Les algorithmes Minimax et Minimax(c,(3)

Application au jeu de Dames

Nicolas Bernard
n.bernard@lafraze.net

18 juin 2001

Le programme de dames a été réalisé avec
Objective Caml 3.0 et Emacs 20.7 sur un
systéme Linux (kernel 2.4).

Le présent rapport a été réalisé avec IXTEX 2¢.
Les arbres ont été dessinés grace a 1’extension
PSTricks.

TABLE DES MATIERES

Table des matiéres

Introduction

1 L’algorithme Minimax

2 L’algorithme Minimax avec coupures « et (3
Conclusion

A Le CD-Rom et notre programme
A1 Contenudu CD-Rom
A.2 Notre programme de dames

Bibliographie

13

17

19
19
19

23

TABLE DES MATIERES

Introduction

L’intelligence artificielle et le probléme du jeu de
I’ordinateur

Dans les années quarante, les premiers ordinateurs sont apparus, dont
le plus célébre est sans doute le premier, TENTAC. Il s’agissait surtout de
calculateurs fonctionnant en logique cablée, des centaines de cables devant
étre débranchés puis rebranchés lorsque I'on voulait traiter un probléme dif-
férent. Puis avec 'apparition de ce que von Neumann appelle le “controle
en mémoire” ([6]'), sont vraiment apparues des machines méritant le nom
d’ordinateurs). Or le désir de 'homme de créer une machine a son image
est antérieure a ’essor de la science-fiction dans les années soixante-dix: que
les sceptiques regardent Métropolis de Fritz Lang! L’incroyable puissance de
calcul (pour I'époque) de ces ordinateurs a suggéré a certains que 1'un des
problémes qui semblaient jusque la insurmontables, celui de créer une intelli-
gence comparable a celle de ’homme, pouvait peut-étre étre surmonté! C’est
a cette époque qu’Alan Turing a publié son article désormais célébre “Les
ordinateurs et 'intelligence” dans la revue Mind ([7]) et que, dans la foulée,
s’est créée une discipline nouvelle: 'intelligence artificielle, que 'on abrége
fréequemment en IA ou, en anglais, Al

Il se trouve que I'un des problémes semblant mettre en oeuvre l'intelli-
gence sans étre trop complexe a formaliser est celui des jeux, en particulier
les échecs et les dames, c’est sans doute pourquoi le jeu de dames fut 'un des
premiers sujets étudiés par I'TA et notamment dés 1947 par Arthur Samuel.
Le but originel de celui-ci était de faire de la publicité afin de récolter de 1’ar-
gent pour sa discipline. Pour ce faire, il avait décidé de programmer un jeu
de dames qui devait remporter le championnat organisé quelques mois plus
tard dans une ville voisine. En 1983, il devait écrire “A I’époque, il semblait
parfaitement raisonnable de croire que nous allions assembler un ordinateur
en quelques mois, et que j’allais rédiger un programme de dames [...|] qui

1. voir la bibliographie en fin de document.

6 INTRODUCTION

défierait et finalement battrait le nouveau champion du monde. Cela nous
aurait fourni la publicité dont nous avions besoin. Ot s’arréte la naiveté? 2” 1l
lui fallut finalement quinze ans pour réaliser un programme de niveau conve-
nable, créant au passage des techniques toujours utilisées aujourd’hui, par
exemple par l'ordinateur Deep Blue d’IBM, et mettant en oeuvre un algo-
rithme implémenté dans la quasi totalité des jeux actuels, le Minimax?.

