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ABSTRACT

The extended mind theory proposes a new perspective on human
cognition by expanding it beyond organic, internal mechanisms to
external systems that functionally integrate with the mind. With on-
going breakthroughs in immersive extended reality (XR) technolo-
gies engaging the full range of sensory and perceptual modalities,
we now have an unprecedented opportunity to bring this theory into
practice. To capitalize on XR’s potential for realizing full brain—XR
integration as eXtended cognition, this research introduces a three-
pillar framework: measurement, modeling, and modulation of per-
ception. My doctoral research is framed within the ChronoPilot
project, which specifically investigates the modulation of time per-
ception in XR. Within this framework, I have implemented two
components: EEG-based measurement and XR-driven modulation
of perceived time. The final phase of my work focuses on modeling
time perception through deep learning applied to biosignals such as
EEG and eye-tracking data. Together, these three components form
the basis for an online loop in XR that modulates perception in real
time, enabling extended cognition.

Index Terms: Extended cognition, extended reality, perception,
biosignals, deep learning, time perception.

1 INTRODUCTION

The extended mind theory [2] attributes cognition to any external
systems that functionally couple with the mind, such as notebooks,
calculators, or digital devices, considering them integral parts of the
cognitive process when they operate seamlessly with internal men-
tal states. For example, when a person routinely uses a notebook
to store information they cannot recall internally, the notebook be-
comes part of the overall cognitive system. In this case, the human
agent and the external system are functionally integrated, forming
a unified process of memory and reasoning.

Based on this view, extended reality (XR) is uniquely suited to
enable the experience of extended cognition for several reasons. As
XR technologies advance rapidly, we gain access to all sensory and
perceptual modalities, allowing us to augment information flow or
focus it selectively for directing attention within virtual environ-
ments. Secondly, our access to cognitive input channels is not only
comprehensive but also customizable. This enables the selective
amplification or suppression of specific modalities beyond the lim-
its of natural experience (e.g., enhancing auditory cues over visual
ones) to more efficiently meet the demands of a given setting. Fi-
nally, and most significantly, the immersive quality of XR blurs
the boundaries between real and virtual environments, enabling a
seamless and intuitive integration between mind and system.

Nevertheless, XR is more than merely a suitable platform for ex-
tended cognition. While the extended mind theory includes external
systems as part of cognition, these systems are typically construed
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as epistemic tools whose integration depends on deliberate and sus-
tained cognitive engagement by the human agent. However, in XR,
real-time, fine-grained control over the environment enables the ex-
ternal system to initiate the engagement through the modulation of
perception, even when the user is cognitively passive. This gives
rise to a distributed form of agency that turns the system into an ex-
ternal agent. This, in turn, paves the way for delegating agency to
various external entities, such as another person, a domain expert,
an Al system, or even a collective mind.

2 BACKGROUND

Perception is a subjective and internally constructed experience that
injects a personal narration of reality into cognition. For this rea-
son, perception and its illusions across different modalities have
long been intriguing subjects of scientific study. However, deliber-
ately modulating perception to trigger specific cognitive processes
or interpretations is a relatively new research trajectory.

With no dedicated sensory organ and a high plasticity under a
wide range of internal and external influences, time perception has
a greater subjectivity than other modalities, such as vision or hear-
ing. Yet, distortions in time perception critically affect vital func-
tions, ranging from speech recognition and motor control to higher
cognitive processes such as decision making. ChronoPilot [1] is a
pioneering project exploring time perception modulation in XR. Its
goal is to utilize multiple sensory modalities, such as vision, audi-
tion, and haptics, within an XR platform to influence psychological
states, in order to enhance well-being and facilitate collaboration.

My doctoral research builds on ChronoPilot’s foundation by de-
veloping a pipeline for objective measurement, data-driven mod-
eling, and XR-based modulation of time perception to establish a
real-time loop for seamless integration between the brain and the
virtual environment.

