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Figure 1: Interval timing error predictions on 270 unseen test samples.

ABSTRACT

Humans do not perceive reality directly, but rather experience a
subjective narrative shaped by internal mental states. Research
has long sought to understand and measure the accuracy of per-
ception across various sensory modalities and cognitive processes.
Recent advances in wearable biosensors and data-driven modeling
offer new opportunities to link physiological signals with percep-
tual distortions. However, most prior work treats perceptual error
as a discrete or categorical phenomenon, neglecting its continuous
nature. In this study, we investigate whether the magnitude of time
perception errors can be predicted from brain activity. We trained
deep regression networks on 1,386 EEG samples collected from 33
individuals performing interval timing tasks in virtual reality (VR),
labeled with normalized estimation error. Our models achieved a
mean absolute error (MAE) of 0.25 and mean square error (MSE)
of 0.11 in predicting perceptual error percentage on unseen sam-
ples, corresponding to an average error of 14% relative to the central
range [–0.75 to 1]. Despite the relatively small dataset, our results
demonstrate that EEG signals in VR carry sufficient information to
approximate users’ perceptual timing errors in real time. This opens
a design space for temporally adaptive interfaces that can sense and
respond to fine-grained distortions in perceived time.

Index Terms: Time perception, electroencephalography, deep
learning, regression, user experience, virtual reality.

1 INTRODUCTION

Human perception offers a subjective interpretation rather than an
exact reflection of the external world or objective reality. Instead,
it provides an efficient and approximate internal model, shaped by
physical, physiological, and psychological states, to support and
trigger responses considered optimal from an evolutionary perspec-
tive. The representational power of perception, as well as its sus-
ceptibility to systematic distortions and illusions, has long been a
fascinating topic for academic research. While much of this work
has primarily centered on visual perception [15, 44], similar phe-
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nomena have been observed across other sensory modalities, such
as auditory [49] and tactile perception [26].

Our perception of time is similarly subjective, yet research on
temporal perceptual errors remains relatively limited. Factors such
as age, personality traits, neural state, mood, cognitive engagement,
and the nature of an event can all influence how fast or slow time
seems to pass [2, 6, 10, 13, 46, 50]. For example, emotionally
charged episodes or simply observing something out of context are
perceived as lasting longer than their actual duration [45, 52]. Con-
versely, we might perceive time as passing faster when an object is
moving toward us or during immersive activities like playing video
games in virtual reality (VR) [38, 40]. This perceived pace and sub-
jective experience of time is integral to how we make sense of and
interact with the world [31].

The discrepancy between objective reality and our subjective
perception presents both risks and opportunities. For example, the
size-speed illusion has been implicated in rail accidents at level
crossings [11], while an entire multi-billion-dollar industry was
built upon the illusion of motion [1]. Another prominent exam-
ple is VR as an emerging technology that systematically exploits
perceptual gaps to enhance immersion and interactivity. From
foundational elements like locomotion techniques and body owner-
ship [12, 18] to modalities like temperature, taste, and smell [8, 9],
the effectiveness of virtual environments lies in creating increas-
ingly persuasive perceptual illusions. Therefore, actively mon-
itoring user perception helps to fine-tune perceptual modulation
through an online control loop. Such monitoring is not only fea-
sible but increasingly essential, given recent advances in extended
reality (XR), artificial intelligence (AI), wearable biosensing, and
the growing computational capabilities enabling data-driven mod-
eling.

These developments have paved the way for a paradigm shift
in the design of smart and adaptive user interfaces (UIs), with the
possibility of sensing and responding to users’ momentary percep-
tual and psychological states. Although still relatively underex-
plored, time perception offers a rich lens into attention, emotion,
cognition, and decision-making. Especially with regard to UI de-
sign, monitoring time perception in contexts such as waiting time,
decision-making interval, and system response can preempt interac-
tion issues by detecting perceptual deviations from the actual pace
of events [19, 28, 43, 48]. Furthermore, aligning system behavior
with users’ subjective sense of time or improving temporal coor-
dination in remote collaboration settings can enhance user experi-
ence (UX), promote smoother human-computer interaction (HCI),
and support focus and productivity [7]. However, an objective and
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real-time measure of time perception remains the missing link in re-
alizing such intelligent and personalized UIs, with this work aiming
to address that gap.

