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Appendix A: Gauge transformations of the
anti-dephasing master equation

Below, we discuss how trace-increasing dynamics can
be changed to conserve or reduce the state trace. For
this, we explicitly distinguish the stochastic Ls and de-
terministic L, parts of the anti-Hermitian part of the
Hamiltonian, and add an imaginary deterministic shift
a € R. Namely, we consider

ﬁ; = Hy — z(i,D + ai) — iﬁ§t£87 (A1)

which generates the nonlinear master equation

Oepr = — i[Ho, pr) — {Lo + a1, pi} +v{Ls, {Ls, pi }}
+2Te((Lp + al)pe) pe — 4YTe(L2pe)pr. (A2)

Systems with any shift a have the same dynamics, since
the terms —{a 1, p;} and +2Tr(ap,)p; exactly cancel each
other. This provides a non-Hermitian generalization of
the well-known fact that shifting the Hamiltonian by a
constant H + al has no consequence on the dynamics.
Thus, a complex zero of energy also has no dynamical
effect, provided that the trace of the density matrix is
renormalized. It follows that the dynamics can be made

TD or even TP with a suitable choice of a, namely
AyTr(L2p;) — 2Tx(Lppe) — a < 0, (A3)

where ‘<’ corresponds to a TD map and ‘=’ to TP dy-
namics. A A
For the SDQ considered in the main text, L, = Ly =

I'1l, so the shift has to obey the condition
a > (4972 — 2I)Tr(11p), (A4)

for any p. Since the expectation value has the property
Tr(IIp) = pee < 1, a looser but state-independent condi-

tion on the shift reads
a>4yT? —2I' = BJ. (A5)

Alternatively, consider a gauge transformation that
shifts the stochastic component by a constant b € R

H] = Hy —iL;, —in/296(Ls + 1), (A6)
which generates the nonlinear master equation

Oupr = — i[Ho, pr) — {L}, — 4ybLs, pr} +v{Ls, {Ls, pt}}

+2Tr((Ly, — 49bLs)pe) pr — AYTx(L2p1) i (AT)
It follows that the transformation
Ls— Ls+ b1, (A8)
Loy — Ly +4vb Ls,

also leaves the nonlinear master equation invariant. This
transformation, similar to the GKSL case [1], allows

choosing jump operators L that are traceless.

Appendix B: Experimental Realization of Stochastic
Non-Hermitian Hamiltonians

In this Section, we discuss possible experimental plat-
forms for realizing stochastic non-Hermitian Hamiltoni-
ans and analyze their advantages and disadvantages. We
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begin by reviewing the experimental realization of the
non-Hermitian qubit in superconducting circuits [2]. In
particular, we focus on how noise affects this platform.
Then, to show that noise in the anti-Hermitian part of
the Hamiltonian does not need to be postulated ad hoc
but can be obtained from first principles, we review the
formalism by Carmichael [3] in homodyne detection of
the degenerate parametric oscillator. Lastly, since tuning
the strength of the noise in both of these examples seems
quite challenging, we review the setup of the trapped ion
non-Hermitian qubit [4], which may allow for a tunable
noise.

1. Noise in the superconducting non-Hermitian
qubit

The superconducting non-Hermitian qubit studied in
[2] is built from the three lowest levels of a transmon
circuit, which is embedded in a cavity with an impedance
mismatch element that allows tuning its density of states,
thus modifying the decay of the transmon. In addition,
an external magnetic flux is threaded through the SQUID
loop of the transmon to tune the decay parameter I" of the
effective non-Hermitian system. A Josephson parametric
amplifier is used for state tomography and post-selection
of quantum jumps.

The ideal (noise-less) behavior of the non-Hermitian
qubit is such that, in the PT unbroken phase, its Hamil-
tonian’s eigenenergies are purely real and thus describe
a purely oscillatory behavior. In contrast, in the P7T-
broken phase, the eigenvalues become purely imaginary,
describing the system states as decaying with a real ex-
ponential. However, the experiments show [2], in the
PT unbroken phase, a residual small damping term T'g
describing a damped oscillation, which is larger than ex-
pected from the decay channel of the |f) state. The au-
thors interpreted this residual decay rate to be associated
with the “charge and flux noise” [2]. Our model brings
some theoretical understanding of the flux noise.

