
Evaluating Time-Dependent Methods and Seasonal Effects in Code Technical Debt
Prediction

Mikel Robredoa, Nyyti Saarimäkib, Matteo Espositoa, Davide Taibia, Rafael Peñalozac, Valentina Lenarduzzia

aUniversity of Oulu, Finland
bUniversity of Luxembourg, Luxembourg

cUniversity of Milano-Bicocca, Italy

Abstract

Background. Code Technical Debt (Code TD) prediction has gained significant attention in recent software engineering re-
search. However, no standardized approach to Code TD prediction fully captures the factors influencing its evolution.
Objective. Our study aims to assess the impact of time-dependent models and seasonal effects on Code TD prediction. It eval-
uates such models against widely used Machine Learning models also considering the influence of seasonality on prediction
performance.
Methods. We trained 11 prediction models with 31 Java open-source projects. To assess their performance, we predicted fu-
ture observations of the SQALE index. To evaluate the practical usability of our TD forecasting model and their impact on
practitioners, we surveyed 23 software engineering professionals.
Results. Our study confirms the benefits of time-dependent techniques, with the ARIMAX model outperforming the others.
Seasonal effects improved predictive performance, though the impact remained modest. ARIMAX/SARIMAX models demon-
strated to provide well-balanced long-term forecasts. The survey highlighted strong industry interest in short- to medium-term
TD forecasts.
Conclusions. Our findings support using techniques that capture time dependence in historical software metric data, particu-
larly for Code TD. Effectively addressing this evidence requires adopting methods that account for temporal patterns.

Keywords: Technical Debt, Software Quality Mining Software Repositories, Empirical Software Engineering, Time Series
Analysis

1. Introduction

In Software Engineering (SE), and specially in Mining Soft-
ware Repository (MSR) studies, researchers often investigate
the relationships among different variables collected from
the history of software projects. As an example, researchers
have investigated the correlations between two variables,
such as code smells [1, 2, 3], their trend over time [4], and
the impact of different qualities of software [5, 6, 7]. However,
many of these studies have omitted the hidden potential im-
pact on the temporal dependency of the variables analyzed
and the possible threats related to statistical techniques not
designed for analyzing temporally dependent data [8]. As an
example, the introduction of a technical issue in a commit
heavily depends on the code that was present in the reposi-
tory before said commit. However, most studies have not con-
sidered this aspect, mainly due to a lack of clear guidelines
on the statistical techniques used in this context. Saarimäki
et al. [8] highlighted three main issues in previous studies:

Email addresses: mikel.robredomanero@oulu.fi (Mikel Robredo),
nyyti.saarimaki@uni.lu (Nyyti Saarimäki),
matteo.esposito@oulu.fi (Matteo Esposito), davide.taibi@oulu.fi
(Davide Taibi), rafael.penaloza@unimib.it (Rafael Peñaloza),
valentina.lenarduzzi@oulu.fi (Valentina Lenarduzzi)

1) discarding the temporal nature of the commits, 2) assum-
ing independence of data, and 3) mixing projects of different
sizes, where big projects overwhelm small ones. To overcome
these issues, they proposed to analyze the dependent data in
the SE field, considering the dependency through the time ef-
fect [8]. Within the provided study context, we use the code
technical debt (code TD) prediction analysis to evaluate the
impact of the time dependence factor. Code TD is an essen-
tial metric in software projects as it measures professionals’
efforts to clean the code. Therefore, code TD denotes the time
dependence on past mistakes. Consequently, data analysis
techniques that assume this dependence should be consid-
ered.

In this direction, the research community traditionally
uses machine learning (ML) models [9, 10]. Similarly, we
identified two relevant works that applied Time Series Anal-
ysis (TSA) to predict code TD [11, 12] comparing univari-
ate and multivariate TSA models. The results obtained were
promising in terms of prediction performance. Hence, our
objective is to analyze the robustness of TSA techniques pre-
dicting time-dependent variables such as code TD by com-
paring them with traditional ML methods. Therefore, we are
striving to identify existing potential variables that can help
explain the behavior of code TD.

Preprint submitted to Journal of Systems and Software August 8, 2025

We designed and conducted an empirical study to evaluate
the code TD prediction performance of different TSA mod-
els and a set of time-agnostic ML models commonly used in
the literature, which do not consider the data’s temporal fac-
tor. Furthermore, we assessed the impact of the seasonality
factor on the observed data. For that, we adopted the sea-
sonally adjusted version of the TSA models already used in
the SE literature and measured their performance to quan-
tify the impact of addressing the seasonality factor. As the
potential dependent variable adopted for the description of
the code TD, we considered the SQALE index metric, com-
puted by SonarQube (SQ) to measure code TD. Specifically,
we adopted two different multivariate applications of the Au-
toregressive Integrated Moving Average (ARIMA) model [13] as
well as their modified counterparts, which control the sea-
sonality component of the data, and seven ML models to per-
form the confronted evaluation (four linear and three non-
linear). Furthermore, we implemented a backward variable
selection approach [14, 15] to provide models with the best
combination of variables to help improve their efficiency. The
best resulting multivariate TSA models were afterwards used
to explore their accuracy when performing long-term time-
series forecasting, a facet of interest in software maintenance
activities [10].

Finally, to evaluate the practical usability of our TD fore-
casting model and their impact on practitioners, we surveyed
23 software engineering professionals. The survey was used
to determine their willingness to use the model, the usabil-
ity of the model in real-world TD management, and the pre-
dicted window of choice for decision making. The survey
asked questions about the professional experience of the re-
spondents, their knowledge of TD and whether they man-
age TD issues in real life. In addition, the participants pro-
vided information on the best prediction horizons, trading off
precision for predictions with practicability. The study sup-
ports the notion that practitioners desire high-precision pre-
dictions in short to medium-term horizons, which is consis-
tent with agile software development cycles and allows for the
use of TD predictions within industry pipelines.

Our results revealed a robust superiority obtained by the
multivariate TSA models and demonstrated a slight improve-
ment in predictive performance when adjusting the mod-
els to capture the seasonality effect. Basically, Seasonally
adjusted Autoregressive Integrated Moving Average with ex-
tra regressors (SARIMAX) [16] and its non-adjusted counter-
part ARIMAX [17] were the best prediction models among
the methods considered in this study. These both methods
implement a multivariate variant of the commonly known
ARIMA model. However, the ARIMAX model outperforms
the other ML algorithms in predictive performance [17].
Long-term forecast performance showed increased MAPE er-
rors over time but remained balanced across projects. The
MAPE error of the SARIMAX model increased from 1.08% at
6 months to 4.19% at 36 months, while ARIMAX remained at
3.15% after 12 biweekly periods and 5.97% after 72 periods.
The variance remained low, with stable trends in descrip-
tive statistics. Finally, our survey reveals good industry confi-

dence in our tool and its effectiveness for short- to medium-
term forecasting windows, which aligns closely with industry
needs.

The main contributions of this paper are:

• An improvement in current knowledge of the prediction
of the code TD with an emphasis on investigating the im-
portance of including time-dependent factors.

• An additional contribution to the scientific commu-
nity emphasizing the potential benefits of considering
a monitored seasonal code TD measurement for subse-
quent improvement on the control of code TD in soft-
ware projects.

• A large-scale comparison among the time-dependent
and ML prediction models already adopted in the litera-
ture.

• A demonstration of the promising capabilities of clas-
sic, yet efficient multivariate TSA forecasting models on
long-term code TD forecasting, aiming to enable system
engineers and project managers to perform long-term
effective software maintenance.

• An industrial survey with 23 experts confirming strong
industry interest in short- to medium-term TD forecasts,
aligning with agile workflows.

Paper structure. Section 2 describes the background on
which our paper is based. In Section 3, we present the em-
pirical study design. Section 4 presents the results obtained,
and Section 5 shows the derived discussion based on them.
Section 6 describes the identified threats to the validity of our
study. Section 7 presents related work and Section 8 divulges
the conclusions of this study and outlines the potential future
work.

2. Background

SQ is one of the most commonly adopted static analysis
tools both in academia [18, 19] and in industry [20]. We aim
to help developers create more clean, secure, maintainable,
readable, and modular code. SQ evaluates the code by testing
it against a predefined set of rules. The rules are considered
coding standards, and breaking them is deemed undesirable.
Therefore, each time a code violates a rule, the SQ presents
an issue to the developers. Practitioners can use SQ on its
official "as a Service" flavor hosted on the sonarcloud.io web-
site or the on-demand version to run on a private server. The
tool supports 29 programming languages: Java, Python, C++,
and JavaScript.1 It performs various calculations, including
measuring metrics like lines of code and code complexity. It
also establishes specific thresholds known as “quality gates”
for each metric and rule.

In this study, the selected dataset (Section 3.2) analyzed
projects with SQ version 7.5, which includes three rule cat-
egories:

1https://docs.SQ.org/9.6/analyzing-source-code/languages/overview/

2

• Reliability rules named as bugs that create an issue that
“represents something wrong in the code” and that “will
soon be reflected in a bug in the code.”

• Maintainability rules named as code smells that de-
crease code readability and modifiability. It is impor-
tant to note that the term “code smells” adopted in SQ
contains only a subset of the well-known code smells de-
fined by Fowler et al. [21].

• Security rules named as Vulnerability, creates a problem
that impacts the application’s security.

To quantify and therefore measure the existing technical
debt in software projects, SQ leverages a series of metrics,
mostly quantitative translations of code analysis metrics. In
the version considered for this study, SQ computed three
types of TD, reliability remediation effort and security reme-
diation effort, which consisted on the time to fix all the open
issues classified as bugs and vulnerabilities, and the technical
debt ratio, which SQ named as SQALE index resembling the
naming of SQALE methodology [22] used in older versions,
and consisting on the time to fix all open issues classified as
code smell.

3. The Empirical Study Design

We now describe our study, reporting the goal and research
questions, the context, the collection and analysis of data. We
designed our experimental study based on the guidelines de-
fined by Wohlin et al. [23].

3.1. Goal and Research Questions

We formalized the goal of this study according to the GQM
approach [24] as follows:

Analyze time-dependence and seasonality effect factors,
for the purpose of comparing code TD prediction,
with respect to performance,
from the point of view of developers,
in the context of open source software.

Based on this goal, our formulated Research Questions
(RQs) are presented next.

RQ1. Which multivariate time-dependent method predicts
code TD with the highest performance?

RQ1 compares two different multivariate TSA approaches
already implemented in the SE literature to determine which
approach can predict code TD better. Evaluating the predic-
tion performance of the latest models that control the time
dependence factor within the data enables us to determine
which of these models should be considered by practitioners
when deliberating which prediction techniques to use when
predicting code TD. To address RQ1, we collected as code TD
the SQALE index metric computed by SQ (as explained in Sec-
tion 2), and Code Smell rule violations generated by SQ as po-
tential explanations of the SQALE index’s behavior.

The first approach, known as ARIMA + LM, combines mul-
tiple ARIMA models and linear regression models (LM) [12].
This approach utilizes a univariate ARIMA model for the pre-
diction of each independent variable. Using predicted values
within a regression model, it predicts future values of the de-
pendent variable. The second approach, known as ARIMAX,
consists of building a multivariate ARIMA model to predict
the values of the dependent variable [11]. In the ARIMAX
model, the history of the dependent variable and the past val-
ues of the considered independent variables are used as fea-
tures to train the model and provide future predictions of the
dependent variable.

Our prior assumption is that the ARIMAX model performs
better than the ARIMA + LM models in explaining the fu-
ture evolution of the dependent variable. We assume that
combining the independent variables with the past values of
the dependent variable has more information than separately
predicting the values of the independent variables to predict
the dependent variable through a regression model.

The purpose of this study is to establish the applicability
of the most efficient time-dependent techniques for code TD
prediction and evaluate how the adopted techniques perform
against other prediction techniques commonly used in the SE
literature. These techniques are mostly ML-based algorithms
that do not consider the temporal factor when providing fu-
ture predictions. Therefore, we formulate our RQ2.

RQ2. How accurate is the prediction performance of a mul-
tivariate time-dependent approach for code TD prediction
compared to that of an ML algorithm?

To assess the applicability of a time-dependent approach
for code TD prediction (RQ2), in our case multivariate TSA,
we need to compare its performance with other approaches
that do not consider the data’s time dependency. In this study,
the comparison is made with several ML models.

Similarly, as for RQ1, our prior assumption is that the pre-
diction performance of multivariate TSA methods for code
TD prediction overcomes that of ML models. Moreover, TSA
methods are based on temporally ordered serialized data,
helping the models capture potential temporal factors, for ex-
ample, the seasonality of the observation [25]. Models can be
adjusted to these factors to observe their impact on the pre-
dicted results. Therefore, only comparing already used TSA
methods is not sufficient, and we formulate a third research
question.

RQ3. Does addressing seasonality improve the prediction
performance of multivariate time-dependent approaches
for code TD prediction?

As explained, RQ3 expands RQ1. For that, given the mod-
ification of the models to handle seasonality patterns, RQ3

compares the new models with the former in terms of the pre-
diction of the code TD and therefore evaluates the impact of
seasonality in the prediction performance.

3

Our prior assumption is that SARIMAX, SARIMA + LM ap-
proaches and seasonally adjusted models of the previously
defined TSA model counterparts perform better than their
former model format, which did not handle seasonality pat-
terns. In addition, we take advantage of the comparison pro-
posed in RQ1. Thus we assume that using the multivariate
SARIMAX model is more informative than the SARIMA+LM
model, given the extension of both TSA models to capture the
impact of the seasonality effects.

Similarly, evaluating the seasonality adjustment in predic-
tion performance compared to the selected ML algorithms
becomes paramount to contributing to the SE community
through this study. Therefore, we ask a fourth question.

RQ4. How accurate is the prediction performance of a sea-
sonally adjusted multivariate time-dependent approach
for code TD prediction compared to that of an ML algo-
rithm?

Our prior assumption is that the additional modification
implemented in the multivariate TSA models regarding sea-
sonality control enables their code TD prediction perfor-
mance to be better than that of ML models.

For all RQs described so far, we evaluated the models using
three key performance metrics: Mean Absolute Percentage
Error (MAPE), Mean Absolute Error (MAE), and Root Mean
Square Error (RMSE) (see Section 3.6.5 for a detailed descrip-
tion of these metrics).

RQ5. How accurate are multivariate time-dependent meth-
ods on long-term forecasting?

A challenge that emerges from the concept of code TD pre-
diction is the need to make multi-step forecasts, that is, fore-
casts for more than one time-step into the future. Provid-
ing reasonable long-term forecasts would allow system engi-
neers and project managers to perform long-term effective
software maintenance. While single-step predictions can be
useful for short-term planning, multi-step forecasting offers
more practical insights for software maintenance and allows
project managers to make strategic decisions for the future.
Therefore, through the defined RQ5 we will investigate the
performance of the resulting best TSA models when perform-
ing multi-step forecasting to enable practitioners observe the
long-term impact of their current project maintenance level
within the context of code TD.

RQ6. How valuable do software practitioners perceive a
Technical Debt forecasting to be?

• RQ6.1. What forecasting window combinations do
practitioners consider acceptable and useful for Tech-
nical Debt prediction?

• RQ6.2. What is the preferred scope of Technical Debt
prediction among practitioners?

While many techniques exist to measure and manage code
TD retrospectively, forecasting its evolution could allow prac-
titioners to take proactive measures. Understanding how
practitioners perceive code TD forecasting is crucial to de-
termining whether such predictive models can influence
decision-making processes in software projects or are just
academic interests (RQ6). If practitioners do not see substan-
tial value, efforts in this direction might need re-evaluation or
refinement to align with industry needs.

To further explore this aspect, we investigate the specific
forecasting configurations that practitioners deem useful. To
effectively forecast the evolution of code TD (RQ6.1), it is
crucial to determine the appropriate time horizon for pre-
dictions. Practitioners may prefer short-term forecasts over
weeks or months to aid in immediate refactoring efforts. In
contrast, long-term forecasts, spanning years, could be more
useful for strategic planning. Knowing which time frames
practitioners consider valid and useful ensures that code TD
prediction models meet actual industry needs, thus facilitat-
ing their practical application. Moreover, selecting suitable
forecast windows is just one part of the equation. Defin-
ing the preferred scope of code TD predictions to customize
these forecasts properly is equally important.

Code TD can appear at different levels, from specific code
components to software projects. Some practitioners focus
on predicting TD at the module or class level to aid in detailed
refactoring efforts (RQ6.2). In contrast, others prefer predic-
tions at the system-wide level to help with architectural deci-
sions. Understanding the preferred scope ensures that code
TD forecasting tools provide valuable insights at the appro-
priate level of abstraction, making them more useful in prac-
titioners’ daily workflows. Our survey offers a comprehensive
view on creating Technical Debt forecasting methods that are
practical and actionable for software professionals.

For RQ5 and RQ6, we evaluated the models using only
MAPE since it is one of the most intuitive metrics for prac-
titioners to discuss [26, 27].

3.2. Context

In the context of our study, we consider the Technical Debt
Dataset [28] version 2.0 adopted by Saarimäki et al. [8]. The
data set contains 31 Java projects from the Apache Software
Foundation (ASF) repository.2 The projects in the data set
were selected based on “criterion sampling” [29], requiring
all of the following criteria: developed in Java, older than 3
years, more than 500 commits and 100 classes, and the us-
age of an issue tracking system with at least 100 issues re-
ported. The projects were selected, maximizing their diver-
sity and representation by considering a comparable num-
ber of projects on the age, size, and domain of the project.
The projects can be considered mature due to the strict re-
view and inclusion process required by the ASF. In addition,
the included projects regularly review their code and follow a

2http://apache.org

4

strict quality process.3 Full details of the data can be found in
the online repository of the data set.4 We adopted this data
set since all its projects were already analyzed with SQ and it
contains the data related to the SQALE index.

3.3. Variables

In this section, we describe the dependent and indepen-
dent variables used in the models adopted for the prediction
of code TD.

• Dependent variable: We consider the metric SQALE index
computed by SQ. The SQALE index denotes the efforts to fix
all the Code Smell rules that are violated in the code and is
measured in minutes. SQ denotes TD using the total value
of the SQALE index. The metric is continuous and, there-
fore, is suitable for the TSA models adopted in this study. In
addition, it provides a clear definition of code TD to answer
the objective of our study.

• Independent variables: We consider the Code Smell rule
violations detected by SQ. Code smell rule violations de-
scribe the number of violations for each SQ rule of code
smell type. The TD dataset has issues from 205 different
rules of type code smell, and each rule is included as a sep-
arate independent variable in the study. The nature of the
collected issues is discrete as it is based on the count of is-
sues detected in each SQ analysis for each code smell type.

3.4. Data Collection

In this study, we were interested in studying the impact
of temporal factors on the selected dependent variable, the
SQALE index. As described in Section 2, code smell rule vi-
olations are directly related to the SQALE index, which is the
remediation cost. Hence, we decided to collect the 205 code
smell rule violations existing in the adopted data set as the
initial set of independent variables for our study.

