perturbation budget for about half
he training data. More surprisingly, about 14% of the training samples
xhibit the theoretically maximal effective margin (𝜇 = 50),1 which in-
icates that no perturbation along the adversarial direction can change
he model’s prediction.

1 The margin value corresponding to the perturbation budget 𝜖 is about 1.5.
 margin value of 50 is, hence, equivalent to perturbing along the adversarial
irection by approximately 50

1.5
𝜖 which is greater than 1. For this work, input

images are normalized to have pixel values between zero and one, and the
perturbed input is clipped to remain in this range, so increasing the magnitude
of any perturbation beyond a value of one will have no additional effects on
the input.
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Fig. 1. Illustration of the phenomenon robust shortcut on CIFAR10. Fig. 1(a) shows how instance-wise AV changes over the course of training. Fig. 1(b) shows the distribution
f margin 𝜇 (Eq. (6)) over the entire training set. The yellow dashed line indicates the margin corresponding to the training perturbation budget 𝜖. The red solid line represents
umulative distribution.
b

b

r

d
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t
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Fig. 2. Performance and AV of the models trained by Eq. (7) with different strength, 𝜂,
n CIFAR10. The data set on which the metric is measured is indicated in the bracket
n the legend.

3.3. Relating robust shortcut to robust overfitting

We hypothesize that the robust shortcut accounts for overfitting in
T. To evaluate this claim we test how robust generalization varies with

he unevenness of AV. Unevenness is controlled by the strength, 𝜂, of
 logit stability regularization applied to the 10% of samples with the
ighest AV:

E𝑖∈𝑀
[

(𝒙𝑖 + 𝜹𝑖) + 𝜂‖𝑓 (𝒙𝑖 + 𝜹𝑖) − 𝑓 (𝒙𝑖)‖221(𝒙𝑖, 𝜹𝑖)
]

, (7)

where 1(⋅) is an indicator function to select the samples with highest AV
within each training batch. ‖ ⋅ ‖22 is the squared 𝓁2-norm. Unevenness
s supposed to be reduced as 𝜂 increases since those highly vulnerable
amples are regularized to be more robust. This regularizer is used to
ine-tune a pre-adversarially-trained model for 10 epochs with an initial
earning rate of 0.01 decayed by 0.1 at half epochs. Experiments are
reformed using different values for 𝜂 from 0 to 4 with a step size of
.5. Note that 𝜂 = 0 means no regularization is applied.

As shown in Fig. 2, the AV SD on the training data drops with in-
creasing regularization strength. The AV of the test data decreases even
more dramatically, and test robustness increases, indicating improved
robust generalization with stronger regularization. The increase of test
robustness is less significant than the decrease of test AV because clean
accuracy degrades with stronger regularization. Overall, this result
verifies that the robust shortcut is related to robust overfitting.

3.4. Prevalence of robust shortcut

Finally, it is shown that the issue of robust shortcut is prevalent
across various robust training schemes. As shown in Table 1, RST
nd AWP both mitigate the unevenness of AV to some extent with a
educed top 10% average AV and reduced number of high-vulnerability
 t

4 
Table 1
Robustness and the statistics of AV for various robust training schemes on CIFAR10.

Method Rob. (%) Adversarial vulnerability

AV SD Top 10% Bot. 10% ≥1 ≤0

AT 51.78 0.467 1.527 −0.010 12.38 12.14
AWP 54.68 0.351 1.120 −0.022 5.52 19.74
RST 57.68 0.443 1.378 −0.011 9.96 20.87
Eq. (7) 55.95 0.196 0.633 −0.047 0.14 12.00

samples compared to vanilla AT. However, the reduction of unevenness
produced by RST and AWP is less than that achieved by the purpose-
uilt regularization (Eq. (7)). This suggests that these previous methods

of improving AT contribute to enhanced adversarial robustness using
different mechanism to the proposed one and a higher robustness can
be expected if they are properly combined together, as described next.

4. Disordered robustness: Excessive robustness to visible pertur-
ation

This section introduces an issue in AT referred to as disordered
robustness. As observed in Section 3.2, a significant proportion of train-
ing samples exhibit disordered robustness because the model remains
insensitive to dramatic perturbations applied to them, perturbations
that should significantly affect the model’s output. This property of
excessively large margins is termed disordered robustness because a
well-calibrated model should be sensitive to noticeable, class altering,
perturbations in the input. Fig. 3 visualizes examples of perturbed
inputs for samples with disordered robustness.

To further verify the claim, the loss landscapes around some rep-
resentative samples are visualized in Fig. 4. The loss was calculated
using:

𝐿 = 
(

𝒙 + 𝛼 𝜹
‖𝜹‖2

+ 𝛽 𝒖
‖𝒖‖2

, 𝑦;𝜽
)

, (8)

where 𝜹 was generated by PGD50 and 𝒖 was randomly sampled from
a uniform distribution  (−𝜖 , 𝜖)𝑑 . The loss landscape was visualized
along the adversarial and the random direction by varying 𝛼 and 𝛽
espectively.