As explained before, the magnetic flux tunes the non-
Hermitian decay rate I', such that noise in the flux cor-
responds to noise in the anti-Hermitian part. Therefore,
our SDQ models flux noise acting on the NH qubit. This
noise is unavoidable in the experimental setup. Unfortu-
nately, this also implies that tuning noise in this setup
would be difficult. Still, our results show that the P7T
unbroken phase in Fig. 2(a) has a small but nonzero, dis-
sipative gap. So, our formalism can serve as a minimal
model to capture the effect of noise on the experimental
setup.

2. The degenerate parametric oscillator

Carmichael derived a stochastic non-Hermitian Hamil-
tonian for a model of homodyne detection of the degen-
erate parametric oscillator [3]. We briefly review some

of its most important features, along with some exten-
sions, for completeness. With this, we aim to show that
the stochasticity, particularly noise in the anti-Hermitian
part of the Hamiltonian, does not need to arise from
uncontrolled interactions with an environment, but can
come from a formal treatment of the measurement pro-
cess.

The physical setup consists of two optical cavities A
and B with respective annihilation operators a, b. The
cavity a with frequency w is prepared in the vacuum state
|0). Carmichael’s setup [3] contains a nonlinear crystal,
parametrized by A, and radiates squeezed light. How-
ever, this parameter is unnecessary to understand the
main idea so that we will set it to zero A = 0. Cavity
b is prepared in a coherent state |3) and radiates the
local oscillator field. Both cavities are leaky and thus
modeled by a quantum optical Lindblad master equation
with rates 2« for the pumped cavity and 2v for the lo-
cal oscillator. The two output fields go through a beam
splitter, with a reflection coefficient R, before arriving at
the detector. The evolution is then split into two differ-
ent steps: a non-unitary evolution corresponding to no
quantum jumps at the detector and a collapse when a
photoelectron is emitted.

The model can be simplified to get a pure state evolu-
tion of the cavity A, conditioned on the measurement
output, given by cha) (t)). To do so, the reflectiv-
ity and the local oscillator decay rate are sent to zero
(R — 0, v — 0) while the local oscillator amplitude is
taken to infinity 8 — oo, to keep the local oscillator pho-
ton flux constant, f = 2yR|3|2. Under these conditions,

the unnormalized conditioned state |1/~1£a)) evolves with
the non-Hermitian Hamiltonian
H = hw —ir)ata — ihn/2k fe e “ta, (B1)

and is interrupted by collapses

[34) = C ) = (VI + Vara) [5)) , (B2)

where 0 is the local oscillator phase.
The collapses happen at probability
pe(t) = G ICHCR () /(B (1) (8).

Taking the limit f/(2k) — oo, the wavefunction un-
dergoes an infinite number of infinitesimal collapses in
any time interval, such that the jump process reduces
to white noise. After some algebra, taking the time
between successive collapses as 7,1 ~ f~! and the total
number of collapses m in the increment of time 0t from
a Gaussian distribution [3], we find that the conditioned,

unnormalized state of the source |1Z)£a)(t)> evolves with a
Schrodinger equation
ihd, [V (1)) = He(t) 19 (1)) (B3)

where He(t) is a stochastic, non-Hermitian Hamiltonian



given by
He(t) = h(w —ix)ata (B4)
+ i (V2R (O O Kolel) (6) + & ) e~V ara,

where we introduced the operator Xy = e?®af +e~%4 and
& is a Gaussian white noise. Note that Carmichael [3]
uses the interaction picture with respect to wa'a, lead-
ing to a purely anti-Hermitian Hamiltonian. Here, for
clarity, we do not use the interaction picture and thus
obtain a Hamiltonian with both a Hermitian and an anti-
Hermitian part. Interestingly, a similar stochastic non-
Hermitian Hamiltonian has been proposed by Pinol et
al. [5] for a two-level system instead of an oscillator, i.e.
with 6. instead of @, a’.