2 RELATED WORK

In general, perception is a challenge to measure. When it comes
to time perception, this challenge increases in complexity because
of uncertainty about the mechanisms responsible for temporal pro-
cessing.

Time perception is traditionally measured using timing tasks,
typically designed in four formats: production, reproduction, ver-
bal estimation, and discrimination. In production tasks, participants
produce a specified duration through a motor response (e.g., press-
ing a button for n seconds). In reproduction tasks, they first ex-
perience an interval and then reproduce the duration with a motor
response (e.g., pressing a button for as long as an X was displayed
on the screen). Verbal estimation tasks similarly expose participants
to an interval first, but the duration judgment is quantitative (e.g.,
reporting the duration in seconds). In discrimination tasks, partici-
pants are presented with two intervals and asked to judge which one
was longer in duration [5, 30, 36, 51]. However, these approaches
rely on self-reporting, which is inherently subjective and prone to
misunderstanding, memory lapses, and both personal and central
tendency biases [3, 24, 30, 42].

In the last two decades, researchers have turned to various
neuroimaging techniques, such as positron emission tomography
(PET), electroencephalography (EEG), magnetoencephalography
(MEG), functional magnetic resonance imaging (fMRI), and func-
tional near-infrared spectroscopy (fNIRS), to better understand the
neural mechanisms underlying time perception [23, 32, 35, 47].
This transition has fueled more ambitious efforts to develop ac-
curate and objective measures of time perception. In this regard,
the high temporal resolution and affordability of EEG made it a
prominent candidate among other neuroimaging techniques. Con-
sequently, a growing number of studies in recent years have used
EEG as an objective metric to evaluate time perception [14, 16, 20,
21, 25, 33, 34, 37, 39]. These studies recorded and analyzed EEG
signals using various methods, such as power spectral analysis, the
extraction of event-related potentials (ERPs), and time-frequency
analysis to identify neural correlates of specific states of time per-
ception, including overestimation, accurate estimation, and under-
estimation of durations. While these methods offer a high degree
of objectivity, their analyses are inherently offline, rendering the re-
sults unsuitable for use in real-time feedback loops, such as those
in personalized, adaptive virtual environments.

In recent years, a small but growing number of studies have be-
gun to explore online analyses of time perception, using machine
learning (ML) techniques and neural networks for real-time clas-
sification and prediction of perceptual deviations in timing. Or-
landic et al. trained an eXtreme Gradient Boosting (XGB) model
on biosignals collected from 18 participants using wearable sen-
sors, achieving a weighted F1 score of 77.1% in classifying sub-
jective passage of time into fast and slow categories [41]. Taking
a different approach, Fountas et al. adapted a pre-trained convolu-
tional neural network (CNN) to predict the estimated duration of
short videos based on the video content, participants’ attention lev-
els, and the type of timing task [17]. Hallez et al., following a sim-
ilar approach, developed a recurrent neural network model called
Cognitive and Plastic RNN-Clock to simulate the human timing
mechanism, based on four features: cognitive plasticity, attention
to the passage of time, memory, and the ability to learn duration es-
timation [22]. In an ambitious effort, Aust et al. tested 11 machine
learning algorithms on physiological data alone for the binary clas-
sification of subjective time perception. They achieved an accuracy
of 79% using a support vector classifier [4].