3 RESEARCH APPROACH

To translate the concept of extended cognition into a practical XR
framework, I structured my research around three core components:
the measurement, modeling, and modulation of perception.
Measurement. A basic requirement for such an XR framework
is the ability to sense the user state. This state may be physical
(e.g., posture and locomotion), physiological (e.g., heart rate and
body temperature), or psychological (e.g., emotions and cognitive
load). The first two types of user state can be quantitatively assessed
using motion sensors and wearable biosensors. In contrast, the psy-
chological state—such as perceptual experiences—is traditionally
measured through self-report questionnaires, which are subjective,
unreliable, and often inaccurate, but most importantly, incompati-
ble with real-time feedback loops. Therefore, to integrate percep-
tion within a virtual environment, it must be mapped to one or more
physiological signals that can be quantitatively sensed in real time.
This mapping enables objective measurement, which in turn pro-
vides the basis for building data-driven models of perception.
Modeling. Data-driven modeling with deep learning translates
sensed biosignals into perceptual states in real time. In this pro-
cess, the most immediate issue is data scarcity for training models,
due to the difficulties of collecting biosignals. To address this, deep
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Figure 2: Brain activity in time perception states (adapted from [3]).

generative models can be used to synthesize additional samples and
augment bio-datasets. However, unlike Al-generated visual or tex-
tual samples, whose plausibility can be evaluated intuitively, syn-
thesized biosignal samples demand novel, expert-driven validation
methods.

Modulation. This component transforms a basic adaptive XR
environment into an external agent. With knowledge of the user’s
perceptual state and based on expert-defined prescriptions, the ex-
ternal agent adjusts the environment to influence the human agent’s
perception and elicit a desired cognitive state.

4 PROGRESS AND RESULTS

Measurement. For an objective measure of time perception,
we investigated electroencephalography (EEG) as the intermediate
biosignal, selected for its affordability, portability, and high tem-
poral resolution. We developed a dataset of 1,386 EEG recordings
across eight channels. Each sample was collected while participants
were exposed to time perception modulation in different modalities
and performed a timing task [3]. Samples were sorted based on par-
ticipants’ performance on the timing task into three groups: overes-
timation, correct estimation, and underestimation. After processing
the EEG signals with different analysis methods, we observed a
clear mapping between brain activity pattern and the perception of
time (Fig. 2).

Modulation. Numerous recent studies have tested traditional
time perception modulators in virtual environments, showing that
they influence our sense of time similarly across virtual and phys-
ical environments [4]. However, the effect of XR-native features
such as embodiment on time perception remains understudied. To
take advantage of XR’s potential as a toolbox of time perception
modulators, we conducted a study to test the effects of user engage-
ment and environmental dynamics.

Figure 3: Four conditions, formed by permuting two features: user
engagement and environmental dynamics (adapted from [4]).

The study’s findings indicate that users who are actively engaged
in the virtual environment tend to experience time compression,
whereas passive observers in dynamic environments report a sense
of time expansion.

5 FUTURE WORK

Modeling. Using two studies [3, 4], we created two datasets
of biosignals, including EEG and eye-tracking. The signals were
recorded over varying durations, ranging from two to 70 seconds,
and labeled with duration estimation error. While fundamental sig-
nal processing analyses established EEG as a reliable metric for
time perception, the next step is to apply deep learning techniques
to develop classification and regression models that predict per-
ceived duration in real time.

Furthermore, we have collected eye-tracking data and a range of
other biosignals, including heart rate and skin conductivity. These
can be further explored to augment EEG-based measurement, iden-
tify complementary markers for time perception, and support the
development of more accurate and stable predictive models.

6 CONCLUSION

Advances in XR technologies and data-driven modeling have made
the concept of extended cognition an achievable goal. My research
contributes to realizing this vision by structuring around the mea-
surement, modeling, and modulation of perception within an XR
framework. At this stage, we have successfully defined an objec-
tive measure of time perception, modulated it in virtual reality, and
created biosignal datasets to support the development of predictive
models as the next step.
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