For samples with disordered robustness, lower loss values are pro-
uced for values of 𝛼 > 0 than are produced when 𝛼 = 0 (see Figs. 4(a)

and 4(b)). This confirms that this particular kind of robustness is
isordered because adversarial examples are more benign, i.e., easier
o correctly classify, than clean examples in this case.

Disordered robustness differs from a similar phenomenon observed
n the previous work [28]. First, the direction along which exces-

sive margin is observed is different. Rade and Moosavi-Dezfooli [28]
observed excessive margin for an adversarially-trained model along
he adversarial direction found by PGD on a standardly-trained model
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Fig. 3. Visualization of disordered robustness on CIFAR10. This figure shows clean samples and the corresponding adversarial samples for various levels of margin. Adversarial
examples in each row were crafted using 𝒙+ 𝜇 𝜹

‖𝜹‖2
with the value of 𝜇 given at the left of each row. 𝜇 = 1.5 approximately corresponds to the perturbation budget 𝜖. The caption

of each image describes the ground-truth class and the prediction confidence (the output of softmax layer at the index of ground-truth class). Although the images are modified
dramatically by adversarial perturbation to even a detrimental degree when 𝜇 ≥ 20, they can still be correctly classified by the model without much variation on confidence, or
even with higher confidence. In the cases with very large 𝜇, the perturbed images become extremely hard to recognize or become meaningless to a human observer, while the
model is able to recognize them correctly with high confidence.
Fig. 4. Visualization of loss landscapes at samples with disordered robustness (Figs. 4(a) and 4(b)), and for a robust sample (Fig. 4(c)) and a vulnerable sample (Fig. 4(d)). 𝛼 ≈ 1.5
corresponds to a perturbation size of 𝜖. Loss increases up as the color of plane changes from blue to red. Note the scale of loss is dramatically different for these three categories
of data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(i.e. they used different models for the adversarial direction and the
margin evaluation), while it is observed in this work to be along
the PGD adversarial direction generated for an adversarially-trained
model (same model for adversarial direction and margin evaluation).
Second, Rade and Moosavi-Dezfooli [28] did not find that the direction
along which the excessive margin is observed is adversarially benign.

5. Method

Building on the insights described in the preceding sections, this
section proposes a new adversarial training method that prevents the
exploitation of robust shortcuts, thereby improving robust general-
ization. The proposed approach, named Instance-adaptive Smoothness
Enhanced Adversarial Training (ISEAT), combines AT with a new ro-
bustness regularizer and adapts the regularization strength for each
instance based on its AV. In general, stronger regularization is ap-
plied to samples with higher vulnerability to enhance their robustness,
while low-vulnerability samples receive weaker regularization to avoid
the harmful effects of over-regularization. This adaptive regularization
scheme is theoretically agnostic to the choice of the underlying regular-
ization method. However, to enhance the performance of our approach,
we propose a novel and more effective regularization method in the
following section.
5 
5.1. Jointly smoothing input and weight loss surfaces

We propose a new regularization method to enforce prediction Logit
Stability against both adversarial Input and Weight perturbation (LSIW)
so that the model’s predicted logits remains, ideally, constant when the
input and the weights are both adversarially perturbed as shown below:

E𝑖∈𝑀‖𝑓 (𝒙𝑖 + 𝜹𝑖;𝜽 + 𝒗) − 𝑓 (𝒙𝑖;𝜽)‖22. (9)

𝒗 is a perturbation within the pre-defined region,  , applied to the
model’s parameters to maximize adversarial loss (input perturbation 𝜹
is assumed) [12]:

ar g max
𝒗∈

E𝑖∈𝑀 [(𝒙𝑖 + 𝜹𝑖;𝜽 + 𝒗)]. (10)

Following Wu et al. [12], 𝒗 can be simply approximated by:

𝒗 ≈ 𝛾
∇𝒗E𝑖∈𝑀 [(𝒙𝑖 + 𝜹𝑖;𝜽 + 𝒗)]

‖∇𝒗E𝑖∈𝑀 [(𝒙𝑖 + 𝜹𝑖;𝜽 + 𝒗)]‖
‖𝜽‖. (11)

For more details on the intermediate derivation, please refer to Wu
et al. [12].