These studies provide a valuable roadmap for assessing percep-

tual timing errors within an online feedback loop. However, their
methodologies either depend on pre-existing information about
users or the detailed content of the experienced environment, or
are based on mapping responses onto binary (e.g., correct/incorrect,
overestimation/underestimation) or limited categorical classes (e.g.,
fast/slow, short/long). While the former approach is unsuitable for
real-time feedback in generalizable adaptive environments, the lat-
ter one reduces the continuity of perceptual experience to a few pre-
defined labels. To the best of our knowledge, this study is the first
to explore a generalized, cross-individual mapping of biosignals for
capturing continuous errors in time perception.

3 METHODOLOGY

In this work, we leverage an existing EEG dataset to investi-
gate whether errors in subjective time perception can be quanti-
tatively predicted from brain activity. We frame perceptual er-
ror as a supervised learning problem, modeling the relationship
between neural signals and deviations in perceived duration as
a regression task. This framing is grounded in the assumption
that EEG signals encode cognitive and perceptual states relevant
to time perception. Previous work has established a strong and
reliable correlation between EEG patterns and temporal process-
ing [14, 16, 20, 21, 27, 29, 37], but few studies have explored
whether these signals can support direct, continuous prediction of
subjective temporal error. However, our design raises beyond tra-
ditionally aggregated and categorical analyses and enables trial-by-
trial modeling of perceptual error in timing. By modeling this rela-
tionship, we aim to detect and extract hidden markers of perceptual
distortion in real time. A successful predictive model would serve
as proof of concept that biosignals, such as EEG signals, can re-
veal internal perceptual states with sufficient resolution to support
closed-loop systems. This opens the door to adaptive user inter-
faces that respond not only to observable behavior, but also to the
underlying perceptual states, which are particularly useful in XR,
attention-sensitive environments, or systems involving time-critical
decisions.

3.1 Dataset

The dataset used in this work was developed in the context of earlier
research [39] investigating EEG signatures associated with three
time perception states: overestimation, underestimation, and cor-
rect estimation. We recruited 33 participants, each of whom com-
pleted 42 randomized interval-timing trials, estimating the duration
of 2-, 4-, and 6-second trials while exposed to various time percep-
tion modulators (See Fig. 2).

Figure 2: A schematic overview of the dataset creation process.

EEG signals were recorded during the trials from Fz, C3, Cz,
C4, Pz, PO7, Oz, and PO8 channels, based on the standard 10–20
EEG system, using an 8-electrode Unicorn Hybrid Black headset1
(Fig. 3). A total of 1,386 EEG samples were recorded with a sam-
pling rate of 250 Hz, with high- and low-pass cutoff frequencies

1https://www.unicorn-bi.com
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set at 0.05 and 80 Hz, respectively. Collected samples were pre-
processed to remove artifacts (e.g., head movement, blinks) with
Independent Component Analysis (ICA) [39].

Fz

Cz

Pz

Oz

C3 C4

PO7 PO8

Figure 3: Locations of the EEG device’s electrodes on the head.

We used 12 columns from the original dataset, including eight
EEG channels recorded as time series, type of time perception mod-
ulator presented during trial, trial duration, participant-trial identi-
fier, and participant error in estimating duration. Error in estimat-
ing duration was calculated by subtracting the objective duration
from the estimated duration and normalized by the objective du-
ration, such that negative values indicate underestimation, positive
values indicate overestimation, and zero indicates accurate estima-
tion. The data samples had the shape (t,12), where t is the number
of data points in the EEG time series. The constant features were
broadcast across all time points to fill their respective columns.

3.2 Preprocessing

Shape Standardization EEG signals were recorded for dura-
tions of 2, 4, and 6 seconds, resulting in 1,386 samples of vary-
ing lengths. We restructured the original dataset using three ap-
proaches. First, we extracted the final 499 rows from each sample,
corresponding to approximately 2 seconds of the original record-
ings based on the EEG device’s sampling rate. We used 499 rows,
instead of 500, to preserve more samples, as many recordings con-
tained fewer than 500 time points. Six samples contained fewer
than 499 time points and were therefore excluded, resulting in 1,380
2-second samples, each with shape (499,12). Second, to increase
the number of samples and exhaust the entire recordings, we ex-
tracted the remaining rows from 4- and 6-second samples, split-
ting them into 2, and 3 samples, respectively. This restructured the
data to 2,763 2-second samples with the same shape as the first
approach. Finally, repeating this procedure with 249 rows, corre-
sponding to nearly 1 second, we created a third dataset of 5,542
1-second samples, each with shape (249,12).