3. Trapped Ion realization

Recently, a non-Hermitian trapped-ion qubit has been
realized [4]. The experimental realization uses a single
40Ca™ ion in a linear-Paul trap [6]. The two energy
levels used to build a qubit are [1) = |m = +5/2) and
|}) = |m = +3/2) within the meta-stable D5/, manifold.
The hopping between the states Jo, uses resonant radio
frequency pulses at the qubit frequency. To engineer the
decay, the state ||) is coupled to the short-lived Ps /5 state
|A), which decays primarily to the S; /o ground state with
rate 7,. The coupling to the |A) state is achieved with
m-polarized light of pulse strength J4. For 74 > J4, the
auxiliary level |A) may be adiabatically eliminated [7, §]
and through post-selection, an effective Non-Hermitian
Qubit is obtained for the levels {[|),|1)}. The effective
decay rate of |]) is then v = J%/v, < 7,. The pulse
strength may then be modulated in time with some ex-
ternal and tunable white noise J4(1++/27¢}), to achieve
a fluctuating decay rate.

A limitation of the experimental setup is that 5.87%
of the population of the P/, state decays back to the
D55 manifold [4], limiting the time that the effective
non-Hermitian description is valid over one or two Rabi
oscillations. This might still be a suitable platform to
observe our predicted results. Indeed, one of the main
results of the Stochastic Dissipative Qubit is the presence
of a noise-induced phase. Figure 3 of the main text shows
that the dissipative gap time scale in the NI phase is much
shorter than the Rabi oscillation time, which implies that
the NI phase should be experimentally observable in this
trapped-ion platform.

Appendix C: Liouvillian spectrum of the Stochastic
Dissipative Qubit

The master equations given in the main text can be
formulated in Liouville superspace. To this end, the den-

sity operator is written as a vector |p) of the form

p=3 bumIn) om] > 19) = 3 umln) @ Im)"; (C1)

n,m n,m

we refer the reader to [9] for a detailed description of this
procedure. Superoperators are mapped to operators on
the superspace following the Choi-Jamiotkowski isomor-
phism [10, 11]

XpY = (X @YT)|p), (C2)
where ® denotes the Kronecker product and T the trans-
pose.

Vectorization requires fixing the inner product to be
taken between operators; in the above procedure, the
inner product is chosen as the standard Hilbert-Schmidt
inner product (X|Y) = Tr(XY), which for vectorized
operators conveniently reduces to the standard Euclidean
inner product for vectors, (X|Y) =3 X' Yi,.

The non-trace-preserving state dynaﬁlics is then dic-
tated by 4[5) = L|p) with the vectorized Liouvillian
superoperator in equation (3) of the main text given by

L=—iHyol-10H])-(Lel+iall
+y( P @l+ie ()T +2LeLT).

Similarly, the Liouvillian for the SDQ (cf. eq. (8) main
text) is given in matrix form by

(C3)

0 i —i 0
5 i A0 —i
E=Jl o a i | (C4)
0 —i i B

where we have defined the constants A = 5 (7T — 1) and
B = 2%(271" —1). The characteristic polynomial of the
Liouvillian thus reads

(A—=A)f(A) =0, (C5)

with the cubic polynomial f(A) = A3 —A?(A+B)+A(4+
AB) — 2B. To find its roots, we first shift the variable,
using z = A — (A + B)/3 and get a depressed cubic, i.e.
a cubic equation without the quadratic term

f(z)=22+3C2+ D=0, (C6)

with the constants C' = 7(,4%3)2 + # and D =

‘“TB(ZL + AB) — 2B — Z(MTB)S. We then use Cardan’s
trick [12], also known as Vieta’s substitution, that is, set
z = U + §;, choosing a to remove the terms in U and
1/U, i.e., a = —C. This leads to a quadratic equation in
U3,

(U2 + DU - C3 =0, (C7)

with solutions Uy, + = ™% [-2+ (g)Q + 03]1/3’
with m = (0,£1). The Liouvillian eigenvalues follow as

C JrA—i—B
Up + 3 .