Why logit regularization? Loss smoothness can be regularized
through either logits or gradients. We choose to use the former for
two reasons. First, logit regularization is more cost-effective, as it
only adds a marginal expense for computing the regularization loss.
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Algorithm 1. The pseudo-code for the proposed AT method, ISEAT.
for each batch do

for 𝑖 = 1 to 𝑚 do
𝜹𝑖 = PGD(𝒙𝑖, 𝑦𝑖) ⊳ adversarial input perturbation

end
𝒗 = 𝛾 ∇𝜽E𝑖∈𝑀 [(𝒙𝑖+𝜹𝑖;𝜽)]

‖∇𝜽E𝑖∈𝑀 [(𝒙𝑖+𝜹𝑖;𝜽)]‖
‖𝜽‖ ⊳ adversarial weight

perturbation
for 𝑖 = 1 to 𝑚 do

𝑤𝑖 = 1 − 𝑟((𝒙𝑖 + 𝜹𝑖;𝜽 + 𝒗) − (𝒙𝑖;𝜽))∕𝑚 ⊳ regularization
weight

end
for 𝑖 = 1 to 𝑚 do

𝑜𝑖 = ‖𝑓 (𝒙𝑖 + 𝜹𝑖;𝜽 + 𝒗) − 𝑓 (𝒙𝑖;𝜽)‖22 ⊳ input and weight
smoothing

end
𝐿 =

∑𝑚
𝑖 ((𝒙𝑖 + 𝜹𝑖;𝜽 + 𝒗) + 𝜆 ⋅𝑤𝑖 ⋅ 𝑜𝑖)∕𝑚

𝜃 = 𝜃 − 𝑙∇𝜃𝐿 ⊳ update model parameters
end

In contrast, gradient regularization requires computationally expen-
ive double-backpropagation. Second, logit regularization has been

shown to outperform gradient regularization in terms of robustness
enhancement and the trade-off between accuracy and robustness [13].

Why adversarial weight perturbation? We decided to integrate
dversarial weight perturbation into our regularization method for the

following reasons. First, adversarial weight perturbation is a proven
technique for smoothing the weight loss landscape and significantly
enhancing adversarial robustness [12,29]. Second, it complements in-
put loss smoothing methods. Our experiments in Section 6.6 show that
combining input and weight loss smoothing results in a robustness
improvement of 3.04%, surpassing the gains achieved by either method
alone.

The novelty of proposed robustness regularizer. The idea of
jointly smoothing input and weight loss was explored before in Wu
et al. [12], but the implementation of this work is novel and more
effective. The previous work combined adversarial weight perturbation
with input loss smoothing (named TRADES-AWP in the original work)
using the method:

KL(𝑓 (𝒙;𝜽 + 𝒗), 𝑓 (𝒙 + 𝜹;𝜽 + 𝒗)). (12)

Hence, in contrast to the proposed approach (Eq. (9)), both clean
and adversarial examples were computed using the perturbed model,
.e., 𝜽 + 𝒗 in this previous work (Eq. (12)). We argue that weight
erturbation is not fully utilized in this paradigm since the logit vari-

ation caused by weight perturbation is not explicitly constrained by
he outer Kullback–Leibler (KL) divergence. Theoretically, a stronger

regularization can be realized by forcing the predicted logits to be same
etween clean examples on the unperturbed model and adversarial
xamples on the perturbed model, as in Eq. (9).

The performance of these two approaches is compared in Sec-
ion 6.6. The results suggest the superiority of LSIW over TRADES-
WP. Another difference between Eqs. (9) and (12) is the metric used

o measure the similarity or distance between two prediction logits.
quared 𝓁2-norm is adopted in our proposed solution due to its superior
erformance as evaluated in Section 6.6.

5.2. Adapting regularization strength to instance-wise vulnerability

To adapt the strength of above joint regularizer to AV, we first
xtend the metric of AV defined in Eq. (3) to measure instance-wise

vulnerability against adversarial input and weight perturbations:
AV𝑖 = (𝒙𝑖 + 𝜹𝑖;𝜽 + 𝒗) − (𝒙𝑖;𝜽), (13) t

6 
Instances need to be weighted according to their AV. Regularization
trength should depend on the relative order, instead of absolute value,

of vulnerability so that the overall strength of regularization remains
constant throughout training, even if the overall AV declines at the
ater stage of training. This is important for balancing the influence of

AT and the additional robustifying methods. The regularization weight
is generated linearly, based on the ranking of vulnerability within the
batch, as follows:

𝑤𝑖 = 1 − 𝑟(AV𝑖)
𝑚

(14)

where 𝑟(⋅) computes the ranking (indexed from 0 for the highest vul-
erability) within the batch. Hence, the weights range from 1 (for the
ost vulnerable sample) to 1

𝑚 (for the least vulnerable). This linear
scheme was selected due to its simplicity and performance superiority
ver other options (see Section 6.6 for an empirical comparison with

some alternatives).