Le jeu de Dames

Si la plupart des gens savent jouer au dames, il faut néanmoins préciser
qu’il en existe de multiples régles. Le jeu le plus couramment pratiqué en
France est le jeu de dames polonaises, qui se déroule sur un damier de cent
cases avec vingt pions par joueur posés sur les cases noires des quatre lignes
les plus proches du joueur. Les noirs commencent la partie. Un pion se déplace
en diagonale d'une case a la fois. Un pion prend une piéce adverse située a
coté (en diagonale!) de lui en passant par dessus a condition qu’une case soit
libre derriére et, de la, il peut éventuellement en prendre un ou plusieurs
autres dans le méme tour. Une prise multiple ainsi réalisée s’appelle une
rafle. Si un joueur peut prendre un pion, il doit le faire; cependant dans le
cas contraire, le joueur adverse peut, a son tour, souffler la piéce qui aurait di
prendre puis jouer normalement: c’est la régle du “souffler n’est pas jouer”*.
Le joueur n’est pas obligé de choisir le coup qui prendra le plus de piéces
mais, lorsqu’il a commencé a bouger I'une d’elles, il doit prendre toutes celles
qui se présentent. Lorqu’un pion d'une couleur arrive a la ligne de départ des
pions adverses, il y a “Dame”. Il est alors chevauché par un autre pion de la
méme couleur. Une dame peut se déplacer dans les deux sens de plusieurs
cases a la fois, toujours en diagonale.

Les autres méthodes

Si, comme nous l'avons dit, I’algorithme minimax (et surtout sa variante
plus raffinée, le minimax(«,3) (voir plus loin)) est utilisé dans 'immense
majorité de ce type de jeux (Dames, Echecs, Backgammon, Go, ...) pour faire
jouer l'ordinateur, il existe cependant d’autres méthodes. Ainsi David Fogel

2. Cité dans [4].

3. Le lecteur intéressé pourra consulter [5] pour les principes fondamentaux ainsi que
[4] pour D’histoire de I'TA

4. Dans la pratique, cette régle complique de fagon significative le programme informa-
tique et son utilisation augmente le nombre de coups possibles diminuant les possibilités
d’exploration de ’arbre de jeu et par 14 le niveau du programme.

INTRODUCTION 7

et Kumar Chellapilla ont créé un programme de checkers® avec un réseau

neuronal qu’ils ont fait évoluer en utilisant des méthodes darwiniennes. Le
programme de la 230" génération s’est montré capable de battre un humain
chevronné, se classant juste derriére les maitres et les experts (|1]). De telles
méthodes sont cependant encore rares...

5.1l s’agit de la version américaine des dames: elle se joue sur un damier de soixante-
quatre cases avec douze pions par camp.

INTRODUCTION

Chapitre 1

L’algorithme Minimax

Les origines de 1’algorithme datent des années 1940. La théorie sous-
jacente est la Théorie des Jeux, développée par John von Neumann et Emile
Borel vers 1928, dans laquelle on trouve le Théoréme du Minimax, et 1’al-
gorithme aurait été, si on croit [4], inventé en 1947 par Claude Shannon
(c’est-a-dire un an avant sa théorie de I'information. ..).

Cet algorithme est basé sur la possibilité de représenter les suites de coups
(les stratégies) de jeu par un arbre: c’est ce que I’on fait quand on joue “si je
fais ca, il peut faire ca et je pourrais alors faire...mais §’il fait ...et si moi
je faisais...”

si je fais t si moi je faisais...

..alors i

Et l'on pourrait poursuivre cet arbre, étudiant tous les coups possibles,
jusqu’a la fin du jeu. Le probléme, et il est de taille, c’est que, partant du
début du jeu jusqu’a sa fin, ’arbre est tellement grand qu’il est impossible
de I'explorer entiérement: en imaginant que I'ordinateur le plus puissant que
nous puissions construire ait commencé cette exploration au big bang!, il

1. Si, comme Fred Hoyle, vous doutez de la théorie du big bang, vous pouvez lire “il y
a une quinzaine de milliards d’années”!

10 CHAPITRE 1. L’ALGORITHME MINIMAX

n’aurait pas encore terminé son exploration aujourd’hui!!! Et il faut noter
qu’il faut aussi construire I'arbre, ce qui peut se faire au fur et & mesure de
I’exploration ou préalablement, mais prend dans tous les cas du temps et de
la place...

C’est pourquoi ’exploration de I'arbre ne se fait pas en totalité: dans la
pratique, on tronque l’arbre, c’est-a-dire que l'on se contente de l'explorer
sur une profondeur de quelques coups, le temps mis pour cette exploration
augmentant exponentiellement avec le nombre de coups...

