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Smart meter data, while essential for energy systems, pose significant privacy
risks due to the behavioral information embedded in household electric-
ity consumption patterns. Microaggregation has emerged as a promising
anonymization technique to mitigate these risks. However, it remains un-
clear whether such aggregated profiles retain an identifiable structure that
enables group membership inference while maintaining utility as it perturbs
the data.

In this paper, we present a replicable methodology to evaluate the trade-off
between utility and privacy in micro-aggregated smart meter data. We assess
utility through household-level day-ahead load forecasting and evaluate pri-
vacy by implementing an unsupervised group membership inference attack.
The attack combines distance-based record linkage with a two-stage major-
ity voting scheme and is applied across a range of anonymity levels (k = 5
to 200) using both domain-specific features and deep neural representations.

Our results reveal a utility-privacy trade-off: while forecasting accuracy
degrades only moderately (maximum 14% loss), group membership inference
remains highly effective at lower k values, with success rates up to 80 times
higher than random guessing.

These findings indicate that structural patterns persist through aggre-
gation and can be exploited by adversaries, even without household-level
identification, to enable targeted advertising, discriminatory profiling, or
dynamic pricing. As such, microaggregation provides meaningful privacy
protection at sufficiently higher k levels, underscoring the need for context-
aware deployment in energy data sharing.

CCS Concepts: « Security and privacy — Data anonymization and
sanitization; - Computing methodologies — Unsupervised learning;
Information systems — Data analytics.

Additional Key Words and Phrases: smart meter data anonymization, mi-
croaggregation, k-anonymity, utility-privacy trade-off, group membership
inference, time series privacy, unsupervised learning
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1 INTRODUCTION

Smart meters have become indispensable to modern energy infras-
tructures, enabling the continuous, high-resolution monitoring of
household electricity consumption [69]. Their global deployment
has accelerated, particularly across the European Union (EU) [29, 66]
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and the United States [62], and in some jurisdictions, such as Lux-
embourg, smart meter coverage surpassed 99% as early as 2023 [15].
Typically, these devices record energy usage at intervals of 15 to
30 minutes [28], generating fine-grained time series data—referred
to as load profiles—comprising timestamped power consumption
values.

Beyond enabling real-time monitoring, smart meter data supports
a range of applications, including grid optimization, enhanced en-
ergy efficiency, and predictive analytics [69]. However, the same
granular detail that enables such functionality also introduces seri-
ous privacy risks. Load profiles can expose behavioral patterns such
as occupancy [10, 36, 51], daily routines [1, 47, 49], and appliance
usage [46, 48, 58]. Moreover, this data can be correlated with socio-
demographic attributes—such as dwelling type, location [5, 41, 68],
home ownership status [4, 6], or the presence of energy-intensive
amenities like saunas and swimming pools [37, 56]. When com-
bined with external datasets, these profiles can yield highly detailed
household characteristics, substantially amplifying privacy risks.

Given these amplified risks, regulatory frameworks such as the
European Union’s General Data Protection Regulation (GDPR) clas-
sify smart meter data as personal data [33]. Accordingly, data con-
trollers—such as energy suppliers or system operators—must apply
Privacy Enhancing Technologiess (PETs) before sharing smart meter
data to reduce the risk of privacy threats like identifying individu-
als, linking load profiles across datasets, or inferring sensitive
information [70].

Addressing these concerns demands a nuanced balance: pre-
serving individual privacy while retaining sufficient data utility
for essential energy management tasks. While techniques such as
pseudonymization maintain high analytical utility, they often fall
short in preserving privacy. Conversely, stronger protections like
random data aggregation can obscure critical temporal details, lim-
iting the usefulness of the data for fine-grained applications such as
time-of-use pricing, demand response and load forecasting [20, 38].
Load forecasting is particularly relevant as it enables energy suppli-
ers to anticipate demand fluctuations, stabilize grid operations, and
optimize energy procurement in advance, thereby playing a key role
in achieving cost-efficient and sustainable energy management [55].

At the same time, the EU is accelerating digitalization demands
ever-larger datasets to fuel advanced Al-driven insights and data
spaces [31]. Complementary policy initiatives, such as energy data-
sharing frameworks, promote the responsible release of smart meter
data to support research, innovation, and climate policy [26, 34].
While these frameworks advance the green energy transition, they
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also increase the circulation of potentially sensitive data. Simulta-
neously, new regulatory instruments—such as the Digital Services
Act [32] and the AI Act [35]—tighten constraints on data use and au-
tomated decision-making [59]. These intersecting dynamics create a
tension between fostering innovation and ensuring privacy. Rising
cybersecurity threats targeting the energy sector [27] further exac-
erbate the risks of unauthorized access and re-identification [73].

In light of this complex landscape, data controllers may be reluc-
tant to share smart meter data. When they do, they often rely on
aggregation-based PETs to achieve compliance [30]. One approach
that offers a potential balance between privacy protection and an-
alytical utility is microaggregation, which achieves k-anonymity
by grouping similar consumption profiles and substituting individ-
ual consumption profiles with their group-level average [2]. While
this reduces the likelihood of singling out and linkage, it does not
eliminate the inference risk [70]. Distinct behavioral patterns may
persist, allowing adversaries to re-link pseudonymized records
with anonymized groups and complement them with publicly
available external metadata.

Although some socio-demographic characteristics, such as sauna
ownership, may already be inferred from raw pseudonymized load
profiles, group-level linkage can enrich this knowledge, for example
by enabling inferences about income levels or occupancy patterns
with higher confidence, and by cross-validating behavioral signals
across data releases. Such inferences, even at the group level, may be
exploited for discriminatory profiling, targeted advertising, dynamic
pricing by insurers, or other privacy-invasive practices, without
requiring explicit household-level identification.

To better understand the effectiveness and limitations of microag-
gregation in this context, we systematically investigate the residual
privacy risks it entails. We design a replicable methodology based on
a publicly available smart meter dataset that has been anonymized
using microaggregation. Our objectives are threefold: First, we as-
sess the extent to which behavioral similarity enables cross-dataset
linkability by simulating group membership inference attacks. Sec-
ondly, we evaluate the impact of microaggregation on data utility
in the context of energy suppliers performing household-level, day-
ahead load forecasting, by examining the effects of shifting from
pseudonymised to anonymized datasets. Third, we jointly explore
the trade-off between privacy protection and utility retention that
emerges from applying microaggregation. Consequently, our study
makes three key contributions:

(1) We formulate and implement a group membership inference
attack on micro-aggregated smart meter data. The attack
simulates adversaries with varying degrees of expertise, em-
ploying unsupervised similarity-based matching and a two-
stage majority voting mechanism to identify the most likely
anonymized group of a household. This enables privacy risk
quantification across different levels of k-anonymity.

(2) We explore the impact of microaggregation on data utility
by performing household-level day-ahead load forecasting
using representative machine learning models. Our analysis
presents empirical results on how increasing the anonymity
parameter k reduces forecasting accuracy.
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(3) We present a replicable methodology, explained in Section 4,
for evaluating utility and privacy that simultaneously as-
sesses the success of inference attacks and forecasting perfor-
mance. Our methodology identifies specific threshold values
of k where privacy gains begin to outweigh utility losses.
This insight serves as a guide for selecting appropriate levels
of anonymization for responsible data sharing.

We organize the remainder of the paper as follows. Section 2
introduces key privacy concepts underlying this work. Section 3
reviews relevant literature. Section 4 outlines our research approach,
and Section 5 defines the threat model guiding our analysis. Sec-
tion 6 describes the experimental setup, while Section 7 presents
and interprets the results from both utility and privacy perspectives.
Finally, Sections 8 and 9 discuss broader implications, highlight
future directions, and conclude the paper.