5.3. Optimization

Finally, ISEAT combines AWP-based AT with the proposed weight
cheme and regularization method to get the overall training loss:

E𝑖∈𝑀
[

(𝒙𝑖 + 𝜹𝑖;𝜽 + 𝒗) + 𝜆𝑤𝑖‖𝑓 (𝒙𝑖 + 𝜹𝑖;𝜽 + 𝒗) − 𝑓 (𝒙𝑖;𝜽)‖22
]

. (15)

There are two hyper-parameters, 𝜆 and 𝛾, in ISEAT. 𝜆 controls the
trength of joint regularizer. 𝛾 in Eq. (11) directly controls the strength
f adversarial weight perturbation and also implicitly affects the
trength of joint regularizer. Algorithm 1 illustrates the training pro-

cedures.
In practice, modern machine learning frameworks [30] cannot di-

rectly compute the gradients of Eq. (15) w.r.t. 𝜽 in one backward pass
on one model because the model used to compute 𝑓 (𝒙𝑖;𝜽) will be
ltered by adversarial weight perturbation before backpropagation. To
erive the update rule for gradient descent, first Eq. (15) is rewritten as

a function of two models parameterized by 𝜽′ = 𝜽+𝒗 and 𝜽 separately:

𝐿(𝑓 (𝒙 + 𝜹;𝜽′), 𝑓 (𝒙;𝜽)). (16)

Next, the Chain rule is applied to separate the gradient of Eq. (16) w.r.t.
into the sum of two individual backward passes:

𝜕 𝐿
𝜕𝜽

= 𝜕 𝐿
𝜕 𝑓 (𝒙 + 𝜹;𝜽′)

𝜕 𝑓 (𝒙 + 𝜹;𝜽′)
𝜕𝜽′

𝜕𝜽′
𝜕𝜽

+ 𝜕 𝐿
𝜕 𝑓 (𝒙;𝜽)

𝜕 𝑓 (𝒙;𝜽)
𝜕𝜽

. (17)

After obtaining the gradients, the model’s parameters are updated
ollowing the method used for AWP [12] as:

𝜽 ← (𝜽 + 𝒗) − 𝑙 ⋅ 𝜕 𝐿
𝜕𝜽

− 𝒗. (18)

𝑙 is the learning rate. 𝜽 + 𝒗 refers to the perturbed model parameters.
The weight perturbation 𝒗 is subtracted so that it is not accumulated in
the model parameters. 𝑙 ⋅ 𝜕 𝐿𝜕𝜽 is one step of parameter update in gradient
descent algorithm.

5.4. Efficiency analysis

The computational cost of the proposed method, ISEAT, is mainly
composed of three components: AT, adversarial weight perturbation
nd logit stability regularization. Both AT and adversarial weight per-

turbation involve an inner maximization process using PGD, so their
ost increases linearly with the number of iterations used for the inner
ptimization. By default, ISEAT uses 10 and 1 iterations, respectively,
or determining the input and weight perturbations. This is in ac-
ordance with common practice. ISEAT in practice adds one more

forward and backward pass for 𝑓 (𝒙;𝜽) as required by Eq. (17). The
ime consumption is assessed empirically in Section 6.7.
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6. Empirical results

The experiments in this section were based on the following setup
nless otherwise specified. The proposed method is evaluated with
odel architectures Wide ResNet34-10 (WRN34-10) [31] on dataset

CIFAR10 [32] and PreAct ResNet18 (PRN18) [27] on datasets CI-
AR100 [32], SVHN [33], and TinyImageNet [34]. Models were trained

by stochastic gradient descent for 200 epochs with an initial learning
ate 0.1 for CIFAR10/100 and TinyImageNet and 0.01 for SVHN,
ivided by 10 at 50% and 75% of epochs. The momentum was 0.9,

the weight decay was 5e−4 and the batch size was 128. The default
ata augmentation for CIFAR10/100 and TinyImageNet was horizontal
lip (applied at half chance) and random crop (with 4 pixel padding).
o data augmentation was applied to SVHN. Experiments were run on
esla V100, A100 and RTX 3080Ti GPUs. All results reported by this

work were averaged over 3 runs.
For AT, 𝓁∞ projected gradient descent attack [3] was used with

 perturbation budget, 𝜖, of 8/255. The number of steps was 10 and
he step size was 2/255 for CIFAR10/100 and TinyImageNet and
/255 for SVHN. To stabilize the training on SVHN, the perturbation
udget, 𝜖, was increased from 0 to 8/255 linearly in the first five
pochs and then kept constant for the remaining epochs, as suggested
y Andriushchenko and Flammarion [35]. Robustness was evaluated

against AutoAttack [36] using the implementation of Kim [37]. Note
that, following Rice et al. [9], PGD10 robustness was tracked on the
test set at the end of each epoch during training to select the checkpoint
with the highest PGD10 robustness, i.e., the ‘‘best’’ checkpoint to report
robustness.