Cet algorithme est donc une exploration en profondeur de ’arbre du jeu
qui nécessite une fonction qui nous permette de connaitre tous les coups
possibles (en respectant les régles du jeu bien sar) a partir d’une position
donnée ainsi qu’une fonction qui puisse évaluer une configuration donnée et
lui attribuer un score. Le principe de I'algorithme est donc, & partir d’une
certaine position du jeu, de construire ’arbre jusqu’a une certaine profondeur
puis d’appliquer la fonction d’évaluation aux feuilles (alors qu’il faudrait
appliquer la fonction de construction des coups possibles si nous voulions
“faire pousser les branches” c¢’est-a-dire construire ’arbre avec une profondeur
d’un coup supplémentaire).

Prenons un exemple trés simple: on explore I’arbre avec une profondeur
de 1: cela correspond a jouer le coup qui offre le plus de possibilités immé-
diates (le meilleur score) sans prendre en compte la riposte de ’adversaire.
Comme le but dans ce cas est de maximiser notre score, on appelle cela une
étape mazimisante; on peut dire que 'on fait remonter le score maximum.

Cependant, il est bien sir inutile d’espérer aller trés loin avec une telle stra-
tégie (que l'on pourrait qualifier de myope, une stratégie aveugle étant de
jouer aléatoirement) dans un jeu comme les dames ou les échecs: en effet, la
riposte de ’adversaire pourrait faire perdre tout le bénéfice du coup, alors
qu'un autre, moins bon a premiére vue, aurait permis de limiter les dégats,
comme dans cette extension a une profondeur de 2 de notre arbre précédent,
ou I’étape rajoutée est une étape minimisante, car on fait cette fois remonter
le minimum “dans” les noeuds intermédiaires avant de choisir, comme avant,
le maximum des scores de ces noeuds (donc en fait le maximum des minima).

11

/TN // RN //-'1\0\-3

|
105 - 11 27

Bien entendu, pour pouvoir réellement jouer correctement a un jeu tel
que le jeu de dames, une exploration a& une profondeur de 2 se révéle encore
insuffisante d’un point de vue tactique (notons au passage que le minimax
est un algorithme de tactique. Ce serait un algorithme de stratégie a condi-
tion d’explorer une trés grande partie, voire la totalité, de I’arbre de jeu)
et il faut considérer une profondeur minimale de trois ou quatre comme un
minimum. Le probléme c’est que, si 'on suppose que 1’on peut jouer 30 coups
en moyenne (ce qui est tout & fait possible si I'on considére toutes les pos-
sibilités de “souffler n’est pas jouer” comme le fait notre programme), c¢’est
qu’a une profondeur de 6 (ce qui correspond & prévoir 3 coups a I’avance),
on a alors 305 = 729000000 cas & évaluer... ce qui est difficile & faire dans
un temps suffisamment court pour que le joueur humain devant son écran ne
s'impatiente pas trop...

VAR
17 -1 0

12

CHAPITRE 1. L’ALGORITHME MINIMAX

13

Chapitre 2

L’algorithme Minimax avec
coupures « et 3

L’algorithme minimax avec coupures alpha et béta, ou plus simplement,
le minimax(«,3), parfois méme appelé “algorithme alpha-béta”, est dérivé du
précédent. L’idée est “d’élaguer” I'arbre de recherche de fagon a diminuer le
nombre de possibilités a étudier.

Les origines de cet algorithme sont floues: il semble qu’il ait été connu dans
les années 1950 ou I’élagage des arbres de jeu fait l'objet de nombreux ar-
ticles de Samuel, Shaw, Simon, McCarthy, Hart ou Edwars, mais, a I’époque,
souvent, confondu avec le minimax ordinaire. Une recherche effectuée sur in-
ternet associe a sa naissance le nom d’Alan Turing ou parfois de Claude
Shannon... Si ces deux péres de 'informatique se sont effectivement penchés
sur la question (Shannon aurait, on ’a vu, créé le minimax et Turing a inventé
le concept de “position morte”) ce n’est, si 'on en croit [2] qu’en 1969 qu’il
aurait été décrit précisément pour la premiére fois dans 'article Fxzperiments
with some programs that search games trees de Slagle et Dixon.