3.4.1. Data preprocessing: Feature selection
The data collected contains 205 potential independent

variables. Such a large number could have a negative impact
on the models due to the so-called “curse of dimensionality:”
including a large number of independent variables may dras-
tically reduce the predictive power of a model. To identify
a set of the most explicative independent variables for our
dependent variable, we undertook a feature selection pro-
cess based on well-known feature selection techniques. The
aim was to categorize the potential independent variables ac-
cording to their importance. These techniques are briefly de-
scribed next.

• Variance Thresholding: Method that utilizes the variance
or spread of a variable in a data set to select model-
independent variables. In summary, this method calcu-
lates the variance of all potential independent variables

3https://incubator.apache.org/policy/process.html
4https://github.com/clowee/The-Technical-Debt-Dataset

in the data sets. Removes those with low variance as
they are less informative and do not have much predictive
power [30].

• Zero percentage method: This method eliminates pre-
dominantly empty independent variables, i.e. the percent-
age of emptiness is higher than a predefined threshold
and is therefore poorly informative. It is used with count
data [31].

• Feature importance: This method determines the impor-
tance of each variable in a data set using a Random For-
est (RF) algorithm. RF is an ensemble learning technique
consisting of multiple decision trees, in this case, used for
prediction. The measure of importance is based on the re-
duction in node impurities due to the splitting of the vari-
able. Averaged across all trees, the measure of the impurity
of the node of all independent variables is calculated by the
residual sum of squares. Thus, this method excludes vari-
ables with low feature importance [32].

• Correlation analysis: The method evaluates the degree of
linear association between the independent and depen-
dent variables. Given the high skewness illustrated in Fig-
ure 1, and therefore lack of normality in our variables [33],
we measure the correlational association through the non-
parametric Spearman’s ρ rank correlation coefficient [34]
for each independent variable. Thus, variables with a poor
informative contribution for predictive modeling are dis-
carded [35].

One could expect that each of the selected feature selec-
tion techniques would provide different results on the initial
collected issue-type variables. Therefore, we ranked the in-
dependent variables in terms of their resulting importance
score for each of the importance techniques of the charac-
teristics, resulting in four different rankings. We used the In-
terquartile Range (IQR) method to select the upper quartile
in the ranking distribution based on the importance scores.
In a nutshell, given a set of observations, the IQR method
builds the underlying distribution from the observations. Se-
lect the subset of the different quartiles in the distribution
based on the objective of the analysis [36]. In our scenario, we
were interested in selecting the most informative indepen-
dent variables of our set of variables; therefore, we selected
the quartile with the variables denoting the highest feature
importance score. Additionally, for the sake of consistency in
the final set of independent variables, we selected the sub-
set of variables that showed importance in each of the four
fetched quartiles. Consequently, the feature selection process
resulted in a subset of 15 independent variables that were
specifically selected to predict the SQALE index (dependent
variable). Table 1 and Figure 1 provide a graphical and quan-
titative representation of the independent variables.

3.4.2. Data preprocessing: Transforming raw data into time
series data

The time-dependent approaches used in this paper require
the use of periodically measured time-serialized data. Given

5

that commits are not periodic, we relied on two criteria to
generate the time series. First, we focused on constructing a
sufficiently long time series for each project (study subjects)
to provide the models with sufficient data to perform the pre-
diction. Second, we investigated different periodicity levels
for the observations in the time series. In this way, we could
observe the temporal nature of the data and find the most
suitable time frame between observations.

Based on the described criteria, we generated time series
data at biweekly and monthly periodicity levels. The num-
ber of data points for each project on each periodicity level is
presented in Table B.19. TSA models require at least 24 obser-
vations to detect existing time-dependent factors such as the
temporal trend, and consequently to be trained [25]. There-
fore, increasing the size of the time window would reduce the
number of observations for the collected projects and would
require excluding the projects from the study.

Version control data are stochastically ordered by nature,5

which means that some time periods (of weeks or months in
our study) might not have commits despite being otherwise
an active project. Consequently, serializing such data can re-
sult in missing data for some time points. Linear interpola-
tion was used to fill in time points that lacked observations in
the generated time series. This method presupposes a linear
correlation between neighboring data points and calculates
the values of the missing data points using the known values
surrounding them [37].

Consequently, the analysis was performed using two dif-
ferent samples of the data: monthly time series data and bi-
weekly time series data. As a potential threat to the valid-
ity of this study, we address the interpolation of artificially
generated observations in Section 6. Similarly, we provide
suggestions for practitioners on the remediation approach to
avoid missing data in Section 4.1 to help practitioners gener-
ate higher quality data.

3.5. Collecting the practitioners’ forecasting perceived valu-
able

TD is a persistent challenge in software development, af-
fecting maintainability, quality, and long-term sustainability.
Although retrospective code TD analysis is widely studied,
proactive forecasting remains an emerging area with limited
understanding of its perceived value in industry. To bridge
this gap, we designed this survey to capture the perspectives
of software professionals on the usefulness, preferred fore-
casting windows, and optimal scope of Code TD predictions.
Our target audience consists of software engineers, archi-
tects, and technical leaders involved in technical debt man-
agement. Our objective is to evaluate whether our forecast-
ing model is perceived as beneficial to the industry. Specifi-
cally, we want to determine the most advantageous forecast-
ing time windows that add value to the software development
lifecycle (SDLC) within an industrial setting.

3.5.1. Population Description
Table 3 and Table 4 present the professional experience of

our the 23 interviewed experts. The surveyed population is
predominantly composed of software professionals, partic-
ularly Software Developers, and is heavily concentrated in
Europe. The respondents largely work in established firms
within the ICT, IT Consulting, and Software Engineering sec-
tors. They possess a range of professional experience, with
a significant number employing Agile methodologies in their
development practice and familiarity with code TD. Hence,
our population appears to be a fair sample of the intended
audience. We collected the answers anonymously and pro-
vided all participants with information regarding the GDPR
act for data collection and protection. We also thoroughly
followed the ACM publications policy on research involving
human participants and subjects [38].

3.5.2. Questionnaire
Table 2 presents the questions used to answer RQ6. Due to

space constraints, we provide the complete questionnaire in
the replication package. It should be noted that, before sub-
mitting the questionnaire, we have performed a pilot ques-
tionnaire to derive the answers to the predefined closed-
ended questions (C) predefined answers. Moreover, for most
closed-ended questions, we provided an open-ended ver-
sion (O) to account for possible missing categories or to allow
for an in-depth explanation of the selection. We interviewed
experts involved in our previous research and, leveraging do-
main knowledge, reached a consensus on the predefined an-
swer to closed-ended questions. We did not ask the pilot’s ex-
perts to participate in the final questionnaire to avoid biases.

According to our guidelines [39, 40, 24, 41], we asked par-
ticipants to answer demographic questions to obtain infor-
mation about the population under examination. Thus, Q1

to Q11 refer to the personal background and professional ac-
tivities of the interviewee. We asked participants to respond
with predefined choices to facilitate data analysis using do-
main knowledge [42, 27].

For RQ6.1, we asked them for their perceived benefit in
predicting the code TD. More specifically, we provide a Lik-
ert scale question (L), Q12 surveying how much would they
value a tool for code TD prediction. A Likert scale is a psy-
chometric scale commonly used in questionnaires to gauge
respondents’ attitudes, opinions, or perceptions on a par-
ticular topic [43]. It typically consists of a series of state-
ments in which respondents indicate their level of agreement
or disagreement on a symmetric agree-disagree scale, usu-
ally ranging from “strongly agree” to “strongly disagree.” This
method allows the quantitative measurement of people’s atti-
tudes or feelings toward a subject. The values for each Likert
scale question are available in the replication package. Fur-
thermore, we asked the interviewee to justify the rationale
for their Likert choice in Q13. In addition, we also provide
two closed-ended questions, Q14 and Q16 to choose between

5https://www.git-scm.com/docs/git-commit

6

Table 1: Descriptive statistics of the SQALE index and the resulting independent variables from the data preprocessing stage.

Variable Mean
Standard
deviation Min

Lower
quartile

Median
value

Upper
quartile Max Skewness

SQALE index 137,726 169,927 0 24,378 72,981 182,132 701,914 1.87

S1213 740 1,350 0 38 152 579 6,106 2.22

RedundantThrows DeclarationCheck 345 509 0 15 113 340 2,200 1.91

S00117 1,082 2,380 0 7 55 383 10,395 2.3

S00122 402 658 0 1 67 585 4,119 2.55

S1488 88 163 0 4 20 81 1,196 2.85

S1905 74 148 0 1 12 44 575 2.26

UselessImportCheck 630 1,402 0 7 42 151 7,928 2.58

DuplicatedBlocks 333 510 0 40 142 305 3,099 2.52

S1226 212 293 0 18 62 330 1,479 1.91

S00112 473 848 0 58 183 374 4,987 3.01

S1155 86 169 0 2 12 67 933 2.49

S00108 97 128 0 4 62 127 739 1.95

S1151 472 1,007 0 2 26 200 3,699 2.25

S1132 289 481 0 20 57 436 3,587 2.94

S1481 132 274 0 5 18 71 1,600 2.75

0e+00 2e+05 4e+05 6e+05

SQALE_INDEX

0 1000 3000 5000

S1213

0 500 1000 1500 2000

RedundantThrows

0 2000 6000 10000

S00117

0 1000 2000 3000 4000

S00122

0 200 600 1000

S1488

0 100 300 500

S1905

0 2000 4000 6000 8000

UselessImport

0 500 1500 2500

DuplicatedBlocks

0 500 1000 1500

S1226

0 1000 3000 5000

S00112

0 200 400 600 800

S1155

0 200 400 600

S00108

0 1000 2000 3000

S1151

0 500 1500 2500 3500

S1132

0 500 1000 1500

S1481

Figure 1: Boxplots for the considered model variables.

pairs of “<time windows, MAPE>.” To allow the practitioner
to grasp our ability to predict Code TD, we decided, based on
RQ5 findings, to select a maximum time frame of 36 months,
that is, 3 years. We divided such time frames into biweekly
prediction time windows Q13 and monthly time window Q15

by pairing the time window with its computed MAPE (e.g., 2
weeks - 1.44 %). Since we were interested in understanding
the rationale for the choice, we also asked the practitioners to
further disclose their motivation for the chosen intervals in
the two connected open-ended questions Q15 and Q17.

Finally, for RQ6.2, we ask whether the interviewee prefers to
predict the code TD weekly or monthly Q18 based on previous
comparisons of time windows and MAPE, and to justify their
choice in Q19.

3.6. Data Analysis

In this section, we focus on the designed data analy-
sis based on the definition of the selected models, and we

explain the comparison of the seasonally adjusted models
against their root model counterparts, their model parameter
tuning structure, and the ML models adopted. The selected
time-dependent models are based on multivariate TSA mod-
eling, a field of statistical modeling commonly used in diverse
fields such as econometrics and weather forecasting, for in-
stance [44]. The multivariate nature of the models allows us
to consider information about additional independent vari-
ables that can assist the model in the prediction process. Fig-
ure 2 shows the visual representation of the data analysis pro-
cess performed in this study.

3.6.1. Setting the stage for seasonally unadjusted TSA model
prediction (RQ1 - RQ5)

We examine two distinct methods to predict code TD uti-
lizing TSA models, ARIMAX and ARIMA+LM. As version con-
trol data is inherently non-stationary, i.e. denote a trend
across time, the two methods originate from the Box-Jenkins

7

Table 2: Survey: Questions and research questions (RQ6)
Legend: C - Closed, C* - Closed with “Other” option, L - Linkert, O - Open Ended

RQ Question (Q) Type

P
ro

fi
lin

g

Q1 What is your job title or role? O

Q2 What sector does your organization belong to? O

Q3 What is the size of your organization? C

Q4 Where is your organization located? C

Q5 How many years of experience do you have? C

Q6 What types of projects do you usually work on? C*

Q7 Do you use any agile development practices? C

Q8 Are you familiar with the concept of technical debt? C

Q9 If yes, what agile practice do you employ? O

Q10 How often do you address Technical Debt-related issues? O

Q11 What are the types of Technical Debt issues you address most frequently? O

R
Q

6.
1

Q12 How much would you value a tool for Technical Debt forecasting? L

Q13 Please justify your choice in the previous question. O

Q14 Which forecasting window combinations are acceptable and useful for your workflow? C

Q15 Please justify your choice in the previous question. O

Q16 Among the following options, what forecasting window combinations may you find acceptable and useful for your workflow? C

Q17 Please justify why you chose the previous options. O

R
Q

6.
2 Q18 If given the choice, would you rather choose to predict Technical Debt: Weekly, By-Weekly, Monthly, Other? C*

Q19 Please justify your choice in the previous question. O

model. better known as Auto-Regressive Integrated Moving
Average (ARIMA) model. It is worth noticing that a time se-
ries of data is stationary when its predictions do not depend
on factors such as trend or seasonality existing in the real
data [45]. The ARIMA model is a modified version of the Au-
toregressive Moving Average (ARMA) model used for model-
ing non-stationary time series [46]. Like the ARMA model,
ARIMA determines the best autoregressive parameter for the
variable to be predicted (AR step) and also identifies the opti-
mal moving average parameter (MA) [44]. In addition, ARIMA
executes the integration step (I), which determines the level
of differencing required for the time series of the variable in
question to achieve stationarity. The methods considered are
the following.

• ARIMAX: The approach used in [11] was an ARIMA model
with a set of independent variables included in the model,
commonly referred to as ARIMAX. This model offers a fur-
ther multivariate approach to the ARIMA model by intro-
ducing additional independent variables into the model
and, therefore, helping to explain the evolution of the
SQALE index. This enables future SQALE index values to
be explained both by its past values and by those of the in-
dependent variables.

• ARIMA + LM: An ensemble technique previously adopted
in [12] that comprises constructing a univariate ARIMA
model for each independent variable in the model. Each
ARIMA model considers the past values of their respective

model variable as model parameters and therefore inde-
pendently predicts the future values of each model vari-
able. The additional step in this methodology relies on the
performance of linear regression (LM) considering each of
the new prediction lag values to predict the new values for
the SQALE index variable.

3.6.2. Setting the stage for Seasonally Adjusted TSA model pre-
diction (RQ3,4)

In contrast with the previously presented ARIMAX and
ARIMA+LM models, the seasonally adjusted models capture
the impact of the seasonality pattern in the data while main-
taining the model nature of the previously defined TSA model
counterparts. Therefore, the analyzed seasonally adjusted
methods are as follows.

• SARIMAX: The Seasonally adjusted Auto-Regressive Inte-
grated Moving Average model stands as the seasonally ad-
justed extension of the ARIMAX model. Addresses the sea-
sonality of the data within model training through model
parameter tuning [13]. More information on the adjust-
ment of the model parameters in the TSA model is provided
in Section 3.6.3. Similarly, the SARIMAX model provides a
multivariate approach compared to its univariate counter-
part, SARIMA, by including independent variables in the
model. This enables future SQALE index values to be ex-
plained both by its past values and by those of the included
independent variables.

8

1

The Technical
Debt dataset

2

Feature selection

3

Time Series
Serialization

4

Missing data
interpolation

5

Model parameter
tuning

6

Walk-Forward
Train-Test

7

Performance
evaluation metrics

5.35.1

Backward variable
selection iteration

Variable and parameter
model assessment

5.2 Auto-arima algorithm model
parameter selection

Figure 2: Data analysis process workflow diagram.

• SARIMA + LM: The approach is characterized by the com-
bination of the univariate seasonally adjusted integrated
moving average (SARIMA) model combined with a linear
regression model (LM). Based on the seasonality adjust-
ment performed in the approach used in [12], a SARIMA
model is built for each of the independent variables consid-
ered in the study, and therefore each model independently
predicts future values of a single variable accordingly. The
additional step in this methodology relies on the imple-
mentation of linear regression (LM) considering each new
prediction lag value of the independent variables to predict
the new values for the SQALE index variable.

3.6.3. Setting the model parameter order in TSA models (RQ1

- RQ5)

Similarly to other families of predictive analysis models, for
instance, Linear Models or Generalized Linear Models [33],
TSA models are founded on a set of model parameters that
are estimated after the model is trained. As mentioned ear-
lier, in this study we adopt as prediction models derivations
from the Box-Jenkins ARIMA model [13]. Models founded on
the ARIMA model follow the same model parameter struc-
ture, commonly depicted as

(p,d , q)

where p stands for the number of steps that a model needs
to go back to the history data to predict the next value, that
is, the level of autoregression (AR), q denotes the number
of moving averages required (MA) and captures the short-
term random fluctuations in the data, and d defines the dif-
ferencing level required to achieve stationarity in the trend
observed within the data and therefore be able to make pre-
dictions [47]. Models must be adjusted to these factors to
reach stationarity in trained data. We provide a detailed de-
scription of how parameter tuning is undergone with ARIMA-
based models in the appendix.

Similarly, models that capture seasonal patterns, such as
SARIMA, are presented with an extended set of parameters

(p,d , q)(P,D,Q,m).

When the model is adapted to capture the seasonal patterns
of the data in models such as SARIMAX and SARIMA+LM, the
parameters P, D, Q are also calculated. These capture the im-
pact of seasonality on the model parameters explained above,
which the model adjusts based on the specified m cycle level
in the data. In our study, we consider monthly and biweekly
cycles as previously defined. Thus, the adjusted models pro-
vide an additional layer in the model parameter tuning where
the seasonality component is treated.

In this study, the model parameters presented are tuned
when the TSA models are fitted with the training data. To de-
termine the optimal combination of the model parameters,
we conducted an iterative process in which we searched for
the best combination of model parameters for each of the
project’s time series data. Thus, for different combinations of
the values of the parameters p and q , we use the augmented
Dickey-Fuller test [48] to determine the optimal value d of
the diffencing model parameter. Similarly, when the season-
ality effect is adjusted, the Canova-Hansen test [49] is used
to determine the optimal order of seasonal differentiation D ,
along with different combinations of P and Q. To execute this
iterative process, we adopt the Auto-arima algorithm [50, 51]
which defines the potential range of parameter values based
on the fitted data. We provide a detailed description of the
algorithm functioning in the appendix.

Based on the temporal patterns of the SQALE index, the
different combinations of models computed for the defined
parameters are evaluated using the Akaike Information Cri-
terion [52] (AIC) and the Bayesian Information Criterion [53]
(BIC) following the latest in statistical modelling [33]. We pro-
vide a theoretical description of the model parameters pre-
sented in the appendix. Moreover, we provide the logic im-
plemented in the shared online package (see Section 9).