)

Apr=J (Um,:l: - (C8)
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FIG. 1. Maximum difference of the real part of A\,,v > 1
with Ag. The difference is always negative for the displayed
range of parameters. Therefore, Ao is always the eigenvalue
with the largest real part. The transitions between the P7T u,
PTb, and NI phases are shown in the dashed and solid line
as in Fig. 2 of the main text.

Note that we seem to have obtained six solutions from
a cubic equation. However, three pairs of solutions are

the same. To show this, let V = —% + 1/%2 +C3 =

U;‘flvi denote any nonzero root of the quadratic equation

(CT). If V is a root then %Cs is also a root; this implies
that if we change + — — in A,, + we exchange the terms

Up,,+ with the term ——C¢  Soitis enough to consider

Um,i
the eigenvalues A, ;.
We denote the eigenvalues {\g = Ag 4, M1 = A1 4, Ao =

A_1 4+, A3 = AJ} that diagonalize the Liouvillian (C4),

3
v=0

In the domain of interest, with v and I" positive, Aq is the
eigenvalue with the maximum real part. This feature is
verified for a wide range of parameters in Fig. 1, where
the maximum difference of the real part of eigenvalues A,
for v > 1 and \g is always shown to be negative. The full
spectrum can be checked for many different parameters
in Fig. 2. This plot allows us to see the large dissipative
gap and no oscillatory behavior in the NI phase (a3, a4,
b4), as well as the nonzero imaginary components and a
small gap in the P7u phase (c1-3), and the intermediate
gap and no oscillations in the PTb phase (al), in addition
to the transitions between them.

The eigenvector |By) = (b(()o)7 bgo), bgo), bgo))T associated
to the eigenvalue \g is given by the solution of the system
of equations

+i(0” — b7) = Aoby,

+ilby” = ") = (Ao — AL, C
O (0 _ ) (C10)

—i(by’ —b3’) = (Ao — A)by ",

—i(b” — o) = (o — BB

By substitutions, given that \g is the largest eigenvalue,

in particular Ag > A, we find
Ao — A
by = by (1+/\0 = )

and b:(LO) = —béo) = —ib((JO))\O/Z We choose b((JO) such that
the eigenvector is normalized for real Ay, yielding the
eigenvector associated to the stable steady state

(C11)

1
1 —iXo
By)= ——— 2 C12
Bo) = 50 (12
1+)\0/\02_A

Appendix D: Bloch sphere dynamics for the
Stochastic Dissipative Qubit

Any density matrix of a qubit p is completely char-
acterized by its Bloch coordinates r = (z,y, z) from the
decomposition

p==(A+r-0), (D1)

where & is a vector containing the Pauli matrices obey-
ing the standard commutation [6y,,5m] = 2i€nmid1, and
anticommutation {6, 6., } = 26,m1 relations.

For the SDQ, the master equation (4) in the main text
dictates the evolution of these coordinates according to
the coupled differential equations

i =—(I?+2I(1 — 291))z,
§=—2Jz— (Y% +2'(1 — 291))y,
2=2Jy—T(1—29T)(2% - 1).

(D2)

The streamlines of this vector field, as well as the an-
alytical steady state |Bp) (C12) are compared in Fig. 3.
We see perfect agreement between the analytical steady
state (red diamond) and the evolution of the streamlines
showing convergence to it.

The behavior discussed in the main text is also ap-
parent from these coordinates: (i) the PTb phase has a
steady state in the north pole, very close to the |f) state
[cf. Fig. 3(al)]; (ii) the PTu phase [cf. Fig. 3(cl-3)]
has a steady state close to the maximally mixed state in
the center of the sphere, with a small y component, as
observed in Fig. 2(d) of the main text and (iii) the NI
phase [cf. Fig. 3(a3-4, b4)] has a steady state very close
to the |e) state in the south pole of the sphere.