The results are compared with those of related methods includ-
ing AWP [12], TRADES [38], InfoAT [18], RWP [14], GAIRAT [17],
FAT [6], MART [16] and LAS-AT [19] on CIFAR10. Results for existing

ethods were copied from the original work or another published
ource such as RobustBench [39]. They were produced using the same
odel architecture and the same, or very similar, training settings as

used for the proposed method.
The performance of the proposed method was additionally evalu-

ted when combined with the data augmentation method IDBH [24]
nd with extra data like RST [22] to benchmark state-of-the-art ro-
ustness. ISEAT when combined with IDBH, akin to Rebuffi et al.
40], benefited from training longer so the total number of training

epochs was increased to 400. Note that AT alone with IDBH (IDBH+AT)
degenerated as the length of training was increased, so its performance
was reported with the default settings. For experiments with extra
data, WideResNet28-10 was used instead of WideResNet34-10 to align

ith experimental protocols used in related works for a fair compar-
ison. This work adopted the same extra data as Carmon et al. [22],
i.e., 500K unlabled data from dataset 80 Million TinyImages (80M-TI)
with pseudo-labels.2 As in Carmon et al. [22], extra data was included
n the ratio 1:1 with the CIFAR10 data in each training mini-batch, so
he effective batch size became 256.

The hyper-parameters of ISEAT were optimized using grid search.
The optimal values found were: 𝜆 = 0.1 and 𝛾 = 0.007 for CIFAR10;
= 0.1 and 𝛾 = 0.005 for CIFAR10 with IDBH; 𝜆 = 0.01 and 𝛾 = 0.005 for
IFAR10 with extra data; 𝜆 = 0.1 and 𝛾 = 0.005 for CIFAR100; 𝜆 = 0.1
nd 𝛾 = 0.009 for SVHN; 𝜆 = 0.01 and 𝛾 = 0.005 for TinyImageNet. It
as observed that jointly smoothing input and weight loss with a large

earning rate (0.1 in this case) degraded both accuracy and robustness
ue to over-regularization. Therefore, a warm-up strategy was used
or 𝜆 on CIFAR10/100 and Ting ImageNet: 𝜆 was set to 0 during the
nitial epochs when the learning rate was large, and 𝜆 was set to the
ptimal value after the first decay of the learning rate. Note that this
trategy was not applied to the experiments with SVHN because the
nitial learning rate on SVHN was already small.

2 The extra data was downloaded from the official git repository of Carmon
t al. [22]: https://github.com/yaircarmon/semisup-adv.
7 
Table 2
Performance of our method and related methods on CIFAR10. Results above the double
ine are for WRN34-10 without extra data and results below the double line are for

RN28-10 with extra data. The best result is highlighted for each metric in each block.
he standard deviation is indicated by the value after the ± sign if evaluated by this
ork or reported in the original work, otherwise omitted from the table.
Method Model Extra Accuracy Robustness

data (%) (%)

AT

WRN34-10

– 85.90 ± 0.57 53.42 ± 0.59
AT-AWP – 85.57 ± 0.40 54.04 ± 0.40
TRADES – 85.72 53.40
InfoAT – 85.62 52.86
GAIRAT – 86.30 40.30
FAT – 87.97 47.48
RWP – 86.86 ± 0.51 54.61 ± 0.11
MART – 84.17 ± 0.40 51.10 ± 0.40
MART-AWP – 84.43 ± 0.40 54.23 ± 0.40
LAS-AT – 86.23 53.58
LAS-AWP – 87.74 55.52
ISEAT (ours) – 86.02 ± 0.36 56.54 ± 0.36
ISEAT (ours)+SWA – 85.95 ± 0.09 57.09 ± 0.13

IDBH+AT – 87.03 ± 1.58 54.16 ± 0.70
IDBH+ISEAT (ours) – 88.50 ± 0.11 59.32 ± 0.08

RST

WRN28-10 80M-TI

89.69 ± 0.40 59.53 ± 0.40
RST+MART 87.50 56.29
RST+GAIRAT 89.36 59.64
RST+AWP 88.25 ± 0.40 60.05 ± 0.40
RST+RWP 88.87 ± 0.55 60.36 ± 0.06
ISEAT (ours) 90.59 ± 0.19 61.55 ± 0.10

IDBH+ISEAT (ours) – 87.91 ± 0.18 58.55 ± 0.14

6.1. Performance on CIFAR10

As can be seen from the results in Table 2, ISEAT substantially im-
roves both accuracy and robustness over the baseline in all evaluated
ettings. Specifically, it boosts robustness by +3.12% compared to AT in
he default setting, by +5.16% when IDBH data augmentation is used,
nd by +2.02% compared to RST when extra real data from 80M-TI
s used. More importantly, ISEAT boosts accuracy as well suggesting a
etter trade-off between accuracy and robustness. By combining with
DBH, ISEAT achieves a robustness of 58.55% for WRN28-10 which is
ompetitive with the baseline robustness of 59.53% achieved by RST
sing additional real data. This substantially closes the gap between
he robust performance of training with and without extra data.