2 PRIVACY CONCEPTS

To support a clear understanding of the privacy risks and protection
strategies discussed in this work, this section introduces founda-
tional privacy concepts and anonymization techniques relevant to
smart meter data.

Personally Identifiable Information (PII) includes not only
direct identifiers such as names or identification numbers but also
indirect or quasi-identifiers—attributes that may be linked to in-
dividuals through combinations or patterns in the data [52, 63]. In
the context of electricity consumption, behavioral patterns embed-
ded in load profiles can function as quasi-identifiers, e.g., enabling
the re-identification of individuals even in the absence of explicit
identifiers [18].

We understand pseudonymization in accordance with the Gen-
eral Data Protection Regulation (GDPR) regulation [33]. In the case
of load profiles, pseudonymization involves the removal of direct
identifiers (e.g., names, addresses) and the substitution of those with
alphanumeric quasi-identifiers. Table 1 provides an illustrative ex-
ample, where the attribute Meter;yq serves as the quasi-identifier.
This approach preserves the structure and resolution of the original
data—particularly the values in the kWh column—while aiming to
obscure direct links to identity.

Table 1. Pseudonymized load profiles of two individual households.
Meter;q Time kWh
712345 01.01.2025 00:30  0.346

712345 31.12.2025 23:30 0.004
712346 01.01.2025 00:30 0.158

712346 31.12.2025 23:30 0.272

However, pseudonymization does not alter the underlying be-
havioral patterns, which may still allow for re-identification when
combined with auxiliary data. Prior studies have shown that unique
consumption behaviors can re-link records to individuals, even
when direct identifiers are removed [13, 43].
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In contrast, anonymization refers to a collection of techniques
that irreversibly transform personal data to ensure individuals
are no longer identifiable, either directly or indirectly [14, 33, 70].
Anonymization methods are typically classified as either perturba-
tive or non-perturbative, depending on whether the original data
values are altered [24].

Non-perturbative approaches, such as suppression and general-
ization, preserve the original values but reduce identifiability by
removing or coarsening data granularity. For example, exact times-
tamps may be generalized into hourly intervals or suppressed en-
tirely. These methods can be effective in applications where the
temporal precision of the data is not critical. A prominent example
is smart meter billing, where only the total energy consumption
within a billing cycle (e.g., monthly or yearly billing cycle) is needed.
In this context, precise consumption patterns or continuous load
curves are not required, and non-perturbative anonymization may
suffice to protect privacy without sacrificing utility.

Perturbative approaches, by contrast, introduce controlled modi-
fications to the load profiles to obscure individual identities. These
include techniques such as noise addition, data swapping, and syn-
thetic data generation [25, 39]. Among these, microaggregation
has emerged as particularly relevant for time-series datasets. Mi-
croaggregation operates by grouping k similar records—such as
daily load profiles—and replacing individual values with the group’s
average [22, 23]. This method retains the temporal structure of the
data, which is essential for analytical tasks like day-ahead load fore-
casting, while still offering protection against re-identification. As
expressed in Table 2, micro-aggregated data no longer represents
individual behavior but captures collective patterns that can still be
useful for operational tasks.

Table 2. Micro-aggregated load profiles of the households from Table 1.

Group;y Time kWh
1 01.01.2025 00:30  0.252
1 31.12.2025 23:30  0.138

Importantly, microaggregation satisfies the principle of k-
anonymity, meaning that each anonymized record is indistinguish-
able from at least k-1 others based on quasi-identifiers. This makes
it a viable option in contexts where privacy protection and the re-
tention of analytical utility—such as load forecasting—are required.

3 RELATED WORK

Following our load forecasting and data attacks scope, we present
our explored related work. In Section 3.1, we motivate and briefly
examine load forecasting as our utility case, highlighting its rele-
vance, the sensitivity of the data it requires, and the surge of new
forecasting methods leveraging smart meter data. However, we do
not aim to provide a thorough review of the load forecasting lit-
erature. Instead, we use it as a representative application domain,
drawing on well-established forecasting models already extensively
explored in academia. In contrast, Section 3.2 focuses on relevant
academic literature concerning privacy risks and attacks on load
data and Section 3.3 clarifies our novelty.
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3.1 Load Forecasting

Load forecasting plays a central role in smart grid operations, sup-
porting tasks such as grid balancing, demand response, and planning
for renewable integration. Recent advances in forecasting leverage
both classical machine learning and deep learning to capture the
temporal dynamics and behavioral variability in household-level
consumption [55].

[50] propose a sequence-to-sequence recurrent neural network
model for short-term load forecasting, illustrating the capability
of deep learning to capture non-linear temporal dependencies in
fine-grained consumption data. However, their approach operates
on raw, non-anonymized load profiles without considering privacy-
preserving data transformations, leaving open questions regarding
forecasting performance under anonymization constraints. In con-
trast, our work explicitly assesses how forecasting accuracy is af-
fected when using data anonymized via microaggregation, thereby
addressing the impact of privacy-preserving interventions on model
effectiveness.

[12] evaluate various machine learning models, including gra-
dient boosting and support vector regression, for short-term res-
idential load forecasting. They highlight the trade-offs between
computational efficiency and predictive accuracy but, similar [50],
conduct their analysis using fully accessible data without applying
anonymization techniques. Our study extends this research by sys-
tematically quantifying the degradation in forecasting performance
across different levels of microaggregation, providing insights for
privacy-aware forecasting in smart grid applications.

[71] introduce an attention-based encoder—decoder architecture
with bidirectional LSTM layers for multi-horizon short-term load
forecasting, dynamically weighting historical and similar-day fea-
tures to achieve state-of-the-art accuracy on public datasets. While
their focus is on advancing forecasting performance through model
sophistication, our work instead evaluates how strong standard ar-
chitectures—both tree based and neural network-based—perform
under privacy-preserving microaggregation. This approach allows
us to analyze how anonymization impacts forecasting utility with-
out further confounding factors from architectural advancements.

In summary, while prior work has demonstrated effective forecast-
ing methodologies under conditions of complete data availability,
our study explicitly investigates the forecasting performance of
representative models on microaggregated smart meter data. This
enables a quantifiable understanding of how privacy-preserving
data sharing practices influence the utility of load forecasts within
realistic smart grid scenarios.

3.2 Privacy Attacks on Load Data

Load profiles exhibit strong temporal and behavioral structures that
make them highly distinctive on a per-household basis. Even in
the absence of explicit identifiers, adversaries have exploited these
patterns to successfully re-link pseudonymized load profiles
to individual households. Early work [43] demonstrated that
pseudonymized load profiles could be re-identified using behavioral
anomalies and pattern matching, even under common mitigation
strategies such as re-pseudonymization or reduced temporal res-
olution. [13] extended this approach by linking pseudonymized
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fine-grained data with monthly aggregates, achieving full de-
pseudonymization through iterative value matching. [57] intro-
duced a method using feature-based similarity matching on weekly
load profile snippets, applying majority voting to recover individual
identities. Most recently, [16] employed deep learning—based em-
beddings and nearest-neighbor classifiers to re-identify households.

While prior research has primarily focused on re-identification
attacks against pseudonymized load profiles, our study shifts the
focus to a more privacy-preserving scenario involving explicitly
anonymized smart meter data. Specifically, we investigate whether
individual households can still be re-linked with anonymized groups
through group membership inference. This extends the threat land-
scape from individual-level re-identification to a more complex
variant of record linkage across datasets subjected to perturbative
anonymization.