3.6.4. Setting the stage for Machine Learning models (RQ2 -
RQ4)

In RQ2 and RQ4, we compare the prediction performance
of TSA approaches with that of ML algorithms. Therefore,
we also investigate the ability of ML models to predict code
TD by applying a collection of linear and nonlinear ML al-

9

Table 3: Interviewees’ Professional Experience - Part 1

Question Response %

Q1 Job title

Software Architect 9

Software Developer 30

Software Engineer 4

Q2 Organization sector

Cloud Architect 4

ICT 35

IT Consulting 30

Software Engineering 26

Software Development 4

Q3 Organization size

Large Enterprise 65

SME 17

Small 13

Start-up 4

Q4 Organization location

Europe 87

North America 4

South America 9

Q5 Years of experience

< 1 9

1-3 26

4-7 30

8-10 13

> 10 22

Q6 Type of Project

AI/ML 29

Web Development 29

Cloud & DevOps 12

IoT 8

Embedded Systems 8

Mobile Development 4

Software Architecture & Quality 8

gorithms. To run the comparison in equal conditions with all
the models considered in this study, the same time series data
used to train and test the TSA methods are also used to train
and test the selected ML algorithms. Further descriptions of
the training and performance evaluation of the models stud-
ied can be found in Section 3.6.6.

The ML methods used for the comparison are selected to
provide a wide predictive perspective, as each of them tex-
tualizes different aspects of the data. Likewise, the chosen
ML algorithms have been extensively used in the recent liter-
ature for their ability to predict software quality characteris-
tics, such as code TD [12, 9, 10, 54, 55].

The included ML models assuming linearity (L) in the data
are the following.

• Multiple Linear Regression (MLR) is a powerful statisti-
cal model commonly used to analyze the relationship be-
tween a continuous dependent variable and a set of inde-
pendent explanatory variables. Through this relationship,
the model can provide insight into how changes in the in-
dependent variables affect the value of the response vari-
able while maintaining the linearity assumption [56].

Table 4: Interviewees’ Professional Experience - Part 2

Question Response %

Q7 Use of agile practices
No 26

Yes 74

Q8 Familiarity with TD

No 13

Somewhat 17

Yes 70

Q9 Agile Practice Employed

Scrum (SCRUM, Lean +
Scrum)

56.25

CI/CD, Version Control, Test
Automation

18.75

Kanban 6.25

MLOps 6.25

Feature-Driven Development
(FDD)

6.25

Q10 Frequency addressing TD

Weekly 4

Per Sprint 13

Monthly 13

Quarterly 4

Project Start 4

As Needed 9

Occasionally 22

Rarely 13

Q11 TD type addressed

Refactoring (general & sys-
tematic)

26.09

Testing Debt (test smells, lack
of unit tests)

17.39

Code smells 13.04

Bug fixing (small, unforeseen,
product bugs)

13.04

Architectural Debt (smells,
poor planning, scalability
issues)

13.04

• Stochastic Gradient Descent (SGD) algorithm is based on
an iterative decrease in prediction loss by changing the
model parameters. Specifically, for each iteration, the SGD
algorithm randomly selects a training set to bring random-
ness to the optimization problem, and the algorithm con-
tinues to optimize the result until it converges [57].

• Lasso regression (L1) is a linear regression technique
specialized in high-dimensional explanatory variable sets.
This technique performs an optimization problem where
model-independent variables are penalized if they are not
important to the model. Thus, through model simplifica-
tion, L1 achieves linear regression with the most relevant
explanatory variables [58].

• Ridge regression (L2) is another linear regression tech-
nique that, through a regularization term, avoids overfit-
ting the model. The L2 technique brings a penalization for
the given model parameters that denote extreme values,
and thus stabilizes the model, which results in advantages
for applications where the number of model-independent
variables is high [59].

The selected ML models assuming nonlinearity (NL) are:

10

• Support Vector Machine (SVM) is a well-established ML al-
gorithm used for classification and regression tasks. The re-
gression model aims to find the most optimal hyperplane
that considers the characteristics of the existing explana-
tory variables to explain the values of the output response
variable. For this, the model performs a minimization pro-
cess of the deviation between the real value and the pre-
dicted value [60]. We considered using the so-called Gaus-
sian kernel or Radial Basis Function as the function to build
the model to get the perspective of a non-linear approach.

• Extreme Gradient Boost (XGB) is an ML algorithm that is
part of the family of gradient boost methods. Based on
the ensemble learning methodology, the XGB algorithm
employs multiple decision trees in a greedy format, where
each of the subsequent trees corrects or refines the wrong
results from the previous tree. Through this technique, the
algorithm defines weights for the included independent
variables that require a higher emphasis [61].

• Random Forest regression (RF) also belongs to the ensem-
ble learning family and is built based on the ensemble of
decision trees. Based on random sampling, the RF algo-
rithm performs multiple decision trees and the output is
the aggregated value from the results obtained in the trees
performed [62].

3.6.5. Performance metrics (RQ1 - RQ5)
We used three performance metrics to compare and evalu-

ate the prediction approaches and models.
The first performance metric is the Mean Absolute Per-

centage Error (MAPE). MAPE is a statistical metric commonly
used to measure prediction precision. Quantifies the mag-
nitude of errors between the predicted values and the actual
observed values by calculating the mean of the absolute value
of the prediction error. Its formula is the following.

M APE = 100

n

n∑
i=1

| (Yi − Ŷi)2 |
Yi

(1)

where n is the number of observations, Yi is the actual ob-
served value, and Ŷi is the i-th predicted value. As shown
by the formula, MAPE is represented as a percentage metric,
where a smaller percentage of error means better predictive
performance, and the opposite is true with a higher percent-
age.

MAPE has limitations when the actual observations are
small or close to zero, which introduces bias into the model
training. Therefore, we selected alternative accuracy mea-
surement statistics to cover this issue. One of them, and the
second metric to present is the Mean Absolute Error (MAE),
which is characterized by measuring the average magnitude
from the absolute value of prediction errors. Its equation is

M AE =
∑n

i=1 | Yi − Ŷi |
n

(2)

where the variables follow the same notation as the ones ad-
dressed for MAPE MAE expresses the prediction performance

error in absolute value; therefore, a smaller result signifies
better predictive performance, while higher results represent
poorer performance.

We adopt as the third performance metric root mean
squared error (RMSE) which captures the error value in the
same value unit as the variable being predicted. Its formula is

RMSE =
√

1

n

n∑
i=1

(Yi − Ŷi)2 (3)

where the variables follow the same notation as the ones ex-
plained previously. Although the definitions have value unit
differences, a low error value indicates a high predictive per-
formance in RMSE, and similarly, a high error value depicts
a poor predictive performance. We provide further results on
AIC and BIC model selection criteria in the online Appendix
(see Section 9).

3.6.6. Performance evaluation (RQ1 - RQ5)

To evaluate the performance of the confronted models,
we trained and tested the TSA and ML models on the two
time-series datasets generated during the data serialization
in Section 3.4.2. We adopted the Walk-Forward Train-Test
validation technique [63] for the performance evaluation of
all models considered in this study. This technique was cho-
sen because it respects the temporal nature of the data and
does not rely on randomness in the order of the observations.
This helped to produce a fair comparison between the con-
fronted methods, as especially ML models are not structurally
designed to understand the temporal order existing in the fit-
ted data.

The Walk-Forward Train-Test technique trains and tests a
model greedily and iteratively. Each iteration trains a model,
predicts the value of the next data point of the time series,
and compares the prediction against the real value. The real
value is consequently added to the train set, and the model
is trained again with the newly extended train set data. This
cycle continues until all test data points are predicted. In
our study, the models start training with 80% of the data as
training data and then predict and test every new data point.
Figure 3 shows a graphical representation of the approach,
where i denotes the new data point in each iteration. The
described model training and testing phases performed in
the performance evaluation stage of this study were imple-
mented equally in each of the adopted models, with the same
data testing set, for the sake of fairness in the predictive per-
formance comparison.

3.6.7. Practitioners’ forecasting perceived valuable (RQ6)

This section presents the data analysis of our work. Our
survey includes closed and open questions. Therefore, we
select different analysis methods for the two types of survey
output. To analyze the responses to the closed questions, we
initially employed descriptive statistics to gain a clearer un-
derstanding of the data. For ordinal and interval data, we fo-
cused on the mode and median to assess central tendency,

11

Unused data
point

Project lifetime

Test Set data
point

Train Set data
point

i = 1

i = 2

i = N-1

i = N

N: Test Set size

Figure 3: Walk-Forward Train-Testing approach. (i: New observation.)

while for nominal data, we calculated the distribution of par-
ticipants’ choices for each option.

Regarding the Likert scale question, Q12, the possible value
ranged from 0 (“not at all useful”) to 10 (“extremely useful”).
We present both the values as they have been reported by the
interviewees and also the interpretation of the Net Promoter
Score (NPS) [64]. NPS is a widely used metric for measuring
customer loyalty and satisfaction. It classifies respondents
into three categories based on their likelihood to recommend
a product, service, or company:

• Promoters (9-10): Highly satisfied and likely to advocate
for the product.

• Passives (7-8): Moderately satisfied but not enthusiastic
enough to promote it.

• Detractors (0-6): Unhappy customers who may discour-
age others from using the product.

The NPS is calculated as: N PS = Percentage of Promoters−
Percentage of Detractors. Therefore, a higher NPS indicates
stronger customer loyalty. Hence, we employ such a score to
measure the practitioner’s perceived value of our model.

Regarding open-ended questions, we employ qualitative
data analysis techniques suggested by Strauss and Corbin
[65] and Seaman and Yuepu [66]. Qualitative analysis assists
in addressing questions such as “What is happening in this
situation?” when we aim to uncover how individuals under-
stand their experiences and manage them over time in amidst
evolving conditions [41].

We adopted an inductive approach to develop a new theory
based on qualitative data. The open questions for RQ6.1 and
RQ6.2 were manually coded as follows. Two authors indepen-
dently coded responses to related questions adopting the-
matic analysis [65, 27]. We addressed disagreement through
discussion, and codes were organized into a hierarchy of ben-
efits and limitations until saturation was reached.

3.7. Model Execution (RQ1 - RQ5)

In this section, we textualize the description of the model
execution process of the defined TSA models to facilitate
practitioners’ understanding of the results presented in Sec-
tion 4 and encourage the use of the proposed models in the

SE community. However, the prediction process described in
Section 3.6.6 is followed similarly for all projects with each
of the prediction models considered using different data sets.
After the prediction process is completed, the results are vi-
sualized and, therefore, organized by aggregating the results
provided by each model with all the collected projects for the
two defined data sets (biweekly data and monthly data). The
aggregation of the results per data set for each model combi-
nation is done by taking the average performance of the dif-
ferent projects in the respective data set as displayed in Ta-
ble 5 and Table 6 for instance.

3.7.1. ARIMAX & SARIMAX models (RQ1 - RQ4)
Within the context of the modeling process, both the ARI-

MAX and SARIMAX models are built similarly in their initial
stages. The last one stands as an adjusted version of the for-
mer counterpart. Therefore, for each project, we built both
an ARIMAX model and a SARIMAX model. We computed the
exploratory analysis of the model variables to examine their
distributional characteristics (see Table 1 and Figure 1). All
model variables denoted high skewness values, which was
visually represented in the displayed distribution boxplots.
Therefore, we applied the log-transform technique on the in-
dependent variables of the model to standardize their dis-
tribution and thus reduce the complexity of the model vari-
ables during the learning process. Variable transformation is
a common preprocessing technique used in the field of pre-
dictive analytics due to its benefits in reducing the complexity
of the model and increasing the prediction performance [67].

The first step of the modeling process consisted of leverag-
ing the Backward variable selection technique [33]. The step-
wise backward procedure begins with fitting the model with
the set of important independent variables initially consid-
ered. Subsequently, it sequentially assesses the model and
removes variables from the model to train it back. In each
sequence, it selects the variable whose removal improves the
goodness of fit of the model. The process stops when any fur-
ther removal leads to a poorer model fit, therefore selecting
the set of independent variables that provides the most opti-
mal model results. To assess the impact of each combination
of variables accordingly and following the concepts described
in Section 3.6.3, we performed the model parameter tuning
approach with the Auto-arima algorithm to obtain the results
of the criteria AIC and BIC. We provide a concise description
of the parameter tuning process in appendix A.

Figure 4 provides a graphical representation of the seasonal
decomposition process performed for the SARIMAX model
with the biweekly SQALE index data of the Apache httpcore
project to achieve the best model parameters Described in
a top-down structure, the first plot provides the observed
progress of the SQALE index across time, the second and the
third plots provide the existing trend and seasonality pattern,
and the fourth one depicts the remaining residuals or noise
in the data after de-trending and de-serializing has been per-
formed The seasonal decomposition process is conducted
every time a seasonally adjusted model is built Hence, we
provide the visualization of the seasonal decomposition for

12

0

50000

SQALE INDEX

25000
50000
75000

Tr
en

d

500
0

500

Se
as

on
al

2006 2008 2010 2012 2014 2016
2500

0
2500

Re
sid

Figure 4: Seasonal decomposition of the SQALE index for project httpcore
with biweekly data.

each of the considered projects in the provided online ap-
pendix (see Section 9).

For each of the studied software projects, we performed the
multivariate TSA model fitting following the explained step-
wise process. After each process, the model would provide
the best goodness-of-fit results for the fitted data, and nor-
mally distributed model residuals, therefore showing good
model quality. We provide a graphical representation of this
stage in Figure 5, where the model diagnostics are presented
for the same example project as in Figure 4.

The standardized residuals help to identify the existing
anomalies or obvious patterns if the former ones are not cen-
tered around zero, therefore meaning that some patterns re-
main uncaptured by the model. The second plot provides the
histogram of the model residuals, where in comparison with
the standard normal distribution the kernel density estimate
seems to be approximately normally distributed. In the third
plot, the model residuals are compared against the Q-Q plot
standards, showing a deviated distribution of the residuals
from normality. The correlogram or Auto Correlation Func-
tion (ACF) plot shows the residuals autocorrelations, which
should not be present after the model is fitted. Hence, they
should not be exaggerated outside the marked confidence in-
terval.

Finally, we tested the resulting models through the per-
formance evaluation process explained in Section 3.6.6, and
similarly, we calculated the results from the performance
metrics as described in Section 3.6.5.

3.7.2. ARIMA+LM and SARIMA + LM models (RQ1 - RQ4)

Similarly to the previous section, the ARIMA+LM and
SARIMA+LM approaches share the same model-fitting logic,
with the difference being the adjustment of the seasonality
effect. Therefore, for the sake of brevity, if we consider, for
instance, the SARIMA+LM approach, it fits a SARIMA uni-
variate model for each of the independent variables, thus

0 100 200

6

4

2

0

2

4

Standardized residual for "y"

2 0 20.0

0.2

0.4

0.6

0.8

1.0

Histogram plus estimated density
Hist
KDE
N(0,1)

2 0 2
Theoretical Quantiles

6

4

2

0

2

4

Sa
m

pl
e

Qu
an

til
es

Normal Q-Q

0 5 101.0

0.5

0.0

0.5

1.0 Correlogram

Figure 5: Final model diagnostics of the SARIMAX model built for project
httpcore with biweekly data.

predicting the future values of each variable independently
and only based on the past historical observations. The LM
model is then fitted with the predicted values of the inde-
pendent variables to predict future values of the SQALE index
(see Section 3.6.1). Then, we perform the parameter turning
process for each of the models to achieve the best combina-
tion of model parameters to be used for prediction, as shown
in 3.6.3. We then predicted the future values of each of the in-
dependent variables through their trained SARIMA models,
respectively, following the performance evaluation method-
ology described in Section 3.6.6. With the future values of the
independent variables already predicted, we trained the LM
model with the training set of the historical SQALE index val-
ues along with the historical values of the independent vari-
ables. Thus, during the testing stage, we used the indepen-
dently predicted values of the independent variables to pre-
dict future SQALE index values. The performance evaluation
of the linear regression model was calculated in the same for-
mat as previously done in Section 3.7.1.

3.7.3. Performing long-term forecasting with TSA methods
(RQ5)

Following the motivation stated in Section 3 for RQ5, this
section presents the process executed to perform long-term
forecasting with TSA methods. For that, we selected the TSA
methods that show better performance from the results ob-
tained in the model comparison analysis performed to an-
swer RQs 1 to 4. To provide the models considered with
a longer forecast horizon, we selected an initial data split
of 70% for training and 30% to test the data set in which
each model presented their best performance accordingly

13

(biweekly or monthly data). We used the best model parame-
ter and variable configurations (see Table B.18 obtained from
the previous analysis stages to provide the forecasts with the
best detected model settings.

To put ourselves in the shoes of system engineers, the
MAPE metric was chosen to quantify the prediction error
obtained in each of the forecasted time-steps, given its eas-
ier interpretability. Since we are interested in evaluating the
long-term forecast performance of the models considered,
we did not retrain the models with each subsequent time
point tested as described in Section 3.6.6.

Moreover, since we are calculating the performance level of
TSA models across multiple software projects, we aggregated
the MAPE results in each time-point, and computed mean,
variance, maximum, minimum and median statistics from
the drawn distributions. Since the task of assessing “once and
for all” what the right precision would be due to the “magic”
nature of thresholds, we also extend the interpretation of our
results in the discussion section.
4. Results

In this section, we report the results obtained by answer-
ing our RQs. The data set included original commit data for
31 OS Java projects, and serialization and posterior linear in-
terpolation created data serialized in biweekly and monthly
time series. We successfully processed 14 software projects
with all the models used in this study. We encountered con-
vergence issues with linear algebra while fitting the TSA mod-
els. We report this issue in the model fitting stage as a threat to
the validity of this study, which we formally state in Section 6
and provide further details on it later in this section. There-
fore, since we encountered this issue in the execution of dif-
ferent models across the collected projects and for the sake
of fairness in the models’ results, we excluded projects that
could not provide results for all the models considered in the
study. To answer our RQs, we present the results of the anal-
ysis performed as the average score of the outputs obtained
with each prediction model for the defined prediction per-
formance metrics. Similarly, we perform the aggregation step
separately for the biweekly and monthly data results. Fig-
ure 7 illustrates the MAE results for the models executed in
the projects analyzed. We provide all results and tables be-
fore aggregation in the shared online package (see Section 9).

4.1. Descriptive Analysis

We now present the descriptive statistics of the subjects
initially considered before building our prediction models.
Table B.19 (see the appendix) presents the statistical descrip-
tive characteristics of the projects based on the raw data set,
as well as the generated biweekly and monthly time series
data. According to Table B.19, we identified two opposite
trends in the number of SQ analysis executions carried out
by the study projects. Certain projects exhibited a decrease
in the number of SQ analysis executions when the original
observations from the raw data set were serialized into time
series data (e.g., Felix in Table B.19). This finding indicated
that these projects registered brief periods of time in which an

elevated number of SQ analysis executions were performed,
which subsequently decreased over time, resulting in the ab-
sence of SQ analysis executions during extended periods.
Therefore, while generating the time series data, multiple ex-
ecutions of the SQ analysis that occurred within a biweekly
or monthly time observation were converted into a single ob-
servation, as explained in Section 3.4.2. However, some other
projects presented the opposite scenario, as their number of
observations increased when the time series data were gen-
erated (e.g. fileupload in Table B.19). This finding indicated
that these projects registered a limited number of SQ analy-
sis executions during the time frame used to collect data for
the Technical Debt dataset. Consequently, this type of project
required data interpolation for some of the time-series obser-
vations due to the absence of real SQ analysis executions.