ISEAT outperforms all existing instance-adaptive AT methods in
terms of robustness. The comparison is conducted on the default setup
of CIFAR10 (Table 2) since published results are available for this setup.
ISEAT achieves the highest robustness, 56.54%, among all competitive
works, which considerably exceeds the previous best record of 55.52%
achieved by LAS-AWP and the robustness of 54.23% achieved by the
most similar previous work, MART-AWP. Particularly, ISEAT dramat-
ically outperforms FAT by +9.06% in terms of robustness. FAT is one
of the most recent contributions whose instance adaptation strategy
contrasts ours, as described in Section 2. This supports the claim that
his previous strategy for instance-adaptive AT is fundamentally de-
ective. Furthermore, ISEAT consistently achieves superior robustness
ompared to all available related works such as MART and GAIRAT in

the condition with extra data.
Last, the performance of ISEAT can be further improved by +0.55%

n the default setup when integrated with another weight smoothing
technique: Stochastic Weight Averaging (SWA). However, a similar
performance boost was not observed in the other setting for CIFAR10.
This suggests that ISEAT may exhaust the benefits of weight smoothing
in some settings, but not all.

6.2. Performance on CIFAR100 and SVHN

Following common practice for testing generalization ability, this
section evaluates ISEAT on the alternative datasets CIFAR100 and

https://github.com/yaircarmon/semisup-adv
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Table 3
Test accuracy and robustness of our method for PRN18 on CIFAR100 and SVHN.

Dataset Method Accuracy (%) Robustness (%)

CIFAR100 AT 56.15 ± 1.15 25.12 ± 0.22
CIFAR100 ISEAT (ours) 53.19 ± 0.23 28.17 ± 0.14

SVHN AT 90.55 ± 0.60 47.48 ± 0.59
SVHN ISEAT (ours) 91.08 ± 0.49 54.04 ± 0.68

SVHN. As shown in Table 3, ISEAT substantially improves robustness
ver the baseline by +3.05% on CIFAR100 and by +6.56% on SVHN.
t also slightly boosts accuracy on SVHN. Note that the magnitude
f robustness improvement in a particular training setting generally
epends on the degree of robust overfitting, which is connected to the
nevenness of AV among training data. It is therefore reasonable for
SEAT to perform differently on different datasets even using the same
odel architecture. Overall, the performance improvements across var-

ous datasets is consistent, which confirms that the proposed method is
generally applicable.

6.3. Performance on TinyImageNet

TinyImageNet is a subset of ImageNet, with the number of classes
educed to 200 and the image resolution reduced to 64 × 64. Each
lass contains 500 images in the training set and 50 images in the
alidation/test set. Compared to CIFAR and SVHN datasets, TinyIma-
eNet offers a significantly greater number of classes and higher image
esolution, making it more complex, realistic, and challenging.

As shown in Table 4, our method significantly enhances both ac-
curacy and robustness compared to the baselines. Notably, it achieves
a dramatic improvement in end robustness over the naive AT, with
increases of 7.71% and 7.9% when used with and without SWA, respec-
tively. This leads to a substantially reduced gap between the best and
end robustness, indicating that our method effectively mitigates robust
overfitting. Overall, our method demonstrates strong generalization to
larger and more complex datasets, such as TinyImageNet.

6.4. Comparison with state-of-the-art adversarial training methods

To further demonstrate the effectiveness of our approach, we have
expanded the scope of comparison to include the latest published ad-
versarial training methods [41–44]. Note that these alternative methods
o not focus on instance-adaptive regularization and are therefore not
irectly related to our approach. As shown in Table 5, our method
till achieves the highest robustness among all the compared methods.
dditionally, it outperforms these latest methods in accuracy, with

he exception of SGLR-AT, which attains a slightly higher accuracy.
verall, our method surpasses the latest advanced adversarial training
ethods in performance.

6.5. Mitigating robust shortcuts and overfitting

To further demonstrate the effectiveness of our method in mitigating
obust shortcuts and robust overfitting, we conducted experiments to
xamine how the phenomena of robust shortcuts and robust overfitting
ary with different regularization strengths (𝜆) in our method. As
hown in Table 6, both the degree of robust shortcuts (measured by AV
D) and robust overfitting (measured by RO) decrease as the regular-
zation strength 𝜆 increases. Moreover, our method consistently exhibits
ower AV SD and RO compared to naive adversarial training (AT) across
ll evaluated 𝜆 values. These results support the rationale behind our
pproach, which penalizes data instances with large AV to mitigate the
exploitation of robust shortcuts and reduce robust overfitting.