[21] examine re-identification risks under an anonymization
model that relies on constrained permutation. In their approach,
household identifiers are removed, but high-resolution load profiles
remain intact. The adversary is assumed to have access to aggregate
billing data, such as monthly or yearly consumption values, and
attempts to re-establish the mapping between anonymized high-
resolution records and known aggregates. By exploiting the inherent
consistency between high-resolution data and aggregate totals, they
demonstrate that high re-identification success is achievable, even
without explicit identifiers. Importantly, their attack targets datasets
where the temporal and behavioral fidelity of individual profiles is
fully retained.

In turn, [8] investigate the privacy risks associated with
aggregation-based anonymization, simulating scenarios where
household load profiles are grouped and aggregated. Unlike [21],
they focus on the risk of group membership inference rather
than individual re-identification. Using a formal indistinguishability-
based privacy framework, they quantify whether an attacker can
determine if a known load profile is part of an aggregated group.
Their experiments, based on Non-Intrusive Load Monitoring (NILM)
datasets, reveal that certain high-consumption patterns (e.g., from
electric vehicles or heating systems) remain detectable even when
data is aggregated over 10-20 households. Notably, their analysis
uses simulated load profiles derived from appliance-level traces, not
real-world smart meter data.

3.3 Novelty

In contrast to the covered studies in Section 3.2, we evaluate pri-
vacy risks under microaggregation, a perturbative anonymization
technique that replaces individual profiles with the average of k
similar profiles. In our implementation, groups of similar records are
identified based on their distance to the group average to ensure low
within-group variance while achieving k-anonymity. Our analysis
builds upon and extends [8] membership inference model in two
important ways. First, our attacker model operates over a many-
to-many matching problem: rather than guessing whether one
specific load profile is part of one aggregated group, we attempt to
re-link multiple pseudonymized household profiles to their corre-
sponding aggregated groups based on behavioral similarity. Second,
we use real-world household-level smart meter data (from the Low
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Carbon London dataset), thereby capturing a richer variety of usage
patterns and privacy risks.

From a terminological standpoint, our attack constitutes a record
linkage mechanism designed to achieve group membership infer-
ence. While traditional membership inference attacks (e.g., in ma-
chine learning) are formulated as binary classification problems [60],
our setting involves distance-based matching across two datasets:
one containing pseudonymized individual profiles, the other contain-
ing anonymized group averages. Although the method is grounded
in similarity-based record linkage, the goal remains group-level
association — identifying to which anonymized group each indi-
vidual most likely belongs. This formulation is more complex than
classical binary group membership decisions, as it operates with-
out direct identifiers and across multiple households and groups
simultaneously.

Finally, our work contributes a utility-privacy perspective, absent
from prior studies. While [21] and [8] focus exclusively on privacy
leakage, we assess how increasing the microaggregation parame-
ter k simultaneously affects both privacy (via group membership
inference success) and utility (via household-level load forecasting
accuracy). This analysis, combining perturbative anonymization,
unsupervised similarity-based linkage, and forecasting-based utility
assessment, offers new insights into the residual privacy risks and
trade-offs involved in sharing micro-aggregated smart meter data.

4 RESEARCH APPROACH

To support informed decisions about privacy-preserving data shar-
ing, we develop a structured research approach that assesses both
the risks and utility of micro-aggregated smart meter data. This
section outlines the underlying problem and research questions,
followed by a replicable methodology that guides our analysis.

4.1 Problem Statement and Research Objectives

This work investigates whether load profiles, once anonymized
through microaggregation [23], still permit the inference of indi-
vidual household membership within aggregated groups. While
microaggregation is designed to achieve k-anonymity by replacing
individual load profiles with the group average of k similar house-
holds, it remains unclear whether distinctive behavioral patterns
persist in the aggregated data. If such patterns survive anonymiza-
tion, adversaries may be able to re-link pseudonymized household
records with their corresponding micro-aggregated groups, posing
privacy risks even when individual identifiers are removed.

The central objective of this study is to assess how well micro-
aggregated load profiles balance analytical utility with privacy pro-
tection. We examine the extent to which weekly consumption pat-
terns enable group membership inference, and how increasing the
aggregation parameter k influences both the success of such infer-
ence attacks and the utility of the data for downstream tasks such
as household-level load forecasting. To structure this investigation,
we pose the following research questions:

(Q1) To what extent can attackers infer the anonymized
group membership of individual households from micro-
aggregated load profiles, and how does this privacy risk
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evolve with increasing values of the aggregation parameter
k?

(Q2) How does increasing the anonymization level k impact the
utility of anonymized load profiles for household-level day-
ahead forecasting?

(Q3) At which values of the microaggregation parameter k does a
measurable decline in group membership inference success
(privacy gain) coincide with an acceptable loss in forecasting
accuracy (utility degradation), and how can this trade-off be
used to inform parameter selection for privacy-preserving
smart meter data sharing?

4.2 Methodology

Figure 1 illustrates the used replicable methodology, which com-
prises five steps designed to systematically evaluate privacy risks
and utility in anonymized load profiles.

1) Data Selection and Preparation: This study is based on the
publicly available Low Carbon London (LCL) dataset, which serves
as a widely recognized benchmark in smart meter analytics and
privacy research [65]. The dataset is pseudonymized, meaning that
household identifiers have been replaced with alphanumeric codes
while preserving load profiles recorded at 30-minute intervals. While
our evaluation is conducted using the LCL dataset, the methodology
is designed to be generalizable to other time series datasets that
contain regular interval load measurements (e.g., 15- or 30-minute
resolution).

2) Anonymization (Microaggregation): To simulate a realistic
privacy-preserving data release by an energy provider, we apply
anonymization to the pseudonymized smart meter data using mi-
croaggregation. This process groups similar household load profiles
and replaces individual consumption traces with group-level aver-
ages, thereby obscuring household-specific patterns. The resulting
anonymized load profiles serve as the basis for evaluating both
privacy risk and data utility in downstream applications.

| 1) Data Selection and Preparation |

i

| 2) Anonymization (Microaggregation) |
L

v v
3.1) Load Forecasting 3.2) Group Membership
Inference

@Pseudonymized Data

@/0 Anonymized Data

v
| 4) Evaluation |

i

| 5) Findings |

(ﬂ? Anonymized Data

Fig. 1. Overview of the methodological pipeline. The process spans data
selection, anonymization, scenario execution, evaluation, and analysis.
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3) Scenario Implementation: We implement two analytical
scenarios to assess the utility and privacy implications of micro-
aggregated load profiles. First, in the household-level load fore-
casting scenario, we train predictive models on anonymized group
profiles and evaluate predictive performance on individual house-
hold consumption (see Section 6.3). Second, in the group mem-
bership inference scenario, we simulate a privacy attack using
distance-based record linkage to link weekly pseudonymized house-
hold load profiles with the most similar micro-aggregated group
profiles (see Section 6.4).

4) Evaluation: We evaluate both scenarios independently to
assess their respective outcomes. Forecasting performance is mea-
sured using household-level prediction error (Section 7.1), while
privacy risk is quantified by the success rate of the group mem-
bership inference attack (Section 7.2). In a second step, we jointly
analyze both results to examine the trade-off between utility and
privacy across varying levels of anonymization (Section 7.3).

5) Findings: By systematically varying the anonymization pa-
rameter k, we explore how the relationship between forecasting
utility and privacy risk evolves. While the resulting trade-off curve
combines two distinct metrics, prediction error and group member-
ship inference success, it serves as an initial attempt to visualize
their interaction. Rather than prescribing specific values for k, the
analysis offers a qualitative indication of regions where privacy pro-
tection improves without sharply compromising utility, providing a
basis for future, more rigorous assessments.