EEG Signal Analysis EEG signals were processed with three
analyses. First, we performed Fast Fourier Transform (FFT) on
each EEG channel to compute spectral power across five stan-
dard frequency bands: delta, theta, alpha, beta, and gamma. This
produced 40 new features—5 bands per channel across 8 chan-
nels—and compressed each time series into a single row with shape
(1,44). Next, we computed wavelet entropy for each EEG chan-
nel time series to quantify signal complexity and dynamics. This
analysis also collapsed time series and added entropy values to
the dataset, reshaping each sample to (1,12). Finally, we applied
Hilbert analysis to each EEG channel to extract four key time
series: envelope reflecting amplitude modulation; instantaneous
phase, capturing the signal’s position within its oscillatory cycle;
instantaneous frequency, measuring moment-to-moment changes
in oscillation rate, and fine temporal structure, representing sub-

tle amplitude-normalized fluctuations. These added a further 32
features to the dataset, with a sample shape of (t,36).

We also processed the categorical feature representing the time
perception modulator into a quantitative variable, Modality. In
the original experiment, participants were exposed to five types of
stimuli alongside a control condition. Based on their content, we
grouped the stimuli into four categories: animated, visual, auditory,
and blank (i.e., control), and encoded the feature into a quantitative
variable, accordingly.

Dataset Partitioning We split the dataset into training and test
sets with an 80–20% ratio and used cross-validation to allocate 20%
of the training set for validation. However, to obtain a balanced test
set without data leakage, three criteria had to be met. The original
dataset is highly imbalanced, with about 57% of the samples be-
longing to the underestimation time perception state (i.e., negative
labels). Therefore, first, we needed to ensure that the test set con-
tains nearly equal numbers of negative, positive, and zero labels.
Furthermore, we aimed to balance the test set with respect to dura-
tion variation. Therefore, as longer samples were split into smaller
ones, we observed a 1:2:3 ratio for 6-, 4-, and 2-second samples,
respectively, within each of the three label groups. Furthermore, to
prevent data leakage, it was critical to assign all split segments from
a single original sample to either the train or test set. Ultimately, we
randomly selected 45 2-second, 30 4-second, and 15 6-second sam-
ples from each label group, resulting in 270 samples for the test
set. We used the same samples for the test set across all dataset
variations.

Feature Normalization We first normalized the training sets
by applying robust scaling to the EEG signals and min-max scaling
to the modality and trial duration features. The scaling parameters
computed from the training sets were then used to normalize the
test sets.

3.3 Models and Training
In order to evaluate the complexity of the patterns within the
datasets, we implemented three neural network architectures: a
feedforward network, a CNN, and a long short-term memory
(LSTM) network. At this stage, the dataset size was insufficient
for using more complex architectures, such as the Transformer.

Feedforward This is a fully connected network for regression,
with seven hidden layers (128–1024 neurons with ReLU activa-
tions) arranged symmetrically.

CNN A convolutional network for regression with three
Conv1D layers (128, 512, 1024 filters; kernel size of 3; and ReLU
activations), each followed by batch normalization and dropout (0.3
and 0.5). This is followed by a global average pooling layer that
connects to dense layers (512, 256, and 64 neurons).

LSTM This is a recurrent regression network with three LSTM
layers (128, 512, and 1024 units), each followed by batch normal-
ization and dropout (0.3 and 0.5), connected to dense layers (512,
256, and 64 neurons).