The transition between the different phases also ex-
hibits an interesting behavior: In the P7u to P7Tb phase
transition (cf. Fig. 3 (b1-2)), we see a convergence to
a state close to |—y) = %, interestingly, the color
scale shows that the speed of this convergence is larger
than the dissipative gap or the oscillatory timescale; the
transition from TD to TI dynamics is also interesting (cf.
Fig. 3 (a2, b3)), in this transition the dynamics is CPTP,
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FIG. 2. Spectrum of the SDQ Liouvillian for different locations in the phase diagram of the system. The parameters span
the different phases: (al) PT broken, (c1-3) P7T unbroken, and (a3, a4, b4) Noise Induced; as well as the transitions between
them: (b1,2) PT breaking transition, (a2,b3) TD-TI transition and (c4) transition from mixed state to |e) state. Note that

the z-axis has been rescaled by I'/J.

and the steady state is the maximally mixed state in the
center of the Bloch ball, to which the convergence shows
almost no oscillations in (a2) and an oscillatory behavior
in (b3), see Fig. 2 to understand this. Lastly, the transi-
tion from P7Tu to the NI phases (cf. Fig. 3 (c4)) shows
an oscillatory convergence to the steady state, which has
a positive component of y, as already known from Fig. 2

(d).

1. Polar coordinates: Nullclines

The Bloch sphere can be naturally parametrized in
spherical coordinates (r, 0, ¢), related to the (z,y, z) vari-
ables by the standard relations x = rsinfcos¢, y =
rsin@sin ¢, z = rcosf. Using the chain rule, we can ob-
tain a system of equations for the evolution of the polar
variables as

i =T ((29T — 1)(r? — 1) cos § — 4T'rsin® 9)
0 = —Lsn8(1 — 29T + 47 cos0) — 2J sin ¢,
¢ = —2J cos ¢ cot 6.

(D3)

Note that the similarity between the equation of motion
for r and for the purity, due to P, = (1 + r?)/2 yielding
Pt = ’I’tT.’t.

Let us now study the steady states of this system of
equations. First, note that setting ¢ = 7, equivalent to
x = 0, trivially gives the steady state of the ¢ variable. In
the study of nonlinear dynamics [13], the concept of null-
clines, defined as the curves where 7 = 0, 6 = 0, (;5 =0,
allows for a more intuitive understanding of the behav-
ior of the dynamical system. This is because the steady

states of the system live in the intersection of the null-
clines. In particular, the nullcline associated to r, on
which 7 = 0, describes the region where purity remains
constant in Fig. 1 of the main text, given by

AT sin? 6 — \/4(1 — 2912 cos? 0 + 212 sin* 0

Ne _
"o = (44T — 2) cos 6
(D4)
This equation describes the white region of Fig. 1 of the
main text with vanishing time-derivative of the purity,
where the steady states live. Interestingly, it depends
only on the dimensionless product vI" but not on each of
the variables independently. In the vI" — oo limit this

function converges to

v, 1 —cos(20) — 2v/16 cos? § + sin” 0

D
"o 8 cosf (D5)

The area enclosed by this curve is given by % fow radf ~
0.317, which means that, in this limit, 31% of the states
in the cut of the Bloch sphere are purifying.

In turn, the nullcline for 0, i.e., the curve that lies in
the (y, z) plane of the Bloch sphere in which § = 0, is
given by

No _ I'(2yl' — 1)sinf
0 2J + "2 cosfsinf’

(D6)

This equation does depend on the dimensionless variables
~vJ and I'/J separately and is used to obtain each of the
points forming the green line in Fig. 1.
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FIG. 3. Streamlines of the vector fields in the cross-section of the Bloch sphere with x = 0. The parameters span the different
phases: (al) PT broken, (c1-3) PT unbroken, and (a3, a4, b4) Noise Induced; as well as the transitions between them: (b1,2)
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by the maximum of the two main frequency units: the dissipative gap A and the maximum imaginary part of the eigenvalues

w = max, (Im(\,)).