5 THREAT MODEL

To systematically assess privacy risks in our setting, we adopt a
formal threat modeling approach [7, 67]. This allows us to clearly de-
fine the adversary’s objective, the underlying assumptions, and the
knowledge and capabilities required to launch a group membership
inference attack.

5.1 Adversary’s Knowledge and Capabilities

The adversary operates under a closed-world assumption, meaning
the pseudonymized and anonymized datasets refer to the same set
of households without any extraneous households. Both datasets
cover an identical time frame.

We assume that the attacker is aware of the anonymization
method, microaggregation, and either knows or can reasonably
estimate the group size parameter k, which typically ranges from 5
to 200. This assumption is realistic in regulated domains like energy
systems, where privacy-preserving mechanisms may be disclosed
as part of legal compliance or standardization [72].

Figure 2 illustrates the group membership inference scenario un-
der consideration. On the left, individual pseudonymized household
load profiles are collected and processed by a data aggregator, such
as an energy supplier. These profiles undergo anonymization via
microaggregation, before being stored or potentially shared.

The resulting anonymized dataset is either shared—intentionally
for research or commercial purposes—or leaked through data
breaches or passive interception (eavesdropping). In both cases,
the adversary is assumed to gain access to anonymized load profiles,
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Fig. 2. lllustration of the adversary scenario for group membership inference. Pseudonymized household load profiles are collected and anonymized via

microaggregation. The adversary leverages publicly available pseudonymized data, enriched with socio-demographic information, to re-link individual
household profiles to anonymized groups. The dashed arrow indicates a successful inference, where the adversary correctly assigns Household 6 to Group 3,

thereby revealing its group membership.

which serve as the target of the attack. The adversary’s goal is to
re-link individual pseudonymized profiles to their corresponding ag-
gregated group, thereby performing a group membership inference
attack. This process is depicted by the red arrows in Figure 2. The
dashed arrow indicates a successful inference, where the targeted
household is correctly linked to its group, while the solid arrow
represents an attempted inference where the household is not part
of the examined group.

To perform this attack, the adversary draws upon two key data
sources: (i) Pseudonymized load profiles with auxiliary informa-
tion: These publicly available datasets include household-level load
profiles and auxiliary socio-demographic attributes. Although di-
rect identifiers are removed through pseudonymization, associated
metadata such as income group, household size, dwelling type, or
appliance ownership often remains intact. Such data is commonly
released in open datasets [44, 69], making this a realistic assumption.

(if) Anonymized load profiles obtained through microaggrega-
tion: The adversary is assumed to have access to a micro-aggregated
dataset—comprising group-level average load profiles—for a du-
ration of at least one week. This time frame reflects a realistic
attack window, as short-term data exposures may occur through
insider leaks or passive eavesdropping on communication infras-
tructures [73]. Prior work [5, 41, 57] have demonstrated that even
weekly load profiles can retain sufficient behavioral information
to compromise individual privacy, underscoring the feasibility of
inference attacks based on limited temporal time frames.

To simulate varying levels of adversarial capability, we implement
three attacker models: (i) a baseline attacker that employs simple sta-
tistical features such as means and variances; (ii) a domain-informed
attacker that extracts behavioral descriptors based on established
features from prior work [4, 5]; and (iii) a representation learn-
ing-based attacker that utilizes autoencoders, whose architectures
are designed to reflect domain knowledge of temporal and behav-
ioral load patterns. All attacker models operate in a fully unsuper-
vised setting and do not access ground-truth mappings during
inference. Ground-truth labels are solely used in the evaluation
phase to assess attack performance, as described in Section 6.
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5.2 Adversary’s Objective

The adversary aims to re-link publicly available pseudonymized
load profiles to their corresponding groups in a dataset anonymized
through microaggregation. The adversary’s objective is to determine
the group gj, to which the target household h belongs.

The adversary has access to two key data sources: a
pseudonymized dataset D = {ci,cg,...,cN}, where ¢y is the
pseudonymized load profile of household h € {1,..., N}, and the
micro-aggregated dataset D = {&1, &, .. -»¢n/k} (k | N), where each
Cg represents the average load profile of a group of k households. Mi-
croaggregation groups D into N /k groups, where g € {1,...,N/k}.
Each household & belongs to exactly one group gp,.

We formalize the adversary’s objective through a security game
referred to as the group membership inference game [8]. The
game is played between two parties named challenger Ch and
adversary Adv. The challenger is an abstract entity that represents
all parties who are concerned about their privacy. The adversary
is a party who acts on behalf of entities who aim at violating privacy.

(1) The adversary Adv is given the datasets D and D.
(2) A random household h is chosen by Ch and given to Adv.

(3) Using the obtained data, the adversary Adv tries to
determine gp,. His guess is denoted as ¢’.

(4) The adversary outputs g’ and wins if and only if his guess
is correct, i.e., ¢’ = gp.

Intuitively, privacy is broken if the adversary has a higher winning
probability than random guessing, i.e.,

Pr[g’ = gp] > NL/k (1)

Note that the game does not specify how the adversary analyzes
the given data as these are details of the attacks that depend on the
attacker types described before. These specific parts of the attack
are described in Section 6.
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5.3 Threat Scope and Impact

Although the proposed attack does not reveal individual house-
hold identities, it compromises privacy by linking pseudonymized
load profiles to their corresponding micro-aggregated groups. This
linkage enables adversaries to cross-reference behavioral load data
with auxiliary socio-demographic information, thereby transform-
ing anonymized data into enriched sources of sensitive inference.

This enrichment data could be used to amplify vulnerabilities
inherent in group-based anonymization schemes [3]: The fact that
microaggreagtion selects similar households for the clustering of
groups and that microaggregation retains correlations between
quasi-identifiers and sensitive attributes could be amplified by this
enrichment data.

When an adversary possesses external knowledge that links
specific consumption patterns to known socio-demographic
traits—such as regular overnight charging associated with electric
vehicle (EV) ownership or high evening usage linked to affluent
households—they can use this information to draw inferences about
group members. Successful linkage of pseudonymized profiles to
micro-aggregated groups allows these behavioral patterns to serve
as proxies for inferring sensitive characteristics, even in the absence
of direct individual identification.

For example, associating a pseudonymized household with a
group showing elevated late-night energy consumption and mini-
mal daytime use could suggest shift work patterns or illicit indoor
agriculture. Likewise, groups characterized by consistently high
summer usage may indicate energy-intensive appliances like air
conditioning during specific times of the day or pool pumps, which
can be proxies for household affluence. Such inferences, even at the
group level, may be exploited for discriminatory profiling, targeted
advertising, dynamic pricing by insurers, or other privacy-invasive
practices, without requiring explicit household-level identification.

This attack model challenges the sufficiency of microaggrega-
tion as a standalone anonymization technique and suggests that
behavioral fingerprints may survive aggregation, particularly when
combined with publicly available auxiliary data and machine learn-
ing techniques.

6 EXPERIMENTAL SETUP

This section outlines the experimental setup used to evaluate the
utility and privacy implications of micro-aggregated load profiles.
We begin by describing the dataset and preprocessing steps, fol-
lowed by the microaggregation method applied for anonymization.
Subsequently, we detail the forecasting models used to assess data
utility and present the attack methodology employed for group
membership inference.