At this stage of the analysis, we realized that, depending on
the frequency of the SQ analysis executions, the quality of the
data would vary. The variations presented suggested that per-
forming static analysis with tools like SQ in a fixed frequency
could result in concise, authentic, and well-monitored time
series data on the state of the quality of the code base of
projects. In contrast, less frequent or randomly executed SQ
analyzes provide insight into the code base throughout time
but leave notable periods with missing data, thus requiring
the action of data interpolation to perform TSA. Moreover,
due to missing data for some of the projects, the algorithms of
the adopted TSA models failed to converge during the model
fitting stage described in Section 3.6.1. Due to the existing
complexity in the data, we encountered several linear alge-
bra decomposition issues [68] involved in the parameter esti-
mation process while fitting the TSA models. As mentioned
earlier, we leveraged preprocessing the set of independent
variables within the model training through the backward
variable selection criteria and standardization. However, Ta-
ble B.20 (see the Appendix) reports the cases in which the
adopted models reported linear algebra decomposition is-
sues, which impeded obtaining results for all the models in
each project that reported issues, respectively.

4.2. On the performance of Code TD prediction with existing
time-dependent approaches (RQ1)

We conducted the prediction analysis described in Sec-
tion 3.7 for each of the 31 projects in our data set. Fig-
ure 6 shows the unified graphical illustration of the predic-
tive performance results of the performance metrics adopted.
The displayed results demonstrate a clear superiority of ARI-
MAX compared to ARIMA+LM with biweekly and monthly
serialized time series data. Taking into account the results
for MAE and RMSE, the differences in prediction error be-
tween ARIMAX and ARIMA + LM are 14,000 and 14,666 within
the biweekly data and 15,237 and 15,931 within the monthly
data, thus denoting a remarkable difference between both
approaches. Hence, we can affirm that given the existing
TSA models for code TD prediction, the ARIMAX model
overcomes the predictive performance of the ARIMA+LM
model. Finally, both models performed better with bi-
weekly training data, as shown by MAE and RMSE. However,

14

SARIMAX ARIMAX
SARIMA+LM

ARIMA+LM0.0
2.5
5.0
7.5

10
.0

12
.5

15
.0

17
.5

M
AP

E

1.0 0.97

17.67 17.35

1.41 1.65

13.32
15.02

biweekly
monthly

(a) MAPE

SARIMAX ARIMAX
SARIMA+LM

ARIMA+LM
0

25
00

50
00

75
00

10
00

012
50

015
00

017
50

0

M
AE

1540 1526

12922
15525

2079 2350

13871

17587biweekly
monthly

(b) MAE

SARIMAX ARIMAX
SARIMA+LM

ARIMA+LM
025

00
50

00
75

0010
00

012
50

015
00

017
50

020
00

0

RM
SE

2722 2646

14413
17312

3145 3469

15842

19400biweekly
monthly

(c) RMSE

Figure 6: Prediction performance (MAPE, MAE, and RMSE) for the considered TSA models.

MAPE indicated an improved predictive performance for the
ARIMA+LM model with monthly training data.

4.3. On the comparison of time-dependent approaches and
ML models for Code TD prediction (RQ2)

We compared the ARIMAX and ARIMA+LM models against
the ML algorithms commonly adopted in the field. Tables 5
and 6 present the prediction performance results for the bi-
weekly and monthly data, respectively. More specifically, the
tables provide the average results calculated from the pre-
diction results obtained for the 14 projects. The results of
the individual projects are included in the replication pack-
age. It should be noted that, in both cases, using biweekly and
monthly data, ARIMAX model demonstrated a clear superi-
ority over the rest of the models, thus providing a more accu-
rate prediction outcome for future code TD observations. Re-
sults such as 1,525.96 for MAE and 2,646.20 for RMSE within
the biweekly results, compared to those presented by the fol-
lowing model after the ranking of results, RF, denote a quan-
tified improvement of 717 and 1,232 in the described pre-
diction errors accordingly. In addition, RF proved to be the
second-best prediction model. As described previously, RF
assumes nonlinear relationships between variables. Conse-
quently, despite the indications that TSA models such as ARI-
MAX may be appropriate for predicting code TD, the poten-
tial for nonlinear models to capture intricate relationships
cannot be discounted. Therefore, we observe that such a
finding is especially relevant given the possibility of incorpo-
rating additional data and model predictors. Except for the
special case of SVM, non-linear models consistently outper-
form linear models across all calculated metrics.

4.4. On the impact of seasonality on Code TD prediction in
time-dependent approaches (RQ3)

Following the set of defined research questions, we wanted
to analyze the impact of addressing the seasonality effect
on the prediction performance of TSA models through our
RQ3. Thus, we performed the prediction analysis described
in Section 3.7 with SARIMAX and SARIMA+LM models. The
process was similar to RQ1 and used the exact data for this
RQ. Figure 6 shows the unified graphical representation of

Table 5: Comparison of the predictive performance of TSA models against
ML models for biweekly data. (L: Linear, ML: Non-linear)

Approach MAPE (%) MAE RMSE

SARIMAX 1 1,539.92 2,721.95

SARIMA + LM 17.67 12,921.79 14,412.90

ARIMAX 0.97 1,525.96 2,646.20

ARIMA + LM 17.35 15,525.21 17,312.14

MLR(L) 4.85 4,895.50 6,759.43

SVM(N L) 23.87 38,929.00 39,904.36

XGB(N L) 1.72 3,006.66 4,686.55

RF(N L) 1.44 2,242.57 3,878.84

SGD(L) 5.04 5,494.12 7,275.05

L1(L) 5.18 5,431.16 7,112.04

L2(L) 4.86 4,898.60 6,709.81

Table 6: Comparison of the predictive performance of TSA models against
ML models for monthly data. (L: Linear, ML: Non-linear)

Approach MAPE (%) MAE RMSE

SARIMAX 1.41 2,078.64 3,145.27

SARIMA + LM 13.32 13,871.48 15,842.22

ARIMAX 1.65 2,349.81 3,469.03

ARIMA + LM 15.02 17,586.97 19,400.41

MLR(L) 4.62 3,978.65 5,567.30

SVM(N L) 23.12 27,822.99 28,620.02

XGB(N L) 5.80 4,600.92 5,950.18

RF(N L) 1.90 2,572.85 4,202.80

SGD(L) 4.89 4,478.40 5,956.63

L1(L) 5.09 4,609.15 6,067.31

L2(L) 4.50 3,706.95 5,192.83

15

MLR SV
R
XGB RF

SG
D L1 L2

ARIMA+LM

ARIMAX

SA
RIMA+LM

SA
RIM

AX

0.0

0.2

0.4

0.6

0.8

1.0

Archiva

MLR SV
R
XGB RF

SG
D L1 L2

ARIMA+LM

ARIM
AX

SA
RIMA+LM

SA
RIMAX

0.0

0.2

0.4

0.6

0.8

1.0

Bcel

MLR SV
R
XGB RF

SG
D L1 L2

ARIMA+LM

ARIM
AX

SA
RIMA+LM

SA
RIMAX

0.0

0.2

0.4

0.6

0.8

1.0

Codec

MLR SV
R
XGB RF

SG
D L1 L2

ARIMA+LM

ARIMAX

SA
RIMA+LM

SA
RIMAX

0.0

0.2

0.4

0.6

0.8

1.0

Collections

MLR SV
R
XGB RF

SG
D L1 L2

ARIMA+LM

ARIMAX

SA
RIMA+LM

SA
RIMAX

0.0

0.2

0.4

0.6

0.8

1.0

Commons-CLI

MLR SV
R
XGB RF

SG
D L1 L2

ARIMA+LM

ARIM
AX

SA
RIMA+LM

SA
RIMAX

0.0

0.2

0.4

0.6

0.8

1.0

Commons-EXEC

MLR SV
R
XGB RF

SG
D L1 L2

ARIMA+LM

ARIMAX

SA
RIMA+LM

SA
RIM

AX

0.0

0.2

0.4

0.6

0.8

1.0

Configuration

MLR SV
R
XGB RF

SG
D L1 L2

ARIMA+LM

ARIM
AX

SA
RIMA+LM

SA
RIMAX

0.0

0.2

0.4

0.6

0.8

1.0

Dbcp

MLR SV
R
XGB RF

SG
D L1 L2

ARIMA+LM

ARIM
AX

SA
RIMA+LM

SA
RIMAX

0.0

0.2

0.4

0.6

0.8

1.0

Hive

MLR SV
R
XGB RF

SG
D L1 L2

ARIMA+LM

ARIM
AX

SA
RIMA+LM

SA
RIMAX

0.0

0.2

0.4

0.6

0.8

1.0

Httpclient

MLR SV
R
XGB RF

SG
D L1 L2

ARIMA+LM

ARIM
AX

SA
RIMA+LM

SA
RIMAX

0.0

0.2

0.4

0.6

0.8

1.0

Httpcore

MLR SV
R
XGB RF

SG
D L1 L2

ARIMA+LM

ARIM
AX

SA
RIMA+LM

SA
RIMAX

0.0

0.2

0.4

0.6

0.8

1.0

Jxpath

MLR SV
R
XGB RF

SG
D L1 L2

ARIMA+LM

ARIM
AX

SA
RIMA+LM

SA
RIMAX

0.0

0.2

0.4

0.6

0.8

1.0

Santuario

MLR SV
R
XGB RF

SG
D L1 L2

ARIMA+LM

ARIM
AX

SA
RIMA+LM

SA
RIMAX

0.0

0.2

0.4

0.6

0.8

1.0

Validator

Figure 7: MAE prediction performance results using the biweekly data for the 14 analyzed projects.

16

the predictive performance results of the performance met-
rics adopted. To avoid overwhelming the reader with too
many plots, we displayed the results for the seasonally ad-
justed models and their former counterparts, ARIMAX and
ARIMA+LM. The results displayed demonstrate a systematic
difference in prediction performance between the multivari-
ate single model approach, i.e., ARIMAX and SARIMAX, com-
pared to that of the multivariate combined model approach,
i.e., ARIMA+LM and SARIMA+LM. Therefore, we can affirm
that the superiority in the prediction performance demon-
strated on ARIMAX compared to ARIMA+LM is maintained
with SARIMAX and SARIMA+LM when adjusting the mod-
els to capture seasonality. Figure 6 demonstrates the clear
superiority of SARIMAX over SARIMA + LM given serialized
time series data biweekly and monthly. Hence, we can af-
firm that given the adjustment of the existing TSA models for
code TD prediction, the SARIMAX model outperforms the
predictive performance of the SARIMA+LM model. Specifi-
cally, for MAE and RMSE, the prediction error difference be-
tween SARIMAX and SARIMA+LM is 11,382 and 11,691 for bi-
weekly data and 11,792 and 12,697 for monthly data, respec-
tively. These values highlight a significant gap between the
two approaches.

Hence, to answer RQ3, the results displayed provide
slightly similar results between the SARIMAX and ARIMAX
models. The results for the biweekly data provided better
prediction performance for ARIMAX than SARIMAX, while
the opposite happened for the monthly data. MAPE results
provided a worse prediction performance for SARIMA+LM
than for ARIMA+LM when using biweekly data. However,
SARIMA+LM overtook ARIMA+LM for the MAPE results when
using monthly data and in the other prediction performance
evaluation metric results. Therefore, we can affirm that ad-
justing the TSA models to capture the seasonality effects of
the data improves their prediction performance to some ex-
tent.

4.5. On the comparison of seasonally adjusted time-
dependent models and ML models for Code TD prediction
(RQ4)

We compared the previously confronted SARIMAX and
SARIMA+LM models against the adopted ML algorithms
commonly used in the field. Tables 5 and 6 present
the prediction performance results for the SARIMAX and
SARIMA + LM models compared to the adopted ML models.
As expected from the results obtained for RQ3, where SARI-
MAX provided similar prediction results to ARIMAX when us-
ing biweekly data and overtook ARIMAX when using monthly
data, in this case, the SARIMAX model also demonstrated a
clear superiority among the rest of the compared models,
thus providing a more accurate prediction outcome for fu-
ture code TD observations. It should be noted that capturing
the seasonality effect did not change the key results observed
for RQ2. SARIMAX did not improve the results of the ARI-
MAX model using biweekly data, and the improvement ex-
perimentally compared to ARIMAX, with low monthly results.
In addition, RF was shown to be the second-best prediction

model. Therefore, even if the results suggest the suitability for
linear models, nonlinear models may also offer the potential
to capture more complex relationships. Looking at the rest
of the ML models and excluding the special case of the SVM
model, non-linear models present more accurate results than
linear models in all the calculated metrics.

4.6. On the long-term forecasting accuracy with TSA models
(RQ5)

Considering the single-step prediction performance pre-
sented in Section 4.4 and Section 4.5, the results of this study
provided practitioners with two main TSA models that per-
formed well in predicting future code TD one month ahead
and two weeks ahead, we extend the result of the resulting
best models, ARIMAX and SARIMAX, by exploring their long-
term forecast performance.

Following the data analysis process described in Sec-
tion 3.7.2 the ARIMAX model was trained with the biweekly
dataset, and the SARIMAX model was trained with the
monthly data set. These models were selected based on
their demonstrated superior performance among the mod-
els compared in the study, and each serialized data set was
used accordingly. For each project time series data, the mod-
els were trained with 70% of the series, the remaining 30%
being used to assess the performance of the forecasts with-
out retraining the models. Figure 8 illustrates the results of
the long-term prediction of the SQALE index for the SARIMAX
model visualized through the quantified MAPE errors, con-
sidering the monthly time series data for the 14 projects. Sim-
ilarly, Figure 9 presents the MAPE errors resulting from the
long-term SQALE index forecasting for the ARIMAX model,
considering the biweekly time series data in the equivalent
number of projects.

It is important to note that each time point in the X-axis of
both figures represents a new time period; for instance, time
point 1 in the first figure represents the forecast for the fu-
ture next month from the current time point. We displayed
a box plot for each future time observation with the distri-
bution of the resulting MAPE values from forecasts made on
the resulting projects. Within the displayed boxplots we can
find the median value of the obtained MAPE result, as well
as the maximum and minimum values. Given the nature of
the data, code TD, we considered limiting the total forecast-
ing window length to 3 years, counted as 36 months and 72
biweekly periods.

Also, given that some projects had longer history data than
others (see Table B.19 in the appendix), we could observe
sudden drops in the magnitude of the boxplot in some time
points, which depicted the end of the historical data of one
of the resulting projects. However, this fact did not affect the
evidence of a constant low-variance increasing cross-project
code TD trend, which suggested a clear decline in the fore-
casting performance of the trained models, yet balanced over
time. Furthermore, following the reported analysis design,
we also calculated summary statistics from the aggregated
MAPE results to quantitatively complement the displayed

17

2 7 12 17 22 27 32
Monthly observation index

0

2

4

6

8

10

12

14

M
A

PE
 (%

)

Figure 8: SARIMAX 36-month MAPE results with monthly data.

forecast trends. Table B.21 and Table B.22 in the appendix
present the results of the summary statistics.

The resulting values of the forecasts performed reaffirmed
the key takeaways observed from the temporal trends previ-
ously displayed in Figure 8 and Figure 9. On the one hand,
we observed a clear increase in the forecasting error quan-
tified through the average MAPE values, a trend equally ob-
served in the values for the median and the variation. On
the other hand, we observed a relatively balanced trend in
all the descriptive statistics mentioned. For example, inter-
preting the results from the perspective of a practitioner, the
mean of the resulting aggregated monthly MAPE error from
the SARIMAX model (see Table B.22) increased only to 1.08%
for a forecast window of six months, 2.33% for a forecast of
twelve months, and 4.19% for forecasts 36 months ahead of
the current point. Regarding the variance of the results in the
same table, its value was maintained below 5% six months
ahead of the current time point and almost reached less than
15% of the variance being twelve months ahead. Looking
at the forecasting results from the ARIMAX model with bi-
weekly time series data, the increase in statistics such as the
mean and the median remained balanced, although the vari-
ance of the distribution was already from the first forecast bi-
weekly time point. However, the mean of the MAPE error val-
ues obtained remained at 3.15% after 12 periods of biweekly
(six months) and 4.56% for 24 periods (twelve months). Even
if the mean value oscillated over higher values in the sub-
sequent biweekly periods, the final value after 72 periods
(thirty-six months) from the current time point remained at
5.97%.

4.7. On the practitioners’ forecasting perceived valuable (RQ6)

Table 7 shows the score for the perceived value of our
model. Using the Likert scale provided in the questionnaire

and reported in Table 8, according to Table 7, 70% of the par-
ticipants perceived our model as useful to extremely useful,
thus showing great appreciation for its possible effectiveness
in the prediction of TD. 21% of the interviewees deemed our
model moderately useful and only 8% deemed it very lowly
useful. More specifically, Table 9 presents the distribution of
responses according to the Net Promoter Score (NPS) scale.
The table categorizes the respondents into three groups: Pro-
moters (who rate the tool between 9 and 10), Passives (who
rate it between 7 and 8), and Detractors (who rate it between
0 and 6). These categories reflect varying levels of enthusiasm
and the likelihood of recommending the tool.

According to Table 9, the majority of respondents fall into
the Passives category (47.83%), indicating a generally satis-
fied user base that does not strongly advocate for the tool.
The Promoters constitute 21.74% of responses, representing
those who are highly enthusiastic and are likely to recom-
mend it. Conversely, Detractors account for 30.43%, suggest-
ing a notable portion of users who may be dissatisfied or un-
likely to endorse the tool. The computed NPS is 39.1, which
falls into the “Neutral to Good.” This means that while there
is a reasonable level of positive sentiment, there is still room
for improvement in converting passive and detracting users
into promoters.

Table 10 also describes the justifications for these ratings.
The strongest justification for positive ratings is that 17.39%
of the respondents identify the effectiveness the model could
bring to the monitoring and treatment of TD. Another 13.04%
value its predictive aspect, citing its ability to prevent and
control. Some of the participants (4.35%) liked its application
in effort estimation, planning, and risk reduction, reaffirming
the real-world advantages of our solution. In addition, none
of the participants rejected the model as completely useless
(0%), validating the usefulness of our model.

18

2 7 12 17 22 27 32 37 42 47 52 57 62 67 72
Biweekly observation index

0

2

4

6

8

10

12

14

M
A

PE
 (%

)

Figure 9: ARIMAX 72-biweekly (36 months) MAPE results with biweekly data.