Son principe découle d'une remarque que l'on peut faire sur 'arbre que
I’on a donné en exemple pour le minimax:

2 W N 2//n\\ /TN

-1 5t -1 -1 -1 0 -3 1 -1

Si 'on regarde cet arbre, on s’apercoit qu’il n’est pas utile de I’explorer
entiérement: supposons que l’exploration se fasse en profondeur de gauche
a droite: dans la branche principale la plus & gauche remonte le score —1,

14CHAPITRE 2. L’ALGORITHME MINIMAX AVEC COUPURES a ET j3

par conséquent, comme dans la premeiére feuille de la seconde branche on
trouve le score —6, il n’est pas la peine de continuer a explorer cette branche,
puisque, quel que soit son score, il sera de toute facon inférieur a celui de
la premiére. Cela permet d’élaguer ’arbre en supprimant toutes les autres
feuilles de la deuxiéme branche! On peut répéter le raisonnement pour les
autres branches, et ’arbre élagué de cette maniére est finalement:

N |/ \ / N\
15 -1 -6 1 2 -

—_

On a réalisé sur cet arbre une coupure ov. D’une maniére plus mathéma-
tique, la coupure « est la borne inférieure d’'un noeud maximisant. De la
méme maniére, on peut définir la coupure 5 comme la borne supérieure d’un
noeud minimisant, ce qui est utile pour les étapes maximisantes...

Dans notre exemple (notez bien, vous pourriez penser que les valeurs des
feuilles ont été choisies pour que ¢a marche, mais ce n’est pas le cas: elles
ont été choisies au hasard), sur les seize feuilles originelles, on a ainsi pu en
supprimer sept, ce qui n’est pas mal, mais dés que ’arbre est plus grand,
ce sont des branches entiéres qui sont tronconnées, le nombre de coupures
augmentant.

C’est cet algorithme qui est utilisé dans la plupart des jeux d’échecs sur
ordinateur et que nous avons implémenté (en langage Caml) dans notre jeu
de dames. Voici son pseudo-code (réalisé a partir de deux codes en C trouvés
sur les sites du MIT et de CalTech):

état + (état actuel du jeu)

noeudmaz < faux

reste_a_wvoir < (profondeur de 'arbre a explorer)
alpha + —oco !

béta < +oo 2

Si (reste_a_woir = 0)V plus_de coup_possible
Alors évaluer état
Si noeudmax A (score > alpha)
Alors score < alpha
Si (—noeudmaz) A\ (score < béta)
Alors score + béta

1. dans la pratique, nous avons utilisé min_ int.
2. dans la pratique, nous avons utilisé maz_ int.

15

Sinon pour chaque coup possible
Générer le coup
mettre a jour état
Appeler minimaz récursivement avec —noeudmax et reste_a_wvoir — 1
Si noeudmax A (score_retourné > alpha)
Alors alpha < score__retourné
Si (—noeudmaz) A (score_retourné < béta)
Alors béta < score__retourné
Si alpha > béta
Alors retourner score (et sauter le reste de la boucle et de la fonction?)

Si noeudmax
Alors retourner alpha
Sinon retourner béta

Remarquons maintenant que si I'exploration de I’arbre avait commencé
par la branche du milieu (sur notre dessin), alors on aurait également pu
enlever des feuilles a la branche de gauche. Il n’y a pas de méthode “stricte”
pour savoir par quelle branche commencer I'exploration, mais on pourrait
encore optimiser ’algorithme de facon a ce qu’il “devine” quelle branche il
est le plus intéressant d’explorer en premier... C’est le domaine des méthodes
heuristiques.

3. en Caml, nous avons utilisé une exception.