6.1 Data Description

The dataset used for our experiments is based on the Low Carbon
London dataset, provided by UK Power Networks, from which we
consider 4342 household load profiles within the London area from
November 2011 to February 2014 [17]. To reduce computational
demands for the experiments, we randomly select a subset of 1,000
households from January 1, 2013, to December 31, 2013.
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The data provides half-hourly electricity consumption readings,
resulting in 48 values per day per household. To contextualize the
selected sample, we compute the annual energy consumption per
household and find an average of 3688 kWh and a median of 3013
kWh, aligning well with typical residential usage patterns in urban
UK settings during that period [66].

6.2 Data Protection via Microaggregation

As already introduced in Section 2, we apply microaggregation,
which partitions load profiles into clusters of at least k similar house-
holds and replaces each individual profile with the group average.
This structure-preserving transformation reduces re-identification
risk by ensuring that no household is distinguishable from fewer
than k — 1 others [23].

Unlike naive grouping strategies, microaggregation relies on
similarity-based clustering to preserve utility-relevant properties
in the data. In this study, we employ the Maximum Distance to Av-
erage Vector (MDAV) algorithm to construct anonymized clusters.
MDAV iteratively selects the record farthest from the global aver-
age and groups it with its closest neighbors, thereby minimizing
intra-cluster variance. This approach is particularly effective for
preserving the statistical and temporal characteristics of load pro-
files, which are crucial for downstream tasks such as forecasting [2].

While advanced variants such as DFTMicroagg [2] apply
frequency-domain transformations, most notably the Discrete
Fourier Transform (DFT), to enhance anonymity, we choose stan-
dard microaggregation based on the MDAV algorithm. This choice
is motivated by MDAV’s ability to balance computational efficiency
with the preservation of temporal structures in the original data, an
essential property for maintaining forecasting performance. Unlike
DFT-based approaches, which may introduce spectral artifacts or
distortions, MDAV operates directly in the time domain, ensuring
the integrity of sequential consumption patterns. Moreover, MDAV
is widely regarded as the most commonly used microaggregation
algorithm in practice, particularly in tools like the sdcMicro pack-
age [64].

To systematically explore the utility-privacy trade-off, we con-
struct a series of anonymized datasets by applying microaggregation
at varying levels of the privacy parameter k. Formally, we define a
finite set of privacy levels k = {5, 10, 25, 50, 100, 200}, where lower
values of k (e.g., k = 5) correspond to minimal privacy protection
and higher values (e.g., k = 200) represent stronger anonymity guar-
antees. These values allow us to observe the impact of aggregation
strength on both utility and privacy.

6.3 Load Forecasting for Utility Assessment

To assess the utility of micro-aggregated load profiles, we focus on
household-level day-ahead load forecasting. This task serves as a
representative benchmark for assessing how well anonymized data
supports typical energy analytics. To ensure temporal robustness
and minimize bias from specific time windows, we implement a
rolling cross-validation strategy using 31-day training windows,
each shifted forward by one day.
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We select five forecasting models including two deep learning
models (NBEATS [54] and NHITS [9]) capable of capturing non-
linear temporal structures; two tree-based ensemble methods (XG-
Boost [11] and LightGBM [45]) known for their accuracy and effi-
ciency; and a linear regression model serving as an interpretable
baseline. This diverse model selection allows us to assess how dif-
ferent algorithmic approaches respond to increasing levels of data
anonymization. Each model is trained on micro-aggregated profiles
corresponding to varying k-anonymity levels. The models are then
asked to produce a forecast based on the original, non-anonymized
household-level load data. The models are then evaluated based
on this forecast. This can be understood as transfer learning from
models trained on anonymized data to non-anonymized data. To
reduce computational overhead across multiple anonymization con-
figurations, we use default model parameters from standard libraries
such as scikit-learn, foregoing hyperparameter optimization.

Forecasting accuracy is measured using multiple error metrics:
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
Mean Squared Error (MAE), and Symmetric Mean Absolute Percent-
age Error (SMAPE) [61]. We include SMAPE in place of MAPE to
address the known issue of instability when actual consumption
values approach zero—a common occurrence in household load
profiles. All models produce 48 half-hourly predictions per day per
household, for both the raw and anonymized datasets. A detailed dis-
cussion of forecasting results across varying values of k is presented
in Section 7.1.

6.4 Attacking Micro-aggregated Load Profiles

The objective of the group membership inference attack is to asses
whether individual household load profiles can be correctly linked to
their corresponding anonymized group load profiles using distance-
based record linkage. To achieve this, we develop a similarity-based
matching methodology that is trained solely on micro-aggregated
load data and subsequently applied to pseudonymized household
profiles for inference.

The attack methodology consists of a four-stage pipeline: (i) data
preparation, (ii) feature extraction, (iii) similarity matching, and (iv)
evaluation. The first three stages are illustrated in Figure 3. Notably,
the entire process operates in a fully unsupervised setting—no
ground-truth labels are accessible during stages (i) to (iii). Ground-
truth information is used exclusively in stage (iv) to evaluate the
success of the group membership inference attack.

6.4.1 Data Preparation. To enable a consistent and meaningful
comparison between pseudonymized household profiles and micro-
aggregated group profiles, both datasets are aligned to share the
same temporal and structural format. The data spans 51 full weeks,
covering the period from January 1 to December 31, 2013. The final
calendar week (week 52) has been excluded, as it lacks a complete
7-day record. Each load profile, whether individual or aggregated,
is segmented into weekly intervals, following the methodology
of [57].

Consequently, each pseudonymized household profile h and each
micro-aggregated group profile g is segmented into 51 weekly snip-
pets. Such a snippet of household 4 and week w is denoted as ¢y, ,,
and consists of 7 - 24 - 2 = 336 time-aligned measurements. The

ACM SIGENERGY Energy Informatics Review

same procedure is done for each of the N/k group profiles whose
weekly snippets are denoted as cg 1. While the pseudonymized load
profiles retains individual half-hourly consumption values, the
micro-aggregated load profiles contain the corresponding averaged
measurements across groups of k households. The resulting data
structures are illustrated in the first step (1.Data Preparation) of the
attack methodology, depicted in Figure 3.

6.4.2  Feature Extraction. To simulate varying levels of adversarial
capability as described in Section 5.1, we implement three distinct
feature extraction strategies: (i) basic statistical descriptors—such
as mean, standard deviation, minimum and maximum—computed
for each weekly load profile; (ii) domain-specific features derived
from 35 numerical descriptors proposed by [4, 5]; and (iii) automated
feature learning using deep neural networks, specifically a Recurrent
Autoencoder (RAE) and a Convolutional Autoencoder (CAE). The
resulting features are denoted as xj, ,,, for pseudonymized household
and xg,, for the corresponding group load profiles.

Our primary representation is based on the learned embeddings
generated by the RAE and CAE models. The design of these models
was guided by the behavioral structure captured in the [4, 5] feature
set. Specifically, kernel sizes in the CAE and the LSTM architecture
in the RAE were tailored to reflect key aspects such as temporal dy-
namics and intra-day consumption ratios. This architecture design
aims to simulate characteristic load behaviors directly within the
learned representation. The final embedding dimensionalities are
p = 48 for the CAE and p = 32 for the RAE. Detailed architectural
configurations for the CAE and RAE are provided in Table 5 and
Table 6, respectively.

While domain-specific features provide high interpretability and
remain useful for analysis, the automated feature learning ap-
proaches offer superior performance in capturing nuanced con-
sumption patterns that may persist even after microaggregation.
6.4.3  Similarity Matching (knn). To infer group membership from
pseudonymized household load profiles, we implement a similarity-
based k-nearest neighbor approach using the extracted p-
dimensional feature vectors. For each weekly pseudonymized
household profile xj, ,,, we compute the Euclidean distance to all
anonymized weekly group profiles x4, € D, where g=1...,N/k
and w = 1,...,51. The np, closest group-week profiles, i.e., those
with the smallest pairwise distances, are selected as candidate
matches.