Table 7: Perceived Value of Our model - (Q12)

Value 0-1 2-4 5-6 7-10

% 0 8 21 70

Table 8: Survey Scale for Model Usefulness

Score Interpretation

0 Not useful at all – The model provides no value and does not
meet any expectations.

1-2 Very low usefulness – The model is barely functional or rele-
vant, offering minimal benefit.

3-4 Low usefulness – Some minor utility, but the model does not
sufficiently address user needs.

5-6 Moderate usefulness – The model is somewhat helpful, but
it has limitations that impact its effectiveness.

7-8 Useful – The model is generally valuable and meets expecta-
tions, though some improvements could enhance its impact.

9 Very useful – The model is highly effective, providing strong
value with only minor areas for improvement.

10 Extremely useful – The model fully meets or exceeds expec-
tations, offering exceptional value.

Table 11 presents the trade-off between the desired fore-
cast horizon and MAPE, and the percentage of practitioners
who preferred each forecast horizon. The findings show a
clear trade-off between prediction accuracy and the desired
forecasting horizon, capturing the balance that practitioners
seek between accuracy and practicability.

The most favored forecast horizons are 4 weeks (1.83%
MAPE, chosen by 48% of the respondents), 2 weeks (1.44%
MAPE, 30%), and 6 weeks (2.14% MAPE, 30%). They are the
most preferred group, where respondents realize the best bal-

Table 9: NPS of the Perceived Value of Our model - (Q12)

NPS Category Percentage (%)

Promoters (9-10) 21.74

Passives (7-8) 47.83

Detractors (0-6) 30.43

NPS 39.13

Interpretation Neutral to Good

Table 10: Motivation for the chosen value (Table 7) - (Q13)

Motivation %

A precise tool would improve effectiveness of addressing &
tracking TD

17.39

Forecasting is useful for proactive management & prevention 13.04

Useful for estimating effort, scheduling & reducing risks 4.35

Mixed opinion (useful but with limitations) 4.35

Not useful or low relevance 0

ance between forecast accuracy and ease of use. Interestingly,
the four-week period stands as the most favored duration
overall, presumably since it has the smallest prediction error
coupled with the length that most closely resembles common
sprint lengths for agile methodologies.

Beyond this range, as the forecast horizon extends beyond
8 weeks, MAPE increases linearly, exceeding 3% at 10 weeks
and 5% at 14 weeks. The declining interest of practitioners
with longer forecast horizons indicates that, although longer-
term forecasts continue to be provided, the growing uncer-
tainty reduces their functional attractiveness.

Table 12 classifies the explanations for interval preference

19

Table 11: Practitioners’ Preferred Forecasting Intervals and Prediction Accu-
racy (Weeks) - (Q14)

Weeks MAPE (%) %

2 1.44 30

4 1.83 48

6 2.14 30

8 2.96 26

10 3.51 13

12 4.41 4

14 5.09 9

16 5.62 9

18 6.09 4

22 3.00 4

24 3.15 4

26 3.29 4

28 3.43 4

30 3.54 4

32 3.69 4

34 3.84 4

36 4.06 4

38 4.01 4

40 3.84 4

42 4.03 4

44 4.21 4

46 4.39 4

48 4.56 4

forecasting into four general themes. The most common cat-
egory, Short-Term Preference (33%), explains that the ma-
jority of practitioners prefer shorter forecast horizons (e.g.,
2-6 weeks), which is aligned with agile processes and regu-
lar technical debt fixing. Suggest an industrial context that
requires timely, actionable information instead of long-term
forecasts. The second highest theme, Medium-Term Bal-
ance (25%), implies that there are practitioners who prefer
a moderate forecasting period (e.g., 8-14 weeks) and there-
fore achieve a moderate balance between accuracy and ac-
tionable planning. These respondents probably aim to align
technical debt planning with milestone-based development
cycles. The accuracy and forecast utility (21%) contains rea-
sons centered on accuracy and error minimization. These
professionals regard precise forecasts with minimal deviation
so that decisions made with the model remain actionable and
trustworthy.

Technical and Business Constraints (21%) express external
constraints such as hardware obsolescence, product stabil-
ity, or the feasibility of resolving types of technical debt. This
would imply that forecasting needs to be domain-specific
and reflect the constraints on the software being developed.

Table 13 shows the correlation between the forecast hori-
zons in months, the accuracy of the forecast (MAPE), and the
desires of the practitioner. The findings reveal that very ac-
curate near-term forecasts are desired, with 52% of the prac-

Table 12: Thematic Coding of Forecasting Preferences - (Q15)

Theme Percentage (%)

Short-Term Preference 33

Medium-Term Balance 25

Accuracy and Forecasting Utility 21

Technical and Business Constraints 21

titioners requesting a 1-month forecast (0.30% MAPE) and
48% wanting a 2-month horizon (0.34% MAPE). This reveals
that practitioners desire very accurate near-term forecasts for
their technical debt planning.

With a growing forecast horizon, preferences continue to
decrease, with only 39% opting for a 3-month forecast (0.50%
MAPE) and 22% for 4 months (0.61% MAPE). For more than
6 months, the preferences drop below 13%, which shows that
longer-term forecasts are unrealistic because the error levels
rise. The interest is maintained only by the practitioners 9%
for up to 12 months, where MAPE is up to 2.33

Table 14 summarizes the drivers of the selection of the fore-
cast window into four primary themes. The most common
theme, Short-Term Preference (30%), is that practitioners like
shorter forecasting windows (1-3 months) so that they can
maintain pace with agility and responsiveness in their pro-
cesses. This is also aligned with sprint-based planning and
periodic technical debt pay-down. Medium-Term Planning
(26%) is the second most frequent theme, and respondents
indicated the 1-6 month timescale as the optimal balance of
predictability and feasibility in plans. Practitioners gener-
ally accept that taking it beyond 6 months makes the fore-
cast less useful because uncertainty increases. Accuracy and
Practicality in Forecasting (22%) includes those that empha-
size the importance of precision in prediction. Practitioners
prefer shorter horizons with low MAPE so that the predic-
tions remain valid and practical. They are also concerned
that the long-term forecasts are not concrete and practical.
Lastly, Business and Workflow Constraints (22%) are domain-
specific issues such as ensuring product availability, priori-
tization of backlogs, and customer needs. The development
cycles of most practitioners require technical debt to be tack-
led before large releases or in formalized reporting cycles,
most practitioners claim.

Table 15 illustrates the intervals preferred by practitioners
for forecasting technical debt. The responses are distributed
equally in three large bins: Weekly (32%), Biweekly (32%) and
Monthly (32%). It mirrors the fact that practitioners prefer
frequent forecasting, possibly due to the changing nature of
software development and the need to constantly re-estimate
technical debt. Only a minority of 5% prefer a Sprint-Based
Approach (Agile), which suggests that for others, the best
forecast window is precisely in synchronization with sprint
cycles and not hard-coded time frames. This supports agile
practices in which technical debt management is integrated
into iterative development phases.

Table 16 categorizes the motivations for the preferred fore-
casting windows of technical debt professionals. The most

20

Table 13: Practitioners’ Preferred Forecasting Intervals and Prediction Accu-
racy (Months) - (Q16)

Months MAPE (%) %

1 0.30 52

2 0.34 48

3 0.50 39

4 0.61 22

5 0.73 13

6 1.08 26

7 1.38 13

8 1.61 9

9 1.79 13

10 1.98 9

11 2.15 9

12 2.33 9

Table 14: Thematic Coding of Forecasting Window Preferences - (Q17)

Theme %

Short-Term Preference 30

Medium-Term Planning 26

Forecasting Accuracy & Practicality 22

Business and Workflow Constraints 22

common theme, Short-Term Preference (32%), suggests that
most practitioners prefer TD predictions to occur often,
which emphasizes the importance of quick feedback loops
and the ability to act on evolving issues before they accumu-
late. The second most prevalent category, Regular Review and
Planning Cycles (27%), focuses on alignment with existing
workflows, such as sprints and formalized reviews. The ma-
jority of respondents favor forecast intervals that are aligned
with agile iterations so that technical debt can be monitored
and dealt with regularly within development cycles.

Balanced Practicality and Granularity (23%) recognizes
drivers who seek a compromise between high frequency and
low overhead. Monthly forecasting, for instance, is interrup-
tive enough to be actionable but not so interruptive as to
cause problems. Practitioners know that lower frequencies
are more precise but are not always practical for a long-term
strategy. Lastly, Domain-Specific Constraints (18%) incor-
porate idiosyncratic considerations in terms of practitioners’
work environments. This includes energy-efficient systems
that must be updated regularly, varied levels of interaction
with TD prediction, and other context constraints that affect
how frequently TD forecasting is possible.

5. Discussion

The objective of the presented study was to analyze the
impact of temporal factors in code TD prediction. Code TD
was approximated using the SQALE index metric calculated
by SQ, and the predictions were made including the set of
different types of code smell issues in the projects within the

Table 15: Preferred Forecasting Window for TD Prediction - (Q18)

Preferred Forecasting Window %

Weekly 32

Bi-Weekly 32

Monthly 32

Sprint-Based (Agile) 5

Table 16: Thematic Coding of Forecasting Window Motivations - (Q19)

Theme %

Short-Term Preference 32

Regular Planning and Review Cycles 27

Balanced Practicality & Granularity 23

Domain-Specific Constraints 18

prediction models. The adoption of TSA prediction models
enabled empirical demonstration of the suitability of time-
dependent techniques for code TD prediction, as well as
comparative analysis with commonly used ML prediction al-
gorithms. Consequently, 11 different prediction models were
constructed for each project. The analysis included a com-
prehensive data collection, preprocessing, and examination
of 31 open-source Java projects. However, to ensure the in-
tegrity and fairness of the results, only the outcomes of the
14 projects that provided complete results with the adopted
prediction models were considered.

Our study aimed to answer six research questions. The first
research question aimed to compare the predictive perfor-
mance of two time-dependent approaches based on ARIMA
already implemented in the academic literature given the
same experimental setting. The confronted models were the
ARIMAX model previously implemented by Mathioudaki et
al. [11], and the ARIMA+LM model previously implemented
by Zozas et al. [12]. Within the same setting for our first re-
search question, we also assumed before running the study
that we expected the accuracy from the ARIMAX model, given
its existing theoretical background and the factor that it con-
siders as a model variable the autoregression of its dependent
variable, would be superior to that of the ARIMA+LM, which
comprises the mixture of two different families of statistical
models, and performs a linear regression on the dependent
variable without considering its autoregressive component as
an additional variable within the model. Thus, looking at the
results, our initial takeaway depicted the superiority of ARI-
MAX over the ARIMA+LM model in predicting the code TD.
These results suggest that, given a time-dependent predic-
tion context, multivariate models that include and simul-
taneously predict independent variables as well within the
prediction model, such as ARIMAX, succeed on providing
robust results as shown in Figure 6.

Furthermore, in the second research question, we proved
the robustness reported with ARIMAX by comparing its Code
TD prediction performance against a set of the most com-
mon ML algorithms adopted in the SE field. The results pro-

21

vided in Tables 6 and 5 corroborated this evidence. These re-
sults suggest the necessity of adopting models that consider
the time dependence factor in the dependent variable to be
predicted. However, it is worth noticing the close results re-
ported by models such as Random Forest or Extreme Gradi-
ent Boost, prediction algorithms widely used in academia as
well as in industry. Given the non-linear distributional as-
sumption of these models and the oppositely linear distribu-
tional assumption, which is the foundation for TSA models
such as ARIMAX, leveraging the combination of these mod-
els through ensemble learning approaches might further
improve the prediction performance reported in this study.

In addition, we analyzed the impact of addressing the sea-
sonal component within the time-series data on the obtained
results. For that, we used the model extensions provided in
ARIMA-founded models to analyze the results for the SARI-
MAX and SARIM + LM models. As a result of the analysis
performed, we observed slight improvements in the initially
adopted TSA models, thus depicting a small impact on pre-
diction performance by controlling the seasonality compo-
nent. This evidence suggests a small dependence on sea-
sonality from the perspective of the OS software develop-
ment community, which might not follow structured devel-
opment schedules compared to the software development
activity performed in the industry.

As the key takeaway of this study, we can confirm that time-
dependent models are applicable and competitive in pre-
dicting the TD code, not only at the level of a single project,
but also at the aggregate level, as we have demonstrated.
More research is still needed to understand the methodol-
ogy required to prepare the most suitable data for TSA mod-
els. It has been demonstrated that if the data fits well in the
TSA model, the latter can provide a high prediction perfor-
mance. Therefore, this study suggests the adoption of peri-
odic software quality analysis practices within the project
development process, thus providing a complete monitor-
ing of metrics such as Code TD and better quality data for
the improvement of prediction performance. Similarly, it is
important to note at this stage that when we make our pre-
dictions, these values are the obtained most likely estimates;
therefore, we are not comparing our real values against the
result of a simulation or an execution. TSA models can have a
considerable prediction performance, but there is a need for
further research in modeling Code TD prediction while con-
sidering time as a relevant factor.

5.1. Forecasting Code TD

The observed results from the long-term Code TD forecast-
ing performance resulted in a set of key takeaways. Through
the analysis implemented that addresses long-term forecast-
ing, we could confirm that time-dependent models can pro-
vide competitive code TD forecasting for single-step and
multistep forecasting scenarios, and therefore highlight the
importance of considering techniques that treat the tempo-
ral nature of the dependent variable when performing data
analysis on time-dependent variables. Still, more work needs

to be done on long-term code TD forecasting to provide ro-
bust enough long-term maintenance guarantees to practi-
tioners, especially given the volatility advertised in the vari-
ance observations of the results we obtained. Similarly, prac-
titioners should benefit from different approaches of Code
TD prediction, i.e. single-step forecasting or multi-step fore-
casting, based on the specific characteristics and needs of
the software project workflows. On this basis, our work em-
phasizes the benefits of structuring Code TD analysis exe-
cutions in a serialized style when working on maintenance
of the software quality with tools like SQ.

5.2. Impact on Practitioners

We surveyed the opinion of 23 practitioners and their ex-
pertise profile. We asked them to evaluate the practical us-
ability of our model and the perceived benefit or limitations
it may have in an industrial context. Referring to our findings
in the RQ5, we presented the practitioner with the same time
window of 36 months and 72 weeks. In particular, no one ex-
ceeded the 48-week mark, while only 4% on average selected
a time window beyond 12 weeks. Furthermore, no instances
surpassed the 12-month threshold.

According to Tables 7 and Table 10 describe the external
validity of our TD prediction model, with overwhelming per-
centages of respondents knowing its ability to improve TD
management. The high ratio of Promoters and Neutral-to-
Promoter respondents indicates our approach is well per-
ceived, justifying its use in real software engineering practice.
Table 11 confirms the precision of our TD forecasting model
within short- to medium-term horizons, specifically the 2-6
week horizon, where precision is best and trust from practi-
tioners highest.

Generally speaking, our survey findings confirm that our
forecasting model best suits industry needs, particularly in
the case of short- to medium-term planning, where practi-
tioners tend to prefer its forecasts. In fact, according to Ta-
ble 12, practitioners favor a good accuracy with a medium
time window over the planning horizon, where the ideal is
between 1 and 3 months. This aligns perfectly with typical
agile development cycles and decision-making milestones,
confirming that our approach is meaningful within substan-
tial periods in industry.

Moreover, Table 14 validates the accuracy of our model’s
performance, particularly in short- to medium-term forecast-
ing, which has been widely accepted to be informative, accu-
rate, and actionable for real software development processes.
Table 15 reiterates that short-range forecasting is crucial to
practitioners because it places technical debt in continuous
observation and is resolved within appropriate actionable
time frames. The lack of preference for longer-range fore-
casting (e.g., quarterly or yearly) also emphasizes the need for
near-term and actionable forecasts over long-horizon predic-
tions.

Finally, Table 16 shows that our forecasting approach aligns
more closely with what the industry desires, particularly in
short- to medium-term window lengths, where usability, pre-
cision and integration are the most valued by practitioners.

22

6. Threats to Validity

Construct validity. Some projects have been affected by only
a few code smell rule issues, so we decided to exclude them
because their independent variables were considered unin-
formative. Additionally, irregularities in commit data can
cause missing data for the generated periodical time series.
The threat was minimized by linearly interpolating the val-
ues for the missing periods. Approximations cannot be as
accurate as using real data; therefore, we could expect dif-
ferent results if periodic complete real data existed. An ad-
ditional potential threat to construct validity is identification
and TD quantification, namely to the validity of code smells
as predictors for TD. Although SonarQube’s remediation time
is widely used, other work [69, 70, 71] demonstrated that it
is not always a good estimator of the actual effort to remove
TD. So, our results may be affected by potential TD measure-
ment errors. To restrict this risk, we compared our approach
with existing research on TD assessment and ensured that
our approach was consistent with current best practice. How-
ever, we acknowledge that variability in the estimation of TD
is a feature of automated analysis and that further research
should explore other methods of quantification of TD to fur-
ther validate our results.

Internal validity. We selected the SQALE index as the vari-
able of interest, given its capacity to depict technical debt. We
then established a set of code smell violation rules reported
by SQ as the underlying reason for the existence of the given
SQALE index metric. This served as the initial set of inde-
pendent variables in our study. However, we did not consider
collecting additional variables that could have an impact on
the results. Consequently, alternative choices of independent
variables may yield different results. Concerning the impact
on the remediation time estimate provided by the collected
SQALE index data, previous research has demonstrated that
the SQALE index provides overestimations of the real code
TD. Therefore, this study uses the SQALE index as a proxy for
technical debt, as well as the independent variables for code
smell rule violations in our models. We acknowledge that po-
tential overestimations in the SQ estimated SQALE index data
could affect the practical applicability of the study findings.
In future research, we will mitigate this threat by incorporat-
ing more accurate estimates of remediation time into mod-
els, or complementing the models with real-effort data to im-
prove the model’s reliability.

External validity. The study subjects were mature open
source projects written in Java that met the rigorous qual-
ity standards of ASF. The included projects represent a
wide spectrum of application domains, including external
libraries, frameworks, web utilities, and substantial com-
putational infrastructures. Hence, the obtained results can
be generalized to projects with similar characteristics, and
therefore nonmature projects, retired projects, and projects
not using SonarQube are excluded.

Conclusion validity. This study applied commonly known
statistical and ML techniques. During data analysis, we en-
sured that the assumptions of the techniques were fulfilled.
However, a low number of data points in some projects can
reduce the prediction power of the models used. Additionally,
the ARIMA + LM model may not capture the time-dependent
nature of the SQALE index, as its prediction is performed
through a Multiple Linear Regression model, which does not
consider the time-dependent factor. Regarding the reliabil-
ity of the measures, the variables’ measurements were col-
lected from the data set and the construction of the final set of
model variables was carried out through an automated pro-
cess. For the sake of the reliability of the results, we excluded
the collected projects which did not allow the algorithms
from the adopted models to converge within the model fit-
ting. Therefore, we report only the aggregated results from
the projects that provided results for the entire set of models
considered in this study.