16CHAPITRE 2. L’ALGORITHME MINIMAX AVEC COUPURES a ET j3

17

Conclusion

Si ’algorithme minimax peut convenir pour un jeu comme le morpion, ot
I’arbre du jeu est suffisamment petit pour étre exploré entiérement, ’explo-
sion combinatoire le rend inutilisable pour un jeu plus complexe tel que les
dames ou les échecs. On peut alors utiliser la variante avec coupures alpha et
béta afin d’élaguer 'arbre. Toutefois, si cela suffit a assurer a I'ordinateur un
bon niveau dans un jeu ot le nombre de coups possibles a chaque étape reste
modéré, tels les jeux de checkers ou d’othello, et si son niveau reste supérieur
a celui d’'un joueur occasionnel dans une variante plus complexe comme dans
les dames polonaises en tenant compte de toutes les possibilitées de “souffler
n’est pas jouer” que nous avons choisi d’implémenter, cet algorithme est en-
core, en I’état, insuffisant (compte tenu de la rapidité des machines actuelles)
face a un joueur expérimenté. Il est alors nécessaire de “I’aider”. Pour ce faire,
les programmes que 1'on peut trouver dans le commerce (ceux d’échecs no-
tamment; les programmes de dames commercialisés sont rares) utilisent des
méthodes heuristiques combinées a une base de donnée de parties types.

Quoi qu’il en soit, ce n’est probablement pas ce type d’algorithme qui
est utilisé par le cerveau humain pour jouer, ce qui rend intéressant des
développements tels que ceux basés sur les réseaux de neurones auxquels nous
avons fait allusion dans I'introduction. Néanmoins, une question se pose alors:
bien que I’on puisse le reproduire, bien que les régles lui aient été données au
départ, peut-on réellement dire que I’on comprend la facon de procéder d’un
réseau neuronal ayant subi un processus évolutionniste?

Une chose reste stire: sur le chemin de la vraie “intelligence articielle”,
malgré tout le chemin parcouru au cours des cinquante derniéres années,
comme ’écrivait déja Alan Turing pour conclure son article de 1950: “Notre
vision de l'avenir est limitée, mais du moins nous voyons qu’il reste bien des
choses a faire”.

19

Annexe A

Le CD-Rom et notre programme

A.1 Contenu du CD-Rom

Vous trouverez sur le CD-Rom joint la version 3.0 d’Objective Caml pour
Linux et Windows. Pour d’autres plateformes, veuillez vous reporter au site
officiel de Caml: http://caml.inria.fr/. Le cd-rom contient également le
code-source de notre programme (version 0.99) ainsi que la version exécu-
table pour Linux. Vous trouverez également le présent document au format
postscript.

A.2 Notre programme de dames

A.2.1 Configuration requise

— Systéme d’exploitation: Unix avec Xwindow, Windows (MacOS et tout
autre systéme sur lequel fonctionne Caml devraient également conve-
nir). Le programme a été testé avec Linux (kernel 2.2 et 2.4) et Xfree
4.0, Windows 9x. Nous recommandons Unix pour une meilleure esthé-
tique.

— Hardware: Ce programme a été testé et fonctionne correctement sur
plusieurs PC, munis de processeur Pentium, K6-2, Pentium 2 et Pen-
tium 3.

A.2.2 Installation et lancement

Pour utiliser la version interprétée du jeu, vous devez avoir une distribu-
tion d’Objective Caml installée sur votre machine. Consultez la documenta-
tion fournie avec la distribution pour I'installer. Le code-source de différentes

20 ANNEXE A. LE CD-ROM ET NOTRE PROGRAMME

versions d’Objective Caml, ainsi que les exécutables correspondants pour la
plupart des plateformes sont disponibles a ’adresse http://caml.inria.fr.

Si vous avez une plateforme sous Unix, vous devez créer un toplevel incluant
les bibliothéques Graphics et Unix en utilisant la commande

ocamlmktop -custom -o montoplevel graphics.cma unix.cma -cclib -1X11

ou si votre systéme place les bibliothéques X11 dans un autre répertoire,
comme Linux,

ocamlmktop -custom -o montoplevel graphics.cma unix.cma -cclib \
-L/usr/X11/1ib -cclib -1X11

Vous devez alors lancer I'interpréteur puis copier-coller le fichier source
dans sa fenétre ou utiliser la commande

#use '"chemin_et_nom_du_fichier" ;;

pour lancer 'interprétation.