The matching process involves a two-stage majority voting
procedure that is formally described in Algorithm 1. In the first
stage, each household-week snippet x, ,, is assigned to the group
that appears most frequently among its n,, nearest neighbors. In
case of ties, we select the group with the smallest average distance
to xp, - This detail is omitted in Algorithm 1 for sake of simplicity.

In the second stage, a final group prediction g;l is determined
for each household by majority voting across the weekly group
assignments 9;1,1’ ey 92)51. The same distance-based tie-breaking
strategy is applied if necessary.

Table 3 presents an example of top-3 nearest neighbors (n,, = 3)
and resulting group assignments for selected snippets for a single
household h. For a better understanding of the entire two-stage
majority voting process, Figure 3 includes a simplified feature space
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Fig. 3. Overview of the re-linking methodology comprising three stages: 1. Data preparation, 2. Feature extraction, and 3.Similarity matching via k-nearest
neighbors. The figure illustrates the corresponding data structures at each stage. The feature extraction step highlights the interpretable, domain-specific case.
A simplified two-dimensional example in stage 3 visualizes two weekly snippets from two households and two groups.

Algorithm 1 Similarity Matching Algorithm

Require: Feature  representations {Xhwth=1,. N w=1,...51
of pseudonymized load profiles, feature representations

{J?g,w}gzl,”_,N/k; w=1,...51 of aggregation groups, privacy
parameter k

1: for each household hin {1,...,N} do

2 for each week wy in {1,...,51} do

3: Set x = xp 4,

4 Find the n, nearest neighbors of x from all 51 - N/k feature

representations {Xg,}.

5 Denote the groups g from this set as N'(x)
6: Voting 1: Set g, = argmax 2 l(gi=9)
ge{1,...N/k} gie N(x)
7: /* Handling of ties omitted for simplicity */
8: end for
9:  Voting 2: Set g, = argmax 2 1 (g;,1 = g)
ge{1,...N/k} wi€{1,...,51}
10: end for
11: Output: Assigned aggregation groups gj,...,g}, for all N
households

(right panel), illustrating two weeks from two households and their
corresponding group profiles.

Table 3. Example illustrating the similarity matching algorithm using n,, =
3. It shows the top-3 nearest micro-aggregated weekly snippets (neighbors)
for each week of a household h. The 51 groups ¢/, are found by majority
voting among the first (group) indices along the rows. The final group choice
gy, for household h is found by majority voting among these weekly group
winners ¢4, along the last column.

Snippet Neighbor 1 Neighbor 2 Neighbor3 ¢/,
Xh,1 565,7 JE5,3 )2'22)2 5
Xp,2 Xs5,9 X67,50 Xs5,48 5
Xh,51 X42,6 X422 X8,44 42
9, 5
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6.4.4  Privacy Risk Evaluation. To evaluate group membership infer-
ence performance at the household level, we leverage the ground-
truth mapping between each household h and its corresponding
micro-aggregated group gy. This mapping is only used during this
evaluation phase. For each anonymity level k, we compare the final
predicted group assignment g;l obtained from the two-stage major-
ity voting procedure, with the true group label g;,. This allows us to
quantify how effectively the attack infers group membership under
varying levels of anonymization.

For each k-anonymity level, we compute the Attack Success
Rate (ASR) as the empirical estimator of the winning probability
of the adversary game shown in Equation 1:

N
ASR= = " 1(g} = 1) @)
h=1

Here, N denotes the number of households and 1(-) is the indi-
cator function that returns 1 when the predicted group matches
the true group, and 0 otherwise. In practice, this corresponds to
computing accuracy_score from the scikit-learn library for each
k.

However, the anonymization parameter k directly affects the
number of possible candidate groups |G|, which in turn influences
the difficulty of the classification task: as k increases, the number
of candidate groups decreases, and the likelihood of correct assign-
ment rises purely by chance. This makes raw accuracy an overly
optimistic indicator of privacy risk at higher k values. To account
for this effect, we normalize the observed accuracy by the baseline
accuracy expected from random guessing. This normalized metric,
often referred to as the Relative Attack Success Rate (RASR),
is widely used in literature to evaluate group membership infer-
ence attacks [42]. In our setting, we adapt this metric to reflect a
multi-instance matching scenario, where multiple pseudonymized
household profiles are re-linked to multiple anonymized groups.

ASR
= ®)
/1G]

An RASR of 1 corresponds to random guessing, whereas values
greater than 1 indicate an elevated privacy risk, reflecting a higher-
than-random success in group membership inference.

RASR =
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7 RESULTS

In this Section the impact of microaggregation on utility and pri-
vacy across varying levels of k-anonymity is evaluated: Section 7.1
reports forecasting accuracy for different models trained on aggre-
gated data, while Section 7.2 analyzes the effectiveness of group
membership inference attacks. Finally, both perspectives are com-
bined in Section 7.3 to explore the emerging trade-off between data
utility and privacy protection.

7.1 Utility: Load Forecasting

We evaluate data utility by assessing how microaggregation affects
the accuracy of household-level day-ahead load forecasts. In order
to explore possible dependencies on the model and the evaluation
criterion, five forecasting models and five standard error metrics
are used as described in Section 6.3. Since the choice of error metric
illustrates only a minor influence on the results, we present the
MAE as a representative metric in Figure 4. A complete overview
of all metrics is provided in Appendix A, illustrating some statistics
in Table 4.

Among the evaluated models, LGBM consistently delivers the
strongest performance across most anonymization settings start-
ing at 0.109 kWh for k = 5, followed closely by XGBoost that
starts at slightly higher at 0.115 kWh for k = 5 the development
as k increases is not as sharp as for LGBM. In contrast, the neu-
ral architectures NHITS and NBEATS show greater sensitivity to
anonymization, with steeper performance degradation as the k pa-
rameter increases. This suggests that tree-based models are more
robust to the distortions introduced by microaggregation.

As expected, forecasting performance declines across all models
as the anonymity level k increases. This degradation is particularly
evident when comparing performance relative to a lower-privacy
baseline (k = 5). In high-privacy settings (e.g., k = 200), models such
as Linear Regression and XGBoost exhibit over 10% performance
loss in several error metrics.

7.2 Privacy: Membership Inference

We assess privacy by evaluating the success rate of group member-
ship inference attacks, measuring how well adversaries can re-link
pseudonymized household profiles to their corresponding micro-
aggregated groups. As described in Section 5, we simulate attackers
with varying levels of domain knowledge, using four distinct fea-
ture extraction strategies. Figure 5 illustrates the performance of
these strategies across different anonymization levels. The left panel
displays the group membership classification accuracy, while the
right panel depicts the corresponding RASR, which normalizes ac-
curacy by the success probability of random guessing, as described
in Section 6.4.4.

For classification accuracy, we observe an overall increasing trend
across higher k values due to the decreasing number of candidate
groups, which naturally raises the likelihood of correct assignment
by chance. However, a notable exception occurs in the transition
from k = 5 to k = 10, where accuracy drops for all feature represen-
tations except the handcrafted approach.

The RASR metric, which corrects for this chance-level bias, re-
veals a consistent decline as k increases, indicating that stronger
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anonymization reduces the effectiveness of group membership in-
ference. Among the models, the CAE achieves the highest RASR
across all k values, particularly in the low-k range (k < 25), where
it significantly outperforms all other representations. The RAE and
the domain-specific features provide moderate performance, while
the handcrafted features remain close to random guessing.