Appendix E: Comparison of different numerical
approaches

We now compare two different numerical resolutions of
the SDQ dynamics. The first is to numerically integrate
the nonlinear system of differential equations (D2)—
we do so by a standard 4th-order Runge-Kutta (RK4)
method. The second approach is to get the time evolu-
tion of the density matrix from the formal solution of the
master equation, i.e., |5;) = e“t|py), where the equation

is vectorized to compute the map e*![e] simply through
matrix exponentiation. Additionally, this method re-
quires normalization of the state |p;) = |p)/Tr(pe),
where Tr(pt) = (1|pt) = pee+pss and pee = (€| pr|e). To
avoid computing a matrix exponential for each time ¢, we

Trotterize the evolution as e“t = Hg;l LA subdividing
the evolution in Ny steps of length Ay = teng/Nr.
These two approaches are compared in Fig. 4 to com-
pute the purity, showing a perfect agreement. The first-
order evolution of the purity obtained from ;P in eq.
(9) of the main text, also agrees with the simulated evo-

lution.

Appendix F: Uhlmann fidelity for a qubit

The fidelity between two pure states |1)) and |¢) mea-
sures how distinguishable the two states are, and is given

1.0
—_— RK4
"\ s Vect Liouv
< 0.8 --e-- st order
0.61
0 5 10 15 20

Jt

FIG. 4. Purity computed from 4th-order Runge Kutta (black
line) and using the vectorized Liouvillian (red dotted line).
The first-order Taylor approximation, determined from the
O, P formula (blue dashed line), matches the two approaches.
The parameters for the simulation are v = 0.5, I' = 0.5 and
the initial state has Bloch components r = (0.2, 0.8, 0.4).
The absolute value of the difference between the two solutions
is of order 10~ with a timestep JAr = 0.004.

by F(,¢) = [ (¥|¢) [ = Te(|v)) (1)[¢) (@) [14]. The gen-

eralization to any two mixed states p, & requires the
introduction of the Uhlmann fidelity [15, 16] as

F(p, &) = (Tr \/B&\/B)Q. (F1)

This expression is cumbersome to compute due to the
matrix square roots, which in particular require deal-



ing with a non-vectorized density matrix. For a two-
dimensional Hilbert space, there is a simpler expression
for the Uhlmann fidelity given by [17, 18]

F(p,6) = Tr(p6) + 2+/det pdet 5. (F2)

This expression was used in Fig. 3 of the main text
to compute the distinguishability between the instanta-
neous state and the stable steady state.

Appendix G: Comparison of the anti-dephasing
Liouvillian with hybrid and tilted Liouvillians

The Nonlinear Master Equation derived in the main
text (4) is not of GKSL form and describes, to the best of
our knowledge, an entirely new form of dissipation, what
we call anti-dephasing. There are other master equations
beyond GKSL form commonly used in the literature; we
study their relations in this appendix.

The Hybrid Liouwvillian [19] describes the dynamics of
a system undergoing continuous monitoring of quantum
jumps and post-selection, with a finite-efficiency n detec-
tor, and reads, for a single jump operator L with rate

I

L[] = —i[Ho, o] + u(qL o LT — %{ﬁﬁ, o}), (G1)

which nicely interpolates between Non-Hermitian evolu-
tion when the detector is totally efficient g =1—n =10
and Lindblad dynamics when the detector is totally in-
efficient ¢ = 1 — n = 1. This hybrid Liouvillian only has
a physical interpretation in terms of post-selected tra-
jectories when ¢ € [0,1]. The dynamics is always trace-
decreasing when ¢ € [0, 1) and trace-preserving for ¢ = 1.