Training Each of the 27 configurations (3 sample sizes × 3 sig-
nal analyses × 3 network architectures) was trained over three in-
dependent runs using the Adam optimizer (learning rate 10−4) to
minimize mean squared error (MSE), while mean absolute error
(MAE) was computed as an evaluation metric.

4 RESULTS

Across all configurations, the mean MAE on the unseen test set
was 0.25 (±0.008), which corresponds to approximately %14 of the
label range (see Tab. 1). However, the CNN architecture that was
trained using the Hilbert analysis with 2,763 samples demonstrated
the best performance (see Fig. 4 and Tab. 2).
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Table 1: Average performance of 27 configurations.

Test Train
MAE MSE MAE MSE

mean 0.25 0.11 0.22 0.42
std 0.01 0.01 0.02 1.23
min 0.23 0.10 0.18 0.06
max 0.27 0.15 0.27 5.31

Figure 4: Test MAE across architectures and analyses.

Table 2: Best performances based on test MAE.

Best Architecture Best Sample Size
Entropy CNN 5542

FFT LSTM 2763
Hilbert CNN 2763

5 DISCUSSION

Our results demonstrate the feasibility of trial-by-trial modeling of
perceptual timing errors. As shown in Fig. 1, the model closely
follows the general trends in the data. This is particularly notable
considering the noisy nature of EEG signals. On average, the model
predicted subjective timing errors with a 14% deviation relative to
the normalized label range. This corresponds to approximately 0.3
seconds for 2-second and 0.8 seconds for 6-second trials.

Our best result was achieved by the CNN trained on Hilbert time
series with 40 features; however, on average, wavelet entropy with
the fewest features outperformed the other analyses. This likely
reflects the small dataset size, which favors simple representations
rather than the analyses’ true predictive power. Together with the
similar performance of CNN and LSTM architectures, this finding
indicates that the temporal dynamics of EEG signals are not essen-
tial to predict subjective time perception. Regarding sample size,
including the full recorded signals (2,763 2-second samples) im-
proved performance. However, reducing the segment length to 1
second, to increase the dataset size to 5,442 1-second samples, led
to weaker results. This suggests that 1-second segments may be in-
sufficient to capture meaningful information about time perception.
Nonetheless, the variation in test MAE values was small, and these
trends are inconclusive.

Although our models did not outperform those of Fountas et
al. [17] and Hallez et al. [22] in predicting fine-grained percep-
tual errors in duration estimation, they offer a generalizable, online
framework that is trained only on EEG signals, without requiring
insight into individuals’ cognitive capabilities or details about the

content of their experience. Such an online, generalizable method
represents the most direct advance to date toward real-time percep-
tual feedback loops in virtual environments.

5.1 Limitations and Future Work

As illustrated in Fig. 1, the model does not fully capture the variance
of the dataset, tending to generate a conservative and smoothed pre-
diction curve. This pattern suggests underfitting, which may result
from insufficient model complexity. In this study, we avoided us-
ing more complex architectures due to the small size of the dataset.
Future work will use generative and autoencoder models to create
synthesized samples and augment the dataset. Additionally, incor-
porating other physiological signals could improve training feature
stability by balancing potential EEG signal noise. This may also
help capture other dynamics and improve the network’s ability to
accurately model time perception.

6 CONCLUSION

In UX research, perceptual modalities are often approached as clas-
sification problems or addressed with offline analyses that need
high levels of personalization. We argue that biosignals, and par-
ticularly electroencephalography, are a rich source of information
about perceptual states, enabling the development of generalized
models that can continuously track perception and its small devi-
ations from reality. The prototype predictive models discussed in
this paper resulting from EEG-based deep regression on perceptual
timing data in VR demonstrate the practicality and potential of real-
time cognitive state inference for designing temporally aware HCI
approaches. The successful implementation of such models will
bring us closer to achieving truly adaptive virtual environments and
intelligent user interfaces.
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