To ensure robustness of the results, we test multiple neighbor-
hood sizes np, € {3,5,7,9, 11} for the similarity-based matching
procedure and observe only minor variation in performance. For
lower values of k (e.g., k = 5 and k = 10), smaller neighborhood
sizes such as np, = 3 and 5 perform slightly better. We also evaluate
cosine and Manhattan distances as alternatives to Euclidean dis-
tance, but find their results to be largely comparable, and therefore
rely on Euclidean distance throughout the analysis.

7.3 Utility-Privacy Trade-off

We assess the trade-off between utility and privacy across varying
levels of anonymization by jointly analyzing the performance of the
most effective forecasting and attack models. As established in Sec-
tion 7.1 and Section 7.2. LGBM demonstrates the highest forecasting
accuracy, while the CAE yields the strongest group membership
inference results. Figure 6 visualizes the trade-off between these two
objectives. Forecasting utility is quantified via MAE on the left y-axis
(blue), while privacy risk is represented by the RASR on the right
y-axis (green). The x-axis spans the tested k € {5, 10, 50, 100, 200},
illustrating how increasing anonymization impacts both objectives.

While the MAE gradually increases with growing k, the absolute
values remain low across the full range, from approximately 0.110
to 0.124 kWh, indicating only a moderate degradation in predictive
accuracy. In contrast, the RASR reveals a substantially steeper de-
cline with increasing k, dropping from over 80 at k = 5 to below 30
at k = 10, and continuing to fall thereafter. This contrast in relative
change highlights that substantial privacy gains can be achieved
even at small aggregation levels, while utility losses remain limited.
A complementary plot showing the relative change in MAE com-
pared to the baseline (k = 5) is provided in Appendix C, Figure 9,
offering an alternative perspective on the trade-off.

Overall, the plot illustrates that a substantial improvement in
privacy protection—particularly in the transition from k = 5 to
k = 10, can be achieved with only a minor reduction in forecasting
performance, highlighting this region as a potential sweet spot in
the utility-privacy trade-off.

8 DISCUSSION

Given our experimental setup, our findings illustrate that microag-
gregation can substantially mitigate the risk of group membership
inference attacks on smart meter data, particularly as the anonymity
parameter k increases. This protection becomes especially notice-
able between k = 5 and kK = 10, where the attack success rate
drops sharply across all attacker types. Importantly, this privacy im-
provement occurs while forecasting utility remains relatively stable,
particularly for robust models such as LGBM. This observation high-
lights a potential operational range in which a reasonable trade-off
between utility and privacy can be achieved without compromising
either objective substantially.
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Fig. 4. Household-level day-ahead forecasting performance across varying anonymity levels. The left panel depicts the MAE for each model across increasing
k. The right panel displays the relative performance degradation (% change in MAE) compared to the baseline scenario of k = 5.
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Fig. 5. Membership inference performance across varying k-anonymity levels. The left panel depicts the ASR for each adversary model across increasing k.

The right panel displays the RASR.

However, the analysis also reveals that low aggregation levels
(e.g., k = 5 and k = 10) offer limited protection against more so-
phisticated attacks. In this regime, deep learning models, especially
the CAE, maintain high inference performance, although these val-
ues are relatively low for values between k = 10 and k = 25. The
CAE’s architecture, inspired by domain-specific features, appears
to capture persistent behavioral patterns that remain even after
aggregation. This highlights the inherent privacy risk that arises
when structural patterns in load data are preserved for the sake of
analytical utility.

One central reason for this persistence lies in the design of the
microaggregation algorithm itself. MDAV, as a structure-preserving

ACM SIGENERGY Energy Informatics Review

method, minimizes intra-cluster variance by clustering behaviorally
similar load profiles. While this benefits downstream applications
such as forecasting, it also facilitates inference attacks by retaining
patterns critical for distinguishing individual households, because
the fewer groups exist, the easier it is, similar to the opposite case,
as groups still retain patterns.

In Figure 7, a household with distinctive temporal patterns, most
notably consistent low consumption between 4:00 and 6:00 a.m., and
three unique dips occurring at the end of March, mid-July, and mid-
August, is consistently and correctly re-linked to its anonymized
group over all k-values. These unique temporal patterns, likely
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associated with cyclic periods or specific behavioral routines, are
sufficiently distinctive to persist through aggregation.

In contrast, in Appendix C Figure 8 presents a counterexample
in which the target household exhibits typical seasonal heating
behavior, characterized by higher winter energy usage, but lacks a
unique fine-grained structure. This pattern is not sufficiently specific
to enable successful linkage. As the aggregation level increases, the
household’s signal becomes diluted within the group, underscoring
the weakening of identifiability for more typical load profiles.
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Overall, our results highlight the inherent difficulty of anonymiz-
ing load profiles while maintaining utility. They further illustrate
that the same properties which enable microaggregation to preserve
forecasting accuracy—such as temporal coherence and low within-
group variance—can also weaken its resistance to inference attacks.
This tension between utility and privacy underscores the need for
careful evaluation when applying microaggregation in practice.
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From a practical standpoint, our findings suggest that the privacy-
utility trade-off is not static; rather, it varies depending on the in-
tended application. For example, when energy suppliers or aggrega-
tors aim to generate forecasts at an aggregated level, higher degrees
of microaggregation can be beneficial. By reducing data variability,
microaggregation simplifies the forecasting task, improves pattern
recognition, and can lead to lower forecasting errors, ultimately
reducing supplier imbalance costs.

Conversely, when the goal is to produce individual-level
forecasts, microaggregation, while enhancing privacy protec-
tions—significantly hampers predictive accuracy and might lead
to higher costs. Therefore, the utility of microaggregation is task-
dependent, making it inappropriate to prescribe optimal levels based
solely on our current study.

Nonetheless, our utility-privacy trade-off exploration provides
a solid first step for the discussion among energy suppliers, aggre-
gators, and even individual consumers acting as data controllers. It
encourages them to consider the emerging potential of data markets
and the possibility of sharing their data while ensuring anonymiza-
tion. Once personal data is micro-aggregated, it no longer qualifies
as personally identifiable, allowing third parties to derive mean-
ingful utility while still preserving privacy for the consumer and
adhering to regulation.

Consequently, while this study provides an initial evaluation of
utility and privacy trade-offs in micro-aggregated smart meter data,
several limitations must be acknowledged:

(i) Closed-World Assumption: Our exploration is conducted under
a closed-world scenario in which every pseudonymized household
in the attacker’s dataset corresponds exactly to one group in the
micro-aggregated dataset. This setup simplifies the group member-
ship inference task and represents a best-case condition for the
attacker. However, in real-world deployments, datasets may contain
unknown or unmatched households, and aggregation schemes may
involve partial group overlap or missing data. Future work should
consider open-world scenarios to more accurately capture practical
attack feasibility and generalizability.

(ii) Dataset scope: The study relies exclusively on the LLC dataset.
While the dataset’s resolution and socio-demographic richness make
it ideal for controlled experimentation, it may not reflect regional
or temporal variations in consumption patterns across different
populations or grid infrastructures. Additional evaluations across
diverse smart meter datasets would be necessary to validate the
robustness of our findings and extend their applicability.

(iii) Trade-off visualization and metric integration: Our util-
ity—privacy trade-off exploration uses a dual-axis plot to jointly
visualize forecasting error (MAE) and inference success (RASR)
across aggregation levels. While this offers an intuitive compar-
ison, it lacks a unified metric framework and does not account
for the differing scales or units of the two axes. As a result, vi-
sual interpretation alone may overstate or understate the trade-off
severity. More principled methods from rate—distortion theory, such
as Lagrangian optimization or Pareto efficiency frontiers, could
help formalize trade-off quantification and support more rigorous
privacy-preserving data publishing decisions.