Another commonly considered master equation beyond
GKSL form is the tilted generator [20, 21] or general-
ized quantum master equation [22], whose classical analog
is the Lebowitz-Spohn operator [23]. This generator de-
scribes the dynamics of a biased ensemble of trajectories
and, in its simplest form, reads

Lio] = —i[H, o] +pu(e*Lell - %{ﬁi, o}). (G2

This generator describes the dynamics of the biased en-
semble of trajectories s (t) = S o_, AU (t)e™*K, where
p) represents the density matrix of the dynamics with
K events after time ¢, i.e. jumps with operator L. The
variable s represents the conjugate field to K. The dy-
namics generated by this equation is not trace-preserving
if s # 0, if s < 0 the system is in the active phase, in
which the trajectories with jumps are favored, and the
dynamics is trace-increasing, and if s > 0 the system is
in the passive phase with less jumps than usual, and the
dynamics is trace-decreasing.

Both of these generators do not alter the form of
the anticommutator term in the GKSL master equation
—%{LTL e}. The nonlinear master equation derived in

this work, equation (4) of the main text, contains a dou-
ble anticommutator, which means that this term is pos-
itive, instead of negative, as in GKSL. For this reason,
the nonlinear master equation does not simply reduce to
one of the previously mentioned generators.

There is a particular case in which the connection is
closer, if the jump operator is proportional to a projector,
i.e., L o II, where II?> = II, as in the SDQ example
studied in the main text (8). In this case, through the
mapping I' — 72 = {1 and 2912 = pe™* the nonlinear
master equation for the qubit can be interpreted as a
tilted generator and with 29I'? = pq it can be interpreted
as a hybrid Liouvillian. However, the two mappings are
only valid when the anticommutator term is negative I' —
T2 > 0, i.e., v < I'"'. Furthermore, the mapping to a
hybrid Liouvillian has no physical interpretation when
the dynamics is trace increasing, i.e. v > %

Appendix H: Standard form of the anti-dephasing
master equation

We here look for the general structure of master equa-
tions describing open systems with balanced gain and
loss, specifically, for the generator of the dynamics of an
unnormalized density matrix p

4 5= 17

7 (H1)

where £ need not be trace-preserving. The normalized
density matrix p evolves according to

& p =Ll - ™(Z)
making the equation of motion manifestly nonlinear.
To determine the structure of L, one can introduce
an orthonormal basis of N-dimensional operators F; =
1,...,N? such that Tr(ﬁfﬁj) = 4,5, with N the dimen-
sion of the Hilbert space. It is convenient to choose
Fyn2 = i/\/ﬁ so that the F; are traceless for ¢ =
1,...,N?—1. The Liouvillian L can be determined anal-
ogously to the procedure used to establish the structure
of Markovian semigroups and the Lindblad master equa-
tion [1, 24], in our case leading to

(H2)

N2
L[p] = —i[H,p] +{G, p} + Z aijFiPNFJT7
ij—1

(H3)

where the Hermitian operator H = i(F — F'T)/2 and the
operator

A 1 .1 . .
G =grananl+ 5(FT + F), (H4)
are defined in terms of
1 X
F=—3 anF, H5
\/N; N2 K3 ( )



for some positive expansion coefficients a;; (%,

., N?). The standard Lindblad equation follows from
imposing trace preservation in (H3) [1, 24], which leads
to

N2
A 1 A
G=—3 > ayFlF;. (H6)
ij=1

However, by relaxing this condition, the general structure
of L[p] is considered. The rate of norm change, in this
case, is

N2

1) = 210(Gp) + 3 a Te(E ip),

g7 (HT)

ij=1

It follows that the general structure of the nonlinear mas-
ter equation for open systems with balanced gain and loss

reads

N2
5P = —ilH pl+{G, o} + > ayFpF]

ij=1

(H8)

N2
- (2Tr(G,6) +3 aij’H(F;Fiﬁ)) b.

ij=1
This master equation can be brought to a diagonal form
by considering the unitary transformation [Gadf]n, =

A~ 2 ~

YeOke and writing F; = Zgzl up; Ap in terms of the new
set of operators {Ay}, to find

N2
d . B AL A A N
P —Z[H,p]+{G,p}+ij§_1w4kpz4£

(H9)

N2
~(2mx(G] + Y- w T AL A
k=1

with

N 1 a 1 - 2
G = ﬁa]\pNgl + m’YJ\W(AN? + A;rvz) (HIO)
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