8 
6.6. Ablation study

Ablation experiments were conducted to justify the design of ISEAT
nd illuminate the mechanism behind its effectiveness. Experiments
ere performed using WRN34-10 on CIFAR10. To ensure a fair com-
arison, the approaches were applied to fine-tune the same model.
his base model had been previously trained using AT with the default
raining setup, as described in Section 6. Fine-tuning was performed
or 40 epochs. The initial learning rate was 0.01 and decayed to 0.001

after 20 epochs.
This section first assesses the contribution of different components

n the proposed method. It can be observed in Table 7 that both the
components of ISEAT, (adaptively weighted) input loss smoothing and
weight loss smoothing, can individually improve robustness over the
baseline to a great extent, +1.08% and +1.84% respectively. This con-
firms that they both play a vital role in ISEAT. Furthermore, combining
them together (the proposed method) achieves a greater robustness
boost, +3.04%, compared to either of them alone. This combined boost
is greater than the arithmetic sum of the performance increases of the
individual components (3.04% > 1.08% + 1.84%) suggesting that these
two components are complementary to each other.

Next, this section examines the design of input loss smoothness
regularizer. First, the choice of distance metric used to measure the
dissimilarity between two predicted logits was verified. As shown in
Table 8, squared 𝓁2-norm (the adopted method) performs slightly better
han KL-divergence (used by MART [16]) in terms of both accuracy and

robustness. Moreover, the linear weight scheme (the chosen method)
was compared with the top-10% weight scheme (used in the prelimi-
ary experiments reported in Section 3.3, see Eq. (7)) and unweighted
or uniform) scheme. It can be observed in Table 8 that the weighted
chemes, either linear or top-10%, considerably improve both accuracy

and robustness over the unweighted scheme, and among the weighted
chemes, the linear one outperforms the top-10% scheme regarding

both accuracy and robustness. Overall, a linear weight scheme with
squared 𝓁2-norm is empirically the best among all evaluated solutions.

Last, this section examines the effectiveness of the proposed ap-
proach to combine input and weight loss smoothing. The proposal,
LSIW, was compared with Logit Stability regularization against In-
put perturbation (LSI) only and TRADES-AWP. The regularization loss
of these methods is described in Table 9. For more technical de-
tail, please refer to Section 5.1. It is observed in Table 9 that LSIW
achieves substantially higher accuracy and robustness than the others.
This supports the hypothesis that stabilizing logits against both input
and weight adversarial perturbation makes better use of adversarial
weight perturbation, and hence, results in a more effective smoothness
regularization.

6.7. Computational efficiency

It can be seen from the results in Table 7 that smoothing the
nput loss landscape alone (i.e., weighted logit stability regularization)
dds about 6% computational overhead, and smoothing weight loss
andscape alone adds around 9% computational overhead compared to
T. Jointly smoothing both input and weight loss landscapes using the
roposed ISEAT method introduces an overhead of approximately 18%
ompared to AT. The extra cost of ISEAT is greater than the sum of

the extra cost of two separate smoothing components (18% > 6% + 9%)
because it requires additional forward and backward passes to compute
the gradient of the proposed regularization (Sections 5.3 and 5.4). Nev-
ertheless, we believe this additional cost is acceptable for the following
reasons. First, the substantial performance improvement achieved by
our method over the baseline justifies the trade-off in efficiency. Sec-
ond, our approach is significantly more efficient than some recently
published methods, such as LAS-AT [19] and PART [45], which incur
40% and 77% increases in cost over baseline AT, respectively.



L. Li and M. Spratling

o
r

R

t

Pattern Recognition 163 (2025) 111474 
Table 4
The performance of our method and the baselines for PreActResNet-18 on Tiny ImageNet. The results for consistency, SRC+FL, and LAS-AWP
are sourced from their original publications. ‘‘–’’ indicates that the corresponding result was not reported in the original source.

Method Accuracy (%) Robustness (%)

Best End Diff. Best End Diff.

AT 46.39 ± 0.58 46.69 ± 0.16 −0.30 ± 0.65 18.17 ± 0.23 12.27 ± 0.37 5.90 ± 0.58
AT-SWA 49.47 ± 0.40 47.78 ± 0.34 1.69 ± 0.74 19.96 ± 0.04 12.97 ± 0.07 6.99 ± 0.11
Consistency 46.50 45.61 0.89 15.09 13.56 1.53
SRC+FL 46.75 – – 17.01 – –
LAS-AWP – 45.26 – – 18.42 –
ISEAT (ours) 48.26 ± 0.35 48.71 ± 0.46 −0.45 ± 0.71 20.55 ± 0.10 20.17 ± 0.19 0.39 ± 0.20
ISEAT-SWA (ours) 47.58 ± 0.27 49.18 ± 0.16 −1.60 ± 0.21 20.90 ± 0.29 20.68 ± 0.17 0.22 ± 0.21
l

n

f
r
u
t
a
o
p
b
i

Table 5
The performance of our methods and recent advanced adversarial training methods
n CIFAR10. ‘‘Test Adv.’’ refers to the attack method used to evaluate adversarial
obustness on the test data. Different model architectures and test adversaries were

used to align with the setups in the original works of the compared methods.
Model Test Adv. Method Accuracy (%) Robustness (%)

PRN18 AA

TSOVR [41] 81.40 49.80
SRC [42] 80.70 50.35
SGLR-AT [43] 82.90 51.20
ISEAT (ours) 82.37 51.76

WRN34-10 PGD20 SLORE-MART [44] 85.17 59.10
ISEAT (ours) 85.62 60.95

Table 6
The variation in performance and adversarial vulnerability (AV) unevenness with
different 𝜆 values for our method on CIFAR-10 and WRN34-10. ‘‘RO’’ indicates
the degree of robust overfitting, measured as the gap between the best and end
robustness.