ACM SIGENERGY Energy Informatics Review

9 CONCLUSION AND OUTLOOK

This work has introduced a replicable research methodology to
systematically explore the utility-privacy trade-off in the context
of smart meter data sharing. Focusing on microaggregation as
an anonymization mechanism, we evaluated its dual impact on
household-level load forecasting and privacy risks from group mem-
bership inference.

To this end, we formulated an unsupervised, similarity-based
group membership inference attack, incorporating a novel two-
stage majority voting scheme to re-link pseudonymized household
profiles to their anonymized groups. In contrast to prior work fo-
cused on binary group membership decisions, our more complex
matching-based formulation exposes higher privacy risks, particu-
larly when combined with advanced feature representations.

Our experiments reveal that structural patterns in energy con-
sumption persist even after anonymization via MDAV. These resid-
ual patterns can still be exploited by both domain-informed features
and deep learning models. Convolutional autoencoders, in particu-
lar, demonstrate strong performance in inferring group membership
at low anonymity levels (e.g., k = 5). At the same time, these pat-
terns enable accurate household-level forecasting even under higher
anonymization (e.g., k = 100). This underscores the ongoing ten-
sion between maintaining data utility and ensuring strong privacy
protection.

Future work could extend this methodology in several directions.
First, evaluations could be broadened to include multiple datasets
and more relaxed assumptions, such as open-world scenarios in-
volving previously unseen households. Second, the utility-privacy
trade-off might be more rigorously formalized as a multi-objective
optimization (MOO) problem, inspired by rate-distortion theory.
Methods such as Pareto frontier analysis or Lagrange optimization
could then be employed to identify optimal operating points that
balance privacy protection and analytical utility.

In addition, future research might explore alternative microaggre-
gation schemes or enhance representation learning through more
expressive models. For instance, denoising autoencoders trained to
reconstruct household-level signals from aggregated inputs could in-
advertently learn to suppress inter-household variance, thereby en-
abling re-identification. These models could introduce new privacy
risks, underscoring the need for careful assessment of anonymiza-
tion guarantees in time-series data.
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A COMPLETE FORECASTING PERFORMANCE

Table 4 displays the forecasting results across various anonymity
levels, ranging from k = 5 to k = 200. It also includes perfor-
mance evaluations based on four key metrics: MAE, MSE, RMSE,

B ATTACKER ARCHITECTURES

Table 5 showcases the architecture used for the Convolutional au-
toencoder while Table 6 on the other hand contains the architecture
of Recurrent Autoencoder use for the attacker model.

and SMAPE.

Table 4. Evaluation metrics by model and anonymity regime (sorted by

increasing anonymity).

Table 5. Architecture of the Convolutional Autoencoder.

Layer Type Output Shape
- Encoder
Model Anonymity MAE MSE RMSE SMAPE
Input Input Layer (7,48, 1)
tjo gi;g ggg; 81;2 gizz Conv2D 64 filters, (7,8), ReLU, same (7, 48, 64)
Keos 0122 0053 0.181 0.957 MaxPooling2D  Pool size (1,2) (7, 24, 64)
Linear Regression k=50 0.126 0.055  0.185 0.273 ConvaD 32 filters, (4.4), ReL.U, same (7.24,32)
’ ’ ’ ' MaxPooling2D  Pool size (1,2) (7,12, 32)
koo o0 00 o1 oams ComaD 16 lters, @) Rel,same (112,10
: . . . MaxPooling2D  Pool size (1,2) (7, 6, 16)
k=5 0.109  0.052 0.175 0.216 Conv2D 16 filters, (7,2), ReLU, same (7, 6, 16)
k=10 0.111  0.052 0.175 0.219 Conv2D 8 filters, (7,2), ReLU, same (7, 6, 8)
k=25 0.114 0.053 0.178 0.225 MaxPooling2D  Pool size (7,1) (1,6, 38)
LGBM k=50 0.117  0.055 0.182 0.229 Flatten - (48)
k=100 0.120  0.057 0.186 0.235
Decoder
k=200 0.124 0.061 0.193 0.243
k=5 0.115 0.050  0.174 0.232 Reshape (1.6.8) (L.6.8)
’ : : ’ UpSampling2D  Size (7,1) (7,6, 8)
11:;(5) gﬁg 88;; gi;g g;iz Conv2D 8 filters, (7,2), ReLU, same (7, 6, 8)
’ : : ’ Conv2D 16 filters, (7,2), ReLU, same (7, 6, 16)
XGBoost k=50 0.121  0.055 0.183 0.238 . .
k=100 0.124 0.058  0.188 0.245 UpSampling2D  Size (1.2) (7.12,16)
Conv2D 16 filters, (2,2), ReLU, same (7,12, 16)
k=200 0.127 0.062  0.194 0.254 UpSampling2D  Size (1.2 7,24 16)
k=5 0.114 0.052 0.174 0.239 Conv2D 32 filters, (4,4), ReLU, same (7, 24, 32)
k=10 0.116 0.052  0.175 0.245 UpSampling2D ~ Size (1,2) (7, 48, 32)
k=25 0.121  0.054 0.179 0.257 Conv2D 64 filters, (7,8), ReLU, same (7, 48, 64)
NBEATS k=50 0.123  0.056 0.180 0.262 Conv2D 1 filter, (7,8), Linear, same (7,48, 1)
k=100 0.129  0.060 0.185 0.273
k=200 0.137  0.065 0.192 0.288
k=5 0.114  0.052 0.173 0.236 Table 6. Architecture of the Recurrent Autoencoder.
k=10 0.117  0.053 0.175 0.244
k=25 0.124  0.055 0.179 0.259
NHITS k=50 0129 0.060  0.184 0.274 Layer Type / Parameters Output Shape
k=100 0.136  0.064  0.190 0.291 Encoder
k=200 0.139 0.068 0.194 0.298
Input Input Layer (7, 48) (7, 48)
LSTM 64 units, ReLU, return_seq (7, 64)
Dropout rate = 0.2 (7, 64)
LSTM 64 units, ReLU, return_seq (7, 64)
Dropout rate = 0.2 (7, 64)
LSTM 32 units, ReLU (32)
L2 reg. on kernel
Decoder
Input Input Layer (32) (32)
RepeatVector Repeats to 7 time steps (7, 32)
LSTM 32 units, ReLU, return_seq (7, 32)
LSTM 64 units, ReLU, return_seq (7, 64)
LSTM 64 units, ReLU, return_seq (7, 64)
TimeDistributed Dense(48) per time step (7, 48)
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C HOUSEHOLD AND GROUP VISUALIZATION

Figure 8 contains the visualization of a single household’s annual
load profile (subplot 1) and the wrongly predicted micro-aggregated
group profiles across increasing levels of k-anonymity (subplots 2 -
6). Group labels correspond to different aggregation levels, ranging
from k =5 to k = 100. The case k = 200 is omitted for clarity, as it
closely resembles the k = 100 case.
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D TRADE-OFF BETWEEN PRIVACY DEGRADATION
AND RASR

Figure 9 visualizes the trade-off between utility and privacy for
different levels of k-anonymity. Utility is quantified by the mean
absolute degradation in forecasting error (% kWh, left y-axis, shown
in blue) using a LGBM Regressor, while privacy is measured by the
RASR (right y-axis, shown in green).
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Fig. 8. Household and group visualization.
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Fig. 9. Visualization of MAE degradation against RASR.
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