7. Related Work

This section reports related work, including the current
state of Technical Debt (code TD) prediction and a detailed
comparison with our work in Table 17.

Tsoukalas et al. [10] investigated the effectiveness of ML
techniques in modeling and predicting the evolution of the
code TD. Specifically, they collected weekly commit-level
snapshot observations over three years for a total of 15 soft-
ware projects. They used the correlation analysis technique
to perform feature selection and the grid search method to
tune the model hyperparameters. They implemented a set of
different well-known ML models (see Table 17) and trained
and tested them through the Walk-Forward (WF) Train-Test
method, considering MAPE as a performance assessment
metric. They provided the results, scripts, and data sets for
the study. Similarly, they introduced an industrial survey to
empirically assess the significance of the TD approach intro-
duced in their work.

In a second work, Tsoukalas et al. [9] adopted a different
set of ML models to classify code TD classes (High/Not-High
TD), analyzing 25 open-source projects. They performed hy-
pothesis testing for the selection of the most significant inde-
pendent variables and tuned the parameters of the selected
models through the grid-search method. In this second work,
they used commonly known classification assessment meth-
ods such as AUC, F2 or Recall, among others, in a repeated
stratified cross-validation setting to assess their results. Simi-
larly, as in their previous work, they shared the study’s results,
scripts, and datasets.

Mathioudaki et al. [54] explored the application of deep
learning methods (DL) compared to univariate approaches
already implemented such as ARIMA or RF models to im-
prove the precision of long-term code prediction. TD. To
achieve this, they created, evaluated, and juxtaposed DL
models using a data set that includes five prominent real-
world software applications sourced from the Technical Debt
dataset version 1 [28]. They preprocessed the adopted

23

Table 17: Related work on the existing research on TD prediction

Tsoukalas et al. [10] Tsoukalas et al. [9] Mathioudaki et al. [54] Aversano et al. [55] Mathioudaki et al. [11] Zozas et al. [12] Our work

Seasonality ✓

Time Series (TS) process-
ing methodology

Weekly snapshots
across 3 years & Walk-
Forward Train-Test

No serialization & 10-
K CV (No TS methodol-
ogy)

Sliding Window over
project commits &
Walk-Forward Train-
Test

Raw commit-level ob-
servations & Repeated
CV (No TS method-
olofy)

Last commit of the week
as weekly observation
& Walk-Forward Train-
Test

Raw release data &
Random train-test split
& Walk-Forward Train-
Test

Biweekly and Monthly
serialization of SQ anal-
yses & Walk-Forward
Train-Test

Feature selection Correlation analysis Hypothesis testing Correlation analysis BSR

Feature importance,
Variance thresholding,
Zero percentage, Corre-
lation analysis

Hyperparameter tuning Grid-search method Grid-search method Grid-search method ACF, PACF ACF, PACF Auto-ARIMA

Univariate models
Univariate logistic re-
gression

Multi-layer perceptron ARIMA ARIMA ARIMA, SARIMA

Multivariate models
MLR, L1, L2, SGD, SVR
(linear), SVR (rbf), RF
(regression)

LR, NB, DT, KNN, SVM,
RF, XGB

MLR, BDT, RF ARIMAX LM

ARIMAX, SARI-
MAX, ARIMA+LM,
SARIMA+LM L1, L2,
MLR, SGD, SVR, RF,
XGB

Industrial survey ✓ ✓ ✓

Long-term forecasting 1 to 40 weeks 5 to 150 commits 4, 8, 12 steps 12 iterations 1 to 36 months

Time Series models ARIMA ARIMA, ARIMAX ARIMA
ARIMAX, ARIMA+LM,
SARIMAX, SARIMA+LM

ML models
MLR, L1, L2, SGD, SVR
(linear), SVR (rbf), RF
(regression)

LR, NB, DT, KNN, SVM,
RF, XGB

RF MLR, BDT, RF
L1, L2, MLR, SGD, SVR,
RF, XGB

DL models Multi-layer perceptron

Cross-validation
Walk-Forward Train-
Test

Repeated stratified CV
Walk-Forward Train-
Test

Repeated CV
Walk-Forward Train-
Test

Walk-Forward Train-
Test

Walk-Forward Train-
Test

Performance metrics MAPE
Precision, Recall, F2,
AUC, Module inspec-
tion

MAPE, MAE, RMSE RMSE MAPE, MAE, RMSE MAPE, MAE, RMSE MAPE, MAE, RMSE

Sample size 15 projects 25 projects 5 projects 8 projects 5 projects 105 projects 14 projects

Results discussed ✓ ✓ ✓ ✓ ✓ ✓ ✓

Scripts available ✓ ✓ ✓

Datasets available ✓ ✓ ✓ ✓ ✓

commit-level data through the Sliding Windows technique to
transform the raw data into a processable time series for the
chosen models. They also adopted the Grid Search method
for model parameter tuning. The long-term prediction hori-
zon ranged from 5 to 150 commit-ahead lengths. To assess
the performance of the predictions, they considered the WF
Train-Test technique and the MAPE, MAE, and RMSE perfor-
mance metrics. The results revealed that DL techniques pro-
duce code TD prediction models with commendable predic-
tive accuracy, extending up to 150 steps ahead in future pre-
diction.

Aversano et al. [55] investigated the potential utility of soft-
ware system quality metrics to accurately predict the TD
code. The authors examined quality metrics from 8 distinct
open source software systems and then fed those commit-
level metrics into different ML algorithms to predict TD. They
performed a correlation analysis for the selection of the fea-
tures of the independent variables used in their models. They
used the repeated cross-validation technique to assess their
results, which were quantified through the RMSE. The results
demonstrated strong predictive performance, and the sug-
gested approach offers a valuable method to comprehend the
practical aspects of the technical debt phenomenon.

Focusing on the work that adopted TSA models to predict
code TD, we concentrated on two papers. Mathioudaki et
al. [11] investigated the predictive capabilities of TSA mod-
els for the prediction of the code TD. They aimed to deter-
mine whether the incorporation of independent variables as

predictors, known as Code TD predictors, into ARIMAX mod-
els [25, p. 451] could produce more precise Code TD pre-
dictions compared to conventional univariate Autoregressive
Integrated Moving Average (ARIMA) models. Their investi-
gation used five datasets that captured the historical evo-
lution of software metrics derived from static code analysis
in five long-standing projects. The raw data was serialized
into weekly observation points by choosing the last commit
performed in each weekly time window. They used Auto-
Correlation Functions (ACF) and Partial Auto-Correlation
Functions (PACF) for the parameter tuning of the chosen
models. They generated predictions using both ARIMA and
ARIMAX models for various time horizons on these data, ex-
ploring long-term forecasting horizons of 4, 8 and 12-week
ahead periods. The results yielded a clear conclusion. Across
the open-source software projects examined, the accuracy of
the ARIMAX models exceeded that of the ARIMA models by a
significant margin.

More recently, Zozas et al. [12] combined two mod-
els to predict code TD: Supervised Linear Regression (LM)
and ARIMA. The authors used backward stepwise regres-
sion (BSR) to identify the most significant predictors to de-
scribe the TD response variable code. They used Auto-
Correlation Functions (ACF) and Partial Auto-Correlation
Functions (PACF) for the parameter tuning of the chosen
models. They performed a univariate TSA prediction through
ARIMA for each of the selected predictors to predict future
values. Then, they used the regression model previously de-

24

veloped to estimate the future values of the response vari-
able. To assess the performance of their models, they adopted
the MAPE, MAE, and RMSE performance metrics within a WF
Train-Test setting. They made 12-week long-term predictions
ahead to explore the long-term prediction performance of the
models studied. The results looked promising as an addi-
tional approach to predict TD efficiently, and they provided
the results and data sets from their work. In addition, they
organized a short survey with 15 JavaScript developers with
medium experience to evaluate their findings.

In our work, instead of comparing univariate and multi-
variate TSA, we aim to directly compare different multivari-
ate TSA approaches to investigate which approach obtains
better prediction performance. Furthermore, we explore the
impact of addressing seasonality as a critical component im-
pacting the performance of TSA models on code TD predic-
tion, and confront the performance of the considered TSA
multivariate models towards a set of previously implemented
ML techniques used for code TD. The selected predictors will
be used to predict the value of the SQALE index, which will
be our target value. Our approach relies on performing differ-
ent multivariate applications of the ARIMA model. To test its
performance, we aim to split the data for training and testing
the model through the WF Train-Test approach and perfor-
mance metrics such as MAPE, MAE and RMSE. We also aim
to perform long-term forecasting with the best resulting TSA
models with forecasting windows reaching the 3-year hori-
zon. Moreover, we are interested in what preferred code TD
forecasting horizon length, and we collected opinions from
practitioners in a shared industrial survey.

Furthermore, since training ML models with a single fea-
ture can compromise their quality [72], we determine the op-
timal number of features and compare the performance of
selected multivariate TSA models against a set of ML models
chosen based on previous research.

8. Conclusions

We conducted an empirical study to compare two TSA ap-
proaches, their respective version adjusted to treat the sea-
sonality component, and seven ML algorithms to code the
prediction of TD as the SQALE index calculated by SQ. In
addition, we conducted an industrial survey to empirically
analyze the implications of our findings from the perspec-
tive of practitioners and tested the accuracy of the result-
ing best time-dependent models when performing long-term
forecasting.

We trained the compared methods using Code TD observa-
tion data that were serialized into biweekly and monthly pe-
riodicity levels from the resulting number of 14 open source
Java projects. The comparison denoted a clear superior-
ity of the ARIMAX model compared to the other adopted
models when training the models with biweekly time se-
ries. At the same time, SARIMAX provided better results with
monthly time series. However, the results provided by SARI-
MAX suggested that the impact of seasonality could not sub-
stantially improve the predictive performance of ARIMAX,

thus demonstrating that the ARIMAX model generates the
main improvement between the performance of the ML algo-
rithms and the TSA models. Our findings show that season-
ality has little impact on the predictive performance of time-
dependent techniques. However, incorporating time depen-
dence improves the predictions over time-agnostic meth-
ods. Moreover, coupled with our data serialization process,
it highlights the benefits of sequential software quality analy-
sis in improving Code TD prediction.

Using the TSA models with the resulting best predictive
performance, we performed long-term forecasting up to a
forecasting horizon of three years translated into 36 months
and 72 biweekly periods accordingly. The resulting forecasts
looked promisingly balanced, which reaffirms the suitability
of time-dependent techniques for Code TD predictions. Fi-
nally, our survey reveals good industry confidence in our tool
and its effectiveness for short- to medium-term forecasting
windows, which aligns closely with industry needs and agile
methodology practice.

In future work, our aim is to analyze the implementation
of transformer-driven prediction techniques, which allow the
inclusion of low-level models into the multiple deep learn-
ing layers nested within the transformer architecture. Adapt-
ing TSA techniques with these models provides great model-
ing ability for long-range dependencies and interactions in
sequential data and TSA models, thus further contributing
to the research community with advanced predicting tech-
niques and anticipating Code TD.

9. Data Availability Statement

To allow verifiability and replicability, we made the raw
data and analysis files available in our online appendix. Fur-
thermore, we provide instructions on how to use the released
replication package in Appendix B, as well as the README
file in our online appendix.6

References

[1] F. Palomba, D. A. Tamburri, F. Arcelli Fontana, R. Oliveto, A. Zaidman,
A. Serebrenik, Beyond technical aspects: How do community smells
influence the intensity of code smells?, IEEE Transactions on Software
Engineering (2018) 1–1.

[2] F. Arcelli Fontana, V. Lenarduzzi, R. Roveda, D. Taibi, Are architectural
smells independent from code smells? an empirical study, Journal of
Systems and Software 154 (2019) 139–156.

[3] T. Sharma, P. Singh, D. Spinellis, An empirical investigation on the re-
lationship between design and architecture smells, Empirical Software
Engineering 25 (2020).

[4] S. Olbrich, D. S. Cruzes, V. Basili, N. Zazworka, The evolution and im-
pact of code smells: A case study of two open source systems, in: Inter-
national Symposium on Empirical Software Engineering and Measure-
ment, pp. 390–400.

[5] D. I. K. Sjoberg, A. Yamashita, B. Anda, A. Mockus, T. Dyba, Quantifying
the effect of code smells on maintenance effort, IEEE Trans. Softw. Eng.
39 (2013) 1144–1156.

6 https://doi.org/10.5281/zenodo.14974421

25

[6] F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R. Oliveto, A. D. Lucia,
On the diffuseness and the impact on maintainability of code smells: a
large scale empirical investigation, Empirical Software Engineering 23
(2018) 1188–1221.

[7] V. Lenarduzzi, N. Saarimäki, D. Taibi, Some sonarqube issues have a sig-
nificant but small effect on faults and changes. a large-scale empirical
study, Journal of Systems and Software (2020) 110750.

[8] N. Saarimäki, S. Moreschini, F. Lomio, R. Peñaloza, V. Lenarduzzi, To-
wards a robust approach to analyze time-dependent data in software
engineering, in: International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER), pp. 36–40.

[9] D. Tsoukalas, N. Mittas, A. Chatzigeorgiou, D. Kehagias, A. Ampat-
zoglou, T. Amanatidis, L. Angelis, Machine learning for technical debt
identification, IEEE Transactions on Software Engineering 48 (2021)
4892–4906.

[10] D. Tsoukalas, D. Kehagias, M. Siavvas, A. Chatzigeorgiou, Technical debt
forecasting: An empirical study on open-source repositories, Journal of
Systems and Software 170 (2020) 110777.

[11] M. Mathioudaki, D. Tsoukalas, M. Siavvas, D. Kehagias, Comparing uni-
variate and multivariate time series models for technical debt forecast-
ing, in: Computational Science and Its Applications, p. 62–78.

[12] I. Zozas, S. Bibi, A. Ampatzoglou, Forecasting the principal of code tech-
nical debt in javascript applications, IEEE Transactions on Software En-
gineering 49 (2023) 2498–2512.

[13] G. E. Box, S. C. Hillmer, G. C. Tiao, Analysis and modeling of seasonal
time series, in: Seasonal analysis of economic time series, NBER, 1978,
pp. 309–344.

[14] P. Bruce, A. Bruce, P. Gedeck, Practical statistics for data scientists: 50+
essential concepts using R and Python, O’Reilly Media, 2020.

[15] G. James, D. Witten, T. Hastie, R. Tibshirani, et al., An introduction to
statistical learning, volume 112, Springer, 2013.

[16] J. Durbin, S. J. Koopman, Time series analysis by state space methods,
Oxford University Press (UK), 2012.

[17] R. J. Hyndman, G. Athanasopoulos, Forecasting: principles and prac-
tice, OTexts, 2018.

[18] V. Lenarduzzi, A. Sillitti, D. Taibi., Analyzing forty years of software
maintenance models, in: International Conference on Software Engi-
neering Companion, ICSE-C ’17, pp. 146–148.

[19] V. Lenarduzzi, A. Sillitti, D. Taibi, A survey on code analysis tools for soft-
ware maintenance prediction, in: International Conference in Software
Engineering for Defence Applications, Springer International Publish-
ing, 2020, pp. 165–175.

[20] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, A. Zaidman,
How developers engage with static analysis tools in different contexts,
in: Empirical Software Engineering.

[21] F. Martin, B. Kent, Refactoring: Improving the Design of Existing Code,
Addison-Wesley Longman Publishing Co., Inc. (1999).

[22] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz, J. Laval,
F. Bellingard, P. Vaillergues, The squale model — A practice-based in-
dustrial quality model, in: International Conference on Software Main-
tenance (ICSME), pp. 531–534.

[23] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering: An Introduction, Springer
Publishing Company, Incorporated, 2000.

[24] V. Basili, G. Caldiera, D. Rombach, The goal question metric approach,
Encyclopedia of Software Engineering (1994).

[25] K.-S. Chan, J. D. Cryer, Time series analysis with applications in R,
Springer, 2008.

[26] J. Çarka, M. Esposito, D. Falessi, On effort-aware metrics for defect pre-
diction, Empirical Software Engineering 27 (????) 152.

[27] M. Esposito, F. Palagiano, V. Lenarduzzi, D. Taibi, On large language
models in mission-critical it governance: Are we ready yet?, arXiv
preprint arXiv:2412.11698 (2024).

[28] V. Lenarduzzi, N. Saarimäki, D. Taibi, The technical debt dataset, in:
Conference on PREdictive Models and data analycs In Software Engi-
neering, PROMISE ’19.

[29] M. Patton, Qualitative Evaluation and Research Methods, Sage, 2002.
[30] M. A. F. A. Fida, T. Ahmad, M. Ntahobari, Variance threshold as early

screening to boruta feature selection for intrusion detection system, in:
2021 13th International Conference on Information & Communication
Technology and System (ICTS), IEEE, pp. 46–50.

[31] P. D. Allison, Missing data, The SAGE handbook of quantitative meth-
ods in psychology (2009) 72–89.

[32] J. L. Speiser, M. E. Miller, J. Tooze, E. Ip, A comparison of random for-
est variable selection methods for classification prediction modeling,
Expert systems with applications 134 (2019) 93–101.

[33] A. Agresti, Foundations of linear and generalized linear models, John
Wiley & Sons, 2015.

[34] C. Spearman, The proof and measurement of association between two
things. (1961).

[35] L. Yu, H. Liu, Feature selection for high-dimensional data: A fast
correlation-based filter solution, in: International conference on ma-
chine learning, pp. 856–863.

[36] J. H. Kim, I. Choi, Choosing the level of significance: A decision-
theoretic approach, Abacus 57 (2021) 27–71.

[37] T. Blu, P. Thévenaz, M. Unser, Linear interpolation revitalized, IEEE
Transactions on Image Processing 13 (2004) 710–719.

[38] A. for Computing Machinery, Acm publications pol-
icy on research involving human participants and sub-
jects, https://www.acm.org/publications/policies/
research-involving-human-participants-and-subjects,
2021.

[39] C. Wohlin, P. Runeson, M. Höst, et al., Experimentation in Software En-
gineering, Springer, 2012.

[40] P. Runeson, M. Höst, Guidelines for conducting and reporting case
study research in software engineering, Empir. Softw. Eng. 14 (2009)
131–164.

[41] N. Rios, R. O. Spínola, M. Mendonça, C. Seaman, The practitioners’
point of view on the concept of technical debt and its causes and conse-
quences: a design for a global family of industrial surveys and its first re-
sults from brazil, Empirical Software Engineering 25 (2020) 3216–3287.