Method 𝜆 Accuracy (%) Robustness (%) RO AV SD

AT – 85.90 53.42 5.20 0.322

ISEAT

0.005 86.43 55.17 0.98 0.293
0.01 86.68 55.44 0.92 0.278
0.05 85.24 55.30 0.72 0.285
0.1 86.02 56.54 0.36 0.200

Table 7
The contribution of each component in the proposed ISEAT method on CIFAR10 for
WRN34-10. Time is an average measured for processing one mini-batch on a Nvidia

TX 3080Ti in seconds.
Method Accuracy (%) Robustness (%) Time (s)
AT 85.90 ± 0.57 53.42 ± 0.59 0.253
+ input loss smoothing 84.10 ± 0.27 54.50 ± 0.17 0.268 (+6%)
+ weight loss smoothing 86.04 ± 0.27 55.26 ± 0.15 0.277 (+9%)
+ both (ISEAT) 85.63 ± 0.13 56.46 ± 0.14 0.298 (+18%)

Table 8
The performance of logit stability regularization with different distance metrics and
weight schemes on CIFAR10 for WRN34-10. ‘‘Distance’’ denotes the metric used to
measure the discrepancy between two predicted logits. ‘‘Weight’’ denotes the weight
scheme.

Distance Weight Accuracy (%) Robustness (%)

AT 85.90 ± 0.57 53.42 ± 0.59
KL-divergence Unweighted 85.07 ± 0.31 56.08 ± 0.32
Squared 𝓁2-norm Unweighted 85.15 ± 0.70 56.20 ± 0.19
Squared 𝓁2-norm Top-10% 85.53 ± 0.03 56.36 ± 0.02
Squared 𝓁2-norm Linear 85.63 ± 0.13 56.46 ± 0.14

7. Conclusion

This work investigated how adversarial vulnerability evolves during
AT from an instance-wise perspective. We observed that a model was
rained to be more robust for some samples and, meanwhile, more

vulnerable at some others resulting in an increasingly uneven distribu-
tion of adversarial vulnerability among training data. We theoretically
proposed an alternative optimization path to minimize adversarial loss
9 
Table 9
The performance of different approaches to jointly smoothing input and weight loss
andscapes on CIFAR10 for WRN34-10. 𝒙′ and 𝜽′ refer to the perturbed input and

weight respectively. For a fair comparison, the original distance metric, KL-divergence,
in TRADES-AWP (Eq. (12)) was replaced by squared 𝓁2-norm to align with the other
methods.

Method Smoothness loss Accuracy (%) Robustness (%)

AT 85.90 ± 0.57 53.42 ± 0.59
+ LSI ‖𝑓 (𝒙′;𝜽) − 𝑓 (𝒙;𝜽)‖22 85.49 ± 0.50 55.38 ± 0.32
+ TRADES-AWP ‖𝑓 (𝒙′;𝜽′) − 𝑓 (𝒙;𝜽′)‖22 85.52 ± 0.29 55.82 ± 0.46
+ LSIW (ours) ‖𝑓 (𝒙′;𝜽′) − 𝑓 (𝒙;𝜽)‖22 85.63 ± 0.13 56.46 ± 0.14

as an account for this phenomenon. Motivated by the above observa-
tions, we first proposed a new AT framework that enhances robustness
at each sample with strength adapted to its adversarial vulnerability.
We then realized it with a novel regularization method that jointly
smooths input and weight loss landscapes. Our proposed method is
ovel in a number of respects: (1) adapting regularization to instance-

wise adversarial vulnerability is new and contrasts the popular existing
strategy; (2) stabilizing logit against adversarial input and weight per-
turbation simultaneously is novel and more effective than the previous
approaches. Experimental result shows our method outperforms all
related works and significantly improves robustness w.r.t. the AT base-
line. Extensive ablation studies demonstrate the vital contribution of
the proposed instance adaptation strategy and smoothness regularizer
in our method.

In addition to finding that AT results in an uneven distribution of
adversarial vulnerability among training data, we also observed that
or a considerable proportion of samples the model was excessively
obust, such that even very large perturbations, making the sample
nrecognizable to a human, failed to influence the prediction made by
he network. One limitation of this work is that the proposed method,
lbeit effective in improving robustness, does not mitigate the issue
f ‘‘disordered robustness’’. Future work might usefully explore this
roblem to further improve the performance of AT. A better trade-off
etween accuracy and robustness is anticipated if disordered robustness
s alleviated.
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