La plupart des versions compilées nécessitent simplement d’avoir Objec-
tive Caml installé sur le systéme. Pour un fonctionnement correct, le pro-
gramme doit pouvoir écrire dans son répertoire.

A.2.3 Utilisation

Lors du lancement apparait une page de présentation comprenant en bas
une série de boutons.

Le premier permet de charger une partie sauvegardée. Vous étes alors
renvoyé a une autre page qui permet de choisir I'un des dix emplacements
de sauvegarde. Notez que le choix d’un emplacement ne comprenant pas de
sauvegarde provoquera l’arrét du programme.

Le second bouton permet de jouer a deux sur I'ordinateur.

Le troisiéme permet de jouer contre 1’ordinateur. Vous devez alors choisir
votre couleur.

Le dernier bouton permet de quitter le jeu sans jouer.

Comment jouer?

Quand c’est votre tour de jouer, vous devez cliquer sur le pion que vous
désirez bouger puis successivement sur les cases sur lesquelles il devra se
poser. En cas d’erreur, cliquez sur Annuler et rejouez. Quand vous voulez
exécuter ce coup, cliquez sur Fin de Tour. Si vous voulez souffler un pion,
cliquez dessus puis cliquez sur Souffler. Notez que si vous désirez souffler,
vous devez le faire avant de jouer. Vous pouvez quitter le programme avec le
bouton Abandonner/Quitter; pensez éventuellement a sauvegarder la partie
avant.

A.2. NOTRE PROGRAMME DE DAMES 21

Sauvegarder une partie
Vous pouvez sauvegarder une partie lorsque c’est a vous de jouer en cli-

quant sur Sauver puis en sélectionnant un emplacement et en confirmant.

Attention! Il est possible mais déconseillé de charger des sauvegarde faites
avec le programme sous Unix dans la version Windows et vice-versa.
AVERTISSEMENT:

LE PROGRAMME EST FOURNI EN L’ETAT. VOUS NE DEVEZ PAS
PERDRE DE VUE QUE LA VERSION ACTUELLE (0.99) EST UNE VER-

SION BETA, QUI PEUT DONC, EN TANT QUE TELLE, CONTENIR QUELQUES

BUGS. L’AUTEUR NE POURRA EN AUCUN CAS ETRE CONSIDERE
COMME RESPONSABLE DE DOMMAGES EVENTUELS POUVANT RESUL-
TER DE L’UTILISATION DE CE PROGRAMME.

22

ANNEXE A. LE CD-ROM ET NOTRE PROGRAMME

BIBLIOGRAPHIE 23

Bibliographie

[1] Philip BALL. Quand Darwin joue aux dames avec des ordinateurs neu-
ronaux. Le Monde, 14/01/2000.

[2] Frédéric BAYARD. Complexité de I'algorithme alpha-béta. Master’s the-
sis, Ecole Normale Supérieure de Cachan, 1996-1997.

[3] Emmanuel CHAILLOUX, Pascal MANOURY, and Bruno PAGANO. Déve-
loppement d’applications avec Objective Caml. O’Reilly, 2000.

[4] Daniel CREVIER. A la recherche de l'intelligence artificielle. Champs.
Flammarion, 1997.

[5] Jean-Paul HATON and Marie-Christine HATON. L ’intelligence artificielle.
Que sais-je? Presses Universitaires de France, troisiéme edition, 1993.

[6] John VON NEUMANN. L’ordinateur et le cerveau. Flammarion, 1996.

[7] Alan TURING. Computing machinery and intelligence. Mind, 1950. Pu-
blié en frangais dans [8], sour le titre Les ordinateurs et 'intelligence.

[8] Alan TURING and Jean-Yves GIRARD. La machine de Turing. Points
Sciences. Seuil, 1995.