[42] M. Esposito, F. Palagiano, Leveraging large language models for pre-
liminary security risk analysis: A mission-critical case study, in: Pro-
ceedings of the 28th International Conference on Evaluation and As-
sessment in Software Engineering, ACM, pp. 442–445.

[43] R. Likert, A technique for the measurement of attitudes., Archives of
psychology (1932).

[44] G. E. Box, G. M. Jenkins, G. C. Reinsel, G. M. Ljung, Time series analysis:
forecasting and control, John Wiley & Sons, 2015.

[45] P. J. Brockwell, R. A. Davis, Time series: theory and methods, Springer
science & business media, 1991.

[46] D. A. Dickey, W. A. Fuller, Distribution of the estimators for autoregres-
sive time series with a unit root, Journal of the American statistical as-
sociation 74 (1979) 427–431.

[47] R. H. Shumway, D. S. Stoffer, D. S. Stoffer, Time series analysis and its
applications, volume 3, Springer, 2000.

[48] W. A. Fuller, Introduction to statistical time series, John Wiley & Sons,
2009.

[49] F. Canova, B. E. Hansen, Are seasonal patterns constant over time? a
test for seasonal stability, Journal of Business & Economic Statistics 13
(1995) 237–252.

[50] R. J. Hyndman, Y. Khandakar, Automatic time series forecasting: the
forecast package for r, Journal of statistical software 27 (2008) 1–22.

[51] X. Wang, K. Smith, R. Hyndman, Characteristic-based clustering for
time series data, Data mining and knowledge Discovery 13 (2006) 335–
364.

[52] H. Akaike, A new look at the statistical model identification, IEEE trans-
actions on automatic control 19 (1974) 716–723.

[53] A. D. McQuarrie, C.-L. Tsai, Regression and time series model selection,
World Scientific, 1998.

[54] M. Mathioudaki, D. Tsoukalas, M. Siavvas, D. Kehagias, Technical debt
forecasting based on deep learning techniques, in: Computational Sci-
ence and Its Applications – ICCSA 2021, pp. 306–322.

[55] L. Aversano, M. Bernardi, M. Cimitile, M. Iammarino, D. Montano,
Forecasting technical debt evolution in software systems: an empirical
study, Frontiers of Computer Science 17 (2022).

[56] R. J. Freund, W. J. Wilson, P. Sa, Regression analysis, Elsevier, 2006.
[57] A. Bordes, L. Bottou, P. Gallinari, Sgd-qn: Careful quasi-newton

stochastic gradient descent, Journal of Machine Learning Research 10
(2009) 1737–1754.

[58] R. Tibshirani, Regression shrinkage and selection via the lasso, Jour-
nal of the Royal Statistical Society Series B: Statistical Methodology 58

26

(1996).
[59] A. E. Hoerl, R. W. Kennard, Ridge regression: Biased estimation for

nonorthogonal problems, Technometrics 12 (1970) 55–67.
[60] L. De Raedt, P. Flach, Machine Learning: ECML 2001: 12th European

Conference on Machine Learning, Freiburg, Germany, September 5-7,
2001. Proceedings, volume 2167, Springer, 2003.

[61] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Pro-
ceedings of the 22nd acm sigkdd international conference on knowl-
edge discovery and data mining, pp. 785–794.

[62] L. Breiman, Random forests, Machine learning 45 (2001) 5–32.
[63] M. Stone, Cross-validatory choice and assessment of statistical predic-

tions, Journal of the royal statistical society: Series B (Methodological)
36 (1974) 111–133.

[64] F. F. Reichheld, The one number you need to grow, Harvard Business
Review 81 (2003) 46–55.

[65] A. Straus, Techniques and procedures for developing grounded theory,
Basics of Qualitative Research. (1998) 265–274.

[66] C. Seaman, Y. Guo, Measuring and monitoring technical debt advances
in computers, 2011.

[67] P. Flach, Machine learning: the art and science of algorithms that make
sense of data, Cambridge university press, 2012.

[68] G. H. Golub, C. F. Van Loan, Matrix computations, JHU press, 2013.
[69] M. Esposito, S. Moreschini, V. Lenarduzzi, D. Hästbacka, D. Falessi, Can

we trust the default vulnerabilities severity?, in: L. Moonen, C. D. New-
man, A. Gorla (Eds.), 23rd IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM 2023, Bogotá, Colom-
bia, October 2-3, 2023, IEEE, 2023, pp. 265–270.

[70] V. Lenarduzzi, N. Saarimäki, D. Taibi, The technical debt dataset, in:
Conference on Predictive Models and Data Analytics in Software Engi-
neering.

[71] M. Esposito, V. Falaschi, D. Falessi, An extensive comparison of static
application security testing tools, in: Proceedings of the 28th Interna-
tional Conference on Evaluation and Assessment in Software Engineer-
ing, EASE 2024, Salerno, Italy, June 18-21, 2024, ACM, 2024, pp. 69–78.

[72] M. Esposito, D. Falessi, Uncovering the hidden risks: The importance
of predicting bugginess in untouched methods, in: 2023 IEEE 23rd In-
ternational Working Conference on Source Code Analysis and Manipu-
lation (SCAM), IEEE, pp. 277–282.

[73] P. J. Brockwell, R. A. Davis, M. V. Calder, Introduction to time series and
forecasting, volume 2, Springer, 2002.

Appendix

In this Section, we detail parameter tuning of the Box-
Jenkins models and how to replicate our study.

Appendix A. Parameter tuning of the Box-Jenkins models

In this section of the appendix we describe the mathemat-
ical definitions of the model parameters composing the TSA
models included in the work, as well as the summary of the
steps to be followed in order to implement model parame-
ter tuning of the Box-Jenkins models. The models adopted
in this study are multivariate versions of the classic Box-
Jenkins model, better known as ARIMA [44], therefore their
theoretical background reside on the definition of the ARIMA
model. This model is a univariate TSA model composed of
the autoregressive component, the moving average compo-
nent, and the differencing component, as explained below.

Appendix A.1. Autoregression (AR) order (p / P parameter)
The autoregressive process of order p, AR(p), denotes a sta-

tionary time series {X t }t∈Z such that

X t =
p∑

i=1
φi X t−i +εt (A.1)

where
{
φ1, · · · ,φp

}
are fixed autoregression coefficients and

{ϵt } are independent random noises of mean µ0 and constant
variance σ2. An AR(p) process is stationary if the p roots of
φ(z) = 1−φ1z −φ2z2 −·· ·−φp zp fall within the random state
unit circle [44].

Seasonality adjustment occurs when the autoregressive
pattern occurs at multiple lags of the defined periodicity (m).
Thus, a seasonal autoregression (SAR) process is defined by

X t =
p∑

i=1
Φi X t−S +εt (A.2)

whereΦ is defined asΦ(z) = 1−Φ1z −Φ2z2 −·· ·−ΦP zP .

Appendix A.2. Moving Average (MA) order (q / Q parameter)

The moving average process of order q, MA(q) denotes a
stationary time series {X t }t∈Z such that

X t =
q∑

k=1
θkεt−k (A.3)

where ϵt ∼ N (0,σ2) and θ are defined as θ(z) = 1+θ1z+θ2z2+
·· · + θq zq . Every MA(q) process is stationary, but there can
be two different MA(q) processes with the same autocovari-
ance [73]. We avoid this issue by enforcing invertible MA pro-
cesses (see details in Section 9).

As before, a seasonality adjustment is performed when the
moving average pattern occurs at multiple lags of the defined
periodicity (m). Thus, seasonal moving average (SMA) pro-
cesses are defined by

X t =
q∑

k=1
Θkεt−k (A.4)

whereΘ is defined asΘ(z) = 1+Θ1z +Θ2z2 +·· ·+ΘQ zQ .

Appendix A.3. Differecing order (d / D parameter)

Among the existing approaches to reach stationarity, mod-
els such as ARIMA apply differencing repeatedly to the series
of data until the differenced observations resemble a realiza-
tion of stationary time series, required for accurate forecast-
ing [73]. Considering, for instance, an original time series {X t }
we can define the first differencing order (d = 1) as:

Yt =∇X t = X t −X t−1 (A.5)

Hence, the differencing operator or lag-d can be formu-
lated as

∇d X t = X t −X t−d . (A.6)

Moreover, differencing can also be used in cases where the
seasonality of the series is addressed. If the series has a sea-
sonal pattern, then d-lag differencing order can remove this
pattern. Thus, if X t = Tt +St +εt and St had period d, then:

∇d X t = Tt −Tt−d +∇dεt (A.7)

where St stands as the seasonality component at series ob-
servation t, Tt is the trend components accordingly, and εt is
the existing random noise.

27

Appendix A.4. Model parameter tuning

The combination of the model parameter components ex-
plained previously in this appendix results in the following
formula, which we provide in its multivariate format by in-
cluding the X t ,i independent variables given the claim of our
work supporting this type of models:

Yt =φ0 +
k∑

i=1
βi X t ,i +

p∑
j=1

φ j X t− j +
q∑

k=1
θkεt−k +εt (A.8)

where:

• φ0 is a model constant.

• φ j and θk are the AR and MA coefficients.

• βi are the regression coefficients for the X t ,i indepen-
dent variables included after the backward variable se-
lection criteria.

• εt ∼ N (0,σ2).

This ARIMAX formula can be easily transformed (i) into
an univariate ARIMA model, by removing the independent
variable regression component and (ii) into seasonally ad-
justed models such as the studied SARIMAX by integrating
the seasonal components (P,Q,D) into the regression. For
each combination of independent variables, this study lever-
aged the Auto-arima algorithm as mentioned in Section 3.5.3,
to tune the model parameters. This algorithm automates the
autoregression and moving average components to provide
optimal forecasting results. Initially, it identifies the optimal
differencing (d) order to provide stationarity to the time se-
ries. Its stepwise process identifies the best AR and MA com-
binations, respectively. For each possible model parameter
combination, it assesses its estimation capability by measur-
ing the Akaike Information Criterion (AIC) [48] and Bayesian
Information Criterion (BIC) [48], both common measures to
assess the relative quality of statistical models. The AIC as-
sesses the model goodness of fit based on the estimated like-
lihood, while it includes a penalty on the increase of the num-
ber of parameters included in the model to prevent over-
fitting. This could be defined as follows:

AIC = 2k −2ln(L̂) (A.9)

where k is the number of included parameters and L is the
estimated likelihood.

Similarly to the AIC, the BIC criterion penalizes the in-
crease of model parameters to prevent model over-fitting,
while also accounting for the sample size as a component in
the calculated penalty, thus favoring stronger prevention of
over-fitted models:

B IC = kln(n)−2ln(L̂) (A.10)

where k is the number of included parameters, n is the
sample size and L is the estimated likelihood.

Therefore, the stepwise parameter tuning search is re-
peated until the model cannot be further improved. Con-
sequently, this process generates a model with the most ef-
ficient set of independent variables and model parameters.
Table B.18 provides a summary containaining the result-
ing best ARIMAX and SARIMAX model parameters (p,d , q)
and (P,D,Q,m), as selected for each project, thus facilitat-
ing the reproducibility of our results. We also provide the ta-
ble with the best model parameter combinations for models
ARIMA+LM and SARIMA+LM univariate models in the pub-
lished replication package.

Appendix B. Replication of the study

In this section of the appendix, we explain the instruc-
tions needed to replicate the work of this study. For that,
we will emphasize the needed requirements to execute the
replication code, the architecture of the shared code as well
as the possible code execution options the reader can opt to
if wished. The codes used to run this study were written in
Python 3.9. We provide instructions on how to install a virtual
environment where to install the necessary dependencies to
run the code, these are also provided in a requirements file
within the replication package. We used well-known statistics
and ML libraries such as statsmodels, scikit-learn and scipy
to implement the selected models. Additionally, we used the
pmdarima library to implement the Auto-arima algorithm.

The code is organized and structured in a format that fa-
cilitates replication for practitioners. All the Python modules
are connected to the main module. Therefore, practitioners
only need to run this module to replicate our work. Moreover,
if practitioners are interested in key parts of the implementa-
tion, the commons module allows them to activate and de-
activate sections of the program execution so that these are
skipped. We provide further instructions on the program ex-
ecution sections and a detailed implementation description
in the online appendix.

28

Table B.18: Summary table containing the resulting best ARIMAX/SARIMAX model parameters (p,d , q) and (P,D,Q,m).

Project Model
Seriali

zation
p d q P D Q m AIC Regressors

archiva Arimax monthly 0 0 1 12 777.97
S1213, S1192, RedundantThrowsDeclarationCheck, S00117,

S1488, DuplicatedBlocks, S1186, S1132

bcel Arimax monthly 1 0 1 12 1194.46

S1213, ModifiersOrderCheck, S1192, S00117, S00122, S1488,

DuplicatedBlocks, S134, S1066, MethodCyclomaticComplexity,

S00112, S00108, S1186, S1151, S1132

codec Arimax monthly 0 1 1 12 1312.76

ModifiersOrderCheck, S1192, RedundantThrowsDeclarationCheck,

S00117, DuplicatedBlocks, S134, MethodCyclomaticComplexity,

S1226, S00112, S00108, S1186, S1151, S1132

collections Arimax monthly 0 0 1 12 1634.78

S1213, ModifiersOrderCheck, S00117, S00122, S1488,

DuplicatedBlocks, S134, MethodCyclomaticComplexity,

S1226, S00112, S1155, S00108, S1186, S1151, S1132

cli* Arimax monthly 0 0 1 12 1775.66
S1213, ModifiersOrderCheck, S1192, S00117, S134, S1066,

S1226, S00112, S1186, S1132

exec* Arimax monthly 1 1 0 12 903.43

S1213, ModifiersOrderCheck, S1192, S00117, S1488,

DuplicatedBlocks, S134, MethodCyclomaticComplexity,

S1226, S00112, S1155, S00108, S1186, S1151, S1132

configuration Arimax monthly 0 1 1 12 1533.28
ModifiersOrderCheck, RedundantThrowsDeclarationCheck,

S00122, MethodCyclomaticComplexity, S00112, S00108

dbcp Arimax monthly 1 0 1 12 1352.23

S1213, ModifiersOrderCheck, S1192,

RedundantThrowsDeclarationCheck, DuplicatedBlocks,

S1066, S00112, S1155, S00108

hive Arimax monthly 0 0 2 12 885.95

S1213, ModifiersOrderCheck, S1192,

RedundantThrowsDeclarationCheck, S1488, S1226, S1186,

S1151, S1132

httpclient Arimax monthly 0 0 1 12 1301.53
ModifiersOrderCheck, S1192, RedundantThrowsDeclarationCheck,

S134, S1186

httpcore Arimax monthly 2 2 1 12 1374.66

S1213, ModifiersOrderCheck, S1192, S00117, S00122,

S1488, DuplicatedBlocks, S134, S1066,

MethodCyclomaticComplexity, S1226, S00112, S1155, S00108

jxpath Arimax monthly 0 0 1 12 1592.83

S1213, ModifiersOrderCheck, S00117, S00122, S1488,

DuplicatedBlocks, S134, S1066, MethodCyclomaticComplexity,

S1226, S00112, S1155, S1186, S1151, S1132

santuario Arimax monthly 0 0 1 12 1848.2
S1213, S1192, RedundantThrowsDeclarationCheck,

DuplicatedBlocks, S134, S1066, S00112, S00108, S1132

validator Arimax monthly 1 0 1 12 1473.72

S1213, ModifiersOrderCheck, S1192, S00117, S00122,

S1488, DuplicatedBlocks, S134, S1066, S1226, S00112,

S1155, S00108, S1186, S1151, S1132

archiva Arimax biweekly 1 0 1 26 1599.0 S1192, S1488, S1226, S1155, S1186

bcel Arimax biweekly 1 1 1 26 2459.66

S1213, ModifiersOrderCheck, S1192,

RedundantThrowsDeclarationCheck, S00117, S00122,

S1488, DuplicatedBlocks, S134, S1066,

MethodCyclomaticComplexity, S1226, S00112, S1155,

S00108, S1186, S1151, S1132

codec Arimax biweekly 1 0 1 26 2815.72

S1213, ModifiersOrderCheck,

RedundantThrowsDeclarationCheck, S00122,

DuplicatedBlocks, S134, MethodCyclomaticComplexity,

S1226, S1186

collections Arimax biweekly 5 5 1 26 3663.77

S1213, ModifiersOrderCheck, S1192,

RedundantThrowsDeclarationCheck, DuplicatedBlocks,

S1066, MethodCyclomaticComplexity, S1155, S1151

cli* Arimax biweekly 1 0 0 26 4032.23

ModifiersOrderCheck, S1192,

RedundantThrowsDeclarationCheck, S00117,

DuplicatedBlocks, S134, S1066, S1226, S00112,

S1155, S1151, S1132

Continued on next page

29

Project Model
Seriali

zation
p d q P D Q m AIC Regressors

exec* Arimax biweekly 2 0 0 26 1799.48

S1213, ModifiersOrderCheck, S1192,

RedundantThrowsDeclarationCheck, S00117, S1488,

DuplicatedBlocks, S134, S1066,

MethodCyclomaticComplexity, S1226, S1155, S00108,

S1186, S1151, S1132

configuration Arimax biweekly 2 0 0 26 3113.02

S1213, RedundantThrowsDeclarationCheck, S00117, S00122,

S1488, S134, MethodCyclomaticComplexity, S1226, S00112,

S00108, S1186, S1132

dbcp Arimax biweekly 2 1 0 26 1728.23

S1213, ModifiersOrderCheck, S1192, S00122, S1488,

DuplicatedBlocks, S134, S1066,

MethodCyclomaticComplexity, S00112, S1155, S1186,

S1151, S1132

hive Arimax biweekly 0 0 1 26 1796.37
S1213, S1192, RedundantThrowsDeclarationCheck, S00122,

DuplicatedBlocks, S134, S00112, S1155, S00108, S1151, S1132

httpclient Arimax biweekly 0 0 1 26 2692.53
S1192, S00117, S1066, MethodCyclomaticComplexity,

S00112, S1155, S1132

httpcore Arimax biweekly 1 1 1 26 2931.74
S1192, RedundantThrowsDeclarationCheck, S1488, S134,

S1066, MethodCyclomaticComplexity, S1186, S1151, S1132

jxpath Arimax biweekly 0 3 1 26 3064.28

S1213, S1192, S00117, S00122, S1488, DuplicatedBlocks,

S134, MethodCyclomaticComplexity, S1226, S00112, S1155,

S00108, S1132

santuario Arimax biweekly 0 2 1 26 4123.08
S1213, RedundantThrowsDeclarationCheck, S00117, S134,

S00112, S1186, S1151

validator Arimax biweekly 1 0 1 26 2981.88
S1213, ModifiersOrderCheck, S1192, S00117, S00122,

S1488, DuplicatedBlocks, S134, S1226, S00112, S1155, S1186

archiva Sarimax monthly 0 1 2 0 0 0 12 761.79
S1192, S00122, S1488, MethodCyclomaticComplexity,

S00112, S00108, S1186, S1151

bcel Sarimax monthly 1 0 1 0 0 0 12 1194.46

S1213, ModifiersOrderCheck, S1192, S00117, S00122, S1488,

DuplicatedBlocks, S134, S1066, MethodCyclomaticComplexity,

S00112, S00108, S1186, S1151, S1132

codec Sarimax monthly 1 0 1 0 1 0 12 1309.26

ModifiersOrderCheck, S1192, RedundantThrowsDeclarationCheck,

S00117, DuplicatedBlocks, S134, MethodCyclomaticComplexity,

S1226, S00112, S00108, S1186, S1151, S1132

collections Sarimax monthly 2 2 1 0 0 0 12 1635.7

S1213, ModifiersOrderCheck, S1192,

RedundantThrowsDeclarationCheck, S00117, S00122,

DuplicatedBlocks, S134, MethodCyclomaticComplexity,

S1226, S00112, S1155, S00108, S1186, S1151

cli* Sarimax monthly 0 0 1 0 0 0 12 1775.66
S1213, ModifiersOrderCheck, S1192, S00117, S134, S1066,

S1226, S00112, S1186, S1132

exec* Sarimax monthly 0 4 1 0 0 0 12 935.31 S1213, MethodCyclomaticComplexity, S00108, S1151, S1132

configuration Sarimax monthly 0 1 1 0 0 0 12 1536.79
S1192, RedundantThrowsDeclarationCheck,

MethodCyclomaticComplexity, S00108, S1151

dbcp Sarimax monthly 1 0 1 0 0 0 12 1323.82
S1213, S1192, S00122, DuplicatedBlocks, S134,

MethodCyclomaticComplexity, S1226, S00112, S1155

hive Sarimax monthly 0 0 2 0 0 0 12 885.95

S1213, ModifiersOrderCheck, S1192,

RedundantThrowsDeclarationCheck, S1488, S1226, S1186,

S1151, S1132

httpclient Sarimax monthly 0 0 1 0 0 0 12 1301.53
ModifiersOrderCheck, S1192,

RedundantThrowsDeclarationCheck, S134, S1186

httpcore Sarimax monthly 2 2 1 1 1 0 12 1376.82

S1213, ModifiersOrderCheck, S1192,

RedundantThrowsDeclarationCheck, S00117, S00122, S1488,

DuplicatedBlocks, S134, S1066, MethodCyclomaticComplexity,

S1226, S00112, S1155, S00108, S1186, S1151, S1132

jxpath Sarimax monthly 0 0 1 0 0 0 12 1592.83

S1213, ModifiersOrderCheck, S00117, S00122, S1488,

DuplicatedBlocks, S134, S1066, MethodCyclomaticComplexity,

S1226, S00112, S1155, S1186, S1151, S1132

santuario Sarimax monthly 0 0 1 0 0 0 12 1848.2
S1213, S1192, RedundantThrowsDeclarationCheck,

DuplicatedBlocks, S134, S1066, S00112, S00108, S1132

Continued on next page

30

Project Model
Seriali

zation
p d q P D Q m AIC Regressors

validator Sarimax monthly 1 0 1 0 0 0 12 1460.96
S1213, S00117, S00122, DuplicatedBlocks, S134, S1226,

S00112, S1155, S00108, S1132

archiva Sarimax biweekly 1 0 1 0 0 0 26 1599.0 S1192, S1488, S1226, S1155, S1186

bcel Sarimax biweekly 3 0 1 0 0 0 26 2460.57

S1213, ModifiersOrderCheck, S1192,

RedundantThrowsDeclarationCheck, S00117, S00122, S1488,

DuplicatedBlocks, S134, S1066, MethodCyclomaticComplexity,

S1226, S00112, S1155, S00108, S1186, S1151, S1132

codec Sarimax biweekly 1 0 0 1 0 0 26 728.68
S1213, RedundantThrowsDeclarationCheck, S00122,

DuplicatedBlocks, S134, MethodCyclomaticComplexity, S1226, S00108

collections Sarimax biweekly 4 3 1 0 0 0 26 3693.5
S1213, S1192, DuplicatedBlocks, S134,

MethodCyclomaticComplexity, S00112, S00108, S1186

cli* Sarimax biweekly 1 1 1 1 0 0 26 4031.03 S00112, S1132

exec* Sarimax biweekly 1 0 1 1 0 0 26 1900.19

S1213, ModifiersOrderCheck, S1192, S00117, S1488,

DuplicatedBlocks, S134, S1066, MethodCyclomaticComplexity,

S1226, S1155, S00108, S1151, S1132

configuration Sarimax biweekly 3 1 1 0 0 0 26 3105.48
S1213, RedundantThrowsDeclarationCheck, S00117,

MethodCyclomaticComplexity, S1226, S00108, S1186

dbcp Sarimax biweekly 2 0 1 0 0 0 26 2703.93 S1213, DuplicatedBlocks, S134, S1155, S00108, S1186

hive Sarimax biweekly 0 0 1 0 0 0 26 1796.37
S1213, S1192, RedundantThrowsDeclarationCheck, S00122,

DuplicatedBlocks, S134, S00112, S1155, S00108, S1151, S1132

httpclient Sarimax biweekly 0 0 1 0 0 0 26 2693.89
RedundantThrowsDeclarationCheck, S00117,

MethodCyclomaticComplexity, S00112, S1155, S1151

httpcore Sarimax biweekly 1 2 1 0 0 0 26 2921.25

S1213, ModifiersOrderCheck, S1192,

RedundantThrowsDeclarationCheck, S1488, DuplicatedBlocks,

S134, S1066, S00112, S1155, S00108, S1151

jxpath Sarimax biweekly 5 0 1 1 0 0 26 3029.53
S1213, ModifiersOrderCheck, S1192, S00117, S134, S1226,

S00112, S1155, S00108, S1186, S1151, S1132

santuario Sarimax biweekly 2 0 1 0 0 0 26 4099.67
S1213, RedundantThrowsDeclarationCheck, S00122, S134,

S00112, S1155, S00108, S1186, S1132

validator Sarimax biweekly 1 0 1 0 0 0 26 3018.51
S1213, ModifiersOrderCheck, S1192, S00117, S00122,

DuplicatedBlocks, S134, S1066, S1226, S00112, S00108, S1151

31

Table B.19: Descriptive statistics from the projects used in the analysis.

Apache
projects

Time
frame⋄

Original data Monthly data Biweekly data

Min/Max SI Mean SI Std SI # Min/Max SI Mean SI Std SI # Min/Max SI Mean SI Std SI

archiva 05/11-
02/12

1,630 0−172,634 71,068 34,803 65 0−116,422 68,924 32,639 136 0-121,632 68,916 31,354

batik 10/00-
08/02

941 65,831−175,362 132,111 29,957 21 71,725−174,077 138,100 30,581 44 71,725−174,968 140,551 29,246

bcel 10/01-
04/18

291 47,854−59,608 54,304 3,262 173 47,869−58,821 54,348 3,223 394 47,869−58,821 54,426 3,233

beanutils 03/01-
10/18

324 1,380−58,250 39,025 14,346 190 1,380−58,142 47,057 12,111 427 1,380−58,142 47,154 11,839

cayenne 01/07-
07/08

353 179,813−223,285 205,411 12,555 17 179,813−222,828 203,314 13,481 33 179,813−222,875 203,402 13,344

cocoon 03/03-
02/07

2,311 64,810−286,277 183,528 65,634 46 66,640−282,280 181,404 75,407 95 65,370−283,313 179,951 73,980

codec 05/03-
05/18

229 2,078−17,707 10,618 4,567 164 2,088−17,365 10,216 4,595 365 2,078−17,707 10,317 4,553

collections 04/01-
08/16

729 1,494−70,377 40,864 17,315 155 1,504−68,115 46,948 13,180 349 1,504−67,959 47,377 12,689

cli* 06/02-
03/17

240 0−17,714 8,610 4,770 162 0−17,519 8,281 3,800 365 0−17,519 8,282 3,743

exec* 08/05-
10/17

100 2,126−5,537 3,638 916 136 2,258−5,537 3,908 1,047 303 2,126−5,537 3,876 1,041

fileupload* 07/02-
12/14

88 768−6,107 3,687 1,719 140 788−5,698 4,292 1,315 312 788−5,848 4,289 1,299

io* 01/02-
11/17

396 249−42,328 15,782 8,402 160 249−42,328 18,970 10,420 361 249−42,328 19,134 10,128

jelly* 02/02-
09/17

311 1,209−42,910 24,178 11,563 182 1,209−42,910 40,079 6,850 394 1,209−42,910 40,192 6,437

jexl* 04/02-
01/18

351 3,338−20,048 12,831 5,562 164 4,363−19,994 14,537 4,414 368 3,567−20,040 14,605 4,423

configuration12/03-
09/18

764 4,498−44,634 27,754 10,463 147 5,182−44,634 29,486 9,959 323 4,890−44,634 29,923 9,817

daemon 09/03-
11/17

28 2,290−4,168 3,133 652 168 2,290−4,062 3,150 775 362 2,290−4,062 3,148 773

dbcp 04/01-
11/16

298 5,364−19,459 13,570 3,506 168 5,364−19,386 13,626 3,445 368 5,364−19,319 13,636 3,376

dbutils 11/03-
04/05

63 3,357−7,954 4,935 1,339 129 3,357−6,782 4,671 1,193 288 3,357−6,782 4,696 1,192

digester 05/01-
08/17

340 20−31,542 13,420 6,825 179 20−31,525 21,636 9,356 397 20−31,525 21,627 6,700

felix 08/05-
07/09

1,149 22,667−283,638 144,966 73,749 44 22,667−283,530 121,831 75,758 88 24,405−265,380 120,187 74,220

hive 09/08-
03/15

3,001 73,317−701,914 434,703 201,776 75 73,332−701,210 288,531 187,519 154 73,332−687,974 289,030 186,604

httpclient 12/05-
05/17

902 55−85,666 48,009 25,366 114 55−85,666 49,809 26,022 244 55−85,666 49,205 25,701

httpcore 02/05-
05/17

666 547−86,264 36,145 24,797 131 547−81,133 47,585 19,596 284 547−83,497 47,663 19,368

jxpath 09/01-
05/18

148 23,071−32,029 28,448 2,500 188 24,708−32,029 29,013 1,840 422 23,071−32,029 29,032 1,896

net 04/02-
10/18

543 12,516−34,898 23,536 3,347 169 12,706−30,433 24,283 4,163 374 12,706−30,433 24,372 4,088

ognl 05/11-
06/18

72 20,410−34,077 27,278 5,615 85 20,437−34,006 26,774 1,855 183 20,444−34,006 26,712 1,717

santuario 10/01-
10/18

914 2,201−126,431 71,472 25,716 162 2,201−126,431 80,389 27,220 371 2,201−126,431 82,370 27,046

thrift 05/08-
10/12

145 0−21,395 15,965 3,629 42 0−21,026 16,486 4,347 96 0−21,395 16,757 4,057

validator 01/02-
10/18

249 39−17,541 17,851 4,090 184 39−17,541 12,726 3,616 407 39−17,541 12,791 3,549

vfs 07/02-
07/18

428 4,175−29,340 17,851 7,193 168 4,175−29,340 21,431 6,168 373 4,175−29,340 21,667 5,862

zookeeper 07/14-
12/16

58 57,033−64,173 60,068 1,926 24 57,033−64,090 60,116 1,971 52 57,033−64,173 60,150 1,997

#: Number of data points, SI : SQALE Index, *: Apache Commons project

⋄: The dates are approximations as they slightly differ between the projects in some cases. The date format is mm/yy

32

Table B.20: Resulting and discarded projects from the model training stage. (Bold: Projects included in the final results.)

Apache

projects

Time

frame⋄
Monthly data Biweekly data

ARIMAX ARIMA+LM SARIMAX SARIMA+LM ARIMAX ARIMA+LM SARIMAX SARIMA+LM

archiva 05/11-02/12

batik 10/00-08/02

bcel 10/01-04/18

beanutils 03/01-10/18

cayenne 01/07-07/08

cocoon 03/03-02/07

codec 05/03-05/18

collections 04/01-08/16

cli* 06/02-03/17

exec* 08/05-10/17

fileupload* 07/02-12/14

io* 01/02-11/17

jelly* 02/02-09/17

jexl* 04/02-01/18

configuration 12/03-09/18

daemon 09/03-11/17

dbcp 04/01-11/16

dbutils 11/03-04/05

digester 05/01-08/17

felix 08/05-07/09

hive 09/08-03/15

httpclient 12/05-05/17

httpcore 02/05-05/17

jxpath 09/01-05/18

net 04/02-10/18

ognl 05/11-06/18

santuario 10/01-10/18

thrift 05/08-10/12

validator 01/02-10/18

vfs 07/02-07/18

zookeeper 07/14-12/16

*: Apache Commons project

⋄: The dates are approximations as they slightly differ between the projects in some cases. The date format is mm/yy

33

Table B.21: Summary statistics for the aggregated MAPE forecasting
results from the ARIMAX model with biweekly time series data

Biweekly periods Mean Median Max Min Variance

1 1.44 0.12 17.82 0 13.06

2 1.83 0.28 26.56 0 25.25

3 2.14 0.31 28.83 0 29.38

4 2.96 0.4 47.36 0 73.58

5 3.51 0.47 58.31 0 110.16

6 4.41 0.7 65.47 0 142.34

7 5.09 0.87 70.46 0 171.62

8 5.62 0.83 74.1 0 202.68

9 6.09 0.96 76.85 0 224.2

10 5.46 0.92 78.65 0 216.74

11 3.0 0.73 18.54 0 21.95

12 3.15 0.73 19.81 0 24.43

13 3.29 0.76 20.85 0 26.79

14 3.43 0.82 21.72 0 28.94

15 3.54 0.97 22.46 0 30.69

16 3.69 1.1 23.11 0 32.25

17 3.84 1.22 23.68 0 33.94

18 4.06 1.34 24.19 0 35.83

19 4.01 1.39 24.76 0 37.72

20 3.84 1.3 25.28 0 38.52

21 4.03 1.46 25.75 0.01 40.71

22 4.21 1.5 26.18 0.02 43.03

23 4.39 1.47 26.58 0.04 45.21

24 4.56 1.44 26.95 0.06 47.36

25 4.72 1.39 27.29 0.06 49.5

26 4.88 1.35 27.61 0.06 51.76

27 5.04 1.49 27.9 0.06 53.88

28 4.78 1.48 28.16 0.06 54.26

29 4.88 1.56 28.41 0.06 55.73

30 4.97 1.6 28.63 0.06 56.95

31 5.06 1.57 28.84 0.07 58.04

32 4.83 1.17 29.02 0.07 59.27

33 4.89 1.15 29.2 0.07 59.88

34 4.94 1.12 29.35 0.07 60.4

35 4.98 1.16 29.5 0.08 60.62

36 5.03 1.2 29.63 0.09 60.74

37 5.08 1.25 29.8 0.1 61.25

38 5.33 1.54 29.99 0.11 63.82

39 5.39 1.6 30.21 0.13 64.53

40 5.46 1.67 30.45 0.13 65.33

41 5.53 1.77 30.72 0.13 66.23

42 5.6 1.86 31.0 0.14 67.19

43 5.67 1.94 31.21 0.14 67.99

44 5.74 2.03 31.39 0.14 68.76

45 5.81 2.12 31.56 0.15 69.55

46 5.87 2.21 31.56 0.15 69.85

47 5.93 2.28 31.55 0.15 70.15

48 5.99 2.27 31.54 0.16 70.45

49 6.06 2.28 31.54 0.16 70.79

50 4.91 1.61 23.98 0.17 40.79

51 4.97 1.64 24.08 0.17 41.23

52 5.04 1.68 24.19 0.17 41.69

53 5.1 1.71 24.29 0.18 42.09

54 5.17 1.75 24.39 0.18 42.49

55 5.24 1.79 24.48 0.18 42.87

56 5.32 1.82 24.57 0.19 43.23

57 5.39 1.86 24.66 0.19 43.62

58 5.22 1.82 24.74 0.19 44.95

59 5.5 1.93 24.81 0.2 46.92

60 5.57 1.97 24.89 0.2 47.28

61 5.64 2.01 24.96 0.21 47.62

62 5.91 2.9 25.04 0.21 49.97

63 5.5 2.13 25.11 0.21 49.02

64 5.57 2.21 25.18 0.22 49.36

65 5.64 2.29 25.25 0.22 49.76

66 5.74 2.29 25.32 0.22 53.49

67 5.8 2.36 25.38 0.23 53.94

68 5.87 2.42 25.45 0.23 54.41

69 5.93 2.48 25.51 0.24 54.83

70 5.99 2.55 25.57 0.24 55.35

71 5.91 2.52 25.64 0.24 59.57

72 5.97 2.58 25.7 0.25 60.07

Table B.22: Summary statistics for the aggregated MAPE forecasting
results from the SARIMAX model with monthly time series data

Monthly periods Mean Median Max Min Variance

1 0.3 0.08 1.52 0 0.18

2 0.34 0.14 1.2 0 0.15

3 0.5 0.25 2.1 0 0.32

4 0.61 0.31 2.72 0 0.51

5 0.73 0.39 3.32 0 0.76

6 1.08 0.52 6.51 0 2.42

7 1.38 0.57 10.37 0 5.36

8 1.61 0.64 13.2 0 8.43

9 1.79 0.73 15.39 0 11.4

10 1.98 0.73 17.43 0 14.37

11 2.15 0.72 19.07 0 17.04

12 2.33 0.72 20.4 0 19.46

13 2.49 0.72 21.5 0 21.67

14 2.63 0.72 22.41 0 23.69

15 2.76 0.72 23.2 0 25.6

16 2.89 0.72 23.89 0 27.21

17 3.03 0.71 24.49 0 28.83

18 3.15 0.71 25.03 0 30.44

19 3.29 0.71 25.61 0 32.2

20 3.44 0.78 26.13 0 33.6

21 3.59 0.76 26.59 0.01 34.88

22 3.73 0.83 27.01 0.02 36.16

23 3.88 0.89 27.4 0.03 37.61

24 4.03 0.96 27.74 0.05 39.06

25 4.17 1.03 28.05 0.08 40.56

26 4.31 1.16 28.34 0.1 42.21

27 4.45 1.41 28.6 0.13 43.8

28 4.11 1.34 28.85 0.16 42.31

29 4.19 1.36 29.07 0.19 43.19

30 4.26 1.39 29.28 0.23 43.87

31 4.31 1.42 29.46 0.27 44.55

32 3.96 1.33 29.63 0.3 43.58

33 4.01 1.31 29.79 0.31 44.0

34 4.06 1.29 29.93 0.32 44.36

35 4.11 1.27 30.06 0.33 44.77

36 4.19 1.28 30.19 0.34 45